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PixelSteganalysis: Pixel-wise Hidden Information
Removal with Low Visual Degradation
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Abstract—Recently, the field of steganography has experienced rapid developments based on deep learning (DL). DL based
steganography distributes secret information over all the available bits of the cover image, thereby posing difficulties in using
conventional steganalysis methods to detect, extract or remove hidden secret images. However, our proposed framework is the first to
effectively disable covert communications and transactions that use DL based steganography. We propose a DL based steganalysis
technique that effectively removes secret images by restoring the distribution of the original images. We formulate a problem and
address it by exploiting sophisticated pixel distributions and an edge distribution of images by using a deep neural network. Based on
the given information, we remove the hidden secret information at the pixel level. We evaluate our technique by comparing it with
conventional steganalysis methods using three public benchmarks. As the decoding method of DL based steganography is
approximate (lossy) and is different from the decoding method of conventional steganography, we also introduce a new quantitative
metric called the destruction rate (DT). The experimental results demonstrate performance improvements of 10–20% in both the
decoded rate and the DT.

Index Terms—Image steganalysis, Active steganalysis, Active warden, Pixel distribution, Image steganography
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1 INTRODUCTION

S TEGANOGRAPHY is the technique of unnoticeably concealing
a secret message within a plain cover image to covertly send

a message to an intended recipient [1]. When a secret message
is hidden in a cover image, the output is called a stego image.
With the upsurge of big data on the Internet, the threat of
unauthorized and unlimited information transaction and display
has risen sharply. Furthermore, steganography has been used
by international terrorist organizations, various companies, and
military organizations for covert communications [2]. It is known
that some terrorist groups use steganography to exchange secret
messages [3]; it is also being used to steal confidential information
from companies [4].

In the process of covertly embedding a secret message into
a cover image, the original cover image is marginally altered to
become a stego image [1], [5]. In conventional steganography,
the payload of the secret message is small, and secret messages
are mostly embedded in the least significant bits (LSBs) of
the cover image in order to avoid statistical and visual detec-
tion [6], [7]. Hence, the secret messages hidden using conventional
steganography could be removed via relatively simple steganalysis
techniques such as JPEG compression [8]. The decoding method
of conventional steganography is lossless, therefore it can well
retain the content of the hidden text.

As deep learning (DL) techniques have demonstrated great
performance in various fields, so do steganography techniques
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exploiting DL techniques [9], [10]. The currently proposed DL
based steganography disperses the representations of secret images
across all the available bits [11] and is not restricted to LSBs.
The payload of a secret message embedded using a DL based
steganography method is comparatively large; however, because
the decoding method of DL based steganography is approximate
(lossy), secret messages are mostly limited to the image form.

Steganalysis is the detection, extraction, or destruction of a
secret message hidden in a stego image [12], [13]. Depending upon
the privilege levels, steganalysis can be categorized as passive
or active [14]. Passive steganalysis algorithms aim to determine
whether an image contains a secret message. Most passive ste-
ganalysis algorithms look for features associated with a particular
steganography technique (i.e., non-blind technique). However,
active steganalysis algorithms involve blind techniques having
the privilege to modify images. Active steganalysis represents
the techniques used to extract and/or remove secret messages.
However, most active steganalysis approaches try to remove the
secret messages because extracting the exact messages is difficult
in general cases [15]. The original images processed after using
active steganalysis must be nearly as unchanged as possible
because not all images are stego images. That is, a good active
steganalysis technique should aim to remove a secret message
as much as possible while introducing minimal changes to the
appearance of the image. To that end, we propose a new method
of removing the secret image by restoring the distribution of the
stego image to that of the original cover image. In Fig. 1, we
illustrate an overview of steganography and active steganalysis
with symbols of each process and material. The contributions of
this paper are as follows:

• To the best of our knowledge, this is the first method that
effectively removes secret hidden images using a DL based
steganography method. This is the first study utilizing
DL to restore stego images to the original cover images.
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Fig. 1: How steganography works (Encoder E and Decoder D) and how active steganalysis can disturb it. The destroyed secret image
d̂ shows that PixelSteganalysis P disrupts a covert transmission between a sender and a receiver with an imperceptible difference on
the stego image.

We present a theoretical formulation of the problem and
its objectives. Furthermore, we experimentally show the
possibility of using our approach as a passive steganalysis
technique.

• We assume a real-world situation in which access to either
the cover image or the secret image is not allowed. Our
framework only utilizes a dataset commonly associated
with the target society (neither the cover image nor the
secret image itself).

• We propose a new evaluation metric called the destruction
rate (DT) suitable for evaluating the performance of active
steganalysis against the DL based steganography methods
with lossy characteristics.

