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Abstract—Since the nineties, the Man-in-The-Middle (MITM) attack has been one of the most effective strategies adopted for

compromising information security in network environments. In this article, we focus our attention on ARP cache poisoning, which is

one of the most well-known and more adopted techniques for performing MITM attacks in Ethernet local area networks. More precisely,

we will prove that, in network environments with at least one malicious host in the absence of cryptography, an ARP cache poisoning

attack cannot be avoided. Subsequently, we advance ArpON, an efficient and effective solution to counteract ARP cache poisoning,

and we use a model-checker for verifying its safety property. Our main finding, in accordance with the above impossibility result,

is that the only event that compromises the safety of ArpON is a cache poisoning that nevertheless is removed by ArpON itself after

a very short period, thus making it practically infeasible to perpetrate an ARP cache poisoning attack on network hosts where

ArpON is installed.

Index Terms—Network protocols, ARP, man-in-the-middle attacks, secure ARP, formal verification
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1 INTRODUCTION

SINCE the nineties, the Man-in-The-Middle (MITM) attack
has been one of the most effective strategies adopted for

compromising information security on Internet. MITM
attacks target network traffic that flows between endpoints,
compromising its confidentiality and integrity. It is a form
of active wiretapping attack in which the attacker intercepts
and selectively modifies communicated data to masquerade
as one or more of the entities involved in a communication
association [43].

MITM attacks exploit vulnerabilities at various levels of
the OSI (Open System Interconnection) architecture: Man-
in-the-browser attacks at application level [27], Secure
Socket Layer (SSL) hijack at the transport level [19], IP
spoofing at the network layer [33] and ARP Poisoning
attacks at the data link layer [1]. Over the years these attacks
have been adapted to work with new emerging network
technologies such as GSM (Global System for Mobile com-
munications) and UMTS (Universal Mobile Telecommuni-
cations System) [16], WiFi [5] and to IoT (Internet-of-
Things) systems [18]. Today they still represent a major

concern for security professionals. In this paper, we will
focus our attention on ARP cache poisoning, which is one of
the most well-known and commonly adopted techniques
for performing MITM attacks.

ARP (Address Resolution Protocol) is a Data Link Layer [6]
protocol whose main task is to establish a bind between the
two addresses that characterize an Internet host, namely the
IP (Internet Protocol) address and the MAC (Media Access
Control) address. Since the Internet is a network of local
area networks (LAN), the former is used to distinguish a
host on the Internet,1 while the latter is used for referring to
a particular host inside a LAN. The MAC address, which is
48bits long, is fixed and hardwired in the network interface
card by its manufacturer. By contrast, the IPv4 address,
which is 32bits long, is assigned to a host by either a net-
work administrator (static address), or a DHCP (Dynamic
Host Configuration Protocol) server (dynamic address) [25]
depending on the network the host is connected to. Thus,
every host h connected to Internet is identified by a pair
hMACh, IPhi, such that for every two hosts both their IP
addresses and their MAC addresses are distinct. Further-
more, h maintains a dynamic table which contains the pair
hMAC, IPi for any host it needs to communicate with. The
construction and management of such a table, which is
called ARP cache, is the main task of the ARP protocol. By
poisoning the content of such a table an attacker can modify
the communication flow inside a LAN.

Several solutions to the ARP cache poisoning attack
problem have been proposed in the literature, that though
require significant changes to the nodes, cannot coexist with
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1. IPv4 is the version of the implementation of the IP protocol cur-
rently used. It will be substituted in a future by IPv6. Addresses will
become 128 bits long in IPv6.
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standard ARP implementations, and in some circumstances
fail in preventing/solving poisoning. In Section 3, we per-
form a detailed analysis.

In this paper, the authors approach the problem from a
formal perspective in order to provide a more definitive
response to it.

More precisely, we formally define the problem of con-
structing andmanaging an ARP cache, namely the Address
Translation Problem, and we provide a formal proof that in
the presence of a malicious host, the Address Translation
Problem is impossible to solve. Given such a result, we
devised the ArpON protocol, a solution to the ARP cache
poisoning problem that is based on the strategy of mitigat-
ing the effects of an ARP cache poisoning attack by return-
ing a poisoned ARP cache to a “non-dangerous” state in
the shortest span time possibile. Using a formal prover [30]
we also verified the safety property of ArpON.2 This is a
very significant result in that it provides a further step
toward the application of formal verification techniques
for the analysis as well as synthesis of real network proto-
cols. Recent research regarding infinite-state systems has
provided very few working examples of specifications
involving quantifiers, such as those required for modeling
ArpON, since the border leading to undecidability phe-
nomena is quite close, and very few methodologies are
available.

We have formally proved that in static environments,
i.e., LANs where the hosts have predefined IP addresses,
ArpON is safe from ARP poisoning attacks. On the other
hand, in dynamic environments in which the hosts’ IP
addresses are not known a priori and can change during
protocol execution, in accordance with the impossibility
result mentioned above, the only event which compro-
mises the safety of the protocol is a cache poisoning
which however is removed quickly – as we are able to
prove – making practically infeasible to perpetrate such
attacks.

Obviously, in order to properly work, ArpON requires
some additional message exchanges, which however affect
neither the approach scalability (the communication over-
head is independent of the LAN size), nor message latency,
as we show through simulations in Section 5.

ArpON is thus an efficient and effective solution to coun-
teract ARP cache poisoning attacks in that it incurs in low
operational costs, is backward compatible, transparent to
the ARP protocol, and to our knowledge is the only protocol
at the data link layer which exhibits a formal safety proof.
ArpON is completely compliant with every version of the
ARP protocol as specified in the relevant Request for Com-
ments (RFCs) [20], [21], [42] and its source code has been
made available and has been downloaded by more than
100,000 users since January 2016.3

The main contributions of this paper with respect to the
state of the art can be summarized as follows:

� We provide the first formal definition of the Address
Translation Problem addressed by the ARP protocol,

and we formally prove its impossibility in the pres-
ence of a single malicious host in the more general
network model, namely, the adoption of dynamic
network addresses with no use of cryptography.

� We formalize the ArpON protocol using the array-
based declarative approach for the modeling of infi-
nite-state reactive parameterized systems.

� Using the Model Checker Modulo Theories (MCMT)
model-checker, we prove the safety property of
ArpON, in the particular case in which LAN hosts
have a static, persistent, addressing.

� Using the Model Checker Modulo Theories (MCMT)
model-checker, we prove that in the more general
context the safety property of ArpON does not hold
but cache poisoning is always removed after a very
short period of time (ArpON shaded area).

� We evaluate - through simulations - the length of the
ArpON shaded area. We show that it lasts 0.11 ms,
an interval much shorter than that required by a
packet to traverse the TCP/IP (Transmission Control
Protocol/Internet Protocol) stack on an optimized
platform, which is the first step required for per-
forming a MITM attack. More precisely, such a value
has been estimated in 0.53ms [31], which prevents
the possibility of bringing a successful MITM attack
when ArpON is in use, comparing it against real sys-
tem measurements.

The paper is organized as follows. Section 2 provides
background on the ARP protocol and on MITM attacks. Sec-
tion 3 provides a brief overview of related research. Section 4
contains a general description of ArpON. Section 5 reports
some experimental values we obtained by executing
ArpON in a simulation environment. Section 6 formally
defines the Address Translation Problem and proves the
impossibility of deterministically solving it in the presence
of a malicious host. Section 7 introduces some preliminaries
on the formal prover that has been adopted, and reports the
main results obtained by the formal verification of ArpON.
Section 8 contains the concluding remarks.

2 BACKGROUND

In this section we introduce the basic concepts for under-
standing the ARP protocol and the ARP cache poisoning
attack.

2.1 Address Resolution Protocol

As mentioned earlier, the main task of ARP [20], [21], [42] is
to learn hosts’ MAC addresses corresponding to IPv4
addresses and write them into the ARP cache. Within an
ARP cache, we distinguish between persistent entries and
dynamic entries. Persistent entries contain mappings that
are known a priori, are manually configured by the system
administrator, and permanently remain inside the cache,
unless explicitly removed. Dynamic entries are related to
mappings which are not known beforehand and need to be
learnt at runtime. A dynamic entry usually has a lifetime of
approximately 10 minutes; after that period the entry is
automatically removed from the ARP cache.

In simple terms, dynamic entries are built by ARP in the
following way. Consider two hosts h and k that are on the

2. Where by safety property we mean that no “bad things” happen
during any execution of the solution protocol [8].

3. https://arpon.sourceforge.io/
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same LAN; h needs to send a packet to k. h usually knows
IPk i.e. k’s IP address,4 but in order to reach k in its local net-
work h has to know k’s MAC address. First, h looks for a
hMACk, IPki entry in its own ARP cache. If the entry is not
found, h sends an ARP request message to all hosts in the
LAN, asking for the MAC address of the owner of the IPk

address. Once k receives the message, it sends an ARP reply
message to h supplying its own MAC address. Once h
receives the ARP reply, it updates its own cache with the
entry hMACk, IPki. Symmetrically, k updates its own cache
with the mapping hMACh, IPhi.

In Fig. 1, the payload of ARP messages is shown: the
fields in the first line contain the type and length of both the
IPv4 and MAC addresses. In the second line, the opcode

specifies the type of message, the sha and spa fields are
respectively the MAC and IPv4 addresses of the message
source, while the tha and tpa fields are the MAC and IPv4
addresses of the message target.

ARP also provides the opportunity for a host to announce
its IPv4 and MAC addresses, either at boot or upon changes.
This is useful for example when a host joins a LAN. Such an
announcement, also called a gratuitous ARP message, is usu-
ally broadcast as either an ARP request or an ARP reply. Gra-
tuitous announces have both sha ¼ tha and spa ¼ tpa to
report the address correspondence to be announced. A gratu-
itous ARP sent using anARP request is not intended to solicit
a reply; rather, it updates possible cached entries for the
sending host in the ARP tables of the receivers of the packet.
Such an update is performed because of the implicit ARP
assumption that all the hosts in a LAN are trustable.

