
1

Practical Verification of Railway Signalling
Programs

Alexei Iliasov, Dominic Taylor, Linas Laibinis, and Alexander Romanovsky

Abstract—SafeCap is a modern toolkit for modelling, simu-
lation and formal verification of railway networks. This paper
discusses the use of SafeCap for formal analysis and automated
scalable safety verification of solid state interlocking (SSI) pro-
grams – a technology at the heart of many railway signalling
solutions around the world. The main driving force behind
SafeCap development was to make it easy for signalling engineers
to use the technology and thus to ensure its smooth industrial
deployment. The unique qualities and the novelty of SafeCap
are in making the use of formal notations and proofs fully
transparent for the engineers. In this paper we explain the
formal foundations of the proposed method, its tool support, and
their successful application by railway companies in developing
industrial signalling projects.

Index Terms—Formal modelling and verification, railway sig-
nalling, system safety, safety properties, proof conjectures

I. INTRODUCTION

Effective signalling is essential to the safe and efficient op-
eration of a railway network. It enables trains to travel at high
speeds, run close together, and serve multiple destinations.
Whether by mechanical semaphores, colour lights or electronic
messages, signalling allows trains to move only when it is safe
for them to do so. Signalling locks moveable infrastructure,
such as the points that form railway junctions, before trains
travel over it. Furthermore, signalling often actively prevents
trains travelling further or faster than is safe and sometimes
even drives the trains. At the heart of any signalling system
there are one or more interlockings. These devices constrain
authorisation of train movements as well as movements of the
infrastructure to prevent unsafe situations arising. Solid State
Interlocking (SSI) technology, developed in the UK, was one
of the first computerised interlockings worldwide. The SSI
devices use the 2-out-of-3 redundancy to support their safety
critical functionality. Programs executed on SSI processors are
responsible for safe authorisation of the train and infrastructure
movements.

The increasing complexity of modern digital interlockings,
both in terms of their geographical coverage and that of their
functionality, poses a major challenge to ensuring railway

Alexei Iliasov is with The Formal Route Limited, 32A Woodhouse Grove,
E12 6SR, London, UK (e-mail: alexei.iliasov@formal-route.com).

Dominic Taylor is with Systra Scott Lister, UK (e-mail: dtay-
lor@systra.com).

Linas Laibinis (the corresponding author) is with Institute of Computer
Science, Vilnius University, Didlaukio 47, LT-08303 Vilnius, Lithuania (e-
mail: linas.laibinis@mif.vu.lt).

Alexander Romanovsky is with The Formal Route Limited, 32A Wood-
house Grove, E12 6SR, London, UK, and also with School of Computing,
Newcastle University, NE1 7RU, Newcastle upon Tyne, UK (e-mail: alexan-
der.romanovsky@newcastle.ac.uk).

safety. This calls for application of rigorous methods, in
particular formal methods, for assurance and verification of
safety and other crucial properties of such systems. Even
though formal methods have been successfully used in the
railway domain (e.g. [1], [2]), their industry application is
scarce. In spite of a large body of academic studies addressing
issues of formal verification of railway systems, they typically
remain an academic exercise due to a prohibitive cost of initial
investment for their industrial deployment. The reasons for
that are the following ones. First, signalling engineers need to
learn mathematical notations to apply them. Second, the tools
often cannot be applied for analysing large real stations due to
their poor scalability. Third, the companies need to drastically
change their existing development processes in order to use
them.

The paper’s contributions are twofold. First, this paper
proposes a formal tool-based approach that addresses the
above issues by (i) verifying the signalling programs and
layouts developed by signalling engineers in the ways they
are developed by industry, (ii) ensuring automated verification
of safety properties that uses a customised inference-based
symbolic prover and fully eliminates the need for manual
proofs, and (iii) providing diagnostics in terms of the notations
used by the engineers. All together, this ensures that the
developed method and tool can be easily deployed to augment
the existing development process in order to provide extra
guarantees of railway safety.

Second, the latter part of the paper discusses the successful
application of the tool in railway signalling projects in the
UK. During this work, conducted in cooperation with major
signalling companies in the last 3 years, a number of real
datasets have developed for many signalling areas in the
UK railway network has been verified and the results of the
verification have been passed to the companies to help them
to improve the safety of their designs and to meet the country
safety regulations. Overall, the paper builds on the results
presented in [3] by introducing the full flow of data processing
conducted by our verification framework and by providing
substantial insights about its practical applications.

The paper is structured as follows. Section 2 presents the
problem area and the motivations for verification of railway
signalling. Section 3 overviews the state of the art verification
methods developed for the railway domain with the focus
on signalling, and their limitations. In Section 4 we present
the SafeCap framework and discuss in detail its automated
process for verifying that railway signalling data satisfy safety
properties. Section 5 presents the industrial application of
SafeCap for verifying signalling projects and illustrates the

2

practical advantages of the presented automated methods.
Finally, Section 6 concludes the paper by summarising the pro-
posed verification methods and the achieved practical results,
and discussing the ongoing and future work on improving
SafeCap.

II. RAILWAY SIGNALLING AND SAFETY

A. Railway safety principles and standards
There are two main safety principles shared by all signalling

systems. These ensure that the railway systems are designed
in such a way that they do not allow train collisions or
derailments. From these a large number of lower level sig-
nalling principles can be derived, which consequently become
verification conditions to check against given signalling data.

A schema must be free from collisions. A collision happens
when a train occupies the same physical space as another
train or (at a level crossing) a road vehicle. Signalling systems
uphold this principle through the use of signalling routes, and
block sections.

A route is a defined path between two geographic locations
on a railway. These locations may be marked by physical
signals with lamps, signs or buffer stops or may be unmarked.
A train is only given permission to enter a route when no other
vehicles are authorised to travel over any part of that route
in a different direction to that train. Permission is also only
given when no other vehicles, having previously received such
authorisation, may be unable to stop before travelling over part
of the route.

For a route to be locked, all the movable equipment such as
points or level crossings must be set and detected in a position
that would let a train safely travel along the route path. They
must remain locked in such a state and their position must be
positively confirmed before a train enters the route.

In specific circumstances, trains can be authorised to enter
routes that are already occupied by another train that is at a
standstill or one that is moving in the same direction. Whilst
the “free from collisions” principle can be upheld by the drivers
controlling the train speed to stop before any vehicle ahead,
this is only possible at very low speeds (≤ 40 km/h). To
enable high speed operation, the signalling system additionally
needs to ensure safe separation of trains. It does this through
signalling block sections: sections of railway track into which
only one train is permitted to enter at once. A route can, and
often does, consist of a single block section. In more modern
signalling systems, routes can be sub divided into multiple
block sections or even support moving block sections that
follow trains as they move along the route path. Similarly,
sections of a track, over which only one direction of travel is
possible, can consist of single block sections, multiple block
sections, or (in more modern systems) support moving block
operation.

A schema must be free from derailments. A derailment may
happen when a set of points moves underneath a train. To
avoid this, points must be positively confirmed to be locked
in position before a train may travel over them and held in
that position as a train does so.

Derailments may also happen due to excess speed around
a curve. Signalling systems are playing an increasing role in

mitigating this risk, although this mostly falls outside the scope
of interlockings, which is the subject of this paper. The role
of interlockings is generally constrained to ensuring that the
driver is presented with unambiguous information to determine
a safe speed profile for the train. This information may be
presented as the route that the train will take (route signalling),
from which the driver can determine a safe speed profile, or
the permitted speed for that route (speed signalling).

Any new signalling system or its alterations must demon-
strate that the risk associated with collisions and derailments is
adequately controlled in accordance with the Common Safety
Method for Risk Evaluation and Assessment (CSM RA),
described in [4] and [5]. CSM RA permits three principles
by which risks can be accepted: Application of a Code of
Practice, Similarity with Reference System(s), and Explicit
Risk Estimation.

Application of a Code of Practice is by far the most
commonly used risk acceptance principle for interlockings.
[6] is an example of a code of practice (standard) normally
used for UK mainline interlockings. It also forms the basis for
the safety properties analysed by SafeCap. However, there are
cases where full compliance with the current standards is not
appropriate. For example, where interlockings were developed
prior to these standards or for different standards (such as
on London Underground or High Speed One). In such cases
comparison with a similar reference system may be more
appropriate. Also, explicit risk assessment is needed where
there is a strong operational or safety need to implement mea-
sures different to those described in the established standards.
SafeCap identifies where such non-compliances occur, so that
signalling design teams can ensure that appropriate alternative
risk acceptance principles have been applied.