• Our method outperforms conventional active steganal-
ysis from both DL based steganography and conven-
tional steganography, with both high and low payloads.
Compared with the adaptive Gaussian noise method, our
method exhibited improvements of up to 18% and 20%
in terms of the peak signal-to-noise ratio (PSNR) and DT,
respectively.

The remainder of this paper is organized as follows. Section 2
provides a brief description of related and comparison works. Sec-
tion 3 provides detailed descriptions of the attack scenario, prob-
lem formulation, and proposed methodology. Section 4 suggests a
new evaluation metric, DT, that complements the limitation of the
conventional evaluation metric. Section 5 demonstrates the pro-
posed methodology through various combinations of experiments.
Finally, Section 6 discusses the results and areas of future study.

2 BACKGROUND

2.1 Conventional Active Steganalysis
The destruction of the secret message hidden using conventional
steganography was straightforward. Thus, active steganalysis has
not been developed after several simple yet effective steganalysis
approaches were proposed. The most basic approach is to take
N LSB planes of the stego image and flip the bits [16]. Another
commonly used strategy for destructing a secret message is to
overwrite the LSB bits randomly using Gaussian noise or other
noise [8]. Although applying adaptive randomization into LSB

bits can have comparably high destruction capability on spatial
steganography algorithms, yet, at the same time, it can largely
harm the image quality. Furthermore, filter-based constructive
destruction approaches have been proposed [14], [17]–[19]. First,
denoising is used to remove the hidden secret messages, consid-
ering the secret message as a noise added to the cover image
[17]. In addition, Wiener restoration is a representative method
for conventional active steganalysis [14]. The median filter (a
denoising technique) and Wiener restoration both operate quite
optimally on frequency domain steganography algorithms. We
compared adaptive randomization, denoising, and Wiener restora-
tion methods with the steganalysis method proposed in this paper
because these three methods have been demonstrated as effective
on conventional steganography [19].

2.2 Conventional and DL based Steganography
Steganography, unlike watermarking [20], aims at covert trans-
mission through invisible data hiding. For it, various methods
have been proposed to increase both the hiding capability and
invisibility. However, the hiding capability and invisibility have a
contradictory relation in the field of steganography [21]. Because
conventional steganography is aimed at perfect invisibility, an
extremely small hiding capability is generally maintained. The
LSB insertion [1], [22] is the most conventional steganographic
algorithm. However, it is statistically obvious. Recent studies have
proposed more advanced approaches that design diverse distortion
functions to maintain image statistics. The Highly Undetectable
steGO (HUGO) method is the first steganography method that
devises a distortion function [6], [23]. The HUGO method em-
beds the secret information at the positions where the difference
between the features of the cover and stego images in the SPAM
feature space is low, such as at an edge. In the spatial domain, the
Wavelet Obtained Weights (WOW) method computes the sums
of the weighted changes in the horizontal, vertical, and diagonal
wavelet coefficients. The WOW method, then, estimates a pixel
whose probability of being revealed is high in at least one direction
by using a reciprocal Holder norm [7]. On the basis of the
estimated pixels, the WOW method can avoid clean edge areas
while embedding secret information. As a disadvantage of WOW,
the embedding cost is not sufficiently sensitive to texture regions
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Fig. 2: Samples of DS [11] and ISGAN [9]. The labels x5,
x10, and x20 represent the magnification ratio (five, ten, and 20
times, respectively) of the residual image. The first row shows the
residual outputs between the cover image c and the stego image
x generated by DS. We can observe that the diagonal grid pattern
is distributed all over the background of the residual images. The
second row shows the residual outputs between the cover image
c and the stego image x generated by ISGAN. For ISGAN, the
stego image x looks natural despite the large difference between
the cover image c and stego image x. However, the illumination of
the decoded secret image d is noticeably deviated from the secret
image s.

because of merely adding the reciprocal norm rather than relative
changes to the wavelet coefficient [24]. Furthermore, the Spatial -
UNIversal WAvelet Relative Distortion (S-UNIWARD) method is
similar to the WOW method. However, the S-UNIWARD method
addressed and moderated the above mentioned disadvantages of
the WOW method [25].

Several DL based steganography approaches attempted to hide
secret information with a very small payload [26]–[28]. However,
as DL developed, DL based steganography began to embed secret
messages of bigger payloads, such as a full-size image, into the
cover image, with improved capacity [9]–[11], [29]–[40]. DL
based steganography focuses on hiding a much larger amount of
secret information in the cover image by relaxing the constraint of
perfect invisibility. StegNet [10] proposed an additional loss term
named variance loss, which can reduce the noisiness of a stego
image produced by generator networks. ISS-GAN [39] introduced
a cycle discriminative structure and the concept of inconsistent
loss, both of which can improve the quality and security of a stego
image. Deep Steganography (DS) [11] involves the additional use
of a prep-network to transform a color-based secret image to an
edge-based secret image for more natural and compact embedding.
ISGAN [9] uses only the Y component from the YCbCr color
space of the cover image to hide secret gray images, so that the
destruction of the hidden secret images is more difficult than that
using other methods.