Furthermore, before beginning to use an IPv4 address
(whether received from manual configuration, DHCP, or
some other means), a host hmust usually verify whether the
address is already in use: to this end, it broadcasts an ARP
probe message, i.e., a “fake” ARP request where the source
mapping is empty (spa¼ 0:0:0:0) in order to not leave traces
in other hosts’ caches, while the target IP address is the one
the host would use. If another host k exists in the LAN
already using the IP address, k sends a unicast ARP reply
message, signaling that the address is already in use.

2.2 MITM Attacks

The ARP protocol can easily be subverted by performing
Man-in-the-Middle (MITM) attacks (see e.g., [14]), using a
technique known as ARP poisoning or ARP spoofing,
described in the following.

Let us consider three hosts in a LAN x;w; z and their corre-
sponding MAC and IP addresses hMACx, IPxi, hMACw, IPwi,
hMACz, IPzi. If w convinces z that x’s MAC address is MACw,
allmessages that zwants to send toxwill actually be addressed
toMACw; consequently, theywill be received byw. In thisway,
the attackerwwill hijack all the communications between z and
x, acting as it sits in the middle of the communication, hence

the name. More precisely, this is the case of a half-duplex
MITM as the attacker is able to intercept only one traffic flow
(from z to x). We refer to full-duplex MITM when the attacker
is able to monitor both the traffic flows; this would imply that
w is also able to convince x that z’sMACaddress isMACw.

The goal of MITM attacks is to overtake a communication
session between two hosts in order to intercept and view the
information being exchanged between them. ARP poisoning
is not difficult to obtain by leveraging some of the features of
the ARP protocol. Some methods adopted to perform a
MITM attack, which are mostly based on the fact that ARP
assumes that all hosts in the network are trustable, are:

� a host h can craft a gratuitous ARP message where
the pair hsha, spai is set to hMACh, IPxi; in this
way, roughly speaking, the ARP caches of the
remaining hosts in the LAN are poisoned with a
wrong value, and h will intercept all messages
directed to x by all the hosts in the LAN;

� when receiving an ARP request/reply, a host imme-
diately updates its own ARP cache with the informa-
tion contained in the message. Again, a suitably
crafted ARP reply can be used for ARP poisoning
also in case no previous ARP request was generated
(unsolicited), as ARP is stateless and hosts do not
remember the messages they have sent.

Since the ARP cache entries are periodically refreshed,
an attacker who is interested in maintaining a MITM
attack for a long time has to continuously send ARP
messages suitably crafted so that the ARP cache entries
of interest stay poisoned.

3 RELATED RESEARCH

In this section, we briefly describe several defense mecha-
nisms against ARP poisoning attacks, which have been pro-
posed in the literature.

ArpWatch [36] is a user-space tool for monitoring ARP
traffic on computer networks. It keeps track of MAC/IP
address pairings. It generates Syslog activities and reports
via e-mail certain changes of the observed pairings of IP
addresses with MAC adresses, along with a timestamp
when the pairing appeared on the network.

Anticap [10] is a kernel patch that does not update the
ARP cache when an ARP reply carries a different MAC
address for a given IP already in the cache and issues a ker-
nel alert. In this case, ARP specification is no longer adhered
to, as legal gratuitous packets are dropped. Antidote [44] is
a different kernel patch that intercepts ARP replies
announcing a change in a hMAC, IPi pair and tries to dis-
cover if the previous MAC address is still viable. In that
case, the update is rejected and the new MAC address is
added to a list of “banned” addresses. If Antidote is
installed, a host can spoof the sender MAC address and
force a host to ban another host. In [46], a solution that
implements two distinct queues, one for requested
addresses and one for received replies, is proposed. The sys-
tem discards a reply if either the corresponding request was
never sent, i.e., is not in the queue, or an IP address associ-
ated with a different Ethernet address is already present in
the received queue.

Fig. 1. Payload of the ARP messages.

4. E.g., through the resolution of k’s symbolic name by the Domain
Name System.
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In all the above cases, the solutions contain the same vul-
nerability. That is, when an ARP request is broadcast and
both the victim and the attacker receive the message, the
first to reply will take over the other.

S-ARP [15] and TARP [37] use asymmetric cryptography
and Authoritative Key Distributor to assert the authenticity
of ARP messages. TARP [37] introduces a signed attestation
in the form of addresses to a public key or ticket. Messages
are digitally signed by the sender, thus preventing the injec-
tion of spoofed information. Unfortunately, cryptography
and key management at the Data Link layer are not compat-
ible with most existing LANs protocols and devices, and
would require extensive changes. Furthermore, they have a
significant impact on performance, and are not always
affordable as in the case of Industrial LANs. Furthermore,
the S-ARP solution is not compatible with the legacy code
since the S-ARP packet format is different from the ARP-
Packet format as defined in [42]. In [45] a further protocol,
namely Arpsec, has been introduced, which uses TPM
(Trusted Platform Module) attestation to guarantee the trust
in remote hosts. Arpsec, however, requires TPM hardware
on each host to work as well as a key management support.

In [38], the MR-ARP protocol is introduced which pre-
vents ARP poisoning MITM attacks recurring to voting
schema. When a host receives an ARP request/reply mes-
sage that contains a MAC address for an IP address differ-
ent from the one registered in the ARP cache, MR-ARP
requests the neighbouring nodes to vote for the new IP
address. This schema is based on the assumption that votes
can be delivered almost instantaneously, but this condition
may not be valid in some LAN environments such as wire-
less networks, where data rates can change on the basis of
signal-to-noise ratio (SNR), i.e., auto rate fallback (ARF).

4 ARPON: ARP HANDLER INSPECTION

In this section, we describe the ArpON protocol by provid-
ing architectural as well as implementation details. Archi-
tecturally speaking, ArpON is divided into three modules,
namely, SARPI for LANs where only static persistent
addresses are used, DARPI for LANs where just dynamic
addresses are used, and HARPI that merges SARPI and
DARPI when both persistent and dynamic addresses are in
use. These modules are described and a pseudo code is pro-
vided in the following sections.

4.1 Overview

ArpON is a daemon that works in parallel with the ARP pro-
tocol and is compatible with legacy implementations of ARP.
As a consequence, in a LAN, hosts that use the traditional
ARP can coexist with hosts that have installed the “ARP þ
ArpON” solution; the latter hosts having their ARP caches
protected fromMITM ARP poisoning attacks. The main task
of ArpON is to supervise ARP cachemanagement, relying on
its own cache, which is different from that used byARP.

More precisely, any ArpON instance manages two differ-
ent caches: a SARPI cache and a DARPI cache. ArpONworks
in user space and cooperates with the ARP protocol in the
kernel to manage the Ethernet interfaces present in a host; an
instance of the ArpONdaemon exists for each Ethernet inter-
face. The general architecture is described in Fig. 2.

Most of the management of the Ethernet interface still
remains a kernel responsibility. Upon the reception of ARP
messages, ArpON – on the basis of its policies – overwrites
the ARP cache and decides whether to create, maintain or
delete cache entries.5

The behavior of the SARPI and DARPI modules is driven
by a set of policies that define – on the basis of the network
packet received on the network interface – the operations to
be performed on the ARP cache and the SARPI/DARPI
caches, as described in the following. In the following, the
term basic request denotes an ARP request unleashed by a
process at the application level, in contrast with those gener-
ated autonomously by ARP such as probe and gratuitous
requests. Similarly, basic replies differentiate from gratu-
itous replies.

4.2 SARPI: Static ARP Inspection

As mentioned above, SARPI works in a LAN environment
with IP addressing completely static and persistent. We
assume that every host has a configuration file that contains
the trustable mappings of all the hosts in the network. The
task of SARPI is to avoid the occurrence into the ARP cache
of any persistent mapping different from those in the con-
figuration file.

Algorithm 1 supplies the pseudo-code for SARPI. All
messages generated by SARPI are broadcast.6 At start up,
SARPI executes the Clean policy (lines 18, 1-5), which con-
sists of removing all the entries, both static and dynamic,
from the ARP cache, and copying all the trustable mappings
from the configuration file to the SARPI cache. Subse-
quently, all the mappings contained in the SARPI cache are
copied as persistent entries in the ARP cache following the
Update policy (lines 19, 7-9).

Fig. 2. ArpON general architecture.

5. Such a functionality is obtained by ArpON by modifying in the
proc filesystem the arp_ignore and the arp_accept parameters
which are used by the sysadmin to configure the way ARP behaves
when ARP requests and ARP gratuitous announces are received.

