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Optimizing Secure Decision Tree Inference
Outsourcing
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Abstract—Outsourcing decision tree inference services to the cloud is highly beneficial, yet raises critical privacy concerns on the
proprietary decision tree of the model provider and the private input data of the client. In this paper, we design, implement, and
evaluate a new system that allows highly efficient outsourcing of decision tree inference. Our system significantly improves upon the
state-of-the-art in the overall online end-to-end secure inference service latency at the cloud as well as the local-side performance of
the model provider. We first presents a new scheme which securely shifts most of the processing of the model provider to the cloud,
resulting in a substantial reduction on the model provider’s performance complexities. We further devise a scheme which substantially
optimizes the performance for encrypted decision tree inference at the cloud, particularly the communication round complexities. The
synergy of these techniques allows our new system to achieve up to 8× better overall online end-to-end secure inference latency at the
cloud side over realistic WAN environment, as well as bring the model provider up to 19× savings in communication and 18× savings
in computation.

Index Terms—Privacy preservation, decision trees, cloud, inference service, secure outsourcing
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1 INTRODUCTION

Machine learning inference services greatly benefit various
kinds of application domains (e.g., healthcare [1], [2], [3],
finance [4], [5], and intrusion detection [6], [7]), and its
rapid development has been largely facilitated by cloud
computing [8], [9], [10] in recent years. In this emerging
machine learning based service paradigm, a model provider
can deploy a trained model in the cloud, which can then
provide inference services to the clients. Outsourcing such
services to the cloud promises well-understood benefits for
both the model provider (provider for short) and client, such
as scalability, ubiquitous access, and economical cost.

Among others, decisions trees are one of the most popu-
lar machine learning models due to its ease of use and effec-
tiveness, and have been shown to benefit real applications
like medical diagnosis [1], [11] and credit-risk assessment
[4]. Briefly, a decision tree is comprised of some internal
nodes, which are called decision nodes, and some leaf
nodes. Each decision node is used to compare a threshold
with a certain feature in the feature vector, which is the
input to decision tree evaluation, and decide the branch
to be taken next. And each leaf node carries a prediction
value indicating the inference result. Decision tree inference
over an input feature vector is equivalent to tree traversal
starting at the root node and terminating when a leaf node
is reached.
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While outsourcing the decision tree inference service to
the cloud is quite beneficial, it also raises critical privacy
concerns on the decision tree model and the input data. On
the provider side, it is widely known that training a high
quality model requires a significant amount of investment
on datasets (possibly sensitive), resources, and specialized
skills. It is thus important that the decision tree is not
exposed in the service so that the intellectual property as
well as the profitability and competitive advantage of the
provider could be respected. On the client side, the input
feature vector may contain sensitive information, e.g., data
in medical applications or financial applications. Overcom-
ing the privacy hurdles is thus of paramount importance to
help the provider and client gain confidence in outsourced
decision tree inference services. Towards this challenge, a
recent research endeavor has been presented by Zheng et
al. [12], which represents the state-of-the-art. Their design is
based on the lightweight additive secret sharing technique
and works under a compatible architecture where two cloud
servers from independent cloud providers are employed to
jointly conduct the decision tree inference in the ciphertext
domain. As an initial endeavor, however, their design is not
fully satisfactory and yet to be optimized in performance, as
we detail below.

Firstly, the performance complexity of the provider is
dependent on the size of the decision tree as well as the
feature vector. Specifically, the provider needs to construct
and encrypt a binary matrix of size scaling to the product
of the number J of decision nodes and the dimension I of
the feature vector, so as to support secure feature selection
(more details in Section 4.2). Such multiplicative complexity
O(J · I) leads to practically unfavorable overhead, which
would be further aggravated when the provider needs to
outsource multiple decision trees, either for different ap-
plication domains, or for random forest (an ensemble of
decision trees) evaluation.
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Secondly, at the cloud side, the phase of secure decision
node evaluation has communication rounds linear to the
number of bits for value representation. This is unfavorable
in the real-world scenario when the two cloud servers are
situated in different geographic regions and communicate
over WAN, which is a more reasonable setting than local
networks given that the two cloud servers are assumed from
different trust domains [13].

In light of the above observations, In this paper, we
present a new highly efficient design for secure decision tree
inference outsourcing which significantly improves upon
the state-of-the-art. Our design follows the same architec-
ture of [12], and also makes use of additive secret sharing,
yet with significant optimizations to achieve largely boosted
performance compared to the state-of-the-art work.