The DL based steganography approaches cannot be detected
easily using conventional passive steganalysis because these ap-
proaches tend to maintain the pixel distributions of the original
image to the greatest extent possible [9], [26], which was demon-
strated experimentally by Baluja and Shumeet [11]. We also test
whether conventional and DL based passive steganalysis methods
can detect stego images created by DL based steganography
methods. For testing, we use two representative statistical passive
steganalysis techniques, RS [41] and SPA [42], and one DL
based passive steganalysis technique, YeNet [43]. We confirm
experimentally that RS, SPA, and YeNet were unable to determine
the stego images created by DL based steganography methods
when assuming real-world situations in which no access to the
utilized steganography algorithm is allowed.
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Fig. 3: The attack scenario of the covert transmission of restricted
information, based on Simmons’ Prisoners’ Problem [45].

Yu and Chong [39] demonstrated that secret images hidden
using DL based steganography cannot be removed using conven-
tional active steganalysis. Similar to conventional steganography
methods, DL based steganography methods also hide the majority
of secret information in the high-frequency areas of the cover im-
age, such as edge, where the bandwidth is sufficiently wide to hide
a considerable amount of information naturally. It is also known
from information theory that a change in the high-frequency area
is hard to discover [44]. More specifically, in the case of DS,
48.32% of the secret image is hidden in the edge areas on average,
notwithstanding the fact that the edge area is only a small part of
the entire image (approximately only 20% in a natural image).
Moreover, in the case of ISGAN, 34.47% of the secret image is
hidden in the edge areas on average. UDH [40] recently proposed
a meta-architecture that can disentangle the encoding of the secret
image from the cover image. They conducted further analysis
about where and how the secret image is encoded. A visual sample
in which secret information is heavily hidden in the edge areas is
provided in Fig. 2. Based on the analysis results, we propose a
method that can remove secret information hidden using DL based
steganography as much as possible while reducing the loss of the
original cover image. In addition, we experimentally confirm the
effectiveness of our approach on conventional steganography.

3 PROPOSED METHOD

3.1 Scenario
There is always a risk that individuals having access to sensitive
or proprietary information try to leak information and then share it
with competitors or adversaries. We particularly assume a scenario
that the local hosts in restricted environments such as companies
inside try to leak hidden information via the internet. As depicted
in Fig. 3, our framework can be located in the company’s uplink
to the internet outside as an active warden [45].

An active warden has the privilege to alter the content of
the communication to confuse hidden data within the carrier.
However, its privilege is limited to slight changes [19]. As an
active warden, our method aims at removing the hidden secret
message in a direction of restoring the distribution of the original
images.

3.2 Problem Formulation
We represent the stego image, original cover image, secret im-
age, and decoded secret image as x, c, s, and d, respectively.
Then, we can formulate the encoding and decoding algorithms
of steganography as x = E(c, s) and d = D(x), respectively.
We also represent a purified stego image after performing active
steganalysis as x̂, and a destroyed secret image after performing
active steganalysis as d̂ = D(x̂). We first formulate the objective
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Fig. 4: Model overview. Our framework, PixelSteganalysis P , consists of the analyzer and eraser. PixelSteganalysis P receives the
stego image x and produces the purified stego image x̂ (x̂ = P(x)).

of this study by using these representations. From the perspective
of active steganalysis, the ultimate goal is to find the purified stego
image x̂ as follows:

minimize
x̂

‖x̂− c‖∞ . (1)

If x returns to c, it indicates that the hidden secret image is
removed completely after performing active steganalysis. In other
words, the hidden secret image is completely extracted from the
stego image x. However, since the original cover image c and
secret image s are inaccessible in the process of detecting or
extracting the hidden secret image, it is almost impossible. As
described in Sec. 3.1, rather than an utterly open scenario, we
assume the scenario that works as an active warden in the restricted
environment. Each company can accumulate and make use of
the data samples transmitted outside from their uplink to build a
dataset X having a similar distribution to the original cover image
c. With these assumptions, we can alter Eq. 1 to

maximize
x̂

p∗(x̂)

subject to ‖x̂− x‖∞ ≤ εmax,
(2)

where p∗(·) denotes the exact distribution of the training dataset
X and εmax denotes the allowed maximum modification of each
pixel. That is, we aim to find an image x̂ that maximizes p∗(x̂)
subject to the constraint that x̂ is within the εmax-ball of x.
We constrain the maximum pixel modification because most
steganography methods aim at a minimum change in x from c,
both statistically and visually. In practice, we propose an adaptive
consideration degree of modification, enorm, bounded by εmax as
the constraint per pixel. This adaptive consideration range allows
more changes in the edge areas and less change in the non-
edge areas. Detailed descriptions are given in Eqs. 5 and 6. We
also approximate p∗ to a PixelCNN++ distribution p (Eq. 3). To
maximally utilize the intrinsic characteristics of steganography,
we propose a technique that sequentially satisfies the constrained
objective in Eq. 2 at the pixel level, instead of using gradient-
based constrained optimization such as L-BFGS-B [46] or image
generation [47].