6. ff:ff:ff:ff:ff:ff by convention is the destination MAC address used
for broadcast messages.
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Algorithm 1. SARPI

1: Clean()
2: Disable in the Operating System the generation of ARP

replies in response to received ARP requests for all local
addresses;

3: Disable in the Operating System the creation of new IP
entries in the ARP cache triggered by unsolicited and gra-
tuitous ARP requests and replies;

4: ARP_cache {}; // empty
5: SARPI_cache config-file;
6:
7: Update()
8: ARP_cache SARPI_cache [ (ARP_cache - SARPI_cache);
9: start timer(10 min.):
10:
11: Allow(S)
12: ARP_cache(S) hspa, shai; // dynamic
13:
14: Refresh(S)
15: ARP_cache(S) SARPI_cache(S); // persistent
16:
17: Main()
18: Clean();
19: Update();
20: when timeout _ ARP packet do
21: if timeout then
22: Update();
23: else if (ARP_pkt.opcode¼Request _ ARP_pkt.opco-

de¼Reply) ^ ARP_pkt.sha¼myMAC ^ ARP_pkt.
spa¼myIP then

24: skip; // outbound basic/probe/gratuitous ARP
requests and replies

25: else if ((ARP_pkt.opcode¼Reply ^ ARP_pkt.tpa¼myIP)
_ ARP_pkt.spa¼ARP_pkt.tpa) ^ ARP_pkt.spa¼ S ^ S 6
¼ 0.0.0.0 ^ S 6¼myIP ^ S 2NETWORK(myIP) then

26: if S 2 SARPI_cache then
27: Refresh(S);
28: else
29: Allow(S);
30: end if
31: else if ARP_pkt.opcode¼Request ^ ARP_pkt.tpa¼myIP

^ ARP_pkt.spa¼ S ^ S 6¼ 0.0.0.0 ^ S 6¼myIP ^ S 2NET-
WORK(myIP) then

32: new ARP_pkt’: ARP pkt’.opcode Reply;
33: ARP pkt’.tpa S; ARP pkt’.tha ff:ff:ff:ff:ff:ff;
34: ARP pkt’.spa myIP; ARP pkt’.sha myMAC;
35: broadcast ARP pkt’; // eth_dest ¼ ff:ff:ff:ff:ff:ff
36: if S 2 SARPI_cache then
37: Refresh(S);
38: else
39: Allow(S);
40: end if
41: else if ARP_pkt.opcode¼Request ^ ARP_pkt.tpa¼myIP

^ ARP_pkt.spa¼ 0:0:0:0 then
42: new ARP_pkt’: ARP pkt’.opcode Reply;
43: ARP pkt’.tpa 0.0.0.0; ARP pkt’.tha ff:ff:ff:ff:ff:ff;
44: ARP pkt’.spa myIP; ARP pkt’.sha myMAC;
45: broadcast ARP pkt’; // eth_dest ¼ ff:ff:ff:ff:ff:ff
46: else
47: skip; // inbound ARP probe reply
48: end if
49: end do

However, persistent entries may be removed or modified
by the system administrator. Hence, every 10minutes, ArpON
executes the Update procedure to refresh the persistent entries
in the ARP cache with the SARPI cache (lines 21-22). If, for
some reason, a permanent entry in the ARP cache of a host h is
removed, its value will remain undefined until the next
Update is performed. In the meantime, h can be exposed to an
ARP cache poisoning attack. In order to avoid this risk, a
Refresh policy (lines 14-15) has been introduced that works as
follows. When a host h receives either a basic ARP reply or a
gratuitous announce (lines 25-30), SARPI verifies whether the
spa field is present in the SARPI cache. In this case, the corre-
sponding (safe) persistent mapping is immediately copied
into the ARP cache by the Refresh policy. If by contrast the
spa value is not present in the SARPI cache, then this is a
dynamic mapping, which is not an issue for SARPI, and the
Allowpolicy (lines 11-12) is applied.

When a host h receives a basic ARP request from a host u
(lines 31-40), h sends (broadcast) an ARP reply message as
usual, providing its own MAC address to u. At the same
time, h updates its own ARP cache with either:

1) the mapping related to u contained in the ARP
request, if IPu is not contained in its SARPI cache
(Allow policy);

2) or the corresponding mapping contained in the
SARPI cache (Refresh policy).

The reception of an ARP probe message (lines 41-48)
raises the generation of an ARP reply only in the case the
receiving host owns the probed IP address, in order to avoid
duplicate addresses.

Algorithm 2. DARPI - Policies

1: Clean()
2: Disable in the Operating System the generation of ARP

replies in response to received ARP requests for all local
addresses;

3: Disable in the Operating System the creation of new IP
entries in the ARP cache triggered by unsolicited and gra-
tuitous ARP requests and replies;

4: ARP_cache {}; // empty
5: DARPI_cache {};
6:
7: Allow(S)
8: ARP_cache(S) hspa, shai;
9:
10: Deny(S)
11: ARP_cache(S) h?;?i;
12:
13: Verify(S)
14: new ARP pkt: ARP pkt.opcode Request;
15: ARP pkt.spa myIP; ARP pkt.sha myMAC;
16: ARP pkt.tpa S ; ARP pkt.tha ff:ff:ff:ff:ff:ff;
17: broadcast ARP pkt; // eth dest ¼ ff:ff:ff:ff:ff:ff

Any time the configuration file is modified, the updated
version is transferred into both the SARPI and theARP caches.

4.3 DARPI: Dynamic ARP Inspection

In the case of non-persistent addresses, ARP cache poison-
ing attacks are prevented by the DARPI module. DARPI
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adds a notion of state to the standard ARP protocol, which
enables DARPI to detect the sources of ARP cache poisoning
attacks, i.e., ARP requests, unsolicited replies, or gratuitous
messages. Such notion of state is implemented by keeping
track of the outbound messages generated by the host, in
an internal cache of the DARPI module. Every inbound

message received by the host that does not match any stored
message is classified as unsolicited.

We describe below the general behavior of the DARPI
protocol, referring to the details in Algorithms 2 and 3 that
respectively describe the DARPI policies and the DARPI
main code.

Algorithm 3. DARPI - Main Code

1: Main()
2: Clean();
3: start timer(1 s.);
4: when timeout _ ARP packet do
5: if timeout then
6: DARPI_cache DARPI_cache - DARPI_expired;
7: start timer(1 s.);
8: else if ARP_pkt.opcode¼Request ^ ARP_pkt.sha¼myMAC then
9: if ARP pkt.spa¼ 0.0.0.0 _ ARP_pkt.spa¼ARP_pkt.tpa then
10: skip; // skip outbound probe/gratuitous ARP requests
11: else if ARP_pkt.spa¼myIP ^ ARP_pkt.tpa2NETWORK(MyIP) then
12: DARPI_cache DARPI_cache þ hARP_pkt.tpa, timei;
13: end if
14: else if ARP_pkt.opcode¼Request ^ ARP_pkt.spa¼ S ^ ARP_pkt.spa¼ARP_pkt.tpa ^ S 6¼ 0.0.0.0 ^ S 6¼ myIP ^ S 2

NETWORK(myIP) then
15: Verify(S);
16: Deny(S);
17: else if ARP_pkt.opcode¼Request ^ ARP_pkt.spa¼ S ^ ARP_pkt.tpa¼myIP ^ S 6¼ 0.0.0.0 ^ S 6¼myIP ^ S 2NETWORK

(myIP) then
18: if :S 2 DARPI_cache then
19: Verify(S);
20: end if
21: new ARP_pkt’: ARP pkt’.opcode Reply;
22: ARP pkt’.tpa S, ARP pkt’.tha ff:ff:ff:ff:ff:ff;
23: ARP pkt’.spa myIP; ARP pkt’.sha myMAC;
24: broadcast ARP pkt; // eth dest¼ff:ff:ff:ff:ff:ff
25: Deny(S);
26: else if ARP_pkt.opcode¼Request ^ ARP_pkt.spa¼ 0.0.0.0 ^ ARP_pkt.tpa¼myIP then
27: new ARP pkt’: ARP pkt’.opcode Reply;
28: ARP pkt’.spa myIP; ARP pkt’.sha myMAC;
29: ARP pkt’.tpa 0.0.0.0 ; ARP pkt’.tha ff:ff:ff:ff:ff:ff;
30: broadcast ARP pkt; // eth dest¼ff:ff:ff:ff:ff:ff
31: else if ARP_pkt.opcode¼Reply ^ ARP_pkt.sha¼myMAC ^ ARP_pkt.spa¼myIP then
32: skip; // skip outbound basic/probe/gratuitous ARP replies
33: else if ARP_pkt.opcode¼Reply ^ ARP_pkt.spa¼ARP_pkt.tpa ^ ARP_pkt.spa¼ S ^ S 6¼ 0.0.0.0 ^ S 6¼myIP ^ S 2NET-

WORK(MyIP) then
34: Verify(S);
35: Deny(S);
36: else if ARP_pkt.opcode¼Reply ^ ARP pkt.spa¼ S ^ ARP_pkt.tpa¼ myIP^ S 6¼ 0.0.0.0 ^ S 6¼ myIP ^ S 2 NETWORK

(MyIP) then
37: if S 2 DARPI_cache then
38: DARPI_cache DARPI_cache � oldest{DARPI_cache(S)};
39: Allow(S);
40: else
41: Verify(S);
42: Deny(S);
43: end if
44: else
45: skip; // skip inbound probe ARP reply
46: end if
47: end do
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As a preliminary, we point out that in DARPI all messages
are broadcast in the LAN. At start up, DARPI executes the
Clean policy (lines 2 Algorithm 3, 1-5 Algorithm 2), which
consists of removing all the entries, both static and dynamic,
from the ARP cache, and all the entries in the DARPI cache.

When a host x receives an ARP request from h sha , spa i , it
performs the following actions:

� if DARPI cache contains an entry with the IPv4
address equal to spa (lines 17-25 Algorithm 3)

� then x
– sends an ARP reply to spa

– removes from the ARP cache the mapping hsha,
spai inserted by the ARP protocol basing on the
ARP request (Deny policy, lines 10-11 Algorithm
2). The DARPI cache entry is maintained;

� then x
– sends an ARP request to spa (Verify policy, lines

13-17 Algorithm 2) followed by an ARP reply to
spa,

– removes from the ARP cache the mapping hsha,
spai inserted by ARP (Deny policy),

– writes in the DARPI cache an entry hspa, TDi,
where TD is a timestamp allowing a 1 s. lifetime
to the entry (lines 11-13 Algorithm 3). If within 1
s. the corresponding ARP reply message is not
received, the entry is deleted from the DARPI
cache (lines 5-7 Algorithm 3).

When a host x receives an ARP reply from h sha , spa i , it
performs the following actions (lines 36-43 Algorithm 3):

� if DARPI cache contains an entry with the IPv4
address equal to spa

� then x removes the DARPI cache entry and creates
the dynamic ARP cache entry hsha, spai (Allow pol-
icy, lines 7-8 Algorithm 2);

� else x
– sends an ARP request to spa (Verify policy),
– removes the mapping hsha, spai from the ARP

cache (Deny policy),
– creates the entry hspa, TDi in the DARPI cache.

