Universidad

ucdm | Carlosllil -Archivo
de Madrid

This is a postprint version of the following published document:

Reviriego, P., Sanchez-Macian, A., Liu, S. &
Lombardi, F. (2021). On the Security of the K
Minimum Values (KMV) Sketch. IEEE Transactions
on Dependable and Secure Computing, 1-1.

DOI: 10.1109/tdsc.2021.3101280

© 2021 IEEE. Personal use of this material is permitted. Permission

from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.


https://doi.org/10.1109/tdsc.2021.3101280

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3101280, IEEE

Transactions on Dependable and Secure Computing

On the Security of the K Minimum Values (KMV)
Sketch

Pedro Reviriego!, Alfonso Sanchez-Macian?, Shanshan Liu? and Fabrizio Lombardi?

Abstract—Data sketches are widely used to accelerate operations in big
data analytics. For example, algorithms use sketches to compute the
cardinality of a set, or the similarity between two sets. Sketches achieve
significant reductions in computing time and storage requirements by pro-
viding probabilistic estimates rather than exact values. In many applica-
tions, an estimate is sufficient and thus, it is possible to trade accuracy
for computational complexity; this enables the use of probabilistic sketches.
However, the use of probabilistic data structures may create security issues
because an attacker may manipulate the data in such a way that the
sketches produce an incorrect estimate. For example, an attacker could
potentially inflate the estimate of the number of distinct users to increase
its revenues or popularity. Recent works have shown that an attacker can
manipulate Hyperloglog, a sketch widely used for cardinality estimate, with
no knowledge of its implementation details.

This paper considers the security of K Minimum Values (KMV), a
sketch that is also widely used to implement both cardinality and similarity
estimates. Next sections characterize vulnerabilities at an implementation-
independent level, with attacks formulated as part of a novel adversary
model that manipulates the similarity estimate. Therefore, the paper pur-
sues an analysis and simulation; the results suggest that as vulnerable to
attacks, an increase or reduction of the estimate may occur. The execution
of the attacks against the KMV implementation in the Apache DataSketches
library validates these scenarios. Experiments show an excellent agree-
ment between theory and experimental results.

Index Terms—Data Sketches, Cardinality, KMV, Similarity, Security, Attack.

1 INTRODUCTION

Acceleration of big data analytics is a key challenge in
large-scale computing systems. As data sets increase in size,
simple operations, such as computing the number of distinct
elements in a set, become complex [1]. In many applications,
accurate estimates are good enough, so designers accelerate
many operations by using probabilistic rather than exact al-
gorithms and data structures [2], [3]. These probabilistic data
structures are commonly known as sketches [4], [5], [6]. For
example, sketches have been proposed for cardinality estimate
[7], [8], [9], [10], similarity estimate [11], [12], [13], frequency
estimate [14], [15] and membership checking [16], [17] among
other operations. Sketches typically reduce both computation
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and storage dramatically, and thus data processing systems
widely utilize them [18], [19].

Most sketches map a dataset to a small pseudorandom set
and perform operations (including queries) on this set, rather
than executing the operations on the original and significantly
larger dataset. While effectively reducing the implementation
overhead, it also may allow attackers to manipulate the es-
timates [20]. The security of streaming algorithms and sam-
pling have been recently analyzed in [21], [22], [23]. For the
cardinality estimate, recent works have shown that an attacker
can manipulate the estimates of Hyperloglog to produce an
estimate that is significantly larger [24] or smaller [25] than the
actual cardinality of the data set. This can occur even when the
attacker has no knowledge of the implementation details and
can just perform user operations on the sketch; for example, an
attacker could potentially inflate the estimate of the number of
distinct users to increase its revenues or popularity. Therefore,
the analysis of the security of sketches to identify potential
attacks and countermeasures is important to ensure that their
use does not compromise the security of the entire system.
Similarly, designers should also consider privacy when using
sketches [26].

For applications that perform many operations on the data
sets, it is beneficial to use a single sketch for several tasks. One
example of such sketches is the K Minimum Values (KMV)
sketch that can be used to estimate cardinality, similarity, and
also for distinct sampling [9], [10]. To the best of the authors’
knowledge, there are no previous studies about the security of
the KMV sketch, although it is widely used in data processing
applications [27].