3.3 Proposed Algorithm
To remove a hidden image, our proposed algorithm requires
neither the knowledge of the utilized steganography algorithm

(blind) nor the distribution of the original cover image, while
offering minimum perceptual degradation and even perceptual
improvement of the stego image. As illustrated in Fig. 4, our algo-
rithm employs an analyzer and an eraser to produce the purified
stego image, x̂. The analyzer takes the stego image as input and
produces an edge distribution, pe(x), and the distribution of all
the pixels, pp(x), of the given image (Sec. 3.3.1 Analyzer). The
generated distributions are then used to remove the secret image
hidden in the stego image by using the eraser (Sec. 3.3.2 Eraser).
Note that the candidate input images are not limited to grayscale.
However, in this section, for easier visualization and explanation,
we assume grayscale input images.

3.3.1 Analyzer
The analyzer obtains pp(x) and pe(x) by employing a neural
network trained using a dataset X having similar distribution as
the original cover images. The auto-regressive models learn the
image distribution. Then, we calculate the marginal likelihood
of an image by taking the product of the probabilities of each
sampled pixel:

p(x) =
I×J∏
i=2

p (x(i)|x(1 : (i− 1))) , (3)

where I×J denotes the height and width of the image. Therefore,
we can take advantage of the explicit distribution of all the
pixels, unlike other modeling algorithms. Moreover, pe(x) is the
information indicating the high frequency areas of the image.
pe(x) is jointly learned and is utilized in the eraser. To obtain
pp(x) and pe(x), we propose a CNN architecture inspired by
PixelCNN++ [48], which is the most representative DL based
auto-regressive model.

As described in Fig. 4, the activation of the last fully connected
layer of the analyzer is named h and consists of trained parameters
e, π, µ, and σ. Using the parameters π, µ, and σ trained with
a dataset X that has a distribution similar to the original cover
image, we obtain a discretized Gaussian mixture likelihood for
all pixels pp(x|π, µ, σ) (∈ RI×J×K ) obtained by learning the
distribution of the dataset X, p(·), in an auto-regressive way,
whereK denotes a pixel depth dimension (0–255). This procedure
is referred to as the transformer. Using the trained pp, we can
obtain how appropriate the current pixel value is, provided the
previous pixel values with respect to the distribution of cover
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images in the shape of a Gaussian mixture model. The operation
of the transformer is based on PixelCNN++. The detail of the
transformer can be found in supplementary S2 and [48].

We also train a network to detect high frequency areas in which
one can embed secret information unnoticeably, which we call an
edge distribution, pe(x). As shown in Fig. 4, pe(x), the vector
e of h is reshaped into I × J . pe(x) is used to determine the
consideration range of the suspicious information per pixel in the
eraser, as explained in Sec. 2.

We minimize the sum of the image loss, LI , and the edge loss,
LE , to obtain pp and pe, respectively. LI is the negative log-
likelihood of the image obtained by the product of the conditional
distribution of each pixel, and LE is the mean-squared error
between the results obtained using a conventional edge detector
and those obtained using our neural network. We have

LI = −Ex∼Xlog p(x),

LE = Ex∼X[
1

I × J

I∑
i=1

J∑
j=1

(pd(x)(i, j)− pe(x)(i, j))
2],

L = λILI + λELE ,

(4)

where x denotes the image of the training dataset x ∈ X,
pd(x) the edge distribution obtained using a conventional edge
detector [49] currently, and pe(x) the learned edge distribution.
For empirical risk minimization, we make use of empirical ex-
pectations of each loss. Moreover, λI and λE > 0 denote the
hyperparameters used to balance the strength of both the loss
terms.

3.3.2 Eraser
The best scenario from the perspective of steganalysis is that
both the cover and stego images are accessible. Then, we can
easily restore a stego image, x, to a cover image, c, using Eq. 1.
However, this is generally impractical. Thus, instead, we suggest
an approach for removing the hidden secret image by adjusting
the pixel value of the suspicious regions in which the secret image
may be hidden, using the pixel level information. In the eraser, we
aim to find a purified stego image, x̂, that maximizes p(x̂) under
the constraint given in Eq. 2. We iteratively substitute the pixel i’s
value with the neighboring pixel value of the highest probability
based on information from pixels i− 1, i− 2, ....

