
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

RAT: Reinforcement-Learning-Driven and
Adaptive Testing for Vulnerability Discovery in

Web Application Firewalls
Mohammadhossein Amouei, Mohsen Rezvani, Mansoor Fateh

Abstract—Due to the increasing sophistication of web attacks, Web Application Firewalls (WAFs) have to be tested and updated
regularly to resist the relentless flow of web attacks. In practice, using a brute-force attack to discover vulnerabilities is infeasible due to
the wide variety of attack patterns. Thus, various black-box testing techniques have been proposed in the literature. However, these
techniques suffer from low efficiency. This paper presents Reinforcement-Learning-Driven and Adaptive Testing (RAT), an automated
black-box testing strategy to discover injection vulnerabilities in WAFs. In particular, we focus on SQL injection and Cross-site Scripting,
which have been among the top ten vulnerabilities over the past decade. More specifically, RAT clusters similar attack samples
together. It then utilizes a reinforcement learning technique combined with a novel adaptive search algorithm to discover almost all
bypassing attack patterns efficiently. We compare RAT with three state-of-the-art methods considering their objectives. The
experiments show that RAT performs 33.53% and 63.16% on average better than its counterparts in discovering the most possible
bypassing payloads and reducing the number of attempts before finding the first bypassing payload when testing well-configured
WAFs, respectively.

Index Terms—Security testing, injection attack, adaptive testing, web application firewall (WAF), test case clustering.

✦

1 INTRODUCTION

IN recent decades, most traditional brick and mortar busi-
nesses have transformed into online ones, such as online

shopping, e-banking, social media, etc. Thus, an enormous
amount of private data of individuals and organizations is
stored in web applications databases, making them tempt-
ing targets for attackers. A recent report reveals that web
applications may experience up to 26 attacks per minute [1].
Moreover, according to Symantec’s security report, 76% of
websites are vulnerable to several attacks [2].

A proper way to provide the security is to use Web
Application Firewalls (WAFs) which analyze HTTP(S) traf-
fic to prevent malicious requests from reaching the web
applications. The Open Web Application Security Project
(OWASP1) defines WAF as ‘‘a security solution on the web
application level which - from a technical point of view -
does not depend on the application itself.’’ [3]. To put it in
perspective, WAFs intercept bi-directional HTTP(S) traffic,
analyze it, and decide whether it is malicious or benign.
Common rule-based WAFs use a set of rules to make a deci-
sion. For instance, WAFs utilize regular expressions to detect
SQL injection (SQLi) attacks. Moreover, recently, extensive
research has been done on intelligent Machine-Learning-
Based (ML-Based) WAFs to distinguish between malicious
and benign traffic with machine learning algorithms [4–6].

A recent study confirmed that web attacks had grown
in size and sophistication [7]; consequently, it is crucial
to regularly test and maintain WAFs to keep them secure
and efficient. In Fig. 1, the procedure for testing a WAF
is illustrated. As web attacks become more sophisticated,
traditional WAF rules become more complex, and ML-Based
WAFs tend to learn novel attacks. At the same time, man-
ual testing and maintenance become more arduous tasks.
Testing WAFs is also extremely expensive, especially in

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
• M. Amouei, M. Rezvani and M. Fateh are with the Faculty of Computer

Engineering, Shahrood University of Technology, Iran.
E-mail: {mhamooei,mrezvani,mansoor fateh}@shahroodut.ac.ir
1https://owasp.org

Fig. 1: Testing procedure for a WAF to discover vulnerabili-
ties.
time, due to the massive variety of attacks. Hence, optimal
automated testing is essential for WAFs to protect web
applications and services efficiently.

One of the common and destructive categories of attacks
is injection. Injections are attacks in which the attacker
injects a malicious input to a web application. Then, the
application interprets this input as a part of a command or
a query, which can result in severe damages. In this paper,
we focus our tests on two common injection attacks: SQLi
and Cross-site Scripting (XSS). These attacks are reported
as top 10 vulnerabilities [8] and have attracted a lot of
attention[1, 7, 9–19].

There are various types of security testing proposed in
the literature, such as white-box testing, model-based test-
ing, and black-box testing. However, these techniques suffer
from limitations that can affect their practical applicability.
White-box testing needs access to the applications’ source
code, which might not be possible in testing industrial
applications. Moreover, each white-box testing tool supports
only some specific programming languages; thus, they can
only test applications developed with those programming

ar
X

iv
:2

31
2.

07
88

5v
1

 [
cs

.C
R

]
 1

3
D

ec
 2

02
3

https://owasp.org

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

languages. Model-based testing techniques require a model
representing the security policies, which is difficult to create
and is often unavailable. The black-box testing, nevertheless,
does not have the mentioned limitations of the two other
techniques [18]. However, despite the remarkable effort
that has been devoted to black-box testing, studies indicate
that black-box testing is inefficient, and a large number of
vulnerabilities remains undiscovered [20, 21].

In recent years, with the power of artificial intelligence,
novel black-box testing techniques have shown a significant
improvement in efficiency and effectiveness [16–18]. These
techniques utilize artificial intelligence methods, such as
evolutionary algorithms [12–14] or machine learning tech-
niques [15, 17, 22] to improve the black-box testing per-
formance. However, these techniques still consume many
requests, and yet many vulnerabilities remain undetected.
Therefore, black-box testing requires further improvement.

This research aims to design a practical automated black-
box security testing approach to uncover WAFs’ vulnerabil-
ities efficiently. Thus, in this paper, we propose a method
called RAT, which uses machine learning algorithms to
provide better effectiveness and efficiency to the black-
box testing. RAT first tokenizes attack payloads using n-
gram. It then clusters similar attack payloads and uses a
reinforcement learning technique called decayed ϵ-greedy
policy combined with a novel adaptive search technique to
find its way through the testing jungle.

Furthermore, we compare RAT with three state-of-the-
art techniques, including Ml-Driven E [18], ART4SQLi [7]
and XSSART [19]. These tests are designed considering
our counterparts’ objectives. More specifically, Ml-Driven
E tend to discover the highest possible number of SQLi
vulnerabilities, and ART4SQLi and XSSART aim to find
the very first bypassing payload with the lowest number
of requests. Thus, to compare RAT with Ml-Driven E we
measure the total bypassing payloads within a limited num-
ber of requests for both techniques, and for the comparison
between RAT and ART4SQLi and XSSART, we compare
the number of blocked payloads before finding the first
bypassing payload for all three techniques. We use SQLi
dataset to compare RAT with Ml-Driven E and ART4SQLi,
and XSS dataset to compare RAT with XSSART. We also
compare RAT with a simple random testing technique (we
name it Random Fuzzer) as a basic method. Our comparative
experiments show that RAT can discover an average of
33.53% more bypassing attack than Ml-Driven E within a
limited number of requests. Moreover, according to our
experiments, our adaptive search algorithm is an average of
61.43% faster than ART4SQLi when facing well-configured
WAFs. However, ART4SQLi could discover the first bypass-
ing payload about 38.70% faster than RAT in testing a WAF
with massive vulnerabilities. Moreover, results show that
RAT is an average of 64.90% faster than XSSART in finding
the first bypassing payload.

The main contributions of the paper summarized as:

1) Since string-based injection attack payloads are se-
quences of specific string tokens, we employ n-
gram, known for simplicity and scalability [23], as
a feature extraction method. In our experiments,
we observed that n-gram could model sophisticated
attack patterns while extracting significantly fewer
features than the ML-Driven E, resulting in a better
efficiency than ML-Driven E.

2) We evaluate the effects of the clustering and propose
a method to cluster the similar attack payloads.

3) We use the ϵ-greedy algorithm and a novel adaptive
search technique to enhance the efficiency of our
black-box testing approach.

The remaining sections are organized as follows. Sec-
tion 2 describes SQLi and XSS attacks as well as previous

1 public void doPost(HttpServletRequest
request, HttpServletResponse response)

2 throws ServletException, IOException {
3

4 String user_name =
request.getParameter("username");

5 String user_pass =
request.getParameter("password");

6

7 String sql_statement = "SELECT * FROM
users WHERE username = '"

8 + user_name
9 + "' AND password = '"

10 + user_pass + "' ";
11

12 result = Database.execute(sql_statement)
13 }

Fig. 2: Example of an unsafe SQL statement formation in
Java.

research. Section 3 details the proposed approach. In Sec-
tion 4, we explain research questions as well as the exper-
imental environment. Section 5 discusses the experiments
and evaluation results. Section 6 concludes this paper.

2 BACKGROUND AND RELATED WORK

This section aims to provide a brief description of the
code injection attacks, such as SQL Injection and Cross-Site
Scripting. In the final subsection, we narrate the research
story of black-box testing for these two web attacks.

2.1 SQL Injection
SQL databases, also known as relational, are the most pop-
ular ones among developers [24]. Web-based applications
that use SQL databases communicate with database engines
by statements that are defined in a language, named SQL.
These statements are usually formed dynamically by con-
catenating various substrings. Each substring is provided
either by a user or the application itself. Once statement
formation has done, the database engine executes it.

Fig. 2 shows an instance of an unsafe SQL statement for-
mation. In Fig. 2, the variables user_name and user_pass
are provided by the user through HTTP request (line 4-5).
Then, they are concatenated with the SQL statement without
any sanitization and stored in the variable sql_statement
(line 7-10). Finally, the sql_statement passed to the func-
tion execute of the class Database to be executed by
the database server (line 12). In case of malicious inputs,
database server executes the infected statement and per-
forms the attacker’s desired action.