This paper analyzes the security of KMV and proposes
attacks that increase or reduce its cardinality estimate. These
attacks are part of an adversary model that also provides the
functionality to manipulate the similarity estimate. We propose
two algorithms for the inflation and deflation of the cardinality
estimate of KMYV; these algorithms characterize vulnerabilities
at an implementation-independent level. The feasibility of the
attacks is also demonstrated on the KMV implementation of
the Apache DataSketches library.

The rest of the paper is organized as follows. Section 2
briefly describes the KMV sketch, the adversarial model con-
sidered, and the potential goals of an attacker when manipu-
lating the sketch. Section 3 presents and analyzes the proposed
attacks and Section 4 evaluates them both by simulation and
testing them on the DataSketches KMV implementation. The
paper ends in Section 5 with the conclusion and a discussion
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of topics and ideas of interest for future work.

2 PRELIMINARIES

This section initially describes the KMV sketch. Then it
presents the considered adversarial model, and finally, it de-
scribes some manipulations that an attacker may want to
perform on the KMV.

2.1 K Minimum Values

The K Minimum Values (KMV) sketch is conceptually very
simple; for any element z in the stream, its hash function h(z)
is computed and the K lowest or minimum values of h(z):
mi, Mg, ...,mg are kept. This is illustrated in Figure 1. To
insert an element z, first h(x) is computed (a so-called ”salt”
can be added to the hashing process to force its uniqueness if
needed), and then it is compared to the maximum (maxK) of
the stored K minimum values; if it is the same or larger, no
update is required. Otherwise, x is added to the list of KMVs if
it does not already exist, and the corresponding h(z) is used to
update maz K (i.e., the previous maximum of the K minimum
values is removed). Since the first scenario occurs frequently,
the insertion requires, in most cases, just a hash computation
and a comparison. Once elements are inserted, both cardinality
and similarity can be estimated based on the K values (i.e.,
mi,Mma, ..., mK).

Done

Compute Yes
h(x) ) _—

Fig. 1: Illustration of the KMV calculation

Update

New
Element x

K lowest
values so far

To estimate the cardinality, the following equation is used:

K-1

—_— 1
maz K’ @
where max K is the maximum value of the KMVs (mapping

the range of values of h(x) to [0, 1]). This estimate is unbiased
and has a relative accuracy (standard error) ! of:

Crxmv =

1
o< 5 2)
This procedure is used unless fewer than K elements have
been inserted in the sketch. In this case, the algorithm returns
the exact number of elements, because the list of X minimum
values is not full, and it can be easily computed.

An interesting feature of the KMV sketch is that the car-
dinality of the union of the sets can be estimated from their
KMVs if the same hash function h(z) (and salt if applied)
has been used for both sets. This is a key feature in several
applications that independently compute estimates on many
subsets, because it enables merging of the KMVs.

To estimate the similarity of two sets, A and B, for which
the KMVs have been computed, the number of matching

1.See equation 3.14 in https://github.com/apache/datasketches-
website /blob/master/docs/pdf/ThetaSketchEquations.pdf

2

KMVs (m;(A) = m;(B)) between them is computed and
divided by K to obtain an estimate of the Jaccard similarity
coefficient. As discussed previously, this requires the use of the
same hash function h(z) and salt when computing the KMVs
of both sets.

Finally, if one or more parameters are associated with each
of the KMVs, designers can use the sketch to estimate the
distribution of those parameters among the different values
and perform more complex operations [27].

2.2 Adversarial Model

The manipulation of the cardinality or similarity estimates
of a KMV sketch is trivial if the used hash function h(x) and
salt are known to the attacker. In this case, the attacker can
test elements to check their value of h(z) and select the ones
that meet the attack requirements. For example, if the attacker
wants to inflate the cardinality estimate, it can simply select
K elements with very small values of h(z) and then insert
them into the KMV sketch. Conversely, if the attacker wants
to create a large data set that produces a small cardinality
estimate, it can simply select elements with large values of
h(x). Similarly, if the attacker wants to make sure that a given
data set is not detected as similar to another set, it can just
add K elements with values of h(x) smaller than those in the
original set. However, in many settings, the attacker may not
have access to the hash function h(x) and salt and thus, the
simple attacks just described are not possible.

This paper uses a more realistic black-box adversary model;
it assumes that the attacker has only access to the sketch
operations, but not to the sketch implementation details, such
as for example, the used hash functions, or the salt. This means
that the attacker can create sketches, insert elements into them
and ask for the cardinality estimate. This is the functionality
that many sketch implementations expose to users. A key
observation is that to support merging and similarity estimate
for different instances of KMV sketches, they must use the
same hash function h(z) and salt. This in turn means that
a given set produces the same estimate on different KMV
instances and thus the attacker can generate an attack set on
one instance and use it on a different one. This black-box
adversarial model is the same as the one used in recent studies
on the security of Hyperloglog [25].