A large amount of secret information is hidden in the edge
areas of the cover image. Therefore, we control the consideration
range of each pixel, and the range is decided by two factors:
ε and pe(x). We calculate the adaptive consideration degree of
modification per pixel as follows:

enorm(i, j) = ε+ dpe(x)(i, j)

pe(x)max

× (εmax − ε)e, (5)

where i and j denote the pixel coordinates of the image, pe(x)max
the maximum edge value and ε a hyperparameter representing an
allowed degree of the least modification (ε > 0). We make use
of a ceiling, d·e, to keep enorm as an integer. The hyperparameter
ε is suggested for fair comparisons with other active steganalysis
methods and to guarantee the removal of encoded secret informa-
tion in non-edge areas. Eq. 5 shows that enorm is bounded by ε
and εmax (ε ≤ enorm ≤ εmax). Eq. 5 guarantees the lower and
upper bounds of the consideration range per pixel. εmax is 2 × ε
in our experiments.

The pixel value of the stego image is not deviated significantly
from the corresponding pixel value of the cover image. Therefore

DC: 0.8627 DT: 0.1334
Good Case
(via Proposed Method)

DC: 0.8627 DT: 0.008
Bad Case
(via Restoration)

Fig. 5: Top: the success of destruction has a relatively high value of
DT. Bottom: the failure of destruction is indicated by the almost
zero DT values. However, the DC values of the two cases are
exactly the same.

we only consider probabilities close to those of the given pixel
values. We set up the adaptive consideration range of modification
per pixel as:

rmin(i, j) = max(x(i, j)− enorm(i, j), 0),
rmax(i, j) = min(x(i, j) + enorm(i, j), 255).

(6)

Eq. 6 determines the range of pixel values considered for modifi-
cation by centering around x(i, j).

Each pixel is iteratively replaced with the one having the
highest probability value among the allowed neighboring pixel
values, as follows:

x̂(i, j) = argmax
k∈[rmin(i,j),rmax(i,j)]

pp(x̂)(i, j, k), (7)

where initially x̂ = x. Eq. 7 removes the secret message at
the pixel level based on pp(x)(i, j) bounded by rmin(i, j) and
rmax(i, j). For every pixel, the pixel distribution pp(x̂) should
be re-extracted whenever the previous pixel value is modified.
However, re-extracting the pixel distribution for all the pixels
requires excessive time to modify a single image. Therefore, to
decrease the runtime, we propose an approximation of Eq. 7, in
which the pixel distribution pp(x) is only extracted before the
iteration. The approximation is formed as

x̂(i, j) = argmax
k∈[rmin(i,j),rmax(i,j)]

pp(x)(i, j, k), (8)

for each pixel. This approximation leads to much faster runtime
but slightly decreases the quality of the results. A comparison
between the original modification case and the approximated
modification case is presented in the Sec. 5.2.

4 PROPOSED EVALUATION METRIC

The goal of an active steganalysis is the development of a tech-
nique that minimally destroys the cover image while effectively
removing hidden steganography. To properly examine the perfor-
mance of an active steganalysis method, an evaluation metric that
defines the criteria to be met against various types of steganog-
raphy approaches is necessary. However, the evaluation method
against DL based steganography cannot separate the destruction
of the hidden secret image from the degradation of the decoded
secret image itself. In detail, the evaluation method against DL
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Fig. 6: Three examples of how our method and Gaussian noise differ in efficiency at the same PSNR.

based steganography, the decoded rate (DC) [10], [14], is defined
by

Decoded Rate = 1−

∑I
i=1

∑J
j=1

∣∣∣s(i, j)− d̂(i, j)
∣∣∣

I × J
. (9)

A condition that was guaranteed in conventional steganography
is s = d. Therefore, we could use the DC to measure the
exact performance of active steganalysis. However, the decoding
method of the DL based steganography algorithms is s 6= d
(lossy). The DC between s and d is approximately 90% [9],
[11]. In other words, the error rate between s and d is already
10%, which depends upon how well the decoding algorithm is
trained. Thus, we propose a new evaluation metric called the DT,
which can accurately assess the destruction performance of active
steganalysis on both conventional steganography and DL based
steganography, regardless of the decoding algorithm. The DT is
defined as

Destruction Rate =

∑I
i=1

∑J
j=1

∣∣∣d(i, j)− d̂(i, j)
∣∣∣

I × J
. (10)

To produce results independently of the performance of the decod-
ing algorithm, the base image is changed into d instead of s. DT is
a more reliable metric than DC for representing the pure degree of
hidden image destruction for each active steganalysis method. For
example, as depicted in Fig. 5, it is possible that the DT values can
be significantly different, whereas the DC values are exactly the
same. Because the DC value is affected by the performance of both
active steganalysis and the decoding method of steganography, its
value can be meaningful even if the performance of the active
steganalysis is poor.