B. Computerised Signalling and SSI

The first signalling interlockings were mechanical devices
that constrained the movement of levers, connected to points
and semaphore arms, and were contained in mechanical sig-
nalling boxes. During the twentieth century these devices
were superseded by electrical relay-based interlockings that
switched electrical current to motorised points, colour light
signals and other lineside devices. The safety conditions
applied by relay interlockings included tests of track circuits
or axle counters – the devices that automatically determine
whether a route section has a train on it (a task previ-
ously achieved through operational procedures and signaller
eyesight). The advent of computer technology brought the
opportunity to replicate and build on the relay interlocking
functionality within a computer based interlocking.

One of the earliest forms of computer based interlocking
was the Solid State Interlocking (SSI)[7], developed in the
UK in the 1980s through an agreement between British Rail
(the then nationalised railway operator) and two signalling
supply companies, GEC General Signal and Westinghouse.
Running on bespoke hardware, SSI software consists of a
core application (common to all signalling schemes) and
site specific geographic data. SSI GDL (Geographic Data
Language) data configures a signalling area by defining site

3

*QR117B(M) / route request block for route R117B(M)
if R117B(M) a / route R117B(M) is available

USD-CA f,OSC-BA f,OSV-BA f / sub-route and sub-overlaps are free
then if OSL-AC l, / sub-overlap is OSL-AC locked

P223 fr , P224 fr / points P223, P224 free to move reverse
then @P223QR \ / call subroutine P223QR

if OSD-BC f / sub-overlap is OSD-BC is free
LTR04 xs / latch (boolean flag) not set (false)
P224 crf / point P224 commanded reverse or free to move reverse

then R117B(M) s / set route set flag for R117B(M)
USD-AC l , USC-AB l , USB-AB l , OSA-AB l / set sub-routes/overlaps
P224 cr / command point P224 reverse
LARR xs / clear latch LARR
S117 clear bpull / clear signal button pull flag
if P223 xcr , P223 rf then / check point states
@P223QR / point command subroutine

EP230 = 0 \ / reset timer EP230

Fig. 1. SSI example: route request code for route R117B(M) in the PRR module

specific rules, concerning the signalling equipment as well as
internal latches and timers that the interlocking must obey.
The original SSI has now been superseded by more powerful,
modern hardware platforms running software developed in
accordance with modern standards for safety critical software.
Nonetheless, the functionalities of the core application and the
SSI GDL language remain largely unchanged.

SSI GDL is, despite its name, a form of programming
notation. The notation expresses computations transforming
inputs, i.e., currently sensed equipment states, into outputs, i.e.,
commands affecting equipment state. There is also the internal
state updated by computations and maintained between cycles.
Thus, SSI is a continuously running control system.

There are two main modules defining the signalling be-
haviour – the route and point request (the PRR module)
and formation of output telegrams (the OPT module). An
example of route request code (a part of logic that reacts to an
external route request) is given in Fig. 1. Notice that the parts
between if and then are atomic predicates combined with
implicit conjunction, while everything between then and a
slash character is a command (made of a sequence of atomic
commands). For instance, USD-CA f stands for test that sub
route USD-CA f is free, while USD-CA l commands the
sub route to be freed.

SSI systems runs a global loop made out of three stages:
polling of inputs (the current states of track circuits, points,
signals and so on), computation of necessary responses, as
well as formation and transmission of equipment control
commands. These stages are strictly sequential and each stage
has a fixed time budget that is small enough to react in a timely
manner to any state change but big enough to accommodate
execution of all the code. The actual time limits are of no par-
ticular relevance to modern installations as modern hardware
is orders of magnitudes faster that its historic predecessors.

The input and output stages are generic and their safety
argument is provided once for a particular underlying hard-
ware implementation. Verification of system safety is thus
concerned with the middle stage – the response computation.
This stage is unique to every geographic area and explicitly
refers to the equipment drawn on the area scheme plan – a
diagrammatic depiction of a railway. At a high level, the stage
comprises a number of code blocks executed sequentially.
Separation into blocks is semantically important as block
boundaries are defining units of execution plus their naming

has an effect on interpretation of the contained code.
One good abstraction for this part of SSI is a box with a

number of buttons. A higher level system (e.g., an automated
control system or a human signaller) can press one or more
buttons to request certain functions to be performed. The
system hidden inside the box may choose to block a request or
execute it in differing ways in order to maintain safe operation
of the overall railway. It is a typical example of a safety kernel
[8].

Safety is the overriding concern for SSI signalling. Per-
formance, fairness or liveness properties are typically not
addressed explicitly although consideration for them does
affect the design of interlocking logic.

III. METHODS FOR VERIFICATION OF RAILWAY
SIGNALLING

There has been a long history of applying formal methods
and tools in the railway domain [9], with the B method
being the most popular industry-strength method [10]. One
of the most successful areas of railway has been safety
verification of interlocking in the Communication-Based Train
Control (CBTC) railway lines, including metro, subway, light
and shuttle trains. The mainline railway is a much more
complex type of railway, this is why there have been fewer
success stories in applying formal methods in this area. A
number of research and technology transfer projects have been
reported but, unfortunately, they rarely lead to a full take-up
or deployment of these methods in industry.

The SSI preparation processes outlined in earlier work
by Cribbing and Mitchell [11] fully rely on system testing,
manual simulation and redundant human checks to ensure the
safety of SSI signalling. These techniques still remain now,
30 years after the paper was written, the dominant approaches
used in practice.

There have been a number of research studies focusing on
formal verification of SSI programs [12], [13], [14], [15], [16],
[17]. The majority of works (e.g., [12], [13], [14]) use various
forms of model-checking in an attempt to verify safety of
train run scenarios, with interlocking rules derived manually
or via an automated translation from SSI data. With few ex-
ceptions, the proposed techniques actually scale up to only toy
examples, or cover a small subset of functionalities, or both.
For instance, the approach presented in [14] uses NuSMV to
model check a small subset of safety properties for a selected

4

subset of SSI data based on real-life signalling data. It is not
clear whether expanding the technique from the current five
state variables to nearly fifty ones necessary to capture the full
SSI is something that the underlying verification technology
can support. The approach presented in [17] proposes an
approach to reducing the states to be explored during the
model-checking that relies on adding extra information about
the system to be verified. However, the practical applicability
of such an approach has not been demonstrated in real settings.

The existing work typically focuses on verifying reachabil-
ity and liveness properties. We believe that, in the context of
SSI verification, this is not the most optimal approach because
most safety invariants associated with railway signalling inter-
lockings are concerned with preventing unsafe combinations
of states. Where time does feature in safety invariants, it
is easily representable as logical tests of SSI timers, which
ensure minimum time periods have elapsed between specified
events. Interlocking response times are only of interest from a
performance perspective and for the specific safety action of
stopping trains in an emergency, both of which can be easily
calculated from system cycle times without the need for formal
verification or simulation.

In the face of sheer number of train run scenarios, one way
to avoid the state explosion problem might be statistical simu-
lation of train runs [15]. However, this approach has non-trivial
implications on result interpretation. We see a fundamental
flaw in all such scenario exploration techniques: by introducing
train runs and assuming certain traffic patterns, they cannot
find, even if they were to scale up, serious signalling mistakes
that do exist in real-life implementations and only manifest
themselves when a combination of several rare conditions
happen (see, for example [18]). Our approach does not suffer
from this limitation as we do not need to consider train
runs (and thus limit verification to few assumed possibilities).
Instead, we check the worst case safety implications for all
possible (and infinite, due to the implicit presence of the
temporal domain) train run scenarios.

Another major problem with the solutions described above
is their poor diagnostics related to the fact that the feedback on
safety violations and the associated counter examples are not
given in the terms that signalling engineers could understand
(i.e., SSI and the schema language).

In [16], the authors build a model of railway operation
constrained by imported signalling data. A model checker
automatically explores train movement scenarios (i.e., model
states) and reports on violation of safety properties. The
technique does not support generic safety properties (which
have to be written separately for a specific layout) and the
reported results indicate it is unlikely to scale up to the
industrial size.

In rare cases a railway model may be decomposed into
two independent parts (i.e., two stations connected by auto
signalled track) and it is sound to conduct verification of the
sub parts separately [19], [20]. Such a technique is not often
found in practice as SSI is traditionally limited to 64 or 256
controlled pieces of equipment and it is impractical to wire
equipment at a significant distance from a control box.

Verification and validation of a fragment of safety logic

for European Railways Train Management System (ERTMS),
ensuring also interoperability of different signalling solutions,
is described in [21]. ERTMS specifications (written in a
structured programming language) are automatically translated
into formats of the employed external verification tools. The
paper [22] presents an ongoing work on automatic model
generation and verification of Railway Markup Language
(RailML) formatted data, which also include route tables and
interlocking information. Interlocking programs are defined in
RailML using route scheduling and route automata.

In [20], the authors present verification of railway inter-
locking (without relying on train run scenarios) based on
model checking in NuSMV and NuXMV. To avoid the state
explosion problem, [19] introduces a compositional approach,
splitting interlocking into smaller components. Finally, in [23],
a combination of theorem proving and model checking in the
B framework is used for verification of railway data, focusing
however on only railway topologies (including the signalling
and interlocking equipment).