SQLi is an injection attack in which the attacker
targets applications with unsafe SQL statement forma-
tion, and passes malicious input parameters to the vic-
tim application and misleads the application to perform
an unauthorized action (e.g., accessing confidential data
without granting required permission). For instance, in
Fig. 2, if instead of passing a real username to the
variable user_name, an attacker fills the username pa-
rameter with ‘ OR 1 = 1 # and leaves the password
empty, then the value of the sql_statement would
be SELECT * FROM users WHERE username = ‘‘ OR
1 = 1 # AND password = ‘‘ which is equal to SELECT
* FROM users WHERE username = ‘‘ OR 1 = 1. In
SQL, the symbol # is an inline comment operator, and
1 = 1 is an always True condition, thus if the database
executes the resulting statement, it returns all rows of the
table users.

SQLi attacks are a high-risk security threat to orga-
nizations. By a successful SQLi exploit, confidential data
of organizations or individuals can be modified or stolen.
Thus, protecting applications against SQLi attacks is vital.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

Fig. 3: Example of an XSS attack attempt, in which the
attacker steals the victim’s cookie by submitting a malicious
post to a vulnerable social media.

1 <!DOCTYPE html>
2 <html>
3 <h1> Latest Posts </h1>
4 ...
5 <script>
6 $(document).ready(function() {
7 var cookie = document.cookie;
8 $.post("http://test.com/cookie",
9 {cookie: cookie},

10 function(result) {});
11 });
12 </script>
13 ...
14 </html>

Fig. 4: Example of a malicious HTML containing JavaScript
to steal user’s cookie.
2.2 Cross-Site Scripting (XSS)
XSS is a code injection attack in which the attacker injects
malicious scripts into legitimate websites to execute them
in the web browser of end-users. Any web application that
generates output using input from users can be vulnerable
to such an attack. XSS occurs when a victim visits an infected
web application that carries the malicious script to the
browser. Within the browser, the script can access user’s
sensitive information (e.g., stealing costumer’s payment
info), cookies and, any other data that related to the web
application and retained by the user’s browser.

Fig. 3 shows an instance of an XSS attack attempt in
which the attacker tries to steal the user’s cookie of a
vulnerable social media. The details are as follows:

1) The attacker submits a malicious post containing
JavaScript code to the application, which inserts it
into the application’s database without sanitization.

2) The victim user sends a GET request to the applica-
tion to get the latest posts. Afterward, the applica-
tion retrieves the posts, including the malicious one,
from its database and locates them into the HTML
page as the response to the client.

3) The application responds to the user with a page
containing the malicious script (Figure 4).

4) Once the user’s browser receives the page, render
it and executes its scripts, and as a result, the
JavaScript code in Figure 4 (line 5-12) sends the
user’s cookie to the attacker’s server.

2.3 Related Work
Over the past decade, both SQLi and XSS attacks have been
attractive topics for researchers, and remarkable research ef-
forts have been made toward vulnerability detection meth-
ods, particularly automated black-box testing [25].

Various combinatorial testing methods have been pro-
posed in the literature for both XSS and SQLi attacks [1, 9–
11]. These methods parametrize attack patterns in the form
of BNF grammar rules. Then they test combinations of
parameters by covering t-way interactions in which t is the
number of parameters, and a higher value for t can produce
more complex patterns. However, a large t consumes a vast
number of HTTP requests.

Knowing the capability of Artificial Intelligence (AI),
researchers tend to provide better-optimized solutions using
AI for various problems, including security assessment. For
example, Thomé et al. [12] proposed a fitness function to
measure how close an SQLi literal is from generating a
bypassing payload. Avancini and Ceccato [13] used the Ge-
netic Algorithm (GA) to find vulnerable inputs in webpage.
Moreover, Duchene et al. [14] applied GA to generate XSS
payloads in fuzz testing. There are also adversarial and
learning-based methods which we describe in the following.

2.3.1 Adversarial
Elderman et al. [22] simulated an adversarial cybersecurity
game in which an attacker and a defender are two ad-
versarial agents that use reinforcement learning techniques
to win the game. Demetrio et al. [15] proposed WAF-A-
MoLE, an adversarial method for mutating attack strings to
bypass ML-Based WAFs. Mostly, adversarial methods aim
to bypass ML-Based WAFs, whereas our method targets
signature-based WAFs. Nevertheless, our approach can be
combined with adversarial techniques to achieve higher
performance. For instance, it can be integrated into WAF-
A-MoLE to function as a guide to increase its efficiency.

2.3.2 Learning-based
Tripp et al. [16] suggested XSS Analyzer, a web security
testing approach with learning capability. The authors pro-
posed a method that learns from previous attempts to select
the next payload with a higher probability of exposing a
vulnerability in the System Under Test (SUT). In particular,
XSS Analyzer generates payloads for a grammar, devised
based on a comprehensive dataset of XSS payloads, and
learns which tokens are preventing an attack from evading
the security.

Inspired by XSS Analyzer, Appelt et al. [17, 18] proposed
ML-Driven B, ML-Driven D and later on, ML-Driven E, learn-
ing approaches to SQLi vulnerability detection. The same as
XSS Analyzer, ML-Drivens benefit from the idea of learning
literals that prevent an attack from bypassing the security
from previous attempts. The main difference is within the
learning process. Whereas XSS Analyzer only learns indi-
vidual literals, ML-Drivens learn the combinations of literals.
More specifically, ML-Drivens split each attack’s derivation
tree into subtrees and then measures the likelihood of by-
passing attacks using a decision tree. The authors prove
that ML-Drivens can learn more complex attack patterns
and outperform state-of-the-art tools, thus, suggesting that
learning combinations of literals can effectively guide the
testing procedure.

Usually, bypassing payloads are rare in a comprehensive
payload collection which makes it challenging to find ef-
fective payloads with a reasonable number of tests. Zhang
et al. [7] proposed ART4SQLi, an adaptive random testing
approach for SQLi vulnerability and Lv et al. [19] pro-
posed XSSART an adaptive random testing approach for
XSS vulnerability detection. Both ART4SQLi and XSSART
use similarity metrics to expedite the process of finding
an effective attack payload, and demonstrate that payload
spaces are sparse, and bypassing payloads tend to cluster to-
gether. Thus, in this research, we consider clustering similar
payloads and evaluate the effects of clustering on efficiency.

Although ML-Drivens can discover a large number of
bypassing payloads, they require a large number of ob-
servations to learn effective patterns. ML-Drivens require

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

Fig. 5: Overview of the first phase of the proposed approach,
which shows the preparation of the test oracle.

an initial collection of both passed and blocked attacks
to train a decision tree; thus, before training the decision
tree, they perform a random search which, facing a well-
configured WAF, consumes a large number of requests. In
contrast to ML-Drivens, our adaptive search technique only
uses blocked attacks to uncover bypassing ones in the very
beginning of the test. It then uses the discovered bypassing
attacks to improve its performance.

Moreover, ML-Drivens break payload derivation trees
into sub-trees to use them as features, creating a vast feature
space that exponentially expands if we try to test longer
attack payloads (e.g., XSS). Training a decision tree with
this massive number of features is non-practical; thus, the
authors suggested selecting a small random subset of the
feature space, resulting in low efficiency of their approach.
In comparison, RAT showed a better performance in our
experiments, since first of all, n-gram extracts significantly
fewer features than ML-Drivens feature extraction algorithm.
Secondly, our clustering and feature reduction technique can
effectively reduce the number of features, resulting in better
effectiveness and efficiency.

Last but not least, the decision tree algorithm suffers
from the local minima problem, and it is unstable as small
changes in training data remarkably affect classification
results [26]. Thus, the authors in [18] discussed using an
ensemble model such as a random forest algorithm may
address these problems. However, it adds high computa-
tional overhead as multiple decision trees have to be trained
during each update, and their experiments showed that
its improvement is not significant enough. Similar to ML-
Drivens, in our work, the ϵ-greedy policy suffers from local
optima, and it is unstable because the cluster selection order
can significantly change the final results. Nevertheless, we
try to avoid local optima by controlling exploration and
exploitation rate using decayed ϵ-greedy policy, which does
not add any computational burden. More specifically, this
policy starts with a big ϵ to explore and find clusters that
include bypassing attacks. Since our adaptive search algo-
rithm can quickly find bypassing payloads inside clusters,
decayed ϵ-greedy can quickly filter the clusters with non-
bypassing payloads. Then, the ϵ decreases, so the RAT
focuses on the clusters with bypassing attacks. These quick
exploration and exploitation significantly improve RAT’s
stability and efficiency. Our experiments show that the RAT
is considerably more stable and efficient than ML-Driven E.

3 APPROACH

In this section, we first describe an overview of the proposed
approach. We then explain the details of each module in next
subsections.

Fig. 6: Decomposition of a sample attack payload to its
constitutive tokens.

3.1 Framework Overview
The code injection attack payload is formed by concate-
nating miscellaneous string fragments. Considering these
fragments are the test parameters, each fragment is re-
sponsible for either failure or success of an attack payload
in circumventing the firewall. In black-box testing, we do
not have any information about the source code of the
application under the test to distinguish effective from
ineffective fragments. Nevertheless, it is possible to find
effective fragments based on feedback obtaining from the
application during the test process. However, due to the
large variety of fragments in a rich dataset, a testing tool
needs too many observations to gather enough information.
Therefore we consider clustering similar payloads together;
thus, we can reduce the variety of fragments to distinguish
between them rapidly. Moreover, since bypassing payloads
tend to cluster together, devoting search effort to effective
clusters significantly improves the performance.