5 EXPERIMENTS

5.1 Experimental Results
We compare our method with three commonly used conven-
tional steganalysis techniques: Gaussian noise, Denoising, and
Restoration. We use the PSNR [50] and the structural similarity
(SSIM) [51] to measure the quality of the purified image. PSNR
and SSIM are basic metrics for comparing the quality of the
purified image to that of the original cover image. The SSIM
results are provided in supplementary S5.

Among the DL based steganography algorithms, we made use
of two representative methods, DS, ISGAN and UDH, to compare
our method with the existing active steganalysis techniques. Ad-
ditionally, we test our proposed steganalysis method on non-DL

Fig. 7: According to the increase of ε, the degree of destruction of
the secret image hidden in the stego image (ImageNet) generated
by DS and ISGAN after applying our method.

steganography techniques, namely, LSB insertion, HUGO, WOW,
and S-UNIWARD.

We made use of three datasets: Cifar-10, Boss1.0.1, and Ima-
geNet. The results for the three datasets show similar trends. The
details of the settings and the comparison methods are described
in supplementary S1 and S6.

As shown in Fig. 6, our method removes the hidden secret
images better than the Gaussian noise method at the same PSNR
in the three cases of steganography (DS, ISGAN, and LSB
insertion). As we can observe, the DT value demonstrates the
performance of active steganalysis more accurately. We also plot
quantitative results for all the three datasets in Fig. 8. In Fig. 8,
the PSNR at ε = 0 represents the quality of the unpurified stego
image compared with the cover image. Unlike the Gaussian noise
method, the PSNR of our method did not fall below a certain level,
even at ε = 8 for all datasets. The reason is that we closely follow
the distribution of the original cover image, so that regardless of
how large ε is, the distribution of the purified stego image would
not be substantially different from that of the cover image.
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(Higher is better) (Higher is better) (Lower is better)

(a)

(b)

(c)

Fig. 8: Experimental results of our work and other steganalysis methods on the (a) Cifar-10, (b) ImageNet, and (c) Boss1.0.1 datasets.
The higher the PSNR is, the better the preservation of the original cover image is. The lower the DC is and the higher the DT is, the
better the destruction of the hidden secret image is.
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Fig. 9: Comparison of the destructed degree of the secret image decoded by the stego image from our method with that of the secret
image decoded by the stego image from Gaussian noise (DS on ImageNet). x̂GN represents stego image modified by Gaussian noise,
d̂GN represents secret image decoded from x̂GN, x̂PS represents stego image modified by our method, and d̂PS represents secret image
decoded from x̂PS.
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TABLE 1: PSNR (higher is better) and DC (lower is better) against
HUGO(H), WOW(W ), and S-UNIWARD(S)

IMAGENET (PSNR [50]) IMAGENET (DC [14])

ε 2 4 2 4

non-DL H W S H W S H W S H W S

Proposed 44.7 44.7 44.7 40.3 40.3 40.3 15.7 15.7 15.7 14.0 13.9 13.9
Gaussian Noise 43.7 43.7 43.7 37.8 37.8 37.8 25.0 25.0 25.0 12.5 12.5 12.5

Denoising H: 26.2, W : 26.2, S: 26.2 H: 28.0, W : 35.3, S: 35.3
Restoration H: 45.3, W : 45.3, S: 45.4 H: 22.0, W : 22.0, S: 22.0

TABLE 2: PSNR of non-stego (benign) images

IMAGENET BOSS1.0.1

ε 1 2 4 8 1 2 4 8

Proposed 50.07 46.30 43.26 39.15 55.07 51.30 48.26 44.15
Gaussian Noise 51.24 44.13 37.80 31.77 56.14 49.13 42.88 36.77

Denoising 25.96 31.28
Restoration 43.12 47.42

Our method removes the hidden images better than the other
methods, as verified by the DC and DT values (at ε ≤ 8).
Compared with the adaptive Gaussian noise method, our method
shows an improvement of up to 18% and 20% in terms of PSNR,
and DC and DT, respectively. By analyzing the DT values, we
see that for DS and LSB, hidden information is destroyed even
for small ε values. However, for ISGAN, ε should be greater
than 2 to see some levels of removal. In addition, we experiment
with a conventional steganography technique, LSB insertion. We
embedded a full-size gray image into a full-size colored cover
image using the LSB insertion technique.