None of these approaches [19], [20], [21], [22], [20], [23]
however could be directly applied for safety verification of
SSI programs. Moreover, as opposed to our work, they all
heavily rely on model checking techniques and tools for formal
verification of railway safety properties.

To summarise, model checking is known not to scale to
projects of the complexity of the typical SSI projects in
industry. One of the smaller SSI interlocking we checked has
more than 2000 variables and 6000 lines of code. Exploring
even a tiny fraction of such a system is well beyond the
capabilities of existing model checking techniques. In fact, we
have not seen any successful application of such techniques
for verification of real-life signalling projects. Moreover, it
is difficult to expect signalling engineers to be able to apply
complex decomposition, structuring or layering techniques to
reduce the complexity of verification as a possible solution
proposed in some work on SSI model-checking.

To conclude, the main limitations of the existing work in
SSI verification are (i) the high cost of deployment (staff
retraining, the disruptive nature of development changes),
(ii) poor verification scalability insufficient for real signalling
projects, (iii) the focus only on subsets of SSI, and (iv) the
diagnostics given in terms of formal methods rather than in
the standard notations (SSI and the layout schema) used by
the signalling engineers.

IV. THE SAFECAP VERIFICATION PROCESS

This section starts with introducing the general SafeCap
framework under development since 2011 that served as an
experimental prototype for the SSI SafeCap tool described
in Sections IV.B-IV.C, which has been developed to target
specifically industrial verification of the SSI interlockings.
Section IV.B overviews the SSI SafeCap verification process
and Section IV.C discusses the stages of this process in detail.

A. The SafeCap framework

The SafeCap platform is a toolkit for modelling railway
capacity and verifying railway network safety [24]. It allows

5

Fig. 2. SafeCap architecture

signalling engineers to design stations and junctions relying
on the provided domain specific language (SafeCap DSL) and
to check their safety properties, simulate train runs as well as
evaluate potential improvements of railway capacity by using
a combination of theorem proving, SMT solving and model
checking [25]. The platform has been substantially extended
by adding new simulators, solvers and provers, as well as the
support for importing the existing designs in a wide range of
the signalling frameworks supported by industry [26], [27].
The overall SafeCap architecture is presented in Fig. 2.

The SafeCap verification and proof back-ends enable au-
tomated reasoning about static and dynamic properties of
railways or their signalling data. Our principal verification
routes are the built-in symbolic prover backed by a SAT solver,
accompanied by a range of external provers provided via
the Why3 framework [28] and the ProB model checker [29]
(used just as a constraint solver). A SAT solver (integrated
with the built-in symbolic prover) is required to prove or
disprove statements involving arithmetic and inequalities as
these are usually too hard for rewrite-based techniques. The
Why3 provers and ProB are used independently, in parallel
to the built-in symbolic prover, to gain higher confidence
in the verification results. In the work on general SafeCap
framework we used a number of manually created, experi-
mental or machine-generated representations of medium-size
signallings (but without attempting to work with real industrial
interlockings). This extensive experimentation demonstrated
that the SafeCap approach works: it supports fully automated
safety verification avoiding the bottlenecks of model-checking
[26], [27].

The SafeCap DSL allows the designers to rigorously and
unambiguously define a model of the given railway network
(e.g., stations or junctions). In other words, the SafeCap DSL
provides a formal, graph oriented way to capturing railway
schemas and some aspects of signalling [30]. In the SafeCap
DSL, a railway schema is a mathematical object consisting
of data structure definitions (namely, datatypes and constants)
as well as required logical constraints on the defined data
(axioms and lemmata). We can distinguish two main parts of
the SafeCap DSL – the Core and its various extensions.

The Core allows us to mathematically describe the physical
topology of a railway schema (or, in fact, any graph-based

structures). Its first-class concepts are graphs and subgraphs.
These typically represent track topology, track circuits, routes
or axle counters.

Once a railway schema model is created (or imported from
an external format) in the Core, it is checked for its validity
or well-definedness. For that, a number of graph theoretical
statements are automatically generated and verified, including
isomorphism properties between constituent subgraphs, path
validity within a given graph, connectivity, acyclicity, node
degree and so on.

Various concepts of a railway schema such as signals
and signalling solutions, speed limits, stopping points and
so on can be incorporated into via DSL extension plug-ins.
Such plug-ins introduce new data (as custom annotations)
and the supporting logic (as additional logical constraints or
relationships). Such a tool architecture allows us not to commit
to any regional technology and thus to offer a broadly similar
approach for a range of legacy and current technologies.

The SafeCap framework was initially used as a prototype
experimental proof-of-concept toolset for SSI safety verifica-
tion. This allowed us to evaluate its applicability and at the
same time to understand better the bottlenecks of this verifi-
cation. In the last five years we have developed a dedicated
industry-strength SafeCap toolset targeting SSI verification.
During this transition we removed all the unnecessary func-
tionalities (including animation and simulation) from SafeCap,
streamlined its modelling/verification flows, and replaced all
the solvers and provers with a customised inference-based
symbolic prover that currently outperforms all state-of-the-
art provers and solvers when applied for the specific SSI
verification in the industrial project (our experiments showed,
for example, that it takes Why3 20s and up to 12GB RAM to
discharge one conjecture from a typical SSI project, whereas
our customised prover needs 1 mins 40s and up to 70GB
RAM to discharge 47230 proof obligations in the largest SSI
industrial projects we completed by now). In addition to these
modifications we have developed a general input notation for
symbolic execution called Generic Verification Framework and
an SSI plugin that parses the SSI inputs into this notation. The
resulting SSI SafeCap toolset is discussed in the remaining part
of the paper.

B. Overview of the SSI Verification Process

As a programming notation, SSI GDL is a typed language
with declared variables storing equipment properties or states.
Each variable carries its data type signature as a part of its
name. For production deployment, SSI code is compiled into
machine instructions. We only ever analyse systems that have
at least successfully passed the compilation stage and hence
their syntactic correctness is not a concern. Moreover, we
typically verify SSI code that has passed through some testing
and review and, in many cases, is close to final deployment.

The central question in the verification of signalling correct-
ness is what constitutes a safe signalling design. Certain basic
principles are universally accepted, for instance, the absence of
train collisions and derailment. However, it is almost hopeless
to verify the absence of such hazards in the strictest possible

6

0 Schema preparation

1 Model construction

2 Model typing

4 SSI to GVF translation

6PO generation

7Automated proof

8Witness discovery

9Engineer report

3 SSI/schema validation

5GVF to state transitions

SSISchema

Data ContractSemantics

Semantics Data Contract

3
s

Fig. 3. SafeCap verification process

sense. First, in any operational railway there is a non-zero
probability of something going wrong either due equipment
failure or driver mistakes. Interlocking protects against a
signaller error (or an error by an automatic route setting
system) and, to a limited degree, mitigates driving errors
and equipment failures. In normal operation, interlockings are
pretty much comprehensive in protecting against such events,
i.e., it is nearly impossible for the signaller to create an unsafe
state through normal route setting commands. However, unsafe
states can occur in degraded scenarios where the interlocking
is overridden either through procedural instructions to drivers
or (in more modern data) specific interlocking requests that
bypass certain areas of functionality, such as proceed on sight
routes or emergency point and route release.

Interlockings, by themselves, provide only a modicum of
protection against driver errors through the provision of over-
laps and control of signal aspects. This is an area where there
is significant variation in practice across different geographic
regions and times. Train warning and protection technolo-
gies ranging from AWS (Automatic Warning System), TPWS
(Train Protection & Warning System) to ATP (Automatic Train
Protection) or ETCS (European Train Control System) play a
much greater role in mitigating the risk of driver errors.

Interlockings also do little to protect against equipment
failures, but are themselves designed to be resilient to such
failures, e.g., through the use of timers in sequential release
of sub routes.

For these reasons, correctness is established not against the
basic principles but rather against the lower level signalling
principles derived from foundational safety principles and
designed to enforce railway operation with an acceptable level
of risk and failures. Such principles are carefully designed by
domain experts but can vary between regions and do change
over time.

For the purposes of verification, such a principle is rendered
as an inductive safety invariant – a system property that must
hold when a system boots up and must be maintained (or,
equivalently, reestablished) after any state update. Verification
is then understood as the problem of checking that any
safety invariant is respected by every state update. Technically
this is done be generating conjectures of the form ”if an
invariant holds in a previous state and an certain state update

happens, is it true that the invariant holds for the new state?”.
Formally, a conjecture (also called a proof obligation (PO)) is
represented as a logical sequent consisting of a number of
hypotheses (H) and a goal (G), denoted as H ⊢ G.