Firstly, we design a new scheme which makes the
provider’s performance complexity independent of the fea-
ture vector and thus free of the above multiplicative com-
plexity, through a new re-formulation of the secure feature
selection problem. We make an observation that secure
feature selection can indeed be treated as an oblivious array-
entry read problem, where the encrypted feature vector
could be treated as an encrypted array, and the encrypted
index value is used to obliviously select an entry from the ar-
ray. During the procedure, it is required that no information
about the feature vector, index value, and selected feature be
revealed. With this observation, we propose a new secure
feature selection design where the provider only needs to
construct and encrypt an indexing vector with size O(J),
rather than a matrix of size O(J · I) as proposed in [12].

Secondly, we note that the linear communication round
complexity of the prior work [12] in the secure decision
node evaluation phase is due to the secure realization of a
ripple carry adder for secret-shared comparison, which faces
a delay problem due to sequential procedure of carry com-
putation. Our observation from the field of digital circuit de-
sign is that the carry delay problem presented in the ripple
carry adder can be solved via the advanced carry look-ahead
adder [14]. With this observation, we craft a new design for
secure decision node evaluation, through digging deep into
the logic and computation of the carry look-ahead adder
and appropriately organizing the computation in a secure
and efficient manner. Our new design achieves a logarithmic
communication complexity for secure decision node evalu-
ation, gaining superior suitability for practical deployment
in WAN environments. As a concrete example, we are able
to significantly reduce the rounds of secure decision node
evaluation at the cloud servers from 125 to 7 (with the bit
length for value representation being 64), greatly reducing
the network latency due to interaction rounds. We also
provide concrete complexity analysis, showing that such
significant gain does not sacrifice computational efficiency
in terms of the number of secret-shared multiplications.

The synergy of the above optimization techniques lead
to a new highly efficient cryptographic inference protocol
which achieves a significant reduction on the overall online
inference latency at the cloud, as well as a significant boost
in the provider’s performance, as compared to the state-of-
the-art. We provide formal security analysis of our design
under the standard simulation based paradigm. We imple-
ment our system and make deployment on the Amazon
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Fig. 1. Decision tree illustration.

cloud for performance evaluation over various decision
trees with realistic sizes. Compared with the state-of-the-
art prior work [12], the overall online end-to-end inference
latency at the cloud servers over realistic WAN environment
is up to 8× better. In the meantime, our system offers the
provider up to 19× savings in communication and 18×
savings in computation.

The rest of this paper is organized as follows. Section
2 introduces some preliminaries. Section 3 describes the
system model and threat model. Section 4 gives the details
of our design. Section 5 provides the security analysis.
Section 6 shows the experiments. Section 7 discusses the
related work. Section 8 concludes the whole paper.

2 PRELIMINARIES

2.1 Decision Tree Inference

Fig. 1 illustrates a decision tree. As shown, each inter-
nal node (called decision node Dj) is associated with a
threshold yj , while each leaf node Lz is associated with a
prediction value uz indicating the possible inference result.
Hence, given a decision tree with J decision nodes and Z
leaf nodes, a threshold vector y = {y0, · · · , yJ−1} and a pre-
diction value vector u = {u0, · · · , uZ−1} are derived. The
input for decision tree inference is an I-dimensional feature
vector, denoted by x = {x0, · · · , xI−1}. There is an associ-
ated input selection mapping σ : j ∈ {0, 1, · · · , J − 1} →
i ∈ {0, 1, · · · , I − 1}. Decision tree inference with x as input
works as follows. Firstly, the mapping σ is used to select a
feature xi from x for each Dj . Secondly, starting from the
root node, the Boolean function f(xσ(j)) = (xσ(j) < yj)
is evaluated at each Dj . The evaluation result vj decides
whether to next take the left (vj = 0) or right (vj = 1)
branch. Such evaluation terminates when a leaf node is
reached. The depth d is the length of the longest path
between the root node and a leaf node. Table 1 provides
a summary of the key notations. Without loss of generality
and as the tree structure should be hidden, we will consider
complete binary decision trees in our security design, which
is also consistent with previous works [12], [15], [16], [17],
[18]. It is noted that dummy nodes can be simply added to
make non-complete decision trees complete [15].
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TABLE 1
Key Notations