Fig. 5 illustrates an overview of RAT. It shows the
process of preparing attack samples for the testing phase.
Here, Dataset is the collection of attack payloads (see
section 4.3.2 for more details about the datasets). At the very
first step, n-gram Tokenizer (Section 3.2.1) tokenizes the
attack samples of the dataset. Then, the Word Embedding
(Section 3.2.2) module maps each token to the vector of real
numbers, and Hierarchical Clustering (Section 3.2.3)
clusters tokens using these vectors. Binary Encoder (Sec-
tion 3.2.4) then forms a binary feature vector using clus-
ters that are obtained from Hierarchical Clustering
module, and passes these vectors to Deep Embedding
Module (DEN) (Section 3.2.5) to cluster attack samples.
Finally, in the feature extraction phase, Token Selector
(Section 3.3.1) selects only effective tokens for each cluster,
and then, IDF Calculator (Section 3.3.2) forms the main
feature vector for each attack payload. Clusters, attack sam-
ples, and their feature vectors are then passed to the Test
Oracle (Section 3.4) to be used in our testing algorithm.

3.2 Clustering Payloads
At the very first stage of our approach, we decompose
attack payloads into string fragments and then cluster them
together based on their common fragments. In other words,
we split the dataset into smaller datasets; thus, later, we can
search in each mini dataset independently. The following
sections detail the process, and our experiments show that
clustering significantly reduces the number of features. This
feature reduction is important as a high number of features
require many observations to learn patterns; thus, removing
irrelevant features improves accuracy and efficiency - reduc-
ing features decreases the computational complexity and
working with small feature vectors requires fewer resources
(e.g. disk storage or memory) than big feature vectors [27].

3.2.1 n-gram Tokenizer
We can decompose every payload of a code injection attack
into smaller pieces called tokens. Each token can be a single
character or a sequence of characters. As an example, in
SQLi, constitutive tokens of the sample payload showed in
Fig. 6. Simply, each token is responsible for either failure or

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

TABLE 1: Example of payload decomposition for the pay-
load 0) or not 0>(!~ 0)-- using n-gram.

Unigram
(n = 1)

Bigram
(n = 2)

Trigram
(n = 3)

0 ,) , , ... 0) ,) , or , ... 0) ,) or , or , ...

Fig. 7: Architectures of Word2Vec models: Continuous Bag
of Words (CBOW) and Skip-gram.

Fig. 8: Example of learning numerical vector representation
for n-grams of an SQLi attack payload using the skip-gram
model.
success of an attack payload; however, not always a single
token but also a combination of tokens can lead a payload
to success. Therefore, we extract combinations of tokens
instead of single tokens using a well-known method called
n-gram. In this paper, we refer to n-gram extracted tokens
as fragments.

N -gram is a contiguous sequence of N tokens of a string.
We use n-gram to decompose attack payloads into smaller
fragments, which help us consider more complex patterns
in our search strategy. Table 1 shows an example of payload
decomposition for the payload 0) or not 0>(!~ 0)--
with three different values for N . As shown in Table 1, with
the bigger N , we can extract more complex patterns; how-
ever, as we increase the size of N , the variety of fragments
grows. In our empirical study, we investigate the effect of N
on search results for each dataset.

3.2.2 Word Embedding
In code injection attacks different string fragments can be
used interchangeably (i.e., in SQLi, 1=1 is an alternative

TABLE 2: Example of a binary representation for a pay-
load p, which shows whether the corresponding payload
contains any fragment from the cluster Ci where i is the
cluster’s number.

payload C1 C2 C3 C4 C5 C6

p 1 0 1 1 0 0

for "a"="a"). In order to cluster similar attack payloads,
we can consider alternative fragments as a single feature.
For this purpose, we use word2vec [28] to learn a vector
representation for each string fragment; thus, later, we can
measure the similarity between fragments.

Continuous Bag of Words (CBOW) and skip-gram are
two architectures of Word2Vec [28]. These two simple neural
network models are illustrated in Fig. 7. In both models,
the middle layer is where the numerical vector is learnt for
each unique word. CBOW learns this vector representation
by using the surrounding words to predict the word in the
middle. Opposed to CBOW, skip-gram tries to predict the
surrounding words given the middle word. In our research,
we observed that skip-gram could produce better word
representation than CBOW. The problem with CBOW might
be that since the target words are the output of the neural
network, rare words have to compete with their alternatives
that are repeated frequently. Therefore, rare words receive
low attention from the model if the dataset is unbalanced.
On the other hand, in skip-gram, the target words are the
input of the neural network. Thus, rare words will not
compete with frequent ones, and the model fairly learns the
vector representation for every word. In this research, due
to the rarity of fragments in our massive datasets, we use
the skip-gram model.

In this research, each dataset is used to train a separate
skip-gram model from scratch. Fig. 8 depicts an example
of transforming SQLi n-grams into numerical vectors. First,
payloads are tokenized using n-gram. Then, a window with
a specific size (see Section 4.4.2) moves on the new strings to
select sub-strings to train the skip-gram. Finally, skip-gram
learns a vector representation for each n-gram token. In this
specific example, the token || means OR, and the token
∼ means whitespace; thus, fragments ||∼ and OR are se-
mantically the same, and they can be used interchangeably.
Therefore, after completing the skip-gram training, these
two tokens are expected to have similar vectors.

3.2.3 Hierarchical Clustering
After vectorizing the fragments, we use hierarchical cluster-
ing with cosine distance to cluster similar fragments.

Suppose vectors v1 and v2 represent fragments f 1 and
f 2 respectively, the following equation is the distance calcu-
lation between f 1 and f 2.

distance(f1, f2) = 1− v1.v2
∥v1∥l2 × ∥v2∥l2

(1)

The output of Eq. (1) is a number in the range [0, 1].
For two identical vectors, the calculated distance is 0, and
a calculated distance as 1 indicates that two vectors are
orthogonal. Table 2 shows the binary vector for p.

3.2.4 Binary Encoder
Given a set of payload collection with clustered fragments,
we transform each payload into a binary vector as an
input to our clustering algorithm. Each item in our vector
represents a cluster that indicates whether a corresponding
payload contains any fragment belongs to that cluster. For
instance, assume a payload p contains a set of unique frag-
ments F = {f1, f2, f3, f4, f5} and the set of obtained clus-
ters from the previous step is C = {C1, C2, C3, C4, C5, C6}
in which {f1, f3} ⊆ C1, {f2} ⊆ C3 and {f4, f5} ⊆ C4. In
Table 2, the corresponding values for C2, C5, and C6 are set

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

Fig. 9: Architecture of Deep Embedding Network, we used
to cluster our dataset. We feed the k-means algorithm with
the output of the encoder.

as 0 indicates that p does not contain any fragment belongs
to these clusters.

3.2.5 Deep Embedding Network (DEN)
As the last step of this section, we use the output of Binary
Encoder to cluster attack payloads. The output of the Binary
Encoder is a complex binary vector in which the items
are respective to each other. Although numerous similarity
measures have been proposed for binary features [29], we
found that clustering our high-dimensional raw data using
these similarity measures results in poor performance. Thus,
we considered using feature transformation methods to map
our raw data to a much distinguishable feature space.

Mainly, data transformation methods include linear
transformation such as Principal component analysis (PCA)
[30] and non-linear transformation such as kernel methods
[31]. In recent years, the development of deep learning has
facilitated the non-linear transformation of raw features into
more clustering-friendly representation [32]. Consequently,
abundant deep learning-based clustering methods have
been proposed in the literature [33–36].

In this research, we use DEN [36], which first, utilizes
a deep autoencoder to learn lower-dimensional representa-
tion from the input data. Then, it uses k-means to cluster
learned features. In the following paragraphs, we detail the
process.

Autoencoder is a kind of unsupervised neural network
consists of two parts: encoder function h = f(x̂) and
decoder function r = g(h). The encoder maps raw data into
a latent representation, and then the decoder reconstructs
the raw input data from latent features (see Fig. 9). Simply,
an autoencoder learns latent representation by minimizing
reconstruction loss function L(x̂, g(f(x̂))). Considering that
the input is binary, we use binary cross-entropy as the loss
function. Given an input vector x̂ = [x1, x2, . . . , xn] and
corresponding output vector ŷ = [y1, y2, . . . , yn], the loss
calculation is

L(x̂, g(f(x̂))) = − 1

n

n∑
i=1

xi × ln yi + (1− xi)× ln(1− yi)

(2)

In this paper, we use an autoencoder with six dense
hidden layers to map features into three-dimensional fea-
ture space (see Section 4.4.3 for more details). After training
the autoencoder, we detach the decoder part and use the
encoder to transform our data to a new clustering-friendly
representation. Then, we cluster new features using the k-
means algorithm for simplicity (see Fig. 9). It is to be noted
that the impact of the clustering algorithm can be studied in
further researches.

3.3 Feature Extraction
At this stage, we pick only principal fragments from the
fragment collection, which we have earlier created in Sec-
tion 3.2.1. Then we calculate Inverse-Document-Frequency
(IDF) for each fragment to build the final feature vector. We
repeat this stage for each cluster individually.

3.3.1 Token Selector
Since each cluster is a subset of the original dataset, a
cluster’s fragment set is a subset of the main fragment
collection. Therefore, as the first step, we remove unused
fragments, and then we keep the remaining. For instance, let
us assume that there are four fragments extracted from the
whole dataset. However, payloads of a cluster are consisting
of only two of them. Thus, since the adaptive searching in
each cluster is done independently, we do not need those
two extra fragments in that cluster. We, therefore, do not
consider those unused fragments in building feature vectors
in that cluster.