The number of such conjectures is m ∗ n, where m is the
number of safety invariants (we have defined 67 so far) and
n is the number of possible state updates (for the industrial
projects we have carried out this value varies between 4000
and 140000 with the mean at 17641). This is a small
number when contrasted against the number of potentially
reachable states (more than 22000: there are approximately
2000 boolean variables for each SSI interlocking and 50-200
one-byte unsigned integers; larger specimen use more than
5000 boolean variables). As the number of safety invariants is
fixed for all projects, the complexity measured in the number
of conjectures grows linearly with the interlocking complexity.
The downside of safety invariant verification is the reliance on
theorem proving. In our case, a conjecture is based on the first
order logic, and, in a general setting, establishing its truth or
falsity is an undecidable problem. In practice, however, it is
possible to automatically prove or disprove vast majority of
conjectures with only a tiny number (less than 1 in 10000
for recent results) of provable conjectures failing to prove and
resulting in a false positive. Achieving such a level of proof
automation is not easy and requires a number of bespoke tools
and techniques.

The theoretical foundations of the SafeCap approach to
verifying SSI are close to the earlier work by Ingleby and
Mitchell [31], which outlines a general method for proving SSI
program safety. Our approach differs in the formalisation style
and the ability to automatically handle real-life interlockings,
thus supporting fully automated scalable verification of real
signalling projects.

C. The Verification Process in Detail
The major steps of our verification process are depicted in

the diagram in Fig. 3.
There are four major stages: preparation of input (steps

0-3), translation and symbolic execution of the signalling
logic (steps 4-5), formal verification (steps 6-8), and report
generation (step 9). All but the very first stage are automated.
Input preparation turns an electronic image of a scheme plan
into a mathematical model; symbolic execution yields a large
number of individually simple state transitions; verification
checks that these state transitions are safe; and the generated
report presents findings of safety violations.

The associated diagram in Fig. 4 depicts the overall data
flow of the approach. The corresponding data transformation
steps (arrows) on this figure are annotated by numbers re-
ferring to the respectively numbered steps of Fig. 3. Dashed
arrows show manual steps, whereas non-dashed ones represent
automatic steps executed by SafeCap. Intuitively, the left
branch focuses more on the system statics (railway scheme,
its various constituent elements and their relationships), while
the right one deals with the system dynamics related to SSI
signalling. The middle branch covers industrial standards, for-
mulating safety principles relevant to the scope and operation
level of SSI and then deriving formal safety invariants.

7

Fig. 4. Data flow diagram

In general, each subsequent layer downwards adds more
rigour and formality. The data representations of the third layer
(i.e., set theoretical scheme plan, safety invariant, and transi-
tion system) are based on the same underlying mathematical
language and can be considered as parts of the overall formal
system model ready to be verified.

At the top level, the inputs defining a particular area are
a relevant scheme plan and the associated SSI GDL source
code. They both are translated into the corresponding mathe-
matical models in two steps. The intermediate representations,
a conceptual scheme plan and GVF (Generic Verification
Framework), are needed for practicality reasons, in particular,
to shield against idiosyncrasies of a particular input notation
and provide a generic verification approach. The two formal
models derived from the scheme plan and SSI GDL are
interrelated using the derived safety invariants, which leads
to generation of necessary verification conjectures. Any vio-
lations of the safety invariants are reported as findings in the
final report. Note that solid arrows in Fig. 4 depict automated
actions by a tool, while dashed ones are manual activities.

a) The conceptual and set theoretical scheme plans
(steps 0 - 3): A railway is typically described by a scheme
plan or a signalling plan, which are two forms of a dia-
grammatic representation of a railway emphasising details
pertaining to safety control. A standard engineering approach
is to prepare such plans as drawings in a CAD tool. To
enable formal reasoning about a certain railway area, we
construct a semantic representation of a railway based on
annotated graph [30], called a conceptual scheme plan. The
SafeCap framework provides a dedicated graphical tool for
reconstructing railway layout in such a format. A conceptual
scheme plan captures the information already present in a
scheme plan drawing and intelligible to a signalling engineer.

Control tables are widely used in railway for converting
specifications of the signalling requirements to a form which

can be applied during the design [32]. So their development
precedes and feeds into the design of SSI signalling. We do
not use these in the approach presented as these tables contain
little additional information to that of a conceptual scheme
plan and are also CAD drawings. In principle, however, one
might choose to verify the given signalling data against the
corresponding control tables. One critical downside of that is
the complete absence in control tables of visual intuition and
hints provided by a scheme plan. Thus it would be very hard to
decipher and act upon reported violations without an explicit
reference to the original scheme plan. Another drawback is
that a control table is produced manually from a scheme plan
and might itself introduce difficult to detect errors.

One apparent weakness of relying on a manually con-
structed conceptual scheme plan is the possibility of intro-
ducing mistakes (as compared to the original, CAD-based
plan) that would mask errors in the verified SSI data. We use
SSI data itself to do an automated early health check of a
conceptual scheme plan (step 3 in Fig. 3). For instance, all
variables declared in SSI that correspond to the scheme plan
equipment (such as routes, points and signals) must be present
in the conceptual scheme plan as well. There are a number of
other checks and all of them help to rule out certain kinds of
mistakes in a conceptual scheme plan.

We employ manual cross-review of the constructed concep-
tual to ensure its correctness. A further layer of assurance is the
verification process itself as most of mistakes in preparation of
a conceptual plan manifest themselves as serious safety errors.
Hence, while it is not impossible that a conceptual scheme plan
mistake remains uncovered and masks a real error in SSI data,
we believe the process we have in place makes this unlikely.
Note that we rely on the input scheme plan to faithfully depict
reality and generally do not attempt to find and correct any
errors in it.

A conceptual scheme plan is an intermediate representation
for the construction of a set theoretic railway model. The
resulting mathematical model consists of a number of constant
sets, functions and relations formally representing different
elements and aspects from a railway scheme plan. For instance,
a route (i.e., a path between some two signals), is qualified
by its entrance and exit signals, a list of sub routes, and a
number of other properties. In a set theoretic railway model,
the entrance signals of all routes are represented as a constant
function route.entrance with the type Route 7→Signal (7→ is a
symbol used to denote a partial function) and some constant set
value {R1 7→ S1, R2 7→ S2, . . . } defining specific mappings
between routes and signals.

All elements of a mathematical railway model must be
well-typed where a type is a maximal set of possible values,
such that it does not intersect with any other type. Types of
railway elements such as signals and routes are constant sets of
listing all defined signals and routes. The typing process then
ensures that various entities are used in a type-safe manner. A
further step to the typing process is demonstrating that totality,
functionality and injectivity constraints of various relations are
satisfied by a given concrete mathematical model. For instance,
a route entrance is constrained to be a partial function – a
relation that maps some routes to one signal. Hence, one

8

can use the functional application operator to find entrance
signal of a route although albeit with a side condition (a well-
formedness conjecture) that application value is in the domain.

Set theory gives a great deal of expressiveness in formulat-
ing various statements about railways. Writing, for instance,
route.entrance(R1) would give us the entrance signal of route
R1 (equal to S1). We can also reference all the routes with
some entrance signal as dom(route.entrance) (i.e., the domain
of a function or a relation or a relation), all the entrance signals
for some route as ran(route.entrance) (i.e., the range of a
function or a relation), all the routes from a given signal s as
route.entrance−1[{s}] (i.e., the relational image of a concrete
set for an inverse function) and so on.

b) Generic Verification Framework, a state transition
system, and safety invariants (steps 4 - 6): The notation,
called Generic Verification Framework (GVF) language, pro-
vides a simple imperative representation of a program with
familiar control flow constructs such as subroutines, condi-
tional statements, and variable assignment. A loop statement
is also supported but must be accompanied by a loop invariant
expression. Fortunately, there are no loops in SSI. By using
GVF as an intermediary notation, we can support the same
translation back end for a wide range of input notations.

SSI is a simple imperative language and its translation into
GVF presents a few challenges. There are a number of intricate
points related to the order of execution, the global loop, and
the usage of timer variables, however addressing these issues
requires a dedicated paper. Also, as it is common for symbolic
execution, there is always a danger of exponential explosion in
the number of potential execution paths. However, knowing a
safety invariant to be preserved gives us an ability to combine
or drop some paths at the translation stage without introducing
potential false positives. As one example, a block of code
containing 103 if statements is translated into only 203 state
transitions, while the overall number of potential execution
paths is 2103.

To verify properties of the GVF representation of SSI, we
further translate GVF into a form suitable for verification. This
step is a form of symbolic execution, translating a GVF model
(program) into a formal representation of a state transition
system.

The translation step is performed using one of two well-
known formal semantics – the strongest post condition seman-
tics (spc) or the weakest precondition semantics (wpc) [33],
[34]. For terminating program constructs, those semantics are
logically equivalent. The default choice is spc as the translation
is independent of a safety invariant and can be combined with
any safety invariant goal.