2.3 Manipulation of KMV

An attacker may have different reasons to manipulate the
KMV sketch. For example, if KMV is used to estimate the
number of different users that access a service (such as repro-
ducing a video), the attacker may want to inflate the estimates
to make some videos appear as popular or even to increase
revenue for the content creators if they are paid according to
the number of users. A different scenario is that, when KMV is
used to estimate the cardinality of node connections to detect
Distributed Denial of Service (DDoS) attacks [28], the attacker
may want to use source addresses that do not increase the
cardinality estimate, so that the DDoS is not detected by the
KMV [25]. These two simple examples show the scenarios by
which an attacker may benefit from being able to either inflate
or deflate the cardinality estimate of the KMV sketch.

Another example occurs when using sketches to detect if a
document is similar to another [29]. In this case, the attacker
may want to change the similarity estimate so that similar
documents are not detected. In particular, this can be achieved
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by adding a few additional elements to the document, so that
even though its true similarity remains high, the estimate result
is reduced. Conversely, the attacker may also want to build a
set that is different from another set but for which the sketch
produces a high similarity estimate.

Finally, if KMV is used to sample elements, the attacker
may want to manipulate the sampling process, so that elements
of choice are selected and thus, the sample does not correspond
to the real distribution of the set.

3 ATTACKS

This section first presents attacks to inflate and deflate the
KMV cardinality estimate for the adversarial model described
in the previous section. Then, it discusses attacks to the simi-
larity estimate, as they are based on the inflation and deflation
cardinality attacks. It also analyzes the proposed attacks by
considering an ideal implementation of the KMV sketch in
which the hash functions behave as uniformly distributed
random functions, and no rounding (or quantization) is used
when storing (or processing) the values.

3.1 Inflation Attack

As an example, consider an attacker that wants to inflate
the count for distinct users accessing a video, so that it reaches
one million and the count is estimated using a KMV sketch.
Then, to inflate the cardinality estimate, the attacker must find
a small set A with cardinality C'4 that produces an estimate
Cikumyv = 10%, such that Crpry > Ca (e.g., Ca = 10%). More
generally, for the attack to be effective the size of the attack
set C4 should be at least one order of magnitude smaller
than the desired size Ckpryv. This can be accomplished by
starting with a set of the desired size Ck v and inserting
it into an empty KMV. The cardinality estimate is computed
before and after inserting each element; when the estimates
are different, the element is added to the initial attack set I. Its
principle is that this will identify elements with small values
of h(z), because only those (that update the KMVs) modify the
cardinality estimate. However, this set can still include a large
number of elements, because to reach the final KMVs many
intermediate updates may be required. To reduce the size of
the attack set, the attacker can perform a second iteration by
creating another empty sketch and repeating the process, but
this time inserting the initial attack set I in reverse order.
The insight is that elements inserted at the end of the initial
attack set tend to have smaller values of h(z) because they
updated the KMVs after many elements have been inserted.
Therefore, by repeating the process with the initial attack set
in reverse order, the attack set can be reduced, while achieving
the same cardinality estimate. Algorithm 1 formally presents
the algorithm for the attack; this process is implementation
independent.

To illustrate the process, Figure 2 shows an example of a
set S with ten elements with h(x) values of 0.18, 0.82, 0.27,
0.59, 0.62, 0.91, 0.13, 0.38, 0.99, 0.20, in which K = 2. Then,
the minimum values are 0.13 and 0.18 and the cardinality
estimate is 1/0.18 = 5.55. When the elements of S are inserted
in order in the KMV, the ones that update the K = 2 minimum
values are the two first elements: 0.18, 0.82 and then 0.27, 0.13.
These four elements make up the initial attack set I (that is
already significantly smaller than .S). When the elements of I
are inserted in reverse order, only 0.13, 0.27, 0.18 update the
KMYV and thus, they are added to the final attack set A (which

3

Algorithm 1 Attack to Inflate the Cardinality Estimate of KMV

Input: Set S with the desired cardinality C
Output: Attack set A

: Create an empty KMV sketch KMV;
Create an empty set /
fors € S do

Cpre = Estimate(K M V1)

Insert s in KMV;

Chpost = Estimate(K M V1)

if Cpost > Cpre then

Add sto I

end if
: end for
: Create an empty KMV sketch KM V>

—_ =

12: Create set RI with the elements of I in reverse order
13: Create an empty set A

14: for s € RI do

15: Cpre = Estimate(K M V2)

16: Insert s in KM V>,

17: Cpost = Estimate(K M V53)

18: if Cpost > Cpre then

19: Add sto A

20: end if

21: end for

is smaller than I).