In order to improve our algorithm’s performance, within
each cluster, we remove non-informative fragments such as
highly repetitive and exceedingly rare fragments from our
fragment set. For this purpose, first, we calculate entropy for
each fragment, and then we remove fragments with an en-
tropy value lower than a threshold. The entropy calculation
is given below

E(fi) = −(p(fi) log2 p(fi) + (1− p(fi)) log2(1− p(fi)))

= −((ki
N
× log2(

ki
N

)) + (
N − ki

N
× log2(

N − ki
N

)))

(3)

where i is the fragment’s number, E is the entropy, p(fi) is
the probability of a fragment fi being present in a randomly
selected payload, ki is the number of payloads containing
the fragment fi, and N is the size of corresponding cluster.

3.3.2 IDF Calculator
Among the remaining fragments, rare ones are more valu-
able; thus, we calculate a weight for each unique fragment
using inverse document frequency [37]. Then, we create a
feature vector for each payload. If a payload contains a
fragment, the value of the fragment in the feature vector will
be its weight; otherwise, it will be zero. The IDF calculation
is as follows:

wi
f = ln(

N

ki
) (4)

where i is the fragment’s number, w is the weight for
fragment fi, N is the number of payloads, and ki is the
number of payloads containing the fragment fi within the
corresponding cluster.

3.4 Test Oracle
Since our approach is a type of black-box testing, the only
information we can obtain from a protector WAF is whether
a request is identified as malicious or benign. Therefore, we
propose an adaptive search technique; we call here Adap-
tiveSearch that benefits from prior experiences to minimize
failed attempts. The key insight underlying AdaptiveSearch
is that if a fragment attends more previously blocked attacks
than others, it is more likely to cause a failure. Thus, if a
new test payload contains these fragments, it is more likely
to be recognized by the WAF. More specifically, in Adap-
tiveSearch, we assume that the set of previously blocked
attacks is a document, and new test candidates are the
queries. To find a payload with the highest likelihood of
bypassing the WAF, for each query, we calculate a term
frequency-inverse document frequency (TF-IDF) score that
indicates the relevance of the query to the document [38].
Finally, we pick the payload with the lowest score and then
execute it against the WAF. If the chosen payload bypasses
the WAF, in further tests, we do not consider its fragments
in our score calculation; otherwise, we add the payload to
the document.

The pseudo-code for AdaptiveSearch is given in Al-
gorithm 1. Line 2 initializes the payload collection of the
cluster. Line 3 defines an array to keep the term frequency of

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

Algorithm 1 Adaptive Search algorithm

1: procedure ADAPTIVESEARCH(cluster, rounds)
2: P← getPayloads(cluster)
3: BV← getBlockedVector(cluster)
4: PV← getBypassingVector(cluster)
5: S← {∅}
6: SR← +1 ▷ Reward
7: FR← -0.5 ▷ Punishment
8: R← 0 ▷ Sum of Rewards
9: for i = 1 to rounds do

10: if is first time then
11: test candidate← pickRandomPayload(P)
12: else
13: rt← RankPayloads(P, BV, PV)
14: testCandidate← pickBestPayload(rt)
15: end if
16: P← P− testCandidate
17: result← evaluate(testCandidate)
18: if result is successful then
19: S← S ∪ {testCandidate}
20: PV← updateBypassingVector(testCandidate)
21: R← R + SR
22: else
23: BV← updateBlockedVector(testCandidate)
24: R← R + FR
25: end if
26: end for
27: saveClusterState(P, BV, PV)
28: return S,R
29: end procedure

the previously blocked attacks’ fragments. We also initialize
a binary vector that keeps the state of each fragment (line 4).
If a fragment attends a bypassing payload, its value will be
zero; otherwise, it will be one. The value one for a fragment
means that we count it in the score calculation.

At the very beginning of the search, we pick the first
payload randomly (lines 10-12). In further searches, for
each new attempt, we calculate the score of each payload,
and then we pick the best payload (lines 13-14). The score
calculation is given below

score(p) =

n∑
i=1

bi × vi (5)

where i is the fragment’s number, bi is the frequency of the
fragment fi in the blocked attacks, v is the feature vector for
payload p, calculated in Section 3.3.2, and n is the size of v.

Each time we pick a payload, we remove it from payload
collection; then, we execute it against the WAF (lines 16-
17). If a chosen attack bypasses the WAF, we add it to
the bypassing collection (line 19). Then in the bypassing
vector, we set the value of the items that represent a frag-
ment belonging to the successful payload to zero (line 20).
Otherwise, we update the failure vector (line 23) using the
following equation:

bi = si × (tfi + bi) (6)

where i is the fragment’s number, bi is the frequency of
the ith fragment in failure vector, tfi is its frequency in the
payload p, and si is the state value of fragment fi in success
vector.

To put it in more perspective, let us assume that there are
four attack payloads in cluster c. Table 3 shows the frequen-
cies of fragments in these payloads as well as their feature
vectors. Assuming the first two payloads are tested and
blocked, we sum their term frequency vectors to calculate
the vector b̂. As a result, the vector b̂ is b̂ = [3, 1, 1, 0]. To

TABLE 3: Example of the payloads’ term frequencies in
cluster c.

p.id
Term Frequencies Inverted Document Frequencies

f1 f2 f3 f4 f1 f2 f3 f4
1 2 0 1 0 0.28 0 0.69 0
2 1 1 0 0 0.28 0.28 0 0
3 0 1 2 3 0 0.28 0.69 1.38
4 2 2 0 0 0.28 0.28 0 0

Algorithm 2 Epsilon Greedy Policy

1: procedure EPSILONGREEDY
2: PC← Payload Clusters
3: S← {∅}
4: max ϵ, ϵ← Epsilon
5: R← Number of Searching Rounds per episode
6: K← Update Rate for Epsilon
7: E← Episodes
8: AR← Initial Average Reward of Each Cluster
9: for i = 1 to E do

10: c← pickCluster(ϵ)
11: bypassing, reward← ADAPTIVESEARCH(c, R)
12: AR← updateAverageReward(c, reward, AR)
13: S← S ∪ bypassing
14: ϵ← updateEpsilon(max ϵ, i, K)
15: end for
16: end procedure

select the next payload to test, we calculate the dot product
of b and the remaining payloads’ feature vectors. The result-
ing ranks are: Rank(p3) = 0.97 and Rank(p4) = 1.12. Thus,
we select the third payload, which has the lower rank. If p3
bypasses the WAF, we set the values of fragments f2, f3 and
f4 in ŝ vector to zero as p3 contains these fragments. The
resulting ŝ is ŝ = [1, 0, 0, 0]. Therefore, in the next update,
frequencies of these fragments in b̂ will be set to zero.

On lines 21 and 24, Algorithm 1 calculates a reward,
which we explain in the following sections. Finally, it saves
the current state of the cluster (line 27) and returns bypass-
ing attacks and the reward (line 28).

In our observations, we realized that effective payloads
are usually rare in payload collection; thus, only a few
numbers of clusters contain bypassing payloads. Therefore,
limiting searches to these clusters reduces the number of
failed attempts significantly. For this purpose, we use the
ϵ-greedy policy for cluster selection.

To use ϵ-greedy policy in our method, we define the
required terms and parameters as follow:

1) Reward: A positive constant value for each success-
ful attempt.

2) Punishment: A negative constant value for each
unsuccessful attempt.

3) Action: An action is the R (line 5 of Algorithm
2) number of attempts that are made for a single
cluster.

4) Action Reward: Sum of rewards and punishments
per action.

5) Average Reward: Average of a cluster’s action re-
wards.

In ϵ-greedy policy (Algorithm 2), first, we value the
actions based on their average rewards. Then we either
select a random action with the probability of ϵ or the best
action with the probability of 1− ϵ (line 10).

At the very beginning of the search, we do not have
any information about clusters; thus, we set initial ϵ equal
to a large number (e.g., 0.9) to perform exploration. As we
search more in clusters, we gain more knowledge. Therefore

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

after each episode, we decrease the value of the ϵ to perform
more exploitation (line 14). The calculation for ϵ reduction is
given below:

ϵ = max ϵ× e−(k×τ) (7)

where max ϵ is the maximum value of the ϵ, k is a constant
value (see Section 4.4.6), and τ is the number of played
episodes.

4 EMPIRICAL STUDY
This section aims to evaluate our proposed method on its
efficiency and effectiveness. In Section 4.1, we introduce the
research questions. Section 4.2, briefly explains the process
of testing the WAFs. In Section 4.3 we describe the experi-
mental environment, including subject WAFs, datasets, and
evaluation metrics. Section 4.4 demonstrates the algorithm
parameters, and finally, Section 5 answers the research ques-
tions.

4.1 Research questions
In our empirical study, we aim to answer the following
questions:

Q1: Does the choice of n-gram matter?
Q2: How does clustering affect the performance?
Q3: How does RAT compare with the state-of-the-art
techniques?
Q4: Is the efficiency and effectiveness of RAT acceptable
in practice?

Q1 and Q2 assess the effect of clustering and n-gram
on the performance of our approach. Q3 compares our
technique with state-of-the-art methods, and Q4 investigates
whether the efficiency and effectiveness of our approach are
acceptable in practice. The following sections answer these
questions.