Notation Description
x Feature vector
y Threshold vector
xi The i-th feature in the feature vector
yj The threshold at decision node Dj
d Depth of a decision tree
J Number of decision nodes
I Dimension of feature vector
Z Number of leaf nodes
l Number of bits for value representation
vj Evaluation result at decision node Dj
uz Prediction value of leaf node Lz

2.2 Additive Secret Sharing
Given a value α ∈ Z2l , its 2-of-2 additive secret sharing is a
pair ([α]0 = α − r, [α]1 = r), where r is a random value in
Z2l and the subtraction is done in Z2l (i.e., result is modulo
2l). Given either [α]0 or [α]1, the value α is perfectly hidden.
Suppose that two values α and β are secret-shared among
two parties P0 and P1, i.e., P0 holds [α]0 and [β]0 while P1

holds [α]1 and [β]1. The secret sharing [α+β] (resp. [α−β])
of α + β (resp. α − β) can be computed locally where each
party Pi (i ∈ {0, 1}) directly computes [α+ β]i = [α]i + [β]i
(resp. [α − β]i = [α]i − [β]i). Multiplication by a constant
γ on the value α can also be done locally, i.e., [α · γ]i =
γ · [α]i. Multiplication over two secret sharings [α] and [β]
can be supported by using the Beaver’s multiplication triple
[19], [20]. That is, given the secret sharing of a multiplication
triple (t1, t2, t3) where t3 = t1 · t2, [α · β] can be obtained
with one round of interaction between the two parties. In
particular, each party Pi first computes [e]i = [α]i − [t1]i
and [f ]i = [β]i − [t2]i. Then, Pi broadcasts [e]i and [f ]i,
and recovers e and f . Given this, each party Pi computes
[α · β]i = i · e× f + [t1]i × f + [t2]i × e+ [t3]i.

3 PROBLEM STATEMENT

3.1 System Model
Fig. 2 shows our system architecture, comprised of the
provider, the client, and two cloud servers hosted by inde-
pendent and geographically separated cloud services. Such
architecture follows the state-of-the-art prior work [12]. The
provider (e.g., a medical institution) owns a decision tree
model and provides inference services to the client with the
power of cloud computing, i.e., outsourcing the inference
service to the cloud. Due to concerns on the proprietary
decision tree, the provider would only provide an encrypted
version. The client (e.g., a patient) holds a feature vector
which may encode private information such as weight,
height, heart rate, and blood pressure, and wants to use
the intelligent inference service to obtain a prediction about,
e.g., her health. As the feature vector is privacy-sensitive,
the client is only willing to provide a ciphertext.

The power of the cloud is considered to be supplied
by the two cloud servers C0 and C1, which jointly pro-
vide the secure decision tree inference service. Such a two-
server model not only appeared in the prior work [12]

Cloud

Server C0 Server C1

Secure Inference

ClientModel Provider

Fig. 2. The system architecture.

on secure outsourced decision tree inference, but has also
been recently used to facilitate security designs in different
applications [13], [21], [22], [23], [24], with tailored use
according to problem specifics. The prominent advantage
of such a two-server model is that it allows the provider
and the client to go offline after supplying the encrypted
inputs, and the secure inference computation is can be fully
run at the cloud. Besides, it is compatible with the working
paradigm of additive secret sharing, which is applied for
the encryption of the decision tree and feature vector. Each
cloud server receives shares of the decision tree and feature
vector. They jointly do the processing and produce secret-
shared inference result which can be retrieved by the client
on demand to reconstruct the inference result.

It is noted that as the two cloud servers are assumed
from different trust domains, a practical consideration on
realistic deployment is that the two cloud servers be situated
in different geographic regions and communicate over a
WAN, which is a more reasonable setting compared to
local networks. In this case, the latency due to interactions
between the cloud servers should be taken into account as
an important factor in the secure system design.

3.2 Threat Model
Following prior work on secure outsourced decision tree
inference as well as most of existing works on privacy-
preserving machine learning [12], [22], [23], we consider a
semi-honest adversary setting in our system. A semi-honest
adversary would honestly follow our protocol, yet attempts
to infer private information beyond its access rights. In our
system, it is considered that each entity (cloud server, client,
provider) might be corrupted by such adversary. For the
cloud server entity, we follow previous works under the
two-server model ( [12], [13], [21], [22], [23], [24]) and as-
sume they are non-colluding. Namely, the two cloud servers
are not corrupted by an adversary at the same time.