In case of wpc, there is necessarily one unique state tran-
sition system for each safety invariant. It means calculation
of a transition system must be repeated many times but each
one is normally more compact as it is tailored for a specific
invariant.

One typically sees between 8 and 20 thousands of state
transitions after translating input SSI programs into a state
transition system. To check their validity, we need to generate
and prove a collection of logical conjectures (POs).

To properly describe such a conjecture, we must introduce
some preliminary definitions. A state transition is characterised
by a pre-condition predicate P (c, v) expressed over constants
c (elements of the conceptual scheme plan) and model vari-
ables v, representing the system state; and a post-condition
Q(c, v, v′) relating a next state v′ from some current state v
and constants c. The whole transition system is an indexed
set (P J , QJ) of such pre- and post-condition pairs, where J
represents a set of all state transitions.

The following is an example of a state transition derived
from the SSI code excerpt in Fig. 1. This transition captures
one of eight possible execution paths for the source route
request.

pre
QR117B(M) ∈ request ∧
R117B(M) ∈ route a ∧
USD-CA ∈ subroute l ∧
OSC-BA ∈ suboverlap l ∧
OSV-BA ∈ suboverlap l ∧
OSL-AC /∈ suboverlap l ∧
. . .

post
route s′ = route a ∪ {R117B(M)}
subroute s′ = subroute s ∪ {USD-AC ∧ USC-AB, USB-AB}
. . .

Let us denote the set theoretic scheme plan as M(c) and
the axioms constraining the constants c and model state v as
A(c, v).

In our formalisation, a safety invariant is expressed over the
previous state ′v, current state v and constants c: I(c,′v, v).
Explicit referencing of the previous and current states in an
invariant helps with clarity and terseness of safety conditions
and offers extra expressive power. An alternative, not available
to us as formal models are automatically constructed from the
given GVF representation, is to use auxiliary model variables
explicitly capturing the previous state.

An example of a safety principle encoded in a safety
invariant is the absence of derailment due to moving a point
under a train: whenever points are commanded into a new lie
all train detection sections over those points are proven clear.
In our formal notation, this statement takes the following form:

∀ p ∈ Point·
point c′(p) ̸= point c(p)
⇒
point .sections[{p}] ∩ track o = ∅

Here Point is the set of all points, point .sections is a constant
relation defined by the set theoretic scheme plan and relating
the track sections with railway points, while track o and
point c are model variables modelling track section occupa-
tion and point states respectively.

c) Proving verification conjectures (steps 7 - 9):
Combining all these above definitions, a schematic conjecture
for the preservation of a safety invariant (for a state transition
j ∈ J) takes the following form:

M(c) ∧A(c, v) ∧ I(c,′v, v) ∧ Pj(c, v) ∧Qj(c, v, v
′)

⇒ (1)

I(c, v, v′)

In practice, it makes sense to consider a safety invariant
as a collection (conjunction) of several verification properties

9

(simpler safety invariants) I = I1 ∧ I2 ∧ . . . In, which allows
us to reformulate or split (1) into:

M(c) ∧A(c, v) ∧ I(c,′v, v) ∧ Pj(c, v) ∧Qj(c, v, v
′)

⇒ (2)

Ik(c, v, v
′),

where 1 ≤ k ∧ k ≤ n.
One of advantages of the conjecture scheme (2) is that it

permits immediate filtering of the vast majority of potential
conjectures on the basis of Qj(c, v, v

′), constraining only a
subset of new states v′ that might be of relevance to the part
in Ik(c, v, v

′).
Typically, after such a simple filtering, we tend to get 2 to

3 conjectures for every state transition. Obviously, there is no
even remote possibility of applying interactive proof at such
a scale. All these conjectures must be dealt in an automatic
manner with only limited degree of project-level configuration
and fine tuning. The latter is achieved via the use of proof
tactics – scripts (heuristics) describing specific preferable
application of particular proof steps (inference rules).

Let us look closer at (2) to see how it can be approached
by a theorem prover. As mentioned above, M(c) stands for a
definition of the complete theoretic scheme plan. As such, it is
very large, consisting of hundreds of constants, some of which
are defined with hundreds of mappings. Just pretty printing
M(c) into a notation used by Why3 or B results in a very
large model that can take minutes to parse. Moreover, Why3
typically gets so overwhelmed by large constant sets that it
cannot really progress any further.

Our solution is to hide the complexity of M(c) behind a
black-box simplification rule, which automatically simplifies
constant expressions occurring in the goal and hypotheses by
substituting them according to the corresponding definitions
from M . For instance, for some constant r, the expression
route.entrance[{r}] would be simplified to a singleton set
containing the route r entry signal.

The axioms A(c, v), however, do not present much diffi-
culty. There are only a few dozens of them and most of them
are written in a set theoretic rather than a predicate form, thus
avoiding use of quantifiers. We purposely avoid a predicate
form in axioms as it normally requires using quantifiers.
Quantifiers are expensive for an automatic prover as they can
be used to generate a huge number of new hypotheses, thus
delaying any meaningful progress.

The predicate I(c,′v, v) stands for an overall safety invari-
ant. It is typically a conjunct consisting of some 50 predicates,
with many of those using nested quantifiers. It presents an
inexhaustible source of rewrites for a prover, in most cases
preventing any useful progress. Hence I(c,′v, v) is another part
that needs to be changed in order to make proof automation
feasible.

Our solution is to remove I(c,′v, v) completely and man-
ually approximate the effect of I(c,′v, v) with a number of
pre-defined inference rules (i.e., rewrite rules acting upon a
whole conjecture). The point of doing this manually is to have
the smallest possible set of inference rules providing sufficient
proof power. Formulation of such inference rules is done once
as a part of prover configuration.

The pre-condition Pj(c, v) is typically a conjunct of 5 to
40 predicates. One potential factor limiting proof progress
is the possibility of having several large (10 to 40 or event
more terms) disjunctions in Pj(c, v), unfortunately not too
uncommon in applications to railway signalling. These could
lead to an explosion in the number of proof branches once
a prover starts to consider various combinations of control
flow chains encoded in such a pre-condition. Thus we include
Pj(c, v) as another obstacle to a fully automated proof. Our so-
lution here is to use heuristics to suppress certain “unwanted”
(i.e., irrelevant to proof outcome of the current conjecture)
hypotheses at various proof stages.

The post-condition Qj(c, v, v
′) is very similar to described

pre-conditions, with a conjunct in it representing a number
of possible state updates. However, every member of this
conjunct has, in the context of SSI, the following form of
an imperative (i.e., deterministic) state update on individual
variables:

Qj =
∧
j

Qj,l =
∧
l

(
v′j,l = Ej,l(c, v)

)
With this in mind, we can further break down definition (2)

into
M(c) ∧A(c, v) ∧ I(c,′v, v) ∧ Pj(c, v) ∧
v′j,l = Ej,l(c, v)

⇒ (3)

Ik(c, v, v
′),

generated for every part Qj,l of Qj . This increases the overall
number of conjectures approximately five-fold but is a fair
price to pay for proof decomposition (and thus significant
simplification) outside of an automatic prover.

Finally, the right hand side of implication Ik(c, v, v
′) can

be a complex predicate but there is really no opportunity to
simplify anything more here.

Conjectures of the form (3) are processed by our custom-
designed theorem prover. The prover not only attempts to
prove or disprove a given conjecture but also, when noticing
that a successful proof is unlikely, it would backtrack in the
proof, if necessary, for the purpose of a better explanatory
failed goal. Backtracking is needed for the steps that create
auxiliary variables arising from mapping between different
representations thus a making a failed goal unintelligible.

For every failed conjecture, the integrated witness discovery
tool harvests “stuck” goals and attempts to interpret them using
the notions from the problem domain. For instance, a goal
of a form TAA /∈ track o is interpreted as section TAA
must be free. With some further processing, such harvested
witnesses are compiled into a verification report presented to
a railway engineer. The report details the nature of a violation,
the affected SSI and scheme parts, and the likely reason of a
found violation. An example of such a report could be found
in [3].

V. PRACTICAL EXPERIENCE

SSI GDL is the predominant language used for computer-
based interlockings on UK mainline railways. It also has appli-
cations overseas, including in India, Australia, New Zealand,
France and Belgium. Production of SSI GDL data is a labour

10

intensive process, involving multiple stages of design, indepen-
dent checking and testing by specialist staff. The process is
becoming increasingly challenging as data gets progressively
more complex due to the successive addition of functions to
address new safety and performance needs: axle counter based
train detection controls, emergency releases, European Train
Control System (ETCS), etc.