4.2 Procedure
In our experiments, we only target the WAF itself, not
the application behind it. Since WAFs are independent
of the application under protection, for the HTTP key-
value pairs, they validate values regardless of keys. Thus,
we apply attacks through dummy keys as the HTTP
query and the cookie. For instance, we consider the
HTTP GET query key as q, and then we set an at-
tack payload “0%20or%201=1%23”as the query string
for q. As a result, the URL for the sample request
is “http://example.com/?q=0%20or%201=1%23”. For
each test, we either target the GET query parameter or the
cookie. In our experiments for SQLi, we test both HTTP GET
query parameter and cookie; and for XSS, we only test the
GET parameter. It is worth mentioning that our method is
independent of the communication protocol; thus, it can be
implemented using different request types such as POST,
GET, and SOAP messages. In this research, since the subject
WAFs’ rules are the same for both GET and POST requests,
we conduct our experiments using GET for simplicity.

It is to be noted that when WAF receives a request, it
investigates the request and if it detects an attack, responds
that the request is forbidden. Thus, we understand that the
attempt is failed; otherwise, we mark the attack pattern as
bypassing.

4.3 Experimental environment
RAT consist of two parts: Data Processor and Test Oracle.
The Data Processor is a one time process and requires at
least 32GB of RAM and a CUDA-enabled Graphic Card with
the minimum compute capability 3.0 whereas Test Oracle
requires the minimum 8GB of RAM with 2.10GHz duo
core CPU. However, to speed up tests, all the experiments
were conducted on a Server with two 2.10GHz Intel(R)
Xenon(R) processors and 64GB RAM running Windows 10

TABLE 4: Number of samples in each dataset.

Dataset name Number of Payloads
SQL Injection 2,417,720
Cross-site Scripting 1,798,062

TABLE 5: Percentage of bypassing payloads for each open-
source WAF.

WAF
SQLi XSS

GET Parameter Cookie GET Parameter
ModSecurity 0.007% 0.079% 0.015%

NAXSI 0.005% 0.005% 0.004%

pro. The program codes were written in Python 3.6, and the
source code is publicly available on GitHub2. Furthermore,
the deep autoencoder implemented with Keras-GPU 2.2.4
running on the top of Tensorflow 1.9 and was executed on
Google Colab3. The following sections provide details about
Subject WAFs, Datasets and metrics.

4.3.1 Subject WAFs
In our case studies, we apply our tests on a custom-built
WAF and two famous open-source WAFs: ModSecurity4 and
Naxsi.5

ModSecurity is a toolkit that provides real-time protection
for web applications. It protects web applications against
various types of attacks, such as SQLi, XSS, and denial of
service. We deployed the ModSecurity with an Apache HTTP
server on a local virtual machine.

Naxsi stands for “Nginx Anti XSS and SQL Injec-
tion,”which is a third-party module for Nginx web server
that protects web applications against SQLi and XSS attacks.
Similar to ModSecurity, we deployed Naxsi on a local virtual
machine.

Custom-built WAF is the modified version of ModSecu-
rity, customized to protect a real-world application’s web
services. This application provides various educational ser-
vices, and the private data of thousands of students is stored
in its database. Therefore, custom-built WAF is responsible
for the privacy of students’ data.

4.3.2 Datasets
In this research, we evaluate our technique on two different
injection datasets (available on GitHub6). The first dataset
is a collection of SQLi payloads which we generated using
the finite BNF grammar proposed in [18]; thus, we can
fairly compare RAT with ML-Driven E. The next dataset
is a collection of XSS payloads, we generated using an
opensource fuzzer tool, named dharma.7 Table 4 shows the
number of payloads in each dataset.

4.3.3 Effectiveness metrics
This research aims to increase the number of discovered
bypassing attacks while reducing failed attempts. Thus,
we consider bypassing payloads as positives and blocked
payloads as negatives. As a result of this naming, successful
attempts are True Positives (TPs), and unsuccessful ones are
False Positives (FPs).

To evaluate and compare the effectiveness of RAT and
Ml-Driven E, we measure TP over the limited number of re-
quests. Since deploying NAXI and ModSecurity on the local

2https://github.com/mhamouei/rat
3https://colab.research.google.com
4https://modsecurity.org
5https://www.nbs-system.com
6https://github.com/mhamouei/rat datasets
7https://github.com/MozillaSecurity/dharma

https://github.com/mhamouei/rat
https://colab.research.google.com
https://modsecurity.org
https://www.nbs-system.com
https://github.com/mhamouei/rat_datasets
https://github.com/MozillaSecurity/dharma

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

TABLE 6: Architecture of the AutoEncoder.

Attack Type Input layer
Encoder

Bottleneck
Decoder

Output layer
Hidden layers Hidden layers

SQLi 52 36 23 10 3 10 23 36 52
XSS 347 261 175 89 3 89 175 261 347

machines provided the feasibility of brute-force attacks, we
applied brute-force attacks on these open-source WAFs by
exhaustively testing all attack payloads of our collections
on the WAFs. Then, we measured the number of positives
for each request parameter. Table 5 shows the percentage
of bypassing attack payloads existing in our collections for
both WAFs. Knowing the total number of positives, we can
calculate TP

positives as True Positive Rate (TPR) or open-source
WAFs. However, since communication with the custom-
built WAF is through the Internet, we cannot calculate pos-
itives for the custom-built WAF. Thus, in our experiments,
we only report the number of TPs for the custom-built WAF.
Furthermore, to compare RAT with ART4SQLi and XSSART,
we need to measure the number of FPs before finding the
first TP. The lower FP shows that the approach is faster in
discovering the first bypassing payload.

4.3.4 Efficiency metrics
To evaluate the efficiency of RAT, we measure the time spent
per request (TSR). For this purpose, in each episode, we
record the time used in each cluster, then we divide it by the
total number of requests made from that cluster. Finally, we
report the average TSR.
4.4 Parameter settings
For each step, there are various parameters to set. For the
n-gram tokenizer, the only parameter to set is the size of
n, which we discuss in detail in Section 5.1. The binary
encoder does not have any parameters, and the remaining
parameters are as follows:
4.4.1 Hierarchical Clustering
In this step, we need to set a threshold to cluster tokens
with a dissimilarity of less than the threshold. Clustering
more tokens together results in losing details, and clustering
fewer tokens keeps more details, directly affect payload
clusters quality. In this step, we do not want to either lose
or keep too many details. In our experiments, we observed
that a threshold between 0.2 to 0.5 could be a good choice.
However, we obtained the best performance in discovering
bypassing payloads by setting this threshold to 0.3, which
means that if the cosine similarity between the tokens is
more than 70%, they should cluster together.
4.4.2 Skip-gram
For the skip-gram, we used a Python library named Gen-
sim8 with the almost default parameter settings. We only
set the window size considering the value of n in n-gram.
For example, for n = 2, we set the window size to 5. It is
because when n = 2, half of the middle token is repeated in
the prior token and the other half is repeated in the posterior
token. Thus, increasing the window size by two results in
more meaningful training of the skip-gram as there is no
intersection between these two tokens and the middle token
(see Fig. 8).
4.4.3 AutoEncoder Architecture
In this research, we use the simplest possible AutoEncoder
architecture to extract features for our purpose. Since the
AutoEncoders’ inputs are low-dimensional binary vectors,
a deep AutoEncoder with dense layers can achieve high re-
construction accuracy. However, the choice of hyperparam-
eters of deep learning models, such as the number of hidden

8https://radimrehurek.com/gensim

�� �� �� �� �� ��

���
�������������

����

����

����

����

����

	�
��
��

��
��
��
��

��

(a) SQLi

�� �� �� �� �� ��

�����������������

����

����

����

����

����

���	

���

��
��
��
��
��
��
��
��

(b) XSS

Fig. 10: Silhouette scores for different k in k-means in
clustering SQLi and XSS datasets.
layers and their size, significantly affect accuracy. Since the
way of tuning these parameters is still an open problem [39],
we tuned AutoEncoder manually. In the tuning process,
we observed that three hidden layers in each encoder and
decoder parts are enough, and we could achieve slightly
better accuracy by reducing and increasing the size of hid-
den layers uniformly. We tend to produce feature vectors
with the lowest possible dimensionality for easier and better
clustering. In our experiments, we attained a reasonable
reconstruction accuracy (95.92% and 96.76% for XSS and
SQLi datasets, respectively) by reducing the dimensionality
to 3. The final architectures of the AutoEncoders are shown
in Table 6.
4.4.4 Number of Clusters
The time complexity for selecting each test candidate is
O(n) × Os, where n is the size of the cluster and Os is the
time complexity of the Rank function. Therefore, searching
inside small clusters requires fewer computations than large
clusters. Increasing the number of clusters reduces cluster
size and, consequently, features; thus, our adaptive search
algorithm would also require fewer searches inside smaller
clusters to find bypassing payloads. However, having too
many clusters poses two major problems:

1) Bypassing samples spread over more clusters, re-
sulting in the rarity of bypassing payloads inside
clusters. Thus, our search technique effectiveness
drops.

2) ϵ-greedy algorithm requires more exploration to
filter clusters, and due to the previous problem, it
is harder to escape local optima.

In our observations, we realized that a number between 25
to 50 clusters is a good compromise for our datasets’ size.
To find the exact number of clusters, we used silhouette
score [40], representing how good clusters are apart and
distinguished from each other. The score range is between
-1 to 1, and the higher score means that the clusters are
better apart and distinguished. We clustered both datasets
with all numbers between 25 and 50. We then measured
the silhouette score for these clusters and picked the best
clusters. Fig. 10 shows the Silhouette scores for the different
number of clusters in clustering SQLi and XSS. In Fig. 10a,
25 clusters achieved the highest score, and in Fig. 10b, the
highest score belongs to 46 clusters. Therefore, we divide the
SQLi and XSS datasets into 25 and 46 clusters, respectively.