Next paragraphs analyze the expected size of the sets I and
A obtained when executing Algorithm 1.

As discussed previously, when fewer than K elements have
been inserted in the sketch, the Algorithm returns the exact
number of elements. Therefore, the first K elements added to
the KMV increase the cardinality estimate and thus they are
added to the set I.

To estimate the number of remaining C' — K elements in S
to be inserted in I, consider the insertion of the z*" element in
S. Then, the expectation of the maximum of the K minimum
values maz K is given by:

K-1
z—1"

E[maz K| = 3)

Therefore, the probability that the 2" element is smaller
than max K (so that it is added to I), is in the expectation
%. Therefore, in expectation, the number of elements in I is
given by:

C

~ K+ Z

i=K+1

K-1

E{1]]
For large values of C and K, the second term can be approxi-
mated by K - log(%) and thus:

B{I) ~ K+ K -log( ). ©)
K

This analysis shows that the set I has a size of O(log(C)), so
already significantly smaller than S when C'is large. Recall that
for an ideal implementation, I generates the same cardinality
estimate as S on the KMV.

Now analyze the size of the final attack set A. Since the
elements are added in reverse order, the first K elements
added to the new KMV are the last ones added to the set
I. After removing these last K elements, the set I has in
expectation a size of:
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(K

(=]
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1
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0.62 0.91 0.13 0.38 0.99 0.20
0.27 0.27 0.18 0.27 0.27 0.27
0.18 0.18 0.13 0.18 0.18 0.18
0.13

0.27 0.82 0.18

0.27 0.82 0.18

0.13 0.13 0.13

o

.27

o

18

Fig. 2: Example of the inflation attack: building the initial set (top) and the final set (bottom)

K—l—K-log(%) —K:K—i-K‘(log(%)—l):
c

K+ K- (log<%) —log(e)) = K+K~log<;(

) (6)
which corresponds to a set of size % where e is Euler s number.

Therefore, once the first K elements have been added, only
those that correspond to the first Q elements in S, can modify
the KMVs and be added to set A. As the other C' — € elements
have added K elements to I the first Q elements add in

expectation K - = K - -1 elements to A so that its total
size is in expectatlon.
E[A] = K+K - —— —K.—° @)
B e—1 e—1’

which is approximately 1.58 - K, so a very small attack set.
The attack set can be further reduced by shuffling A and
taking it as the initial set S and repeating the process as
discussed previously. However, the benefit of this process is
small because A has already a small number of elements and
it can only be reduced to K. Recall that K is a lower bound
for the attack set size, because when inserting fewer than K
distinct elements, the KMV returns the exact cardinality and
thus the manipulation is not possible.

3.2 Deflation Attack

Another scenario arises when the attacker wants to reduce
the KMV estimate. For example, consider a Distributed De-
nial of Service (DDoS) attack for which the attacked network
monitors the number of external IP addresses that generate
the incoming traffic to detect the attack. Then, if the attacker
can identify many IP addresses that produce a small KMV
estimate, detection will likely fail. For example, if it is possible
to build a set of one hundred thousand IP addresses for which
the KMV estimate is one thousand, then the attack will most
likely not be detected; in general, it seems that the reduction in
the KMV estimate should be at least of an order of magnitude
to make the attack useful.

To reduce the KMV estimate, the attacker needs to find
elements that have large values of h(z). To do so, the attacker
can create an empty KMV, insert distinct elements and take
the first ones that do not increase the cardinality estimate for
the attack set A. Those elements would necessarily have large
values of h(x) as otherwise they would increment the KMV
cardinality estimate. However, as elements are inserted, the
values of h(z) that do not increase the estimate, reduce; so, to
build a large attack set, the attacker needs to create another
empty KMV and repeat the process again. In more detail, the
process starts and once the first element that does not increase
the cardinality estimate, is inserted, a counter is started and
incremented on each subsequent element insertion, until it
reaches a configurable value t. At that point, a new empty
KMYV is created and the process starts again. This is repeated
until the desired number of elements has been added to the
attack set A.