SafeCap has automatically verified compliance of real-world
SSI GDL data with safety properties for 19 different UK
interlockings. Six of these interlockings were analysed as trial
applications of SafeCap. The remaining 13 were commercial
applications of SafeCap in live signalling projects. These
interlockings varied significantly:

• some were original SSIs, others were more modern
technologies that use SSI GDL;

• complexity ranged from 10s of signalling routes to over
200;

• data originated from different signalling design offices
and dates (1990 to present);

• some data was entirely new, other was updates of pre-
existing older data.

Safety properties were derived from signalling principles
specified in industry standards, notably [6]. The argument for
the correctness and completeness of these principles stems
from the extensive expert review and operational experience
over more than two centuries of railway history that has led
to them in their current form. Nonetheless, expressing them
in the rigorous formal notation needed for SafeCap presented
some challenges.

Signalling principles are generally expressed as plain text
with a certain level of assumed knowledge about how railways
operate. They are also written in a manner that is agnostic
to the technology and data constructs through which they
are implemented. Translation of signalling principles into
useful safety properties required translation of plain text into
mathematical expressions in terms of the variables used by
the interlocking code (in this case SSI GDL) being analysed.
Furthermore, to avoid false positives, the properties had to
be written in a manner that mirrored the state transitions
instigated by the code.

For example, section C6.3 of [6] contains the requirement
that ”Points shall only be permitted to move if they are
free of....track locking (including dead...locking).” Domain
knowledge is required to understand that ’dead locking’ means
locking by an occupied train detection section. To translate this
into a safety property that is meaningful for SSI GDL, some
features of the language also needed to be taken into account:

• physical points are represented, and controlled by, soft-
ware points objects with a commanded lie property that
can be either ’reverse’, ’normal’ or neither;

• train detection sections are represented by track objects
that can be in either the ’clear’ or ’occupied’ state.

The original signalling principle thus translates to ”whenever
points are commanded into a new lie all train detection
sections over those points are proven clear”, from which the
formal safety property presented earlier can be derived:

∀ p ∈ Point·
point c′(p) ̸= point c(p)
⇒
point .sections[{p}] ∩ track o = ∅

SafeCap currently verifies 49 distinct safety properties,
which represents of the order of 20% of all properties that
may need to be verified for UK mainline interlockings. Whilst
some of these properties have a direct role in ensuring the two
main safety principles of ”free from collisions” and ”free from
derailments”, others do so indirectly by mitigating hazards that
can occur in real-world applications, but not in the idealised
case. For example: in an idealised world, a train would never
exceed the limit of its authority to move, the end of which
is typically marked by a red signal. However, driver error
and/or poor adhesion conditions mean that such scenarios do
occasionally occur in the real-world. It is therefore necessary
to ensure that, so far as reasonably practicable, railways
remain free from collisions even in such scenarios. To this
end signalling principles, and hence safety properties, require
a section of track known as an ’overlap’ to be locked beyond
the end of a train’s authorised movement just in case it exceeds
that authorisation.

Safety property violations, reported by SafeCap in the
practical applications, fell into four categories:

• errors – straightforward errors that needed to be cor-
rected;

• vulnerabilities – where the combination of states under
which a reported violation occurs can, through other
properties, be shown impossible in practice though could
unintentionally be made possible through modifications
to seemingly unrelated data;

• intentional violations – violations of specific properties in
specific locations for operational reasons, for example to
allow a train to enter a route occupied by another train,
where the ”free from collisions” principle is achieved
through driving trains on-sight at low speed rather than
through interlocking logic;

• false positives – reported violations where it can be shown
that none exists.

Practical experience of SafeCap with real-world data has led
to refinements of safety properties to reduce false positives by
reflecting the manner in which SSI GDL data is constructed.
To make efficient use of once scarce processing power, sig-
nalling interlockings do not explicitly test safety principles in
every instance they apply. Instead, they test specific instances
and infer compliance in other instances. For example, where
multiple set of points need to be locked in a signalling route,
the interlocking may only test that the last section of route
(known as a ”sub route”) locking any of the points is free.
The fact that other sub routes locking the points are also free
is inferred, because they are locked at the same time as, and
freed sequentially before, the sub route being tested.

The report produced by the tool describes in a stylised
English all violations of the safety properties and the the nature
of the failed conditions, points to the problem location in the
SSI source code, and shows a part of the schema diagram with
the key elements related to the failed proof. Our earlier paper

11

provides a snippet of such a report presented as part of a case
study that demonstrates how the tool verifies signalling of a
real medium-size station [3].

Formal verification is very robust in terms of finding errors
for all possible train run scenarios. However, a potential
vulnerability was identified due to the phenomenon of hidden
errors. Where two or more violations of the same safety
property occur in the same section of SSI GDL data, there
is a risk of them appearing and being reported as a single
violation: one violation becomes hidden by the other(s). If
the reported error is an intentional violation or false positive,
there is risk that it is hiding a genuine error or vulnerability.
To address this risk, having found a violation, SafeCap repeats
its analysis with the reported violation states excluded until no
more violations are found.

The automated SafeCap verification is accompanied by
some manual efforts from the formal method expert and the
experienced signalling engineer. The former often needs to
adjust the proof tactics for a specific project and the properties,
the latter is involved in adjusting the properties and in the
interpretation of the automated verification results. The railway
expert leads the production of the final report including the
categorisation of the violations found and the selection of the
counter examples. Some manual efforts are often required to
deal with differences in the way the SSI programs and the
schemas are produced by different engineering teams and with
the mismatches between the SSI program and the schema
(typically, naming or naming convention mismatches) in a
given project.

Each project constitutes a substantial geographical area
controlled by one SSI program located on one interlocking
controller unit. The development of the railway network,
including signalling is naturally structured into such projects.
For example, (re-)development of a large railway station could
consist of 2-3 such projects. The full automated verification
of one project in SafeCap, after the manual adjustments and
corrections, typically takes 2-8 minutes on a standard desktop
PC.

Table I shows the statistics about the verification effort
conducted in the last three recently completed projects run
on a professional PC with 16 cores. The Z project was one of
the projects we completed with the longest verification run. To
the best of our knowledge, the station Z is one of the largest
interlocking in the UK with the SSI code of high complexity.
We note here that the scheme elements are not a good predictor
of verification complexity. The complexity, especially its upper
boundary, is better explained by the maximum cyclomatic code
complexity of the verified SSI program, as reflected in the
number of computed distinct state transitions (column 6). For
project Z, the complexity is due to the presence cascading
swinging overlaps that require highly branching logic and
deeply nested subroutine calls. The theoretical state space of
these SSI projects is extremely large as they have in average
1.5-2.5K Boolean variables and 100-200 Integer variables, but
this is irrelevant to the type of verification we conduct.

Initial commercial applications of SafeCap have been in
response to a new UK industry requirement for automated
verification, which provides additional mitigation of the risk

of error in safety-critical SSI GDL data. However, SafeCap
has the potential to offer much greater benefit if used earlier in
the design process. Doing so would not only meet the industry
requirement for automated verification, but could also enable
earlier identification of errors in the data production process
thereby avoiding expensive and time-consuming rework cy-
cles. The authors are currently working with industry partners
on determining the optimal phases for SafeCap analysis within
the data production process.

The role of SafeCap in improving the efficiency of inter-
locking data production, as well as providing an additional
mitigation against error, has also been the subject of several
railway industry articles and publications [35], [36], [37], [38].
Case study examples of the application of SafeCap to railway
systems, and the analysis of results, are included in two of
these articles: [35] provides a worked example of formal
verification of the property described earlier ’whenever points
are commanded into a new lie all train detection sections
over those points are proven clear’ for a simple railway
junction; [37] provides worked examples of other properties
and analyses the processing time needed to verify multiple
properties on layouts of varying complexity.

VI. CONCLUSIONS

In this paper we present the SafeCap approach to verifying
railway signalling, in particular, the signalling data expressed
in a program-like representation called SSI. The SafeCap
toolset has been successfully deployed in the UK railway
industry. As our substantial experience in using SafeCap in
real industrial projects has demonstrated, the approach scales
extremely well. Moreover, although only a subset of safety
principles has been encoded so far, we are confident that
the approach is capable to effectively capture and formalise
different formats of signalling data as well as required safety
properties.

Even though SSI is a fairly simple notation, it is still
liable to state explosion. With all possible modules defining
controllers for equipment, such as signals and points, in place,
the state space can grow to about 101204 states. Also, it should
be noted that in industry safety principles are not designed
or discussed in terms of train movements – something we
commonly see in the research papers applying simulation or
state exploration techniques – but rather as constraints on the
signalling rules.

Apart from formalising safety properties, the most time-
consuming parts of verification are creating (and repeatedly
re-checking) a digital representation of a railway schema from
a printout or a PDF diagram, and interpreting the findings,
which may require tweaks to the safety properties or proving
tactics as well as the layout itself (for example, when a signal
is physically on the approach to a set of points, but logically
beyond them). The verification itself takes seconds and is
completely automatic.