Consistent with [12], we consider that the values in the
client’s feature vector x as well as the inference result (i.e.,
the prediction value u∗ corresponding to x) should be kept
private for the client. For the provider, there is a need to
keep private the proprietary parameters/information of the
decision tree model, including each decision node’s thresh-
old y, the mapping σ for feature selection, and the prediction
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Input: Secret sharings [Ij ] and [x].
Output: Secret sharing [xIj ].

1: Each Cm creates an array p′m where the i-th element is p′m[i] = pm[i∗m] + rm. Here, sm ← Z2l

and rm ← Z2l are random values chosen by Cm; and i∗m = ((i+ sm) mod 2l) mod I .
2: C0 chooses a random value r ← Z2l and sends [Ij ]′0 = [Ij ]0 + r to C1.
3: C1 computes [Ij ]′0 + [Ij ]1 + s1 = Ij + r + s1 and sends it to C0.
4: C0 removes r and produces i′1 = ((Ij + s1) mod 2l) mod I .
5: C0, with i′1 as input, acts as the receiver to run an OT protocol with C1 to obtain p′1[i′1].
6: C1, in a symmetric manner following Steps 2-5, obtains p′0[i′0], where i′0 = ((Ij + s0) mod

2l) mod I .
7: C1 chooses a random value r′ ← Z2l and sends p∗0[i′0] = p′0[i′0]− r1 − r′ to C0. Also, C1 sets r′

as its share [xIj ]1 for the expected feature xIj .
8: C0 computes p∗0[i′0] + p′1[i′1]− r0 = xIj − r′ and sets the result as its share [xIj ]0 for xIj .

Fig. 3. Secure feature selection for a decision node Dj .

value of each leaf node (except the inference result revealed
to the client per inference). It is also required that the
client learns no additional private information about the
decision tree other than the prediction value corresponding
to her feature vector. Following prior work [12], [15], we
assume some generic meta-parameters as public, including
the depth d, the dimension I , and the number l of bits
for value representation. We deem dealing with adversarial
machine learning attacks out of the scope.

4 OUR PROPOSED DESIGN

4.1 Overview
Our system is aimed at secure outsourcing of decision tree
inference with high efficiency. Treating local efficiency as the
first priority in our design philosophy, we first aim to shift as
much processing as possible to the cloud, reducing the local
performance complexities (particularly with respect to the
provider in our system). On top of such consideration, we
further aim to achieve high efficiency at the cloud through
optimizing the processing. Our deign mainly relies on the
delicate use of the lightweight additive secret sharing tech-
nique, rather than uses resource-intensive garbled circuits
and homomorphic encryption.

At a high level, our design is comprised of four phases:
secure input preparation, secure feature selection, secure de-
cision node evaluation, and secure inference generation. The
secure input preparation phase requires the provider (resp.
the client) to encrypt the decision tree (resp. feature vector),
and send the ciphertexts to the cloud servers. The secure
feature selection phase is to securely select for each decision
node a certain feature from the feature vector, in such a way
that the cloud servers are oblivious to the mapping between
decision nodes and features. The secure decision node eval-
uation phase securely evaluates the Boolean function at each
decision node and output the ciphertext of the evaluation
result. The secure inference generation phase is to leverage
the ciphertexts of the evaluation results at decision nodes
to generate the ciphertext of the ultimate decision tree
inference result, which can then be retrieved by the client
for recovery. Note that following the previous work [12], we
assume that the data-independent multiplication triples are
pre-generated and made available to the two cloud servers
for use in our design, which can be efficiently achieved via

a semi-honest third party [12], [25]. Our focus is on the
latency-sensitive online inference procedure.

4.2 Secure Input Preparation
The client encrypts her feature vector x via additive secret
sharing applied in an element-wise manner. In particular,
the client generates two secret shares: [x]0 = x−r and [x]1 =
r. For the provider, he encrypts the decision tree as follows.
Firstly, the vector y of thresholds at decision nodes and the
vector u of prediction values at leaf nodes are encrypted
through additive secret sharing, with the secret shares [y]0,
[y]1, [u]0, and [u]1 produced. Then, we need to consider
how to properly encrypt the mapping σ which is used for
feature selection.