As shown in Fig. 8, we can see that the stego images purified
by our method resemble the cover images when increasing the
value of ε. Also, the degree of removal of the hidden message
using our method is similar to or higher than that of the existing
steganylsis algorithms. There is no visual degradation of the stego
image by applying the proposed method although ε is larger,
as shown in Fig. 7. Considering the visual degradation and the
destruction of the secret images, ε = 4 seems a reasonable value
for all cases.

In Fig. 9, we compare the visual results when Gaussian noise
and PixelSteganalysis are applied against DS as an active warden.
Specifically, we compare the degree of destruction of the decoded
secret images when the PSNR between the two stego images is
almost the same. There is no visual difference between x̂GN and
x̂PS, where GN is Gaussian noise and PS is PixelSteganalysis.
However, the results of d̂ are completely different. The decoded
secret images from x̂GN are almost preserved, while the decoded
secret images from x̂PS look like noise. As demonstrated in con-
ventional steganography methods [52], [53] and the background
section of our manuscript, the encoding and decoding of secret
images are dependent on cover images. If only simple texture
regions exist in the cover image and the color is monotonous,
the encoding of the secret image cannot be more concentrated
in texture regions, so a larger ε is needed to remove the secret
image widely embedded all over the cover image. We can see
corresponding examples in the 3rd and 6th rows of Fig. 9.

The conventional active steganalysis algorithms fail at destroy-
ing the hidden secret message. A large amount of alteration on
stego images degrades the image quality at the same time. Unlike
that, our method rather aims at restoring the original cover image
from its stego image. Thus, our method can accurately destroy
the hidden secret image with less visual degradation. We also test
our method against the recently proposed DL based steganography
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Fig. 10: Sensitivity and specificity of non-stego and stego (DS)
images for the (a) Cifar-10, (b) ImageNet, and (c) Boss1.0.1
datasets. To see the possibility of the proposed method as a passive
steganalysis technique, we measured the number of modifications
on each non-stego and stego image by the proposed method. The
number of modifications on stego images is greater than that
of non-stego images, especially for the Cifar-10 and Boss1.0.1
datasets.

method, UDH. The results are consistent with the results obtained
against DS and ISGAN, and it results are given in supplementary
S8. More visual samples for Cifar-10 and Boss1.0.1 datasets are
shown in supplementary S11.

Analysis about Other Steganalysis Algorithms An effective
active steganalysis algorithm should, first, remove as much of
a secret message as possible and, second, do so with minimal
degradation of the stego image. That is, both conditions must
be met. The Gaussian noise and denoising techniques, however,
met the first condition but did not satisfy the second one. The
restoration method met the second condition but did not satisfy the
first one. In the case of Gaussian noise method, if ε exceeds 4, the
degradation of the stego image is severe, and stego image becomes
perceptually noisy, as depicted in Fig. 6 and the supplementary
S10. In the case of denoising, the DT is higher than that of our
method sometimes, but the PSNR is very low compared to the
other steganography methods. In case of restoration, the PSNR is
similar to that of our method; however, DT is typically the worst.
The visual samples are presented in supplementary S7.

Additional Experiments on Non-DL Steganography We
validate our method not only on DL based steganography
algorithms but also on more sophisticated conventional non-
DL steganography algorithms (e.g., HUGO, WOW, and S-
UNIWARD) by using a small payload (1 bpp/ch) on the ImageNet
dataset. Our method is comparable to or even better than other
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TABLE 3: Ablation results of the proposed methods. For PSNR,
SSIM and DT, higher is better. For DC, lower is better.

ε PSNR [50] SSIM [51] DC [14] DT

1 35.66 0.9834 0.7761 0.2117
Proposed w/o edge 2 35.72 0.9837 0.7523 0.2365

4 35.39 0.9811 0.7375 0.2720

1 35.89 0.9839 0.7691 0.2184
Proposed 2 35.85 0.9842 0.7258 0.2626

4 35.67 0.9822 0.6923 0.3001

Fig. 11: Ablation study: no edge detection (DS on ImageNet).
x̂NoEdge represents a stego image modified by PixelSteganalysis
but without edge detection, and d̂NoEdge represents a secret image
decoded from x̂NoEdge. x̂Edge represents a stego image modified
by PixelSteganalysis with edge detection, and d̂Edge represents a
secret image decoded from x̂Edge.

methods on sophisticated conventional non-DL steganography
methods in terms of PSNR and DC, as presented in Tab. 1
(ImageNet) and supplementary S3. Especially, at ε = 2, our method
outperforms the other existing methods with an amount of DC
decreased by 10 or more on the steganography methods, namely,
HUGO, WOW, and S-UNIWARD.