The reception of a gratuitous announce – be it either a
request (lines 14-16 Algorithm 3) or a reply (lines 33-35
Algorithm 3) – is treated as the reception of a reply from a
source for which no DARPI cache entry exists. The recep-
tion of an ARP probe is managed as in SARPI (lines 26-30
Algorithm 3)

These procedures aim at preventing ARP cache poison-
ing of hosts. Consider a host k which receives an ARP mes-
sage (request, gratuitous, or unsolicited reply) from IPh: in
order to verify the information contained in the message, k
sends an ARP request to h. At the same time, DARPI
removes the entry related to IPh from k’s ARP cache and
adds the hIPh, TDi entry in k’s DARPI cache. In response to
such messages, h sends an ARP reply to k. When k receives
the ARP reply from h, k removes the hIPh, TDi entry from its
DARPI cache, and inserts in its ARP cache the hMACh, IPhi
addresses contained in h’s ARP reply. However, as also out-
lined by the model-checker we adopted, the above protocol
has a transient flaw which occur when a malicious host m
anticipates h’s ARP reply, with a packet containing the

hMACm, IPhi pair. In such a case these data will be inserted
in k’s ARP cache thus poisoning it. Fortunately, the poison-
ing will last only until k receives the correct ARP reply by
host h, which at this point is an unsolicited reply. When this
occurs, DARPI removes the hMACm, IPhi entry from the
ARP cache and activates the Verify policy. We underline
that, in a LAN environment, this procedure takes fractions
of milliseconds, a period in which it is not possible to perpe-
trate any attack (see Section 5).

4.4 HARPI: Hybrid ARP Inspection

Most of the current LANs connect both hosts with persistent
addresses and hosts with non-persistent addresses. In
regard to these types of LANs, we merge the SARPI and
DARPI modules into the HARPI module. Specifically, when
an IPv4 address in the spa field of an ARP message is
retrieved in the SARPI cache, HARPI behaves according to
the SARPI policies; otherwise, HARPI adopts the DARPI
policies.

5 PERFORMANCE EVALUATION

In this section, we present some preliminary performance
measurements obtained by implementing ArpON in the
OMNET++ network simulator version 5.1.1, in combination
with the INET package version 3.6.4.

In all simulations, hosts use the standard UDP (User
Datagram Protocol) and IP protocols. Every host may be
both source and destination of UDP messages. As source, a
host generates messages according to an exponential distri-
bution with a parameter equal to 15 s., for a random destina-
tion chosen according to a uniform distribution. Among the
hosts, one behaves as an attacker. It may either perpetrate a
full MITM attack, or send poisoned Gratuitous Announces.
Both victims (i.e., hosts that the attacker wants to imperson-
ate) and targets (i.e., hosts whose ARP caches the attacker
tries to poison) are chosen randomly. Every attack lasts
around 6-7 minutes. When an attack ends, the attacker
schedules the time to start a new attack according to an
exponential distribution with variable parameter t. All sim-
ulations reproduce 3600 s. of simulated time.

a) ArpON effectiveness: We evaluated the effectiveness of
DARPI in comparison with classical ARP [42]. In a first set of
measures, the network consists of n, 10 � n � 150, hosts con-
nected to a unique switch in a star topology via FastEthernet
(100 Mbps) links. Every attempted attack succeeds in ARP,
while no attack is observed when hosts are configured with
ArpON. Fig. 3a shows the cumulative distribution of cache
poisoning length for ARP, with 75 hosts in the LAN and t ¼
300 s, for both types of attacks. Approximately 20-30% of the
attacks last more than 2 minutes, and around 35-40% of them
lastmore than oneminute. In the case of Gratuitous Announ-
ces, we observed that more than 50% of the hosts in the LAN
sufferedARP cache poisoningwithin 10minutes.

b) ArpON efficiency: The ArpON verification procedure
increases the communication overhead. We compared the
number of messages generated by both ARP and ArpON
with variable number of hosts in the LAN. Fig. 3b shows
both the number of generated messages (bars) and the ratio
between the ArpON traffic and the ARP traffic (line), with
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t ¼ 300 s. Although the increase in communication over-
head is evident, it should be noted that it is roughly constant
independently of the LAN size, varying between 3.5 and 6
times the ARP traffic with an average of 5.26. Despite both
the higher amount of traffic generated by ArpON with
respect to ARP and the need of verifying address corre-
spondences, the latencies are lightly affected. Fig. 4 shows
the end-to-end message latency measured on hosts, for vari-
able number of hosts in the LAN, t ¼ 300s and attacks per-
petrated via Gratuitous Announces. The latency of ArpON
is about 20 ms greater than that of ARP with the largest
LAN considered. Furthermore, these results confirm the
ArpON scalability in terms of latency: when increasing the
number of hosts in the network from 10 to 150 (1500%), the
latency increases only 80%.

All these measures show that – although ArpON
imposes a degree of overhead in the network – it (i) effec-
tively protects hosts from poisoning most of the time, (ii)
scales well for both increasing LAN size and increasing fre-
quency of attacks.

6 ADDRESS TRANSLATION PROBLEM

6.1 Preliminary Definitions

In this section, we formally define the Address Translation
Problem (ATP), the main problem underlying the ARP pro-
tocol, and we prove the impossibility of solving it in the
more general context represented by networks with
dynamic addressing, no cryptography, and at least one
malicious host in the network. A trivial corollary of such a
result is that there are no safe protocols for the above men-
tioned problem, where by safe we mean that no “bad
things” occur during any execution of the protocol [8]. This
also means that only approximate solutions to ATP can be
found. One of such solutions is ArpON, which approxi-
mates a solution to the ATP problem by tolerating a

transient violation of the safety property, a violation which
however lasts for periods of time too short to bring a suc-
cessful MITM attack, as will be shown in Section 7.

In the following sections, we use equivalent terms host
and process, denoting the process running the ARP protocol
on a host. Hosts are connected by a broadcast medium and
communicate either via broadcast or point-to-point primi-
tives. The communication channel is reliable and synchro-
nous, that is, an a-priori time bound can be established
upon message delivery.7

Intuitively, each host h has a private value hIPh;MAChi
such that ð8h; k, h 6¼ kÞ MACh 6¼ MACk^ IPh 6¼ IPk. In the
case of dynamic addressing (i) for every two hosts h; k, there
is no way for k to know beforehand the IP associated to h,
and conversely (ii) it is not possible for k to know a priori –
given an IP address – which is the host (namely, MAC
address) that owns it.

Each process is assumed to maintain a local vector cvi ¼
ðvi1; . . . ; vinÞ where vij is process i’s estimate of process j’s
private value, which will also be denoted by cvij; the MAC
component of cvij may be the undefined value ?.

In our system, processes evolve in steps. At every step a
process i sends messages to other processes in the system
and it may receive messages from them. Upon receiving
messages, a host i can update its local vector cvi using a
deterministic function of its old local vector and the
received messages. However, processes are not required to
work in lockstep.

We have adopted the formalism in [41] in order to for-
malize our system processes.

A virtual background is a triple

S ¼ ðP;M; IÞ;

where P;M; I are three finite sets; the set P is the set of (vir-
tual) processes, the setM is called the set of MAC addresses
and I is called the set of IP addresses. Among the elements
of P;M; I, only some of them will be part of a scenario, i.e.,
of a concrete message exchange session in a specific LAN.
We assume that the cardinality of I is less than or equal to
the cardinality of P and M (in actual implementations, the
cardinality of I is 232, the cardinality of M is 248 and the car-
dinality of potential users P is unspecified).

Fig. 4. End-to-end message latency on hosts, for variable number of
hosts in the LAN, t ¼ 300s and attacks perpetrated via Gratuitous
Announces.

Fig. 3. ðaÞ ARP performance in terms of poisoning duration. ðbÞ Commu-
nication overhead for both ARP and DARPI, with variable LAN size.

7. Both assumptions are realistic thanks to the Binary Exponential
Backoff algorithm used by Ethernet to overcome collisions.
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For a virtual background S, an S-scenario (or simply a sce-
nario) S is a 4-tuple ðP0; IP;MAC; sÞ such that:

� P0 � P is the finite set of (actual) processes in a LAN;
� IP : P0�!I is an injective function (IP ðpÞ - written

IPp - is said to be the IP-address of p);
� MAC : P0�!M is an injective function (MACðpÞ -

written MACp - is said to be the MAC-address
of p).

� s is a partial function, whose domain domðsÞ � Pþ0 is
finite;8s associates with w 2 domðsÞ a pair of values
sðwÞ 2 I� ðM [ f?gÞ (here ? is some fixed element
not belonging to M); for length-one words in
domðsÞ, we stipulate that sðpÞ ¼ hIPp;MACpi for all
p 2 P .

sðpwqÞ is the content p got from a chain of messages start-
ing from q and reaching p.

We say that p is honest iff p 2 P0 and the following two
conditions are satisfied for arbitrary r 2 P0 and rpw 2 Pþ0 :

i) if rpw 2 domðsÞ then pw 2 domðsÞ (a honest p does
not forward messages it did not get);

ii) if rpw 2 domðsÞ then sðrpwÞ ¼ sðpwÞ (a honest p
relays exactly the information it got without altering
it in any manner).

The function s is used by processes in order to update
their cv vectors.

We denote by I0 the range of the function IP and by M0

the range of the function MAC (we have of course IP0 � I
and M0 �M). We say that S is full iff I0 ¼ I: in a full sce-
nario, all possible IP addresses are in use. A full scenario
has to be considered non realistic. Indeed, I is the set of all
possible IP addresses, while a LAN includes a very limited
number of hosts (large LANs do not include more than a
few hundreds of hosts).