We note that the prior work [12] constructs a binary
matrix of size J × I in such a manner that the j-th row
vector is a binary vector with I elements where all are
0 except for the one at position σ(j) being set to 1. In
this way, feature selection is then realized via matrix-vector
multiplication between the binary matrix and the feature
vector, which can be securely supported under additive
secret sharing. Unfortunately, such an approach imposes on
the provider multiplicative O(J ·I) performance complexity
which depends on the number J of decision nodes as well
as the dimension I of the feature vector.

Differently, in order to minimize the costs of the
provider, our new insight is to instead construct an index
vector I which is comprised of the selection index values for
decision nodes and thus the complexity only depends on the
number J of decision nodes, i.e., O(J). The selection index
value for a decision nodeDj is represented as Ij ∈ [0, I−1].
The secure usage of this index vector will be described
shortly in the phase of secure feature selection. The provider
also encrypts this index vector via additive secret sharing
and produces [I]0 and [I]1. After the above processing, the
provider sends the shares [y]m, [u]m, and [I]m to each cloud
server Cm (m ∈ {0, 1}).

4.3 Secure Feature Selection
Upon receiving the shares of the client’s feature vector and
the provider’s decision tree, the cloud servers first perform
secure feature selection which produces the secret sharing
of a certain feature for each decision node, based on the
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Fig. 5. (a) Illustration of the defined binary operator; (b) Illustration of carry calculation over 8-bit inputs under the carry look-ahead adder.

encrypted index vector I . Note that hereafter all arithmetic
operations are conducted by default in the ring Z2l , unless
otherwise stated.

We now describe how secure feature selection is
achieved in our design. For each decision node Dj , the
processing of secure feature selection would require as input
the shares of the client’ feature vector x and the shares of
the corresponding index value Ij in the index vector I . The
output is the secret sharing of the selected feature xIj for
the decision node Dj .

To accomplish this functionality for our secure out-
sourced decision tree services, we make an observation that
this indeed can be treated as oblivious array-entry read,
where the encrypted feature vector could be treated as an
encrypted array, and the encrypted index value is used to
obliviously select an entry from the array. We leverage this
observation and identify that an approach from a very re-
cent work [26] is suited for our scenario. Using this approach
as a basis, we devise the scheme for secure feature selection,
which is given in Fig. 3.

The intuition is as follows. For ease of notation, we let p0

(resp. p1) denote the share of the feature vector [x]0 (resp.
[x]1) at the cloud server C0 (resp. C1). Each cloud server
Cm (m ∈ {0, 1}) first creates a new array p′m which is
derived from pm by shifting its indices and entries under
fixed random values (per feature selection). Then, given
the secret sharing of a target index value Ij , C0 engages
in an interaction with C1 so as to receive the entry located
at the shifted index ((Ij + s1) mod 2l) mod I in p′1 which
corresponds to Ij . Since the random value s1 in the shifted
index is only known to C1 and the corresponding entry is
masked by a random value r1, C0 is oblivious to the original
index Ij as well as the share p1[Ij ] held by C1. Similarly, C1

obtains the entry located at the shifted index in p′0 which
corresponds to Ij , while learning no information about the
plain index Ij and the share of the corresponding entry
value held by C0. Next, the two cloud servers engage in
an interaction which essentially performs secret re-sharing
so as to obtain the secret sharing of the selected feature xIj .

4.4 Secure Decision Node Evaluation
With the secret sharings of the threshold yj and selected
feature xIj at each decision node Dj , the cloud servers now
perform secure decision node evaluation. As this basically
requires secure comparison of secret-shared values, the prior
work [12] transforms the problem of secure decision node
evaluation to a simplified bit extraction problem in the secret
sharing domain. The key idea is to securely extract the most
significant bit (MSB) of the subtraction result ∆ = yj − xIj
as the evaluation result at decision node Dj .

Despite the effectiveness, their solution is limited in that
it poses linear O(l) round complexity. This would lead to
high performance overhead in the realistic scenario where
the two cloud servers are situated in different geographic re-
gions and connected over WAN, which is a more reasonable
setting than local networks given that the two cloud servers
are assumed to be non-colluding [13]. The basic idea in [12]
is to implement a l-bit full adder logic in the secret sharing
domain. Specifically, the shares of the difference value ∆
at the two cloud servers are represented in bitwise form
respectively. Then, a l-bit full adder logic is applied to add in
the secret sharing domain the two binary inputs in a bitwise
manner, where carry bits are calculated and propagated, and
finally produce the MSB of the difference value ∆. We note
that the work [12] uses a classical and standard adder logic
called ripple carry adder, as shown in Fig. 4.
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Input: Secret sharings [yj ] and [xIj ].
Output: Secret sharing 〈vj〉.