Harmless on Non-Stego (Benign) Images In the case of
active steganalysis, we assume having the privilege to allow mod-
ifications to all the inspected images. We, therefore, experiment
on image degradation when applying our method to non-stego
(innocuous/benign) images, as summarized in Tab. 2 (ImageNet
and Boss1.0.1). After applying our proposed method, there was
some degree of image degradation, but the PSNR of our method
was always higher than that of the other conventional steganalysis
algorithms at ε ≤ 4. In detail, the standard deviation is less than 1
for all the datasets and ε. Our method did not fall below 40 even
for the large ε as a whole. Degradation of the Cifar-10 dataset after
performing active steganalysis is provided in supplementary S4. In
contrast to our proposed method, the existing algorithms mostly
show visible degradation of benign images.

Potential as Passive Steganalysis If cannot apply our method
to every image owing to limited privileges, the method can
first operate as a detector (passive steganalysis). Compared to
recent advanced passive steganalysis algorithms which assume
that access to the cover image, the secret image, or the applied
steganography algorithm is required, our algorithm does not need
any of them. We measure the total number of modifications of the
pixel value on each non-stego and each stego image when applying
our method. As a binary classification task, we classify the input
image as a stego image when the total number of modifications

of the pixel value is greater than or equal to a threshold value,
and vice versa. We measure the performance of our method as a
detector with various threshold values, as shown in Fig. 10. As the
metrics, we use the sensitivity and specificity, which is formulated
as follows:

Sensitivity =
#True Positive

#True Positive +#False Negative
, (11)

Specificity =
#True Negative

#True Negative +#False Positive
, (12)

where a True Positive is a stego image that the model correctly
predicts as a stego image, a True Negative is a non-stego image
that the model correctly predicts as a non-stego image, a False
Positive is a non-stego image that the model incorrectly predicts
as a stego image, and a False Negative is a stego image that the
model incorrectly predicts as a non-stego image.

For Cifar-10, the total number of modifications of the pixel
value in the stego images was noticeably higher than that of non-
stego images. By setting the threshold value to 3,000, it is possible
to obtain a sensitivity and specificity of 0.96 and 0.85, respectively.
For ImageNet and Boss1.0.1, the total number of modifications of
the pixel value in the stego images does not deviate significantly
from the total number of modifications of the pixel value in the
non-stego images, as compared to the Cifar-10 case.It is because
that ImageNet and Boss1.0.1 consist of more various classes of
large images. However, as a stego detector, it is possible to obtain
a high sensitivity for all three datasets, as shown in Fig. 10 (a),
(b), and (c), with the relatively low threshold values (15,000 for
ImageNet and 17,500 for Boss1.0.1). We believe that our method
can be used as a primary inspector to find out suspicious images.

5.2 Ablation Studies
No Edge Detection For ablation studies, we test the effectiveness
of edge detection. We proceed the experiment using Cifar-10.
We can observe that especially at ε = 1 and 2, the effect of the
edge detection as a guide is large. The visual samples of pe(x)
from our neural network are provided in supplementary S9. The
quantitative and qualitative results are presented in Tab. 3 and
Fig. 11. As shown in Tab. 3 and Fig. 11, we could remove more
hidden information while keeping the visual degradation of the
stego images reduced by making use of edge detection.

No Approximation The results of Fig. 8 are obtained using the
approximated version. The original version takes an average of 3
min to purify a single Cifar-10 image. However, the approximated
version takes less than 10 ms to process the same image. We
compare the DC of both the versions by using stego images
generated via DS. The results demonstrate that the average DC
of the original version is 75.8% and that of the approximated
version is 76.3%. The difference is as small as 0.5%.

6 CONCLUSIONS

We propose a DL based steganalysis technique that effectively
removes secret images by restoring the distribution of the original
image. We use deep neural networks to formulate and solve
problems by leveraging sophisticated pixel and edge distributions
in the images. In particular, our method shows a remarkable
performance against DL based steganography, which is difficult
to detect with passive steganalysis in a blind case.

There is a limitation to our method in that it can degrade all of
the inspected images. However, when considering an environment
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or society in which the confidentiality of sensitive information
is extremely important, our method will be a good solution.
Compared with existing active steganalysis methods, our approach
is the only way to restore a stego image to its original cover image.
Therefore, our method is feasible for simultaneously minimizing
the degradation of benign images and minimizing false negatives.

In a future study, we will consider replacing pd with a metric
more suited to the characteristics of a steganography algorithm.
We currently use the Prewitt operator as pd to locate the high
frequency areas of an image. Moreover, instead of using auto-
regressive models, it is possible to use other approaches, such
as GAN based methods, to model the distribution of the images.
However, the distributions of both the original cover images and
the stego images are quite similar; therefore, a significant reduc-
tion in the PSNR may occur without a careful modification. Thus,
the proposed method can carefully remove suspicious traces at the
pixel level by maximally utilizing the intrinsic characteristics of
steganography.
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