6.2 Problem Impossibility

In this section, we prove that – under the system assump-
tions of Section 6.1 and of dynamic addressing – the
Address Translation Problem cannot be solved because
every algorithm either (i) might allow cache poisoning, or
(ii) always terminates with the decision for the undefined
identifier (which is completely useless) in order to avoid
poisoning.9

We now formally define the notion of address resolution
algorithm.

Definition 6.1. An address resolution algorithm for a virtual
background S is a function K associating to any S-scenario
S ¼ ðP0; IP;MAC; sÞ and any pair of processes p; q 2 P0, a
MAC address Kðp; q;SÞ 2M [ f?g (written Kp

q ðSÞ) satisfy-
ing the following invariance property. Kðp; q;SÞ is the
MAC address that p associates to IPq.

Definition 6.2 (Invariance property). Let �ð Þ : P�!P indi-
cate a bijective function; for a finite word w 2 Pþ and a process
q, �w denotes the word obtained from w by replacing everywhere
q 2 P by �q. Suppose that �ð Þ : P�!P is a bijection fixing p
(i.e., with �p ¼ p) and suppose that we are given two scenarios
S ¼ ðP0; IP;MAC; sÞ and S

0 ¼ ðP 00; IP 0;MAC0; s0Þ such that
for every w 2 Pþ we have (i) pw 2 domðsÞ iff p �w 2 domðs0Þ
and (ii) if pw 2 domðsÞ, then sðpwÞ ¼ s0ðp �wÞ. Then we must
haveKp

q ðSÞ ¼ Kp
q ðS0Þ for all q 2 P0 \ P 00.

The intuitivemeaning of the invariance property is that the
result of a deterministic address resolution algorithm executed
on a host p is always identical whenever “the same
information” is available to p, that is, every time p receives the
same sequence ofmessages. The �ð Þ function defines a permu-
tation over the processes in P . It is used in the subsequent
proof in order to substitute a honest process q 2 P0 � P with
a malicious process q 2 P n P0 pretending to be q, while all
the other processes in P0 remain fixed.10 In such a context –
where we have assumed the absence of cryptographic techni-
ques thatmight be used for authentication –wemust consider
that p is not able to distinguish between two messages with
the same content sent by two different hosts.

The ATP problem addressed in this paper, as well as by
the ARP protocol, consists of guaranteeing that every time a
LAN host p tries to resolve a certain IP address into the cor-
responding MAC address, it ends up by storing the correct
binding in its local vector. We acknowledge that a host
might record a default binding instead of the correct one,
where the undefined identifier hIPx;?i represents the
default value used whenever the MAC address correspond-
ing to IPx is not known.

More formally:

Definition 6.3. Given a virtual background S and an algorithm
K, we say that K is correct if and only if for any S-scenario S
and for any p; q 2 P0 such that both p; q are honest and p 6¼ q,
Kp

q ðSÞ 2 fMACq;?g. The ATP problem lies in classifying
such correct algorithmsK and in supplying one.

The Correctness property posits that ARP cache poison-
ing cannot occur. Nonetheless, it admits undefined entries
because of changed correspondence due to dynamic IP
address assignment, or ARP cache entry expiration, or miss-
ing correspondence due to the lack of communication. It is
worth noting that a correct algorithm should also be valid,
i.e., it should supply a non-undefined correspondence as
soon as a sufficient number of messages has been
exchanged. Yet, we do not formally define such a validity
property as the theorem below shows that any reasonable
definition leads to impossibility.

A correct algorithm capable of producing non-undefined
correspondence exists, but it works only in full scenarios,
and thus is of no use in practical applications. Such a trivial
algorithm can be described as follows. Let N be the cardi-
nality of I (i.e., of all virtual IP addresses); we note that cur-
rently N ¼ 232. If p receives less than N messages of the

8. We use Pþ0 to denote the set of finite non-empty words on the
alphabet P0. The fact that the domain is a finite subset of Pþ0 implies
that not all messages are requested to arrive to their destinations before
a decision about an address binding is taken. This is needed because in
real systems processes do not know the cardinality of P nor that of P0,
but they have to decide within a finite time.

9. In the case of persistent addresses where an address database
may be configured in the hosts (as in the case of SARPI), the impossibil-
ity does not hold.

10. We notice that assuming the invariance property for any permu-
tation is formally equivalent to assuming it for any exchanges, since
any permutation can be expressed as a composition of exchanges. This
explains why in the proof we then use only the invariance for a single
exchange.
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kind sðpqÞ (i.e., if the set of the two-letter words pq belong-
ing to domðsÞ has cardinality less than N), then it sets
Kp

q ðSÞ ¼ ? for each q; if it receives N messages of the kind
sðpqÞ, then it checks whether there is just one pair ðIPq; aÞ
for each address IPq. If this is not the case, again it sets
Kp

q ðSÞ ¼ ? for all q; otherwise it sets Kp
q ðSÞ equal to the

unique a such that ðIPq; aÞ belongs to the set fsðpqÞ j pq 2
domðsÞg. It is justified by doing so, because, since it received
N messages, then it knows that the scenario is full, so that if
q is honest, then the unique pair ðIPq; aÞ it received must be
such that a ¼MACq. If, on the other hand, there are two (or
more) different pairs of the kind ðIPq; aÞ for the same
address IPq in the set fsðpqÞ j pq 2 domðsÞg, then it is evi-
dent that some poisoning attack has occurred.

The problemwith the above trivial algorithm is that it never
produces a defined correspondence in a non-full scenario, so
that it is bound to produce concrete effects only in unrealistic
borderline cases. In fact, there are no better solutions:

Theorem 6.1. LetK be a correct address resolution algorithm for
S ¼ ðP;M; IÞ. Then for any non-full S-scenario S ¼
ðP0; IP;MAC; sÞ and for any distinct p; q 2 P0, we have that
if p and q are honest and distinct, thenKp

q ðSÞ ¼ ?.
Proof. Suppose that, on the contrary, we have Kp

q ðSÞ ¼
MACq, for honest p; q 2 P0 and q 6¼ p in a non-full S-sce-
nario S ¼ ðP0; IP;MAC; sÞ. Since S is not full, there is an
a 2 I not in the range of IP ; since IP and MAC are injec-
tive functions and since the cardinality of I is less than or
equal to the cardinalities of both M and P , there are �q 2
P n P0 and b 2M not in the range ofMAC.

Consider now a new scenario S0 ¼ ðP 00; IP 0;MAC0; s0Þ
obtained by S as follows (the modification is meant to
simulate a man-in-the-middle attack - we add to the sce-
nario an intruder �q, intercepting all messages originating
from q and replacing into them q’s MAC address with its
own):

� P 00 ¼ P0 [ f�qg;
� IP 0 extends IP by letting IP 0ð�qÞ be any a 2 I not in

the range of IP ;
� MAC0 is obtained from MAC as follows: (i)

MAC0r ¼MACr for r 6¼ q and r 6¼ �q, (ii) MAC0�q ¼
MACq, and (iii) MAC0q is any b not in the range of
MAC.

In other words, in the new scenario the intruder �q hap-
pens to have the sameMAC address that q had in the old
scenario. We show that, as a consequence of the invari-
ance property, �q will be able to convince p that q’s MAC
address is the same as in the old scenario, whereas this is
not anymore the case (the old q’s MAC address is now
�q’sMAC address).

Let �ð Þ : P�!P be the bijection exchanging q with �q
and leaving all the other r 2 P fixed (notice that this
induces an involution for words, i.e., we have ��w ¼ w for
all w 2 Pþ).11 We let domðs0Þ be equal to f �w jw 2
domðsÞg [ fqg. We define s0ð �wÞ :¼ sðwÞ, for all w 2
domðsÞ of length bigger than 1 (if w has length 1, then

w ¼ r for some r, and s0ðrÞ :¼ hIPr;MACri, according to
the general definition of a scenario).

Since we have that �p ¼ p and p 6¼ q, the hypothesis of
the invariance property applies, thus producing that
Kp

q ðS0Þ ¼ Kp
q ðSÞ ¼MACq ¼MAC0�q 6¼MAC0q. This dem-

onstrates that K is not correct (contrary to the hypothesis
of the theorem), provided we can show that p; q are still
honest in the new scenario S0.

It turns out that q is certainly honest in S0 because the
only word mentioning q in domðs0Þ is the single-letter
word q. It is clear also that p remains honest in the new
scenario S

0, because (using the fact that �p ¼ p) we have

s0ð�rp �wÞ ¼ s0ðrpwÞ ¼ sðrpwÞ ¼ sðpwÞ ¼ s0ðpwÞ ¼ s0ðp �wÞ;

for all �rp �w 2 domðs0Þ. Moreover, the first condition for p
to be honest is also verified because, since p is honest in
the old scenario, for all words of the form �rp �wwe have

�rp �w 2 domðs0Þ , rpw 2 domðsÞ )
) pw 2 domðsÞ , p �w 2 domðs0Þ :

This concludes the proof of the Theorem. tu
Remark.The entire proof relies on the absence of an

authenticator, i.e. of an evidence that the identifier comes
from the honest owner of the IP address under consider-
ation. If such an evidence can be supplied (e.g., through
cryptographic techniques) then the problem becomes solv-
able, as done by a few cryptography-based ARP proposals
in the literature.