Algorithm 2 formally describes the attack algorithm (also
implementation independent). For each element inserted, the
Algorithm checks if the KMV estimate is incremented; if it does
not, the element is added to the attack set. Additionally, when
this occurs for the first time (which should be soon after K
insertions), the counter for the remaining ¢ insertions in the
round is started (by setting inc to true). This is performed, so
that the Algorithm executes with no knowledge of the value
K used in the KMV under attack. At the end of each round
a new KMV is constructed, and the process is repeated until
an attack set with the desired size is built. In an ideal KMV
implementation, each iteration inserts approximately K + ¢
elements into KMV as the first K elements always increase
the cardinality estimate as discussed previously.

To illustrate the process, Figure 3 shows another example of
a set S with eight elements with h(z) values of 0.18, 0.82, 0.27,
0.59, 0.62, 0.91, 0.13, 0.38, in which K = 2 and ¢ = 6. In this
case, the values that do not update the KMVs and are added
to the attack set A when inserting S are 0.59, 0.62, 0.91, 0.38.
Therefore, these elements tend to produce a small cardinality
estimate because their values are large.

Elements inserted into the set must be above maz K when
the KMV estimate is below approximately K + ¢ — 1 (as after
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Fig. 3: Example of the deflation attack

Algorithm 2 Attack to Deflate the Cardinality Estimate of KMV

Input: Parameter ¢, large set of distinct elements S and desired
cardinality of the attack set C'
Output: Attack set A
1: Create an empty set A
2: Create an empty KMV sketch KMV,
3: =0
inc = false
5: for s € S do
6 if inc then
7: j=j+1
8: end if
9: Cpre = Estimate(K M V)
10: Insert s in KMV,
11: Chpost = Estimate(K MV;)
12: if Cpost = Cpre then

b

13: inc = true

14: Addsto A

15: if (size(A) = C) then break;
16: end if

17: end if

18: if (j > t) then

19: Create an empty KMV sketch KMV,
20: j=0

21: inc = false

22: end if

23: end for

inserting K + t elements, a new KMV sketch is created for
the next group of elements); therefore, they should have hash
values h(x) larger than Kli;il . This means that the built attack
set A generates a KMV estimate of at most K + ¢t — 1. More
formally, for a KMV sketch in which K + ¢ or fewer elements
have been inserted, maxK will be larger than % — ¢ with
high probability for any e significantly larger than \/ﬁ
The proof is straightforward, because we are just stating that
the KMV estimate will be (with high probability) close to its
expectation namely, within distance ¢ that is larger than the
standard deviation of the estimate. Finally, in most applications

K > 1, so € can be neglected when ¢ is small.

Therefore, the attacker can ensure that the estimated cardi-
nality is below a given target value by appropriately selecting
the value of ¢t. As K is a lower bound for the cardinality
estimate of the attack set, then it is likely that such value is
close to the lowest possible value by using a small value for
t. However, the larger the ¢, the fewer elements (and KMV
constructions) need to be tested to build the attack set. In more
detail, for each iteration of approximately K + ¢ elements, the
expected number of elements added to the attack set A can be
approximated by:

5
0.59 0.62 0.91 0.13 0.38
0.27 0.27 0.27 0.18 0.18
0.18 0.18 0.18 0.13 0.13
0.59 0.62 0.91 0.38
K+t
K—-1 K+t
t— > = ~t—K-log| —— (8)
) 7 — K
i=K+1

So, the fraction of elements inserted into the attack set can be
computed as:

t— K -log(&tt=L
)

which increases towards one as ¢ gets significantly larger than
K.
3.3 Similarity Attacks

To make a set D (that is similar to a set F) to have a low
similarity estimate in the KMV sketch, the attacker just needs
to insert elements in D that modify its KMVs (as these are
compared with E to estimate the similarity). Therefore, the
attacker requires a set of elements A that have low values of
h(x). This set is precisely the previously described attack set A
in the inflation attack of section 3.1. Therefore, by selecting
C formed by elements not in E and larger than |D| and
running the inflation attack, the attacker will get a set of size
approximately 1.58 - K that when added to D, reduces its
similarity estimate with E.