4.4.5 Entropy threshold
For the final step of feature reduction, we use entropy to
remove improper features. Note that an inadequate thresh-

https://radimrehurek.com/gensim

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

� ��� ��� ��� ��� ����

	�����������������

�

��

���

���

���

���

�

������
�����
������

(a) ModSecurity

� ��� ��� ��� ��� ����

�����������������

�

��

��

��

	

�������
������

������

(b) NAXSI

� ��� ��� ��� ��� ����

�����������������

�

���

���

���

���

����

	

�������
������

������

(c) Custom-built WAF

Fig. 11: Average true positive in testing different WAFs for
SQLi vulnerabilities with different values for n.

� ��� ��� ��� ��� ����

�����������������

�

��

��

��

���

��

������
	�����
�������

(a) ModSecurity

� ��� ��� ��� ��� ����

	�����������������

�

��

��

��

��

�

������
�����
������

(b) NAXSI

� ��� ��� ��� 	�� ����

������������������

�

��

���

���

���

���

�

�������

�����
������

(c) Custom-built WAF

Fig. 12: Average true positive in testing different WAFs for
XSS vulnerabilities with different values for n.

old value causes the improper features to remain, and a
high threshold value results in information loss. In our
experiments, with trial-and-error, we found the threshold
of T = 0.05 to be the optimal value.
4.4.6 ϵ-greedy parameters
For the ϵ-greedy algorithm, we set the reward to 1, and
since we expect to experience failure more than success, we
set the punishment to half of the reward value. We set the
maximum ϵ to 0.9, and for the epsilon reduction (Eq. (7)), we
set the k to 5e−3. The value of k controls the exploration and
exploitation rate by adjusting the epsilon reduction speed.
In other words, a high k means RAT spends more episodes
exploring clusters than a low k. We calibrated k with trial-
and-error.

5 RESULTS

In this section, we answer the research questions described
in Section 4.1 by our experiments.

5.1 Q1: Does the choice of n-gram matter?
To answer Q1, first, we picked four random subsets with
the size of 25000 payloads containing bypassing payloads
from both datasets (two subsets for each dataset). We then
performed AdaptiveSearch on them using unigram, bigram,
and trigram (100 repetitions for each). Then, we calculated
the average TP over 1000 requests.

Fig. 11 shows the results of applying AdaptiveSearch
on the SQLi subsets, and Fig. 12 shows the results of the
same experiment on the XSS subsets. Obtained results show
that overall, unigram has poor performance as it can not
models sophisticated patterns. We also observed that on
the whole, the bigram was slightly more efficient than
trigram. This is because although trigram extracts more
sophisticated patterns than bigram, the number of distinct
patterns extracted by bigram is fewer than trigram. Thus,
bigram requires fewer observations than trigram. Moreover,
the results show that bigram offers more robust results than
others when testing different WAFs using different datasets.
Therefore, in our further experiments, we used bigram for
both SQLi and XSS datasets.

5.2 Q2: How does clustering affect the performance?
To answer Q2, we investigated the effects of clustering from
two aspects. The first aspect is that decreasing the number
of test parameters reduces the number of observations. Thus
we measured the number of fragments before and after
the clustering phase. As shown in Table 7, in the worst
case, before applying the feature reduction (t = 0), the
clustering phase reduced the number of test parameters by
6.48% and 57.26% for SQLi and XSS datasets, respectively.
With the clustering and feature reduction with the entropy
threshold of t = 0.05, in the worst case, we could reduce
the number of parameters by 31.89% and 98.50% for SQLi
and XSS datasets, respectively. We also measured the ratio

number of samples
number of test parameters for each cluster to check whether the
ratio between samples and test parameters is acceptable.
The worst ratio for each dataset is reported in the last
column of Table 7.

The second aspect is that bypassing attacks tend to
cluster together; thus, only a limited number of clusters
contain bypassing samples. To prove our claim, we applied
brute force attacks on both Naxsi (NX) and Modsecurity
(MS). Targeted parameters for the SQLi attack are a random
HTTP GET parameter and Cookie, and for the XSS attack,
we targeted a random HTTP GET parameter. Then, we
analyzed the distribution of bypassing attacks within the
clusters for each tested parameter.

The obtained results are illustrated in Fig. 13. In this
figure, each column represents the number of a cluster’s
bypassing payloads in testing the corresponding parameter
and WAF. For instance, in Fig. 13b, the 31st cluster contains
more than 100 bypassing payloads in testing the HTTP GET
parameter protected by ModSecurity. The same cluster has
about 40 bypassing payloads testing the same parameter
protected by NAXSI.

According to Fig. 13, bypassing samples are distributed
within a few clusters. Therefore, finding effective clusters
using ϵ-greedy policy can significantly reduce unsuccessful
attempts in uncovering bypassing payloads by discarding
ineffective clusters.

5.3 Q3: How does RAT compare with the state-of-the-
art techniques?
To answer Q3, first, we implemented Ml-Driven E9 [18],
ART4SQLi10 [7] and XSSART11 [19] based on the original
papers, and then we compared RAT with Ml-Driven E,

9https://github.com/mhamouei/ml-driven
10https://github.com/mhamouei/art4sqli
11https://github.com/mhamouei/xssart

https://github.com/mhamouei/ml-driven
https://github.com/mhamouei/art4sqli
https://github.com/mhamouei/xssart

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

� � �
 � �� �� �� �
 �� �� �� ��
��$"#�!

��������

����� ����

��������

����� ����

�$
��
��
#��

�

�

	�

���

���

���

���

�
"�
#�%
�"

(a) SQLi

� �
 �� �� �	 �� �� �� �� �� �� �
 �� �� �	
��#!"�

���
�����

��
�����

�#
��

��
"��

�

�
��
��
	�
��
���

��
!�

"�$
�!

(b) XSS

Fig. 13: Distribution of bypassing payloads (TP) over clusters.

TABLE 7: Number of test parameters before and after clustering.

Attack Type
Before Clustering After Clustering

Total Parameters
T = 0 T = 0.05

Ratio
min max mean min max mean

SQLi 185 51 173 73 49 126 69 247
XSS 113408 826 48470 20714 103 1702 933 3.13

��� ��� ��� ��� ��� ���

�!�����������!�� �
���

�

��

��

	�

���

��
�

�
�
������"����
�������!##��

(a) ModSecurity

��� ��� ��� ��� ��� ���

�!�����������!�� �
���

�

��

��

	�

���

��
�

�
�
������"����
�������!##��

(b) NAXSI

Fig. 14: Average true positive rate in testing the open-source
WAFs for SQLi vulnerabilities.

ART4SQLi and a Random Fuzzer using the SQLi dataset,
and XSSART using the XSS dataset. The comparison tests
are designed concerning the objective of each approach.
Moreover, to verify that RAT also works with other attacks,
we compare RAT with a Random Fuzzer using the XSS
dataset.

To compare RAT with Ml-Driven E and the Random
Fuzzer, since the objective of Ml-Driven E is to discover
the highest possible number of SQLi vulnerabilities, we
measured TPR over 30,000 requests for each approach. We
then assess the results to compare their effectiveness.

ART4SQLi and XSSART tend to find the very first by-
passing payload with the lowest number of requests. There-
fore, we measured FPs before finding the first bypassing
payload to compare RAT with these techniques. For this
purpose in each episode, we selected a random cluster and
applied the AdaptiveSearch to the chosen cluster for one
round.

We applied all techniques to open-source WAFs, and
then we calculated the average TPR for all parameters
(Section 4.2). Comparative tests between RAT, Ml-Driven E
and the Random Fuzzer are repeated 30 times as these exper-
iments are time-consuming, and increasing the number of
tests was not feasible with our resources. On the other hand,
comparative tests between RAT, ART4SQLi and XSSART
are not time-consuming. Moreover, since ART4SQLi and
XSSART are at most 27% more efficient than random testing,
their tests require more repetition to report reliable results.
Therefore, we repeated the comparative tests between RAT,
ART4SQLi and XSSART 100 times.

� ����#!�"% �����
���

�

��

��

��

��

���

��
�

��� !�"��
���
��	!�$���

���� ���#&&�!

Fig. 15: Boxplots of the average true positive rate in testing
the open-source WAFs for SQLi vulnerabilities.

To statistically compare different methods, we used
Wilcoxon rank-sum test with the significance level of α =
0.05. Since this test is non-parametric, it does not require
the samples to be normally distributed. To perform the
Wilcoxon test, we collected all test results for each repetition
and then grouped them by the type of attack (e.g., SQLi or
XSS). Thus, we report the Wilcoxon results for each type of
attack individually.

Fig. 14 depicts the result of the comparison between RAT,
Ml-Driven E and the Random Fuzzer, and Fig. 15 illustrates
the same result in the form of boxplots to visualize statistical
variation. As shown in Fig. 14, within 30,000 requests, the
RAT could achieve an average of 95.37% and 100% TPR in
testing ModSecurity and NAXSI, respectively. Moreover, in
the worst case, It could find 83.53% of bypassing payloads
(Fig. 15). In comparison, in the best case, Ml-Driven E could
find 48.51% and 76.56% of bypassing payloads in testing
ModSecurity and NAXSI, respectively. The observations re-
veal that RAT and Ml-Driven E can find bypassing attacks,
whereas Random Fuzzer failed due to the rarity of bypassing
attacks. Moreover, the results clearly show that the RAT
has a lower false-positive rate and significantly outperforms
counterparts.