Remark. The definition of an “address resolution” algo-
rithm K we gave in this section (Definition 5.1) is quite gen-
eral and abstract: such a K can operate in any scenario
(possibly giving undetermined values as results). We have
proved that any suchK (under realistic mild assumptions) is
either incorrect or can only produce undetermined values.
Only few such abstractK can give rise to real life address res-
olution algorithms; in fact, real life address resolution algo-
rithms (which cannot be entirely correct according to the
above theorem) operate only within scenarios obeying the
rules of a precise protocol.12 Such rules may include interme-
diate control steps and phases, which are also important for
verification, but that are abstracted away in the general for-
malization of this section. In addition, the notion of a scenario
we have introduced cannot be fully captured within first
order logical contexts; consequently, only special scenarios
can be considered in formal specifications for fully auto-
mated tools relying on decision procedures in first order logic
(these are the decision procedures implemented in SMT (Sat-
isfiability Modulo Theories) solvers). An effective way to
introduce the special scenarios constructed using specific
protocol rules is to introduce further arrayvariables (in addi-
tion to the IP andMAC array variables mentioned in any sce-
nario): for instance, in order to model the information sðqpÞ
forwarded by a certain (malicious or correct) process p to all
other processes q, onemay use an appropriate array ap. Array
variables are at the core of array-based systems [28], [29], the

11. The fact that �ð Þ : P�!P is an involution guarantees that any w 2
Pþ can be written as �v for a unique v: this fact guarantees the correct-
ness of the definitions below.

12. Formally, if you like, one may say that they give undetermined
results in scenarios not built up according to such rules.
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formal framework underlying the tool MCMT. This is the
tool we shall employ in our formal verification analysis.

7 FORMAL VERIFICATION OF DARPI

7.1 Preliminaries on Formal Verification

The family of HARPI protocols under consideration belongs
to the infinite-state reactive parameterized systems: although the
behavior of a single host can be described by a finite state
automaton, the number of components which constitute a
system (i.e., a LAN), and whose behavior is determined by
messages received by other system’s components, is poten-
tially unlimited.

Various techniques have been introduced in the litera-
ture to handle safety verification for such parameterized
systems (see [2], [3], [4], [9], [11], [12], to name but a few
entries). We chose the declarative approach of the array-
based systems [23], [28], [29], because it offers a great flexibil-
ity and relies (at the deductive engine level) on the mature
technology offered by state-of-the-art SMT-solvers, which is
gaining relevance in the field of automatic theorem provers.
In array-based systems (see [24], [30] for tool implementa-
tions), the state is represented by both global variables and
array variables such that each array corresponds to a com-
ponent of the state of the hosts, that is, the kth element of
array a contains the value of component a for the host k.
This representation, which is very natural, eases the model-
ing process. A system is specified via a pair of formulæ iðpÞ
and tðp; p0Þ, where p is the set of parameters and array-ids,
iðpÞ is the formalization of possible initial states of the sys-
tem, tðp; p0Þ :¼ Wn

i¼1 tiðp; p0Þ symbolizes the possible state
transitions of the system – according to the considered algo-
rithm – modifying p into p0. A safety problem is given by a
further formula yðpÞ, which describes the set Bad of states
verifying the unsafe condition. Each transition ti 2 t is com-
posed by a guard and a set of updates: if the current values
of parameters and arrays satisfy the guard, then the transi-
tion may fire and the updates are applied. More guards
may be verified simultaneously. In this case, one of the cor-
responding transitions fires nondeterministically. A safety
model checking problem is the problem of checking whether
the formula

ð?Þn iðp
0
Þ ^ tðp

0
; p

1
Þ ^ � � � ^ tðp

n
; p

nþ1Þ ^ yðp
nþ1Þ;

is satisfiable for some n, that is, whether a state in Bad can be
reached from an initial state by applying the possible transi-
tions. In order to verify whether a protocol is safe with
respect to Bad, the tool we use in this work adopts a back-
ward reachability policy. The search starts from Bad and,
using the state transitions, for every element of Bad com-
putes the pre-image, i.e., the set of states which can lead to
Bad. For every set of obtained pre-images the same proce-
dure is repeatedly applied, until one of the following two
events occurs: either (i) a fixed point is reached (not inter-
secting initial states), meaning that the pre-image computa-
tion cannot reach other states different from the current
ones, or (ii) an initial state is reached. In the former case, no
formulæ of type ð?Þn describing the reachability of Bad can
be satisfied and the system is safe. In the latter case, some
formula of type ð?Þn is satisfiable and the system is unsafe.

We used the Model Checker Modulo Theories (MCMT)
tool [30], whose state variables include arrays. Sets of states
and transitions of a system are described by quantified first-
order formulæ of special kinds. The tool leverages decision
procedures (as implemented in state-of-the-art SMT solvers)
to treat satisfiability problems involving various datatypes
such as arrays, integers, Booleans, etc. Checks for safety and
fix-points are performed by solving SMT problems (due to
the special shape of the formulæ used to describe sets of
states and transitions, such checks can be effectively dis-
charged); MCMT uses Yices [26] as the underlying SMT
solver. In addition to standard SMT techniques, efficient
heuristics for quantifier instantiation, specifically tailored to
model checking, are at the heart of the system. Termination
of the backward search is guaranteed only under specific
assumptions, but it commonly arises in practice (for a full
account of the underlying theoretical framework, the reader
is referred to [29]). MCMT guarantees the safety of a proto-
col for any number N of system components. MCMT main-
tains formulæ describing the set of states that can reach a
Bad state in one, two, three, .... etc. steps. Such formulæ
describe infinite sets of states. For this description to be
appropriate, quantified variables are needed. The tool
increases the number of quantified variables it uses as soon
as it realizes that it needs more variables. It stops whenever
it gets a fixed point (safe outcome) or a set of states intersect-
ing the set of initial states (unsafe outcome)

The process of converting an algorithm into an MCMT
model is performed manually: we extracted the pseudo-
codes included in this paper from the UML diagrams
included in the documentation available in the official site
(and validated with the implemented source code), by
abstracting away the implementation-dependent details.
From the pseudo-codes, we derived the MCMT models,
composed of both the transactions describing each event
that might occur when running the protocols (policies exe-
cution, timer expiration, and if-statements in the pseudo-
codes), and additional transactions modeling all the possi-
ble behaviors of a malicious attacker. This procedure
requires deep comprehension of the algorithm.

We used MCMT to verify the correctness of both SARPI
and DARPI. For the sake of brevity, in the next section we
describe in detail the DARPI modeling; all developed mod-
els are available at https://homes.di.unimi.it/�pagae/
ARPON/index.html.

7.2 DARPI Modeling

We developed several models for DARPI, differing in the
absence or presence of malicious processes, as well as in the
considered Bad formula. A first model, which reproduced
the behavior of the protocol for arbitrary number of honest
hosts, was determined to be safe. It contains all possibile
events, although serialized according to the generation and
management of one event at a time. By adding one mali-
cious host, though, we verified that the protocol is unsafe
with respect to MITM attacks, according to the impossibility
result of Section 6.2. In such a case, the sequence of events
yielded by the model is the following: host v generates a
honest basic request for a host h. h executes Verify(), Deny
(), and subsequently it sends a reply (lines 17-25 of
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Algorithm 3); furthermore, h adds v in its own DARPI_c-
ache (lines 11-12). The transaction will be terminated as
soon as v sends a confirmation reply to h. In the meantime,
a malicious host sends a poisoned unsolicited reply to h
impersonating v. Such a message wins the race and is
received by h before the awaited reply from v. As a conse-
quence, h interprets the reply as the awaited response and
updates its ARP cache (lines 36-39) thus poisoning it.

Considering this negative result, it was necessary to
understand if an intermediate result could be obtained; we
proceeded as follows. Our aim was to prove that, although
DARPI cannot escape from the impossibility result, when
ARP cache poisoning occurs, it is always removed. The key point
is that, in DARPI, all messages are broadcast, and no infor-
mation is inserted into an ARP cache without verification.
Cache poisoning in a host hmay occur only upon the request
of the Allow() policy, which is executed only when a reply is
received from an IP address listed in h’s DARPI cache. Fur-
thermore, an IP address is inserted into the DARPI cache as a
consequence of the local generation of an ARP request. By
construction, these requests are sent broadcast; hence, the
legal owner of the target IP (let us say k) always receives it
and generates a reply that eventually arrives at h. If the reply
matches with an entry in the DARPI cache, Allow() is exe-
cuted and no cache poisoning occurs. If by contrast another
malicious reply has been received earlier, which poisons h’s
ARP cache, then k’s reply has yet to be received and – when
it arrives – the Deny() policy applied by ArpON removes the
poisoned entry from the ARP cache, and the verification pro-
cedure re-starts. Hence, what we aim at formally verifying is
that –when cache poisoning occurs – there is still the legal reply
pending which must be received regardless of which events are
occurring in the network.

To this end, we have developed the DARPI model indi-
cated as comprehensive model, described in the following
lines. In our models, we assume that all hosts are correctly
configured and that the network is reliable (see Section 6.1).
We indicate with N the number of hosts in the network. We
focus on systems composed of N 	 3 processes. Among

them we identify a malicious host b, aiming at impersonat-
ing a victim v, and a generic honest host denoted by h. The
lower bound on system cardinality is enforced by adding it
to the guards of all transitions. b wants to convince one of
the honest hosts that IPv corresponds to its MACb. In order
for this to occur, b may send any message at any time in
order to fool the other hosts; Gratuitous Announces sent by
b may be unicast rather than broadcast. Yet, b cannot alter
nor destroy messages sent by other hosts. By contrast, the
h’s and v honestly generate and process messages according
to DARPI. To close the verification process, we serialize the
events. The modeling of time is neglected and DARPI_cache
entries never expire, which just eases the work of malicious
processes by indefinitely allowing the unsafe event
sequence described above. We take both the IP address and
the MAC address of a host x to be equal to x.

The following global variables are used: ’ indicates the
logical clock of the computation; sh, sp and tp correspond to
the sha, spa and tpamessage fields respectively; a flag ww
is used as a switch as explained below. The state of each
process x is represented by the following local variables:
sm½x
 indicates whether x must send a message and of what
kind; CM½x
 and CP ½x
 respectively contain the MAC and
IP addresses of the victim in x’s cache (cvxv). The flag fv½x

indicates whether x must execute the Verify() procedure;
the target of the verification request is always v. An entry in
DARPI_cache is represented by the field tD½x
 for the target
of the verification request. Finally, tg½x
 remembers the des-
tination of the message to be sent when sm½x
 is set.