A combination of set theory and first order logic as the
underlying mathematical language is the result of experiments
over the course of several years. It appears to deliver the op-
timal combination of a terse, efficient notation for expressing

12

Name Routes Points Signals Safety invariants State Transitions Time, seconds RAM, peak, GB
X 140 48 83 55 11078 37 42
Y 64 29 92 55 4462 3 <4
Z 190 64 84 55 112560 265 67

TABLE I
VERIFICATION STATISTICS

conjectures and safety invariants, while, at the same time,
also enabling effective symbolic automated proofs. Two other
alternatives we have also explored are pure predicate logic and
first order logic with functions and equality.

A custom made symbolic prover might seem a dangerous
direction to take for an industry-oriented tool. Indeed, the
prover we have developed is not anywhere as powerful or
comprehensive as many state-of-the-art provers we tried in our
earlier experiments. However, it has a decisive advantage of
being highly customisable via per-invariant tactic scripts. At
such a level of fine-tuning it has shown to be able to outrun any
competition. The prover is also carefully designed to backtrack
and terminate in a state facilitating helpful end user feedback.

To evaluate SafeCap, we initially applied it together with
our industrial partners for verifying several existing signalling
datasets. This allowed us to not only improve the tool, its
scalability and the quality of reporting, but also to identify
several previously-unknown areas of risk in the data.

In the last year and a half SafeCap has been successfully
used to automatically verify the real-world SSI GDL data for
19 different UK interlockings. This positive experience has
demonstrated both its efficiency and efficacy in improving the
signalling production processes.

The presented approach offers immediate industry benefits
as it can be used within the existing SSI GDL production pro-
cesses. The rapid, automated verification that it offers enables
errors to be identified earlier in these processes, thereby reduc-
ing time consuming and expensive re-work. Furthermore, the
SafeCap formal approach to verification provides additional
assurance over the scenario based testing that is traditionally
used in railway signalling. As the safety case underpinning
SafeCap develops, and the range of safety properties that it
verifies expands, further industry benefits become possible as
the manual testing and checking activities are replaced by
automated verification by SafeCap.

ACKNOWLEDGMENTS

This work was partially supported by EPSRC/UK
STRATA and TRAMS-2 platform grants (EP/N023641/1 and
EP/J008133/1). We are grateful to the anonymous reviewers
for their suggestions on improving the earlier version of the
paper.

REFERENCES

[1] P. Behm, P. Benoit, A. Faivre, J.-M. Meynadier, Météor: A successful
application of B in a large project, in: Proceedings of FM’99 – World
Congress on Formal Methods, Vol. 1708 of LNCS, Springer, 1999, pp.
369–387.

[2] F. Badeau, A. Amelot, Using B as a High Level Programming Language
in an Industrial Project: Roissy VAL, in: Proc. of ZB 2005: Formal
Specification and Development in Z and B, Vol. 3455 of LNCS, Springer,
2005, pp. 334–354.

[3] A. Iliasov, D. Taylor, L. Laibinis, A. Romanovsky, Formal Verification of
Signalling Programs with SafeCap, in: Proceedings of 37th International
Conference, SAFECOMP 2018, Västerös, Sweden, September 19-21,
2018, pp. 91–106. doi:10.1007/978-3-319-99130-6_7.

[4] Commission Implementing Regulation (EU) No 402/2013 of 30 April
2013 on the common safety method for risk evaluation and assessment
and repealing, Regulation (EC) No 352/2009, Official Journal of the
European Union.
URL https://eur-lex.europa.eu/LexUriServ/\LexUriServ.do?uri=OJ:L:
2013:121:0008:0025:EN:PDF

[5] Office of Rail and Road, Common Safety Method for Risk Evaluation
and Assessment, Guidance on the application of Commission Regulation
(EU) 402/2013, September 2018.
URL https://www.orr.gov.uk/sites/default/files/\om/
common-safety-method-guidance.pdf

[6] Interlocking Principles (Former Railway Group Standard GK/RT0060),
Network Rail Company Standard NR/L2/SIG/30009/GKRT0060, Issue
2, 07/03/2015.

[7] D H Stratton, Solid State Interlocking. First edition, IRSE Booklet, 28.
Institution of Railway Signal Engineers (IRSE). 20 pages. 1988.

[8] J. Rushby, Kernels for Safety?, in: T. Anderson (Ed.), Safe and Secure
Computing Systems, Blackwell Scientific Publications, 1989, Ch. 13,
pp. 210–220.

[9] A. Ferrari, M. H. ter Beek, F. Mazzanti, D. Basile, A. Fantechi, S. Gnesi,
A. Piattino, D. Trentini, Survey on Formal Methods and Tools in
Railways: The ASTRail Approach, in: Proceedings of Reliability, Safety,
and Security of Railway Systems. Modelling, Analysis, Verification, and
Certification - Third International Conference, RSSRail 2019, Vol. 11495
of Lecture Notes in Computer Science, Springer, 2019, pp. 226–241.
doi:10.1007/978-3-030-18744-6_15.

[10] M. J. Butler, P. Körner, S. Krings, T. Lecomte, M. Leuschel, L. Mejia,
L. Voisin, The First Twenty-Five Years of Industrial Use of the
B-Method, in: Proceedings of Formal Methods for Industrial Crit-
ical Systems - 25th International Conference, FMICS 2020, Vi-
enna, Austria, September 2-3, 2020, Vol. 12327 of Lecture Notes in
Computer Science, Springer, 2020, pp. 189–209. doi:10.1007/
978-3-030-58298-2_8.

[11] A. H. Cribbing, I. H. Mitchell, The application of advanced computing
techniques to the generation and checking of SSI data, IRSE Proceedings
1991/92 (1992) 54–64.

[12] M. J. Morley, Safety Assurance in Interlocking Design. PhD thesis,
University of Edinburgh (1996).

[13] P. James, A. Lawrence, F. Moller, M. Roggenbach, M. Seisenberger,
A. Setzer, K. Kanso, S. Chadwick, Verification of Solid State Interlock-
ing Programs, in: SEFM 2013 Workshops, Vol. 8368 of LNCS, Springer,
2014, pp. 253–268.

[14] M. Huber, S. King, Towards an Integrated Model Checker for Railway
Signalling Data, in: Proceedings of FME 2002: Formal Methods Europe,
Vol. 2391 of LNCS, Springer, 2002, pp. 204–223.

[15] Q. Cappart, C. Limbrée, P. Schaus, J. Quilbeuf, L.-M. Traonouez,
A. Legay, Verification of Interlocking Systems Using Statistical Model
Checking, in: Proceedings of HASE – High Assurance Systems Engi-
neering, 2017, pp. 61–68.

[16] S. Busard, Q. Cappart, C. Limbrée, C. Pecheur, P. Schaus, Verification
of railway interlocking systems, in: Proceedings of ESSS 2015, 2015,
pp. 19–31.

[17] Q. Cappart, P. Schaus, A Dedicated Algorithm for Verification of
Interlocking Systems, in: Proceedings of Computer Safety, Reliability,
and Security - 35th International Conference, SAFECOMP 2016, Vol.
9922 of Lecture Notes in Computer Science, Springer, 2016, pp. 76–87.
doi:10.1007/978-3-319-45477-1_7.

[18] Department for Transport, RAIB review of the railway industry’s
investigation of an irregular signal sequence at Milton Keynes, available
at https://www.gov.uk/raib-reports/review-of-the-railway-industry-s-
formal-investigation-of-an-irregular-signal-sequence-at-milton-keynes
(2008).

[19] C. Limbrée, Q. Cappart, C. Pecheur, S. Tonetta, Verification of Railway
Interlocking - Compositional Approach with OCRA, in: Proc. of RSS-

http://dx.doi.org/10.1007/978-3-319-99130-6_7
https://eur-lex.europa.eu/LexUriServ/ \ LexUriServ.do?uri=OJ:L:2013:121:0008:0025:EN:PDF
https://eur-lex.europa.eu/LexUriServ/ \ LexUriServ.do?uri=OJ:L:2013:121:0008:0025:EN:PDF
https://eur-lex.europa.eu/LexUriServ/ \ LexUriServ.do?uri=OJ:L:2013:121:0008:0025:EN:PDF
https://eur-lex.europa.eu/LexUriServ/ \ LexUriServ.do?uri=OJ:L:2013:121:0008:0025:EN:PDF
https://www.orr.gov.uk/sites/default/files/ \ om/common-safety-method-guidance.pdf
https://www.orr.gov.uk/sites/default/files/ \ om/common-safety-method-guidance.pdf
https://www.orr.gov.uk/sites/default/files/ \ om/common-safety-method-guidance.pdf
https://www.orr.gov.uk/sites/default/files/ \ om/common-safety-method-guidance.pdf
https://www.orr.gov.uk/sites/default/files/ \ om/common-safety-method-guidance.pdf
http://dx.doi.org/10.1007/978-3-030-18744-6_15
http://dx.doi.org/10.1007/978-3-030-58298-2_8
http://dx.doi.org/10.1007/978-3-030-58298-2_8
http://dx.doi.org/10.1007/978-3-319-45477-1_7

13

Rail – Reliability, Safety, and Security of Railway Systems, Springer,
2016, pp. 134–149.