Table 8 shows how each approach outperforms others
after each 10, 000 requests. We measured TPR after each
10, 000 requests for each repetition to create this table and
then used the Wilcoxon test to compare TPRs of different

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

TABLE 8: Result of the Wilcoxon test in testing SQLi vulner-
abilities of ModSecurity and NAXSI.

Requests Random Fuzzer
Ml-Driven E
(p < .001)

RAT
(p < .001)

10, 000 — Random Fuzzer
Ml-Driven E

Random Fuzzer

20, 000 — Random Fuzzer
Ml-Driven E

Random Fuzzer

30, 000 — Random Fuzzer
Ml-Driven E

Random Fuzzer

TABLE 9: Number of false positives before finding the first
SQLi bypassing payload.

Method
GET Parameter Cookie

ModSecurity NAXSI ModSecurity NAXSI
RAT 142.4 209.3 179.33 210.78

ART4SQLi — — 465.02 —
Random — — — —

��� ��� ��� ��� ��� ���

������������������
���

�

��

��

��

���

��

	�
������
�����

(a) ModSecurity

��� ��� ��� ��� ��� ���

������������������
���

�

��

��

��

���

��

	�
������
�����

(b) NAXSI

Fig. 16: Average true positive rate in testing the open-source
WAFs for XSS vulnerabilities.

methods statistically. In Table 8, each cell represents the
approaches outperformed by the approach matching the
corresponding column when the p− values < .001.

Table 9 shows the result of the comparison between RAT,
ART4SQLi and random technique. The observations show
that RAT could find the first bypassing with the reasonable
number of false positives, whereas ART4SQLi failed to find
a bypassing payload within the limited number of attempts
except for the cookie parameter of ModSecurity in which
RAT was 61.43% faster than ART4SQLi on average. We also
compared FPs in testing cookie parameter of ModSecurity
using the Wilcoxon test. As a result, RAT could outperform
ART4SQLi with the p− values < .001.

Furthermore, we performed the same experiment on
RAT and XSSART using the XSS dataset. We observed that
for ModSecurity, RAT could find the first bypassing payload
after 581.45 unsuccessful attempts and failed in finding
the first bypassing payload within the limited number of
attempts in testing NAXSI. In comparison, XSSART failed
in both situations as well as random techniques.

Finally, to evaluate the performance of RAT at testing a
different attack type, we applied RAT to ModSecurity and
NAXSI using the XSS dataset. Fig. 16 depicts the result
of testing ModSecurity and NAXSI for XSS vulnerabilities
using RAT and the Random Fuzzer, and Fig. 17 shows the
statistical variation of the test results. According to Fig. 16,
RAT could find 100% of bypassing payloads before reaching
10,000 requests, whereas the Random Fuzzer could only
discover 1% of bypassing payloads. Moreover, we compared
these two methods using Wilcoxon test. The result verified
that RAT can clearly outperform Random Fuzzer when the
p− values < .001.

	���������
���
���

�

��

��

��

��

���

��
�

���������
���
������

Fig. 17: Boxplots of the average true positive rate in testing
the open-source WAFs for XSS vulnerabilities.

��� ��� ��� ��� ��� ���

� ����������� ����
���

�

����

�����

�����

�����

�����

��

�	�
��
��!����
�������� ""��

(a) Line Chart

��� ����������	 �������
�����
���������

����

����

�����

�����

�����

�����

�����

�����

�

(b) Boxplots

Fig. 18: Average number of bypassing attacks in testing the
custom-built WAF for SQLi vulnerabilities.

��� ��� ��� ��� ��� ���

�����������������
���

�

����

�����

�����

�

��
�������	�����

(a) Line Chart

��	 �
����
��������

�

����

����

����

����

�����

�����

�����

	�

(b) Boxplots

Fig. 19: Average number of bypassing attacks in testing the
custom-built WAF for XSS vulnerabilities.

TABLE 10: The result of comparison between RAT,
ART4SQLi, and Random Fuzzer in testing the custom-built
WAF for SQLi vulnerabilities. In this table, the mean is the
average FP before finding the first bypassing payload.

Random ART4SQLi RAT
Mean 4.93 4.64 7.57

Std 5.96 4.63 7.21
Wilcoxon result RAT (p < 0.001) RAT (p < 0.01) —

5.4 Q4: Is the efficiency and effectiveness of RAT ac-
ceptable in practice?
To answer the final question, we applied RAT and its
counterparts to the custom-built WAF over the internet (30
repetitions for each test). To evaluate the effectiveness, we
tested 30,000 payloads with each method and measured the
number of uncovered bypassing payloads (TP). Since it is a
real-world application, the brute-force attack was infeasible,
and we could not measure the total number of bypassing
attacks to calculate TPR. Therefore we only report TP.

Fig. 18a shows the result of applying the three methods
to the custom-built WAF for SQLi discovery, and Fig. 18b
shows the same result in the form of box-plots for better

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

TABLE 11: The result of comparison between RAT, XSSART,
and Random Fuzzer in testing the custom-built WAF for XSS
vulnerabilities. In this table, the mean is the average FP
before finding the first bypassing payload.

Random XSSART
RAT

(p < 0.001)
Mean 92.95 107.61 37.77

Std 92.16 116.63 15.65

Wilcoxon result — —
Random
XSSART

statistical visualization. It shows that the RAT can uncover a
significant number of bypassing payloads within a reason-
able number of requests. On average, RAT sent 2.83 requests
for each bypassing payload, whereas this number for Ml-
Driven E is 4.06 and 13.56 for the Random method.

To evaluate the efficiency of RAT, we measured the av-
erage TSR for RAT and Ml-Driven E. The average TSR value
for RAT was 0.74 seconds, and for Ml-Driven E, this value
was 0.80 seconds. The TSR values for both methods were
almost the same, and it is a reasonable value in practice.

We also conducted the same experiment for the XSS
attack (see Fig. 19a and 19b). The results are as follows.

1) RAT sent 4.44 requests on average, whereas the
Random technique sent 184.11 requests.

2) The average TSR value for RAT in this experiment
was 0.39 seconds, which was lower than the TSR
value of the SQLi test due to the fewer samples.

We conducted the Wilcoxon test to compare TPs of RAT
with Ml-Driven E and Random Fuzzer. The results of testing
SQLi were the same as in Table 9, and in testing XSS, RAT
could outperform Random Fuzzer when the p − values <
.001.

We also repeated our comparative experiments between
RAT, ART4SQLi, and XSSART for the custom-built WAF to
compare the performance of these approaches in practice.
The results are shown in Tables 10 and 11. According
to Table 10, Random strategy and ART4SQLi could dis-
cover the first bypassing payload with fewer attempts than
RAT. Wilcoxon results also verify that Random strategy
and ART4SQLi could outperform RAT. However, neither
ART4SQLi nor Random strategy could outperform the other
one. The possible reason for the obtained results can be
the massive number of SQLi vulnerabilities of the custom-
built WAF. Despite the results shown in Table 10, Table 11
shows that RAT could significantly perform better than
XSSART and the Random strategy in discovering the first
XSS bypassing payload.

In conclusion, our answer to the Q4 is that yes, RAT is
efficient and effective in practice.

6 CONCLUSION
In this paper, we proposed the RAT, a search-based tech-
nique that combines a reinforcement learning algorithm
with an innovative adaptive search method. RAT automati-
cally extracts patterns from attack payloads. It then clusters
similar payloads together and discovers the clusters which
contain bypassing payloads using a reinforcement learning
technique. Finally, RAT ranks test candidates and selects the
payload with the highest probability of bypassing the WAF.

Empirical results suggested that considering the se-
quence of tokens rather than single literals and clustering
payloads improves the performance of discovering effective
payloads. Comparative experiments, moreover, showed that
RAT significantly performs better than the state-of-the-art
algorithms. Finally, the result of applying RAT to a real-
world WAF demonstrated that RAT is efficient and effective
in practice. However, RAT is highly dependent on the
dataset, and the comprehensiveness of the dataset directly

affects the RAT’s performance. Furthermore, RAT can only
test rule-based WAFs, and it cannot be used alone to test
Ml-based WAFs. Nevertheless, RAT is capable of being com-
bined with generative adversarial techniques (e.g., WAF-A-
MoLE [15]) to reduce its dependency on datasets and test
Ml-based WAFs.

In our future studies, we will work on combining RAT
with Generative Adversarial Networks to propose an adver-
sarial test strategy as well as a solution for altering WAFs.
We will also focus on building comprehensive datasets
with the least number of samples, and we will investigate
different clustering strategies to improve RAT’s efficiency.

7 ACKNOWLEDGEMENT
The authors would like to acknowledge the financial sup-
port of Information and Communication Technology Park
for this project under grant number 16-99-01-000040.

REFERENCES
[1] D. E. Simos, B. Garn, J. Zivanovic, and M. Leithner,

“Practical combinatorial testing for xss detection using
locally optimized attack models,” in 2019 IEEE Inter-
national Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, 2019, pp. 122–
130.

[2] K. Chandrasekar, G. Cleary, O. Cox, H. Lau, B. Nahor-
ney, B. O. Gorman, D. O’Brien, S. Wallace, P. Wood,
and C. Wueest, “Internet security threat report (ISTR),”
Symantec, Tech. Rep. April, 2017.

[3] O. G. Chapter, “Owasp best practices: Use of web
application firewalls.[whitepaper],” 2008.

[4] A. Tekerek and O. Bay, “Design and implementation of
an artificial intelligence-based web application firewall
model,” Neural Network World, vol. 29, no. 4, pp. 189–
206, 2019.