Therefore, assume that the attacker wants to make sets D
and E (that initially are different) to be similar in the KMV
estimate; then the attacker executes an inflation attack on set
E and adds the resulting attack set A to D. This produces a
similarity estimate for KMV that corresponds to the similarity
of DUE and FE. If the attacker manipulates both sets, the same
operation is performed by running the inflation attack on set
D and adding the resulting attack set A to E. In this case, the
similarity of the modified sets D and F is close to one because
both sets have estimates similar to those of D U E.

As per the previous discussion, the cardinality estimate
attacks produce also the results required to manipulate the
similarity estimate in the KMV sketch.

4 EVALUATION

This section first validates the theoretical analysis on an
ideal KMV implementation and then, it shows its feasibility
in a publicly available and widely used software library. In all
experiments K = 1024, but the results were similar for other
values of K and are omitted for brevity.

4.1 Initial validation

To validate the analysis and approximations presented in
the previous section, this work implements and tests an ideal
KMV sketch?. This ideal implementation does not round the

2. The code for the attacks presented in this subsection and the next one
are available in link https://github.com/amacian/KM Vattack
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cardinality estimate, and returns the fractional value, using a
large precision in all operations. Therefore, any change on the
KMVs affects the cardinality estimate. The proposed attacks
have been run in this ideal environment.

4.1.1 Inflation Attack

For the inflation attack, Algorithm 1 has been run for
sets S of different cardinality C' and K = 1024. Then, the
implementation inserted the generated initial attack set I and
the final attack set A into an empty KMV to check that they
produce the same cardinality estimate as S. After verifying
this, the size of the attack sets is compared to the theoretical
estimates given by Equations 5 and 7. Figure 4 shows the
results and plots the attack set size (y-axis) needed to achieve a
given target cardinality estimate in the KMV (x-axis). This plot
captures the effectiveness of the attack. As shown in Figure 4,
the results match the theoretical estimates and the final attack
set size is almost constant and does not depend on the size
of S. This confirms that the attack can produce an arbitrarily
large cardinality estimate with a small number of elements.

16000

=¥ Initial set |
O Initial set theoretical

——Final set A
Final set theoretical

14000 -

12000 -

10000

8000

Elements in the attack set

10% 10° 108 107 108 10°
Cardinality

Fig. 4: Inflation Attack: attack set size versus KMV cardinality
estimate for the initial set / and the final set A

4.1.2 Deflation Attack

The deflation attack has been simulated for different values
of t with K = 1024 and for an attack set size of 100,000
elements. Figure 5 summarizes the results showing the car-
dinality estimate of the KMV for the attack set size versus ¢.
The smaller the estimate, the more effective the attack. The
theoretical upper bound K + ¢ is also plotted. As per Figure
5, the attack set produces an estimate that is below the upper
bound as predicted by the previous analysis. This is because
the K minimum values of the attack set tend to be above
%. Again, the attacker can control the KMV estimate,
so to make it significantly smaller than the true cardinality of
the attack set.

Finally, Figure 6 shows the fraction of elements added to
the attack set in each round of K + ¢ elements; it also shows
the value of Equation 9. The simulation results match the
theoretical approximation; as ¢ increases, so also the fraction
of elements added to the attack set increases. Therefore, the
use of larger values of ¢ requires fewer iterations to build the
attack set (as discussed in the previous section).
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Fig. 5: Deflation Attack: KMV cardinality estimate of the
attack set A with size 100,000 versus ¢
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Fig. 6: Deflation Attack: fraction of elements added to the
attack set on each iteration

4.2 Feasibility validation

After validating the theoretical analysis in an ideal setting, a
script ran the proposed attacks on the KMV implementation of
the Apache DataSketches library [27]; this is part of the Theta
sketch framework in which KMV is a particular case [19]. The
implementation of KMV (using the Theta Sketch QuickSelect
algorithm) is slightly different from the traditional version,
because the number of minimum values kept is not fixed (i.e.,
it varies between K and 2K to support other sketches, like the
Theta sketch, that need to resize the structure dynamically).
Therefore, results are expected to deviate from the theoretical
analysis presented in the previous section. This implemen-
tation uses a high-performing 128-bit MurmurHash3 hash
function, that behaves well in terms of distribution, avalanche
behavior and collision resistance. In any case, the goal of this
paper is to show that the proposed attacks can be utilized
against real implementations of the sketch used in commercial
systems. Next subsections presents and discusses the results
for the inflation and deflation attacks on the DataSketches
implementation.
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4.2.1 Inflation Attack