Note that the primed notation (0) of a variable indicates
its updated value in case a transition fires (if its guard is sat-
isfied). In the following transition formulæ, existentially
and universally quantified variables x; y; z etc. are processes
whose local state satisfies the transition guard and is
updated as indicated.

To provide further clarification of the model, we refer to
Fig. 5 where a diagram describes the model and its transi-
tions: numbers in square brackets indicate the correspond-
ing transition t. The points where the replies of v and b to a

Fig. 5. Diagram summarizing the DARPI formal model.
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verification request may arrive in a different order are
highlighted in orange.

The initial state satisfies

iD :¼ ’ ¼ 0 ^ sh ¼ 0 ^ sp ¼ 0 ^ tp ¼ 0 ^ ww ¼ 0^
ð8x:sm½x
 ¼ 0 ^ CM½x
 ¼ 0 ^ CP ½x
 ¼ 0^
fv½x
 ¼ 0 ^ tD½x
 ¼ 0 ^ tg½x
 ¼ 0Þ;

that is, no process has executed the current initial step, no
message is present, no caches contain any information
regarding v, all DARPI_caches are empty, and no process
has a message to send. The unsafe state is

yD :¼ ’ ¼ 6 ^ ð9z1; z2; z3:CP ½z1
 6¼ CM½z1
 ^ z2 ¼ v

^ sm½z2
 ¼ 0 ^ z3 ¼ CM½z1
 ^ sm½z3
 	 0Þ;
that is, a process z1 exists whose ARP cache is poisoned,
since it remembers the MAC address of a process z3 instead
of that of the victim z2 ¼ v; the malicious host z3 may have
a message to send, while the victim has no messages to
send. If this occurs, z1 will be unable to call the Deny() and
Verify() procedures and the poisoning will persist. This Bad
formula precisely is the negation of the above reasoning,
and aims at showing that – whenever cache poisoning
occurs – there is still a honest reply somewhere that has yet
to be received.

The model includes some invariants, not discussed here
for the sake of brevity, that ease the closing of the verifica-
tion. Apart from the initial event generation, the model
mimics Algorithm 3; we indicate the Algorithm lines to
which each transition corresponds. Transitions t1 to t4 are
guarded by ’ ¼ 0 (initial step) and any one of them may fire
to generate the initial event.

In the first transition, a honest request is generated by v
to another host

t1 :¼ ’ ¼ 0 ^ ð9x; y:x 6¼ y ^ x ¼ v ^ y 6¼ v ^N 	 x^
N 	 y ^ ’0 ¼ 1 ^ tp0 ¼ y ^ sh0 ¼ v ^ sp0 ¼ vÞ:

In this and the following transitions, a condition such as
N 	 x forces process indexes to be within the system
cardinality.

The second transition similarly describes the generation
of a honest request from a h to v (which is not reported). By
contrast, the generation of a malicious request is modeled
as follows:

t3 :¼ ’ ¼ 0 ^ ð9x; y:x 6¼ y ^ x ¼ b ^ y 6¼ v ^N 	 x^
N 	 y ^ ’0 ¼ 1 ^ sm0½x
 ¼ 3 ^ tp0 ¼ y^
sh0 ¼ x ^ sp0 ¼ vÞ:

The value of sm½x
 ¼ 3 is never changed again. It indicates
that the malicious process already fired, and prevents fur-
ther generation of malicious messages to avoid repeating
already visited patterns and from entering into infinite
loops. A malicious unsolicited reply is similarly generated

t4 :¼ ’ ¼ 0 ^ ð9x; y:x 6¼ y ^ x ¼ b ^ y 6¼ v ^N 	 x^
N 	 y ^ ’0 ¼ 8 ^ sm0½x
 ¼ 3 ^ tp0 ¼ y^
sh0 ¼ x ^ sp0 ¼ vÞ;

and the model jumps to the transitions relative to the man-
agement of replies, that is, ’0 ¼ 8.

The next transitions describe the reception of requests
either by the target process (line 17) which is also the victim
and must just generate a reply (lines 21-24)

t5 :¼ ’ ¼ 1 ^ ð9x:x ¼ v ^ x ¼ tp ^N 	 x^
sp 6¼ v ^ ’0 ¼ 2 ^ sm0½x
 ¼ 1 ^ tg0½x
 ¼ spÞ;

or when the apparent source is the victim

t6 :¼ ’ ¼ 1 ^ ð9x:x ¼ tp ^ sp ¼ v ^N 	 x^
tD½x
 ¼ 0 ^ ’0 ¼ 2 ^ sm0½x
 ¼ 1 ^ CM 0½x
 ¼ 0^
CP 0½x
 ¼ 0 ^ fv0½x
 ¼ 1 ^ tg0½x
 ¼ spÞ:

In both cases, it has a reply to send to the request source. In
the latter case, the target also summons Deny() and it has to
verify the identity of the source (lines 18-25).

According to the algorithm, a host first sends possible
verification requests, and then sends its own reply. The next
two transitions make it possibile to enter the verification
phase. If a verification must be performed, a message is sent
and the appropriate entry is inserted into the DARPI cache
(lines 11-13)

t7 :¼ ’ ¼ 2 ^ ð9x:fv½x
 ¼ 1 ^ x 6¼ v ^N 	 x^
’0 ¼ 3 ^ tp0 ¼ v ^ sh0 ¼ x ^ sp0 ¼ x^
fv0½x
 ¼ 0 ^ tD0½x
 ¼ vÞ:

If no process must perform Verify() – as in the case of a
request received by the victim (t5) – then the execution
moves to the transitions regarding reply generation

t8 :¼ ’ ¼ 2 ^ ð8x:fv½x
 ¼ 0Þ ^ ’0 ¼ 7:

If a verification request is sent, it is processed by its target
(lines 17-25)

t9 :¼ ’ ¼ 3 ^ ð9x:x ¼ v ^ x ¼ tp ^ sp 6¼ x ^N 	 x^
’0 ¼ 4 ^ sm0½x
 ¼ 2 ^ tg0½x
 ¼ spÞ;

where the value of sm½x
 indicates that a reply to a verifica-
tion must be sent, as described in the following transition:

t10 :¼ ’ ¼ 4 ^ ð9x:x ¼ v ^ sm½x
 ¼ 2 ^N 	 x

N 	 tg½x
 ^ ’0 ¼ 5 ^ sm0½x
 ¼ 0 ^ tp0 ¼ tg½x
^
sh0 ¼ x ^ sp0 ¼ x ^ tg0½x
 ¼ 0Þ:

It is also possible that, at this step, a malicious host gener-
ates a poisoned unsolicited reply

t11 :¼ ’ ¼ 4 ^ ð9x; y:x 6¼ y ^ x ¼ b ^ sm½x
 6¼ 3^
tD½y
 ¼ v ^ y 6¼ v ^N 	 x ^N 	 y ^ ’0 ¼ 5^
sm0½x
 ¼ 3 ^ tp0 ¼ y ^ sh0 ¼ x ^ sp0 ¼ vÞ:

It is worth noting that this unsolicited reply is addressed to
the process y waiting for a reply to its verification, thus
reproducing the worst case that leads to ARP cache poison-
ing. The reply to a verification request is processed as fol-
lows (lines 36-39):
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t12 :¼ ’ ¼ 5 ^ ð9x:x ¼ tp ^ sp 6¼ x ^ sp ¼ v^
tD½x
 ¼ v ^ ’0 ¼ 6 ^ CM 0½x
 ¼ sh^
CP 0½x
 ¼ sp ^ tD0½x
 ¼ 0Þ:

This is a point in the algorithm (line 39 in Algorithm 3) at
which the Allow() procedure is called upon and cache poi-
soning may occur. Hence, a fictitious transition – one that
does nothing – is inserted for the sole purpose of taking a
snapshot of the system just after the Allow() execution, so
as to verify the unsafe condition before proceeding

t13 :¼ ’ ¼ 6 ^ ww ¼ 0 ^ ð9x:N 	 x ^ ’0 ¼ 7Þ:

Subsequently, two cases may occur; either (i) the victim
has yet to send its own reply to the verification because pre-
viously the transition t11 fired instead of t10, or (ii) t10 fired
and the model moves to the transitions modeling reply gen-
eration and management. In the former case

t14 :¼ ’ ¼ 7 ^ ð9x:x ¼ v ^ sm½x
 ¼ 2 ^N 	 x^
N 	 tg½x
 ^ ’0 ¼ 8 ^ sm0½x
 ¼ 0 ^ tp0 ¼ tg½x
^
sh0 ¼ x ^ sp0 ¼ x ^ tg0½x
 ¼ 0Þ:

The transition modeling the generation of a basic reply is
similar (t15), but fires in case of sm½x
 ¼ 1 for some x. Also,
at this point, a malicious reply might be generated by b

t16 :¼ ’ ¼ 7 ^ ð9x; y:x 6¼ y ^ x ¼ b ^ sm½x
 6¼ 3^
y 6¼ v ^ sm½y
 ¼ 1 ^ tg½y
 ¼ v ^ tD½y
 ¼ 0^
N 	 x ^N 	 y ^ ’0 ¼ 8 ^ sm0½x
 ¼ 3^
tp0 ¼ y ^ sh0 ¼ x ^ sp0 ¼ vÞ:

This reply is directed to the process that should send a reply
to the victim, not having the victim in its DARPI cache. This
event mimics the situation in which both v and b reply to a
verification request, but v’s reply (generated in t10) arrives
before b’s reply (generated here). If no reply must be sent,
the system terminates

t17 :¼ ’ ¼ 7 ^ ð8x:sm½x
 6¼ 1 ^ sm½x
 6¼ 2 ^ ’0 ¼ 11Þ:
Since no transition is guarded by ’ ¼ 11, no further system
evolution is possible.