[5] A. M. Vartouni, M. Teshnehlab, and S. S. Kashi, “Lever-
aging deep neural networks for anomaly-based web
application firewall,” IET Information Security, vol. 13,
no. 4, pp. 352–361, 2019.

[6] H. Mac, D. Truong, L. Nguyen, H. Nguyen, H. A. Tran,
and D. Tran, “Detecting attacks on web applications
using autoencoder,” in Proceedings of the Ninth Inter-
national Symposium on Information and Communication
Technology. ACM, 2018, pp. 416–421.

[7] L. Zhang, D. Zhang, C. Wang, J. Zhao, and Z. Zhang,
“Art4sqli: The art of sql injection vulnerability discov-
ery,” IEEE Transactions on Reliability, vol. 68, no. 4, pp.
1470–1489, 2019.

[8] D. Wichers and J. Williams, “Owasp top-10 2017,”
OWASP Foundation, 2017.

[9] J. Bozic, B. Garn, I. Kapsalis, D. Simos, S. Winkler, and
F. Wotawa, “Attack pattern-based combinatorial testing
with constraints for web security testing,” in 2015 IEEE
International Conference on Software Quality, Reliability
and Security. IEEE, 2015, pp. 207–212.

[10] D. E. Simos, K. Kleine, L. S. G. Ghandehari, B. Garn,
and Y. Lei, “A combinatorial approach to analyzing
cross-site scripting (xss) vulnerabilities in web appli-
cation security testing,” in IFIP International Conference
on Testing Software and Systems. Springer, 2016, pp.
70–85.

[11] D. E. Simos, J. Zivanovic, and M. Leithner, “Automated
combinatorial testing for detecting sql vulnerabilities in
web applications,” in 2019 IEEE/ACM 14th International
Workshop on Automation of Software Test (AST). IEEE,
2019, pp. 55–61.

[12] J. Thomé, A. Gorla, and A. Zeller, “Search-based secu-
rity testing of web applications,” in Proceedings of the 7th
International Workshop on Search-Based Software Testing,
2014, pp. 5–14.

[13] A. Avancini and M. Ceccato, “Security testing of web
applications: A search-based approach for cross-site

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

scripting vulnerabilities,” in 2011 IEEE 11th interna-
tional working conference on source code analysis and ma-
nipulation. IEEE, 2011, pp. 85–94.

[14] F. Duchene, R. Groz, S. Rawat, and J.-L. Richier, “Xss
vulnerability detection using model inference assisted
evolutionary fuzzing,” in 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation.
IEEE, 2012, pp. 815–817.

[15] L. Demetrio, A. Valenza, G. Costa, and G. Lago-
rio, “Waf-a-mole: evading web application firewalls
through adversarial machine learning,” in Proceedings
of the 35th Annual ACM Symposium on Applied Comput-
ing, 2020, pp. 1745–1752.

[16] O. Tripp, O. Weisman, and L. Guy, “Finding your
way in the testing jungle: a learning approach to web
security testing,” in Proceedings of the 2013 International
Symposium on Software Testing and Analysis, 2013, pp.
347–357.

[17] D. Appelt, C. D. Nguyen, and L. Briand, “Behind
an application firewall, are we safe from sql injection
attacks?” in 2015 IEEE 8th international conference on
software testing, verification and validation (ICST). IEEE,
2015, pp. 1–10.

[18] D. Appelt, C. D. Nguyen, A. Panichella, and L. C.
Briand, “A machine-learning-driven evolutionary ap-
proach for testing web application firewalls,” IEEE
Transactions on Reliability, vol. 67, no. 3, pp. 733–757,
2018.

[19] C. Lv, L. Zhang, F. Zeng, and J. Zhang, “Adaptive
random testing for xss vulnerability,” in 2019 26th Asia-
Pacific Software Engineering Conference (APSEC). IEEE,
2019, pp. 63–69.

[20] G. McGraw, “Software security,” IEEE Security & Pri-
vacy, vol. 2, no. 2, pp. 80–83, 2004.

[21] M. E. Khan, F. Khan et al., “A comparative study of
white box, black box and grey box testing techniques,”
Int. J. Adv. Comput. Sci. Appl, vol. 3, no. 6, 2012.

[22] R. Elderman, L. J. Pater, and A. S. Thie, “Adversarial
reinforcement learning in a cyber security simulation,”
Ph.D. dissertation, Faculty of Science and Engineering,
2016.

[23] A. Mnih and G. E. Hinton, “A scalable hierarchical
distributed language model,” in Advances in neural
information processing systems. Citeseer, 2009, pp. 1081–
1088.

[24] S. Overflow, “Stack overflow annual developer sur-
vey,” 2019.

[25] M. Felderer, M. Büchler, M. Johns, A. D. Brucker,
R. Breu, and A. Pretschner, “Security testing: A survey,”
in Advances in Computers. Elsevier, 2016, vol. 101, pp.
1–51.

[26] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, “Prac-
tical machine learning tools and techniques,” Morgan
Kaufmann, p. 578, 2005.

[27] K. Singh, H. M. Devi, A. K. Mahanta et al., “Doc-
ument representation techniques and their effect on
the document clustering and classification: A review.”
International Journal of Advanced Research in Computer
Science, vol. 8, no. 5, 2017.

[28] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,”
arXiv preprint arXiv:1301.3781, 2013.

[29] S.-S. Choi, S.-H. Cha, and C. C. Tappert, “A survey
of binary similarity and distance measures,” Journal of
Systemics, Cybernetics and Informatics, vol. 8, no. 1, pp.
43–48, 2010.

[30] S. Wold, K. Esbensen, and P. Geladi, “Principal com-
ponent analysis,” Chemometrics and intelligent laboratory
systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[31] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel
methods in machine learning,” The annals of statistics,

pp. 1171–1220, 2008.
[32] R. Min, D. A. Stanley, Z. Yuan, A. Bonner, and Z. Zhang,

“A deep non-linear feature mapping for large-margin
knn classification,” in 2009 Ninth IEEE International
Conference on Data Mining. IEEE, 2009, pp. 357–366.

[33] D. Chen, J. Lv, and Y. Zhang, “Unsupervised multi-
manifold clustering by learning deep representation,”
in Workshops at the thirty-first AAAI conference on artificial
intelligence, 2017.

[34] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong,
“Towards k-means-friendly spaces: Simultaneous deep
learning and clustering,” in international conference on
machine learning, 2017, pp. 3861–3870.

[35] K. Ghasedi Dizaji, A. Herandi, C. Deng, W. Cai, and
H. Huang, “Deep clustering via joint convolutional au-
toencoder embedding and relative entropy minimiza-
tion,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 5736–5745.

[36] P. Huang, Y. Huang, W. Wang, and L. Wang, “Deep
embedding network for clustering,” in 2014 22nd Inter-
national conference on pattern recognition. IEEE, 2014,
pp. 1532–1537.

[37] K. Papineni, “Why inverse document frequency?” in
Second Meeting of the North American Chapter of the
Association for Computational Linguistics, 2001.

[38] S. Jabri, A. Dahbi, T. Gadi, and A. Bassir, “Ranking of
text documents using tf-idf weighting and association
rules mining,” in 2018 4th International Conference on
Optimization and Applications (ICOA). IEEE, 2018, pp.
1–6.

[39] H. Shaziya and R. Zaheer, “Impact of hyperparam-
eters on model development in deep learning,” in
Proceedings of International Conference on Computational
Intelligence and Data Engineering. Springer, 2021, pp.
57–67.

[40] P. J. Rousseeuw, “Silhouettes: a graphical aid to the in-
terpretation and validation of cluster analysis,” Journal
of computational and applied mathematics, vol. 20, pp. 53–
65, 1987.

Mohammadhossein Amouei is an MSc student
in the Faculty of Computer Engineering at the
Shahrood University of Technology, Shahrood,
Iran. His research interests include artificial in-
telligence and computer security.

Mohsen Rezvani received the PhD degree in
computer science from the University of New
South Wales, Australia. He is a faculty mem-
ber in the Faculty of Computer Engineering,
Shahrood University of Technology, Iran. His re-
search focuses on computer security, privacy,
trust and reputation systems.

Mansoor Fateh received the M.S. degree in
Biomedical Engineering from Tarbiat Modares
University, Tehran, Iran, and the PhD from Tar-
biat Modares University, Tehran, Iran. He is a
faculty member in the Faculty of Computer En-
gineering, Shahrood University of Technology,
Iran. His research interests include machine
learning and image processing.

	Introduction
	Background and Related Work
	SQL Injection
	Cross-Site Scripting (XSS)
	Related Work
	Adversarial
	Learning-based

	Approach
	Framework Overview
	Clustering Payloads
	n-gram Tokenizer
	Word Embedding
	Hierarchical Clustering
	Binary Encoder
	Deep Embedding Network (DEN)

	Feature Extraction
	Token Selector
	IDF Calculator

	Test Oracle

	Empirical Study
	Research questions
	Procedure
	Experimental environment
	Subject WAFs
	Datasets
	Effectiveness metrics
	Efficiency metrics

	Parameter settings
	Hierarchical Clustering
	Skip-gram
	AutoEncoder Architecture
	Number of Clusters
	Entropy threshold
	-greedy parameters

	Results
	Q1: Does the choice of n-gram matter?
	Q2: How does clustering affect the performance?
	Q3: How does RAT compare with the state-of-the-art techniques?
	Q4: Is the efficiency and effectiveness of RAT acceptable in practice?

	Conclusion
	acknowledgement
	Biographies
	Mohammadhossein Amouei
	Mohsen Rezvani
	Mansoor Fateh