[20] H. D. Macedo, A. Fantechi, A. E. Haxthausen, Compositional Verifica-
tion of Multi-station Interlocking Systems, in: Leveraging Applications
of Formal Methods, Verification and Validation, Springer, 2016, pp. 279–
293.

[21] A. Cimatti, R. Corvino, A. Lazzaro, I. Narasamdya, T. Rizzo, M. Roveri,
A. Sanseviero, A. Tchaltsev, Formal Verification and Validation of
ERTMS Industrial Railway Train Spacing System, in: CAV, Springer,
2012, pp. 378–393.

[22] T. Gonschorek, L. Bedau, F. Ortmeier, Automatic Model-based Veri-
fication of Railway Interlocking Systems using Model Checking, in:
Proceedings of ESREL, 2018, pp. 741–748.

[23] J. Falampin, H. Le-Dang, M. Leuschel, M. Mokrani, D. Plagge, Im-
proving Railway Data Validation with ProB, in: Industrial Deployment
of System Engineering Methods, Springer, 2013, pp. 27–43. doi:
10.1007/978-3-642-33170-1_4.

[24] A. Iliasov, I. Lopatkin, A. Romanovsky, The SafeCap Platform for
Modelling Railway Safety and Capacity, in: Proceedings of SAFECOMP
- Computer Safety, Reliability and Security. LNCS 8135, Springer, 2013,
pp. 130–137.

[25] A. Iliasov, I. Lopatkin, A. Romanovsky, Practical Formal Methods in
Railways – The SafeCap Approach, in: Proceedings of Reliable Software
Technologies (Ada-Europe), LNCS 8454, Springer, 2014, pp. 177–192.

[26] A. Iliasov, A. B. Romanovsky, Formal Analysis of Railway Signalling
Data, in: Proceedings of HASE – High Assurance Systems Engineering,
2016, pp. 70–77.

[27] A. Iliasov, P. Stankaitis, D. Adjepon-Yamoah, Static Verification of
Railway Schema and Interlocking Design Data, in: Proceedings of
RSSRail: Reliability, Safety, and Security of Railway Systems, 2016,
pp. 123–133.

[28] F. Bobot, J.-C. Filliâtre, C. Marché, A. Paskevich, Why3: Shepherd your
herd of provers, in: Proccedings of Boogie 2011, 2011, pp. 53–64.

[29] M. Leuschel, M. Butler, ProB: A Model Checker for B, in: A. Keijiro,
S. Gnesi, M. Dino (Eds.), Formal Methods Europe 2003, Vol. 2805,
Springer-Verlag, LNCS, 2003, pp. 855–874.

[30] A. Iliasov, A. Romanovsky, SafeCap Domain Language for Reasoning
about Safety and Capacity, in: Proceedings of PRDC - Pacific-Rim
Dependable Computing, IEEE, 2012, pp. 1–10.

[31] M. Ingleby, I. Mitchell, Proving Safety of a Railway Signalling System
Incorporating Geographic Data, in: H. H. Frey (Ed.), Safety of Com-
puter Control Systems (Safecomp’92), IFAC Symposia Series, Perg-
amon, 1992, pp. 129–134. doi:https://doi.org/10.1016/
B978-0-08-041893-3.50026-4.

[32] Signalling Design Control Tables. GKRT0202 Issue 1. Railway Group
Standard. Issued Oct 1, 1996., UK Railway Safety and Standards Board.

[33] E. W. Dijkstra, Guarded Commands, Nondeterminacy and Formal
Derivation of Programs, Communications of ACM 18 (8) (1975) 453–
457. doi:10.1145/360933.360975.

[34] R.-J. Back, J. von Wright, Refinement Calculus: A Systematic Introduc-
tion, Springer, 1998. doi:10.1007/978-1-4612-1674-2.

[35] A. Iliasov, D. Taylor, A. Romanovsky, Automated testing of SSI data.
IRSE (Institution of Railway Signal Engineers) News 241, February
2018 (2018).
URL https://www.irse.org/Publications-Resources/IRSE-News/
Archived-Issues

[36] SafeCap: Automated Verification of Railway Signalling. Rail Engineer
168. October 2018 (2018).

[37] D. Taylor, A. Iliasov, A. Romanovsky, K. King, Driving Efficiency
& Resilience to Human Error: SafeCap Automated Verification
of Signalling Data, in: In Proceedings of ASPECT 2019, Delft,
Netherlands, October 21-24, IRSE, 2019.
URL https://webinfo.uk/webdocssl/irse-kbase/ref-viewer.aspx?refno=
740881177

[38] D. Taylor, A. Iliasov, K. King, O. Jarratt, S. Benson, W. Dearman,
Command, control and signalling design in the digital age. IRSE News
271. November 2020 (2020).

Alexei Iliasov received his PhD degree in computer
science from Newcastle University, Newcastle, UK,
in 2008 in the area of modelling artefacts reuse in
formal developments. Until 2019 he was a Senior
Research Associate with the School of Computing,
Newcastle University. Since 2012 he is the Technical
Director of The Formal Route Ltd., a SME working
in the area of signalling safety. His research inter-
ests include formal methods and tools for software
engineering and verification.

Dominic Taylor is the Technical Head of Systems
and Signalling at SYSTRA Scott Lister. He has
fifteen years’ railway signalling experience with
a focus on the introduction of new technologies
into the sector including formal verification, ETCS,
traffic management, video surveying and novel data
management techniques.

Linas Laibinis received his PhD degree in 2000
from Åbo Akademi University (Finland) on the topic
of Mechanised Formal Reasoning About Modular
Programs. His research interests include formal de-
velopment of software systems, using automated for-
mal methods and tools for verification and validation
of software models, program correctness, automated
theorem proving, as well as formal techniques for
probabilistic or numerical assessment of quantitative
system characteristics. He is the author of more
than 70 scientific articles. From 2017, Laibinis is

a Professor in Institute of Computer Science, Vilnius University, Lithuania.

Alexander Romanovsky received the MSc degree
from Moscow State University and the PhD degree
from Saint Petersburg State Technical University
(Russia). He is a Professor with the School of
Computing, Newcastle University, UK. His main
research interests include system dependability, fault
tolerance, software architectures, system verification
for safety and system structuring. In 2004-2012 he
coordinated two major European Projects, RODIN
and DEPLOY, that developed and deployed in indus-
try several advanced formal modelling techniques.

He is a Director of The Formal Route Ltd., an SME working in the area of
signalling safety.

http://dx.doi.org/10.1007/978-3-642-33170-1_4
http://dx.doi.org/10.1007/978-3-642-33170-1_4
http://dx.doi.org/https://doi.org/10.1016/B978-0-08-041893-3.50026-4
http://dx.doi.org/https://doi.org/10.1016/B978-0-08-041893-3.50026-4
http://dx.doi.org/10.1145/360933.360975
http://dx.doi.org/10.1007/978-1-4612-1674-2
https://www.irse.org/Publications-Resources/IRSE-News/Archived-Issues
https://www.irse.org/Publications-Resources/IRSE-News/Archived-Issues
https://www.irse.org/Publications-Resources/IRSE-News/Archived-Issues
https://www.irse.org/Publications-Resources/IRSE-News/Archived-Issues
https://www.irse.org/Publications-Resources/IRSE-News/Archived-Issues
https://webinfo.uk/webdocssl/irse-kbase/ref-viewer.aspx?refno=740881177
https://webinfo.uk/webdocssl/irse-kbase/ref-viewer.aspx?refno=740881177
https://webinfo.uk/webdocssl/irse-kbase/ref-viewer.aspx?refno=740881177
https://webinfo.uk/webdocssl/irse-kbase/ref-viewer.aspx?refno=740881177
https://webinfo.uk/webdocssl/irse-kbase/ref-viewer.aspx?refno=740881177

	Introduction
	Railway Signalling and Safety
	Railway safety principles and standards
	Computerised Signalling and SSI

	Methods for Verification of Railway Signalling
	The SafeCap Verification Process
	The SafeCap framework
	Overview of the SSI Verification Process
	The Verification Process in Detail

	Practical experience
	Conclusions
	References
	Biographies
	Alexei Iliasov
	Dominic Taylor
	Linas Laibinis
	Alexander Romanovsky