Subsequently, three transitions model the processing of a
reply (lines 36-43), for the cases respectively of reply
addressed to v (which would be managed by SARPI), reply
generated by v not in the DARPI cache of the process

t19 :¼ ’ ¼ 8 ^ ð9x:x ¼ tp ^ sp 6¼ x ^ sp ¼ v^
tD½x
 6¼ v ^N 	 x ^ ’0 ¼ 9 ^ CM 0½x
 ¼ 0^
CP 0½x
 ¼ 0 ^ fv0½x
 ¼ 1Þ;

or reply generated by v in the DARPI cache of the process

t20 :¼ ’ ¼ 8 ^ ð9x:x ¼ tp ^ sp 6¼ x ^ sp ¼ v^
tD½x
 ¼ v ^N 	 x ^ ’0 ¼ 6 ^ ww0 ¼ 1^
CM 0½x
 ¼ sh ^ CP 0½x
 ¼ sp ^ tD0½x
 ¼ 0Þ:

The former raises the execution of a new verification proce-
dure. The latter corresponds to a call to Allow() and – as

before – a transition immediately following this call is
inserted in order to verify yD:

t21 :¼ ’ ¼ 6 ^ ww ¼ 1 ^ ð9x:N 	 x ^ ’0 ¼ 9 ^ ww0 ¼ 0Þ:
Hence, the value of ww makes it possibile to differentiate
between the instant after t12 and the instant after t20, so as
to appropriately update the value of ’ after checking yD
and continue the execution from the appropriate point.

The last transitions determine the subsequent actions.
The state of all the processes in the system must be consid-
ered:13 if some process exists that has yet to verify, the exe-
cution goes back to transition t7 for that process

t22 :¼ ’ ¼ 9 ^ ð9x:x 6¼ v ^ fv½x
 ¼ 1 ^N 	 x ^ ’0 ¼ 2Þ:
If some process exists that has yet to reply, the execution
goes back to transitions t14-t15 for that process

t23 :¼ ’ ¼ 9 ^ ð8x:fv½x
 ¼ 0Þ ^ ð9x:sm½x
 	 1^
sm½x
 � 2 ^N 	 x ^ ’0 ¼ 7Þ:

If no process in the system has any message to generate
(universally quantified variable), then the system ends

t24 :¼ ’ ¼ 9 ^ ð8x:fv½x
 ¼ 0 ^ sm½x
 6¼ 1 ^ sm½x
 6¼ 2

^ N 	 x ^ ’0 ¼ 11Þ:

7.3 Verification Results

The DARPI model described in Section 7.2 is the most com-
plex of the models we developed for this work, and it high-
lights the problems we had to face in the verification process.
As it can be noticed, most of the formulas describing either
the algorithm or the attacker’s actions involve quantifiers (see
e.g., the modeling of Bad States yD, or transition t23 that
involves both existential and universal quantifiers). Such
quantifiers are the logical counterpart of the fact that the sys-
tem to be verified is a parameterized system, in the sense that it
covers scenarios where a finite but unbounded and not a priori
known number of actors occur.

There are well known results showing that even limited
fragments of logics and theories involving quantifiers are
undecidable and – also when the problem is decidable –
checking for satisfiability might be extremely expensive in
terms of both memory and computation power. The tech-
nique used by MCMT [30] is a backward reachability analysis
that, when successful, automatically synthesizes invariants
able to certify systems safety. Backward reachability analysis
requires satisfiability tests both for fixpoints and safety
checks; such satisfiability tests are shown to lie within quanti-
fied but decidable fragments via quantifier elimination or
quantifier instantiations techniques [17], [28], [29] (when uni-
versal guards occur, however, overapproximations are
adopted [7]). An alternative implementation of backward
reachability is in the tool Cubicle [24]. In the last years, differ-
ent techniques (mostly based on variants of the extension
of the IC3 algorithm [13] to infinite state systems [34]) were
introduced in order to analyze parameterized systems and to

13. As an example, recall that a gratuitous announce triggers the
generation of a verification by each recipient.
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synthesize universally quantified invariants, see e.g., [35].
A forthcoming paper [22] makes a thorough comparison
between an IC3 implementation and the MCMT/Cubicle
backward reachability technique, showing that the twometh-
odologies are somewhat orthogonal to each other, at least
regarding the number of solved problem instances.

In Table 1, the verification results are shown of the formal
models which have been developed, in terms of their safety.
For each experiment the following were reported: the out-
come of the verification, the time spent byMCMT to perform
the verification, the maximum depth of the tree of system
states explored by MCMT, the number of states (nodes)
explored, the number of calls to the underlying SMT-solver,
the maximum number of literals in the formulæ passed to
the SMT-solver. The outcome SAFE refers to the fact that the
algorithm correctly solves the problem considered. The first
five safety verifications test the unsafe condition

yATP :¼ 9z:CP ½z
 6¼ CM½z
;
that is, no process z exists such that for v it records a MAC
address not corresponding to the IP address.

In the case of SARPI, we experimentedwith any number of
hosts, and with malicious processes able to send either only
broadcast messages (according to the specifications of
SARPI), or unicast messages too. In all cases the algorithm
proved to be safe, and verification was quickly computed by
the tool. By contrast, DARPI has proved to be safe only when
there is no malicious host in the system. When modeling the
actions of just one malicious host able to send broadcast, but
not unicast, messages, then, according to the impossibility
proof, DARPI results are unsafe and the destructive sequence
of events is the one supplied in Section 7.2. It is worth noting
that unicast messages are more dangerous as they may trick
one specific hostwhile the others are not aware ofwhat is hap-
pening as they do not receive anymessage.

The results found on line six of the table have been
achieved by running the comprehensive model described in
section 7.2. The verification conducted shows that DARPI is
always able to remove poisoned information from the ARP
caches. Note that the unsafe condition yD in this model
describes states where ARP cache poisoning already
occurred, but the victim has no message to send in order to
remove it (Section 7.2). The SAFE outcome guarantees that,
when a cache is poisoned, the victim always has yet to send a
reply thatwill remove the entry from the cache.

To complete our representation, we also report the
results achieved with non-comprehensive DARPI models
analyzing specific cases.

We measured - through simulations in an ad hoc setting -
the duration of the ArpON shaded area in DARPI, which
turned out to be 0.11 ms, and this interval is not sufficient
for carrying out a MITM attack. More precisely, in MITM
attacks packets are intercepted by the attacker, analyzed,
sometimes modified and subsequently re-injected in the
network; an attacker must grab at least one packet of the
attacked traffic flow. This implies that packets arriving to
the NIC (Network Interface Card) have to be delivered to
the application level where a specific application will ana-
lyze their content and decide the next move. This can be
done in two ways: either, a packet has to traverse the entire
operating system TCP/IP stack on the attacker host. The
time to perform such an operation has been recently esti-
mated in [31], where it turns out that a packet takes more
than 5 ms to traverse the entire stack. Or, the grabbed packet
may be directly delivered from the NIC to the attacker
application (flow bifurcation and zero-copy), bypassing the
TCP/IP stack. On the most optimized platforms, this takes
not less than 0.53 ms [31]. Consequently, in both cases,
DARPI removes a cache poisoning in a time shorter than
the time spent by an attacker in capturing, modifying and
injecting a packet back into the network.

8 CONCLUSION

In this study, we have explored a long-standing attack
brought to Internet hosts, namely, MITM attack through
ARP cache poisoning, studying how to solve it using proto-
cols compatible with the existing ARP versions, thus not
requiring significant changes to network devices. To this
end, we formally define the Address Translation Problem
(ATP) addressed by the Address Resolution protocols
adopted in the Internet to find the correspondence between
network and MAC addresses. We prove that – in the case of
non-persistent addresses and in the absence of cryptogra-
phy – no correct and effective solution exists for ATP
because either (i) no correspondence is ever supplied, or (ii)
a wrong correspondence might be supplied. In both cases,
the problem properties are violated. As a consequence of
this demonstration, we propose the ArpON algorithm that
is perfectly back-compatible and interoperable with existing
ARP implementations, and permits a balance between the
described extreme behaviors. By formally validating the
properties of ArpON, we verify that ArpON – according to
the above impossibility proof – may provide an incorrect
correspondence. Yet, when this occurs, ArpON always
removes cache poisoning in a very short time.

TABLE 1
Results of HARPI Formal Verification

outcome time (s.) depth nodes SMT calls # literals

SARPI – no malicious: ATP SAFE 0.128 1 1 1166 2
SARPI – broadcast malicious: ATP SAFE 0.144 1 1 1346 2
SARPI – unicast malicious: ATP SAFE 0.167 1 1 1624 2
DARPI – no malicious host: ATP SAFE 0.381 2 1 1745 11
DARPI – broadcast malicious: ATP UNSAFE 67011 12 4352 2597327 12
DARPI – comprehensive model: un-poisoning SAFE 304.3 20 1258 308682 18
DARPI – generation of Request from victim - malicious host: un-poisoning SAFE 25.35 19 291 35736 11
DARPI – generation of Request to victim - malicious host: un-poisoning SAFE 17.33 11 127 14157 11
DARPI – generation of unsolicited Reply from malicious host: un-poisoning SAFE 32.69 19 299 40276 11
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The impossibility proof clearly refers to the worst case
where attackers always interfere with normal ARP function-
ing trying constantly to trick other hosts regarding correct
address correspondence. This does not always occur in
practice. The source code of ArpON is publicly available,
and has been downloaded by more than 100,000 users thus
far. Although received feedbacks have been positive, we are
currently accurately assessing its performance through sim-
ulations, with the aim of empirically proving the upper
bound on cache poisoning duration for different network
sizes, percentages of malicious hosts, and aggressiveness of
attackers, in comparison with classical ARP.
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