A Java program ran the attack on the Java API Core 1.3.0-
incubating version for the same cardinalities evaluated in the
previous section (ranging from ten thousand to one billion
distinct elements). The experiment kept the default values for
the UpdateSketchBuilder API element unaltered, except for the
value of the nominal entries, that it set to 1024 (among other
values). Randomly generated elements of type double from a
uniform distribution have been used to build the original set
S. Subsets have been extracted to create the reduced attack
sets. The first experiment tested the attacks to check that the
constructed sets (the initial set I and the final set A) generated
a similar cardinality estimate for the sketch as the initial set S.
Figure 7 shows the results for one run; the results show that
the cardinality estimates are very similar and the difference
is smaller than 5% in all cases. Similar values have been
observed in other runs. The small variations on the cardinality
estimates may be due to the DataSketches KMV that uses a
dynamic value of K as well as other implementation details.
Nevertheless, these results confirm the feasibility of the attack.
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Fig. 7: Inflation Attack on DataSketches: ratio of the
cardinality estimates for the initial set I and the final set A
versus the estimate for the original set S

Next paragraphs evaluate the sizes of the attack sets I and
A. Figure 8 reports the average across ten runs. The sizes of
both the initial set I and the final set A are larger than the
theoretical estimates. The values are on average 1.32x (1.40x)
larger than the theoretical ones for the initial (final) attack
set. As discussed previously, this trend is expected, because
the DataSketches implementation uses a value of K that is
dynamic between K and 2K.
4.2.2 Deflation Attack

The deflation attack has been tested using the same values
of t as for the initial validation (i.e. 100, 1514, 2929, 4343, 5757,
7171, 8586 and 10000) and targeting an attack set A of size
100,000 elements. The experiment originally generated sets .S
of 10 million of uniformly distributed randomly generated
double values to obtain the attack set A. Figure 9 shows the
cardinality estimate of the KMV for the attack set, also plotting
the theoretical upper bound K + t. As per Figure 9, the KMV
estimated cardinality for the attack set A is in some cases
slightly above the theoretical upper bound of K +t. This again
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Fig. 8: Inflation Attack on DataSketches: attack set size versus
KMV cardinality estimate for the initial set / and the final set
A

can be explained as the DataSketches implementation uses a
dynamic K that can be larger than the nominal value. Also, in
this scenario, the attack is capable of generating a large set that
has a low cardinality estimate (controlled by the attacker using
the parameter ?).
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Fig. 9: Deflation Attack on DataSketches: KMV cardinality
estimate of the attack set A with size 100,000 versus t

Figure 10 shows the fraction of elements that are added to
the attack set in each round of insertions; it also shows the
theoretical value of Equation 9. Results follow the same trends
as those of Equation 9 with some differences that can again be
attributed to the DataSketches implementation.

5 CONCLUSION AND FUTURE WORK

This paper has studied the security of the KMV sketch
and it has proposed, analyzed and evaluated several attacks
based on implementation-independent vulnerabilities. The re-
sults have shown that without knowing its implementation
details, an attacker can manipulate the sketch to increase or
reduce the cardinality and similarity estimates. This finding is
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Fig. 10: Deflation Attack on DataSketches: fraction of elements
added to the attack set on each iteration

of critical importance because any data processing applications
use KMV.

Future work will concentrate on investigating potential
countermeasures that the designers of data processing systems
can employ to prevent or at least detect the attacks. A simple
solution is to use a different random salt on each KMV in-
stance, so that the attack set built on one KMV instance does
not work on a different instance. However, in this case, the
instances can no longer be combined to compute the cardi-
nality of the unions and used for the similarity estimate. This
significantly reduces the functionality of the sketch and may
not be acceptable in many applications. A more sophisticated
(and costly) approach is to use an auxiliary KMV for each
instance that uses a random salt as proposed in [25]. In this
case, each KMV instance has two cardinality estimates: the
original one and the salted one. Under normal operation,
both cardinality estimates are similar so when they diverge,
an attack is detected. The main drawback of this strategy
(denoted as Salted Not Salted (SNS)) is that additional storage
and computational effort is required for the auxiliary salted
estimator. Alternatively, rounding the output values produced
by the sketch (as proposed in [21]) will also make the attack
harder by limiting the ability of the attacker to identify the
desired elements for the attack set. More broadly, it is of
interest and relevance to investigate more efficient methods
to detect these attacks.
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