1: Cm computes [∆]m = [yj ]m − [xIj ]m.
// Secure MSB extraction (with l = 64 assumed; 〈·〉 denotes sharing over Z2)

2: Let a (resp. b) represent the share [∆]0 (resp. [∆]1), with the bit string being al−1, · · · , a0 (resp.
bl−1, · · · , b0). Let 〈aq〉 be defined as (〈aq〉0 = aq, 〈aq〉1 = 0) and 〈bq〉 as {〈bq〉0 = 0, 〈bq〉1 = bq},
where q ∈ [0, l − 1]. Also, let 〈wq〉 be defined as {〈wq〉0 = aq, 〈wq〉1 = bq}.
// Setup round for secure carry computation (SCC):

3: Compute 〈Gq〉 = 〈aq〉 · 〈bq〉, for q ∈ [0, l − 1]
4: Compute 〈Pq〉 = 〈aq〉+ 〈bq〉, for q ∈ [0, l − 1]

// SCC round 1 (with l = 64 as example):
5: Compute (

〈
G1

0

〉
,
〈
P 1

0

〉
) = (〈G0〉 , 〈P0〉)

6: For k ∈ {1, · · · , 31}
a) Compute (

〈
G1
k

〉
,
〈
P 1
k

〉
) = (〈G2·k〉 , 〈P2·k〉)�̃(〈G2·k−1〉 , 〈P2·k−1〉)

// SCC round 2:
7: For k ∈ {0, · · · , 15}

a) Compute (
〈
G2
k

〉
,
〈
P 2
k

〉
) = (

〈
G1

2·k+1

〉
,
〈
P 1

2·k+1

〉
)�̃(
〈
G1

2·k
〉
,
〈
P 1

2·k
〉
)

// SCC round 3:
8: For k ∈ {0, · · · , 7}

a) Compute (
〈
G3
k

〉
,
〈
P 3
k

〉
) = (

〈
G2

2·k+1

〉
,
〈
P 2

2·k+1

〉
)�̃(
〈
G2

2·k
〉
,
〈
P 2

2·k
〉
)

// SCC round 4:
9: For k ∈ {0, · · · , 3}

a) Compute (
〈
G4
k

〉
,
〈
P 4
k

〉
) = (

〈
G3

2·k+1

〉
,
〈
P 3

2·k+1

〉
)�̃(
〈
G3

2·k
〉
,
〈
P 3

2·k
〉
)

// SCC round 5:
10: For k ∈ {0, 1}

a) Compute (
〈
G5
k

〉
,
〈
P 5
k

〉
) = (

〈
G4

2·k+1

〉
,
〈
P 4

2·k+1

〉
)�̃(
〈
G4

2·k
〉
,
〈
P 4

2·k
〉
)

// SCC round 6:
11: Compute

〈
G6

0

〉
=
〈
G5

1

〉
+
〈
G5

0

〉
·
〈
P 5

1

〉
= 〈cl−1〉

12: Compute 〈vj〉 = 〈wl−1〉+ 〈cl−1〉.

Fig. 6. Secure evaluation of a decision node.

In the ripple carry adder, for each full adder, the two
bits that are to be added are available instantly. However,
each full adder has to wait for the carry input to arrive
from its previous adder. This means that the carry input
for the full adder producing the MSB should wait after the
carry has rippled through all previous full adders. Note that
computing the carry output of each full adder in the secret
sharing domain requires interactions between the two cloud
servers, thus leading to O(l) round complexity.

Our design follows [12] in terms of the same strategy of
secure MSB bit extraction for secure decision node evalua-
tion, yet aims to reduce the round complexity. Through the
design introduced below, we manage to reduce the round
complexity from linear to logarithmic. Our observation is
that the use of the more advanced carry look-ahead adder
can solve the carry delay problem presented in the ripple
carry adder [14]. At a high level, a carry look-ahead adder
is able to calculate the carry in advance based on only the
input bits. It works as follows. Firstly, two terms are defined
for the carry look-ahead adder: the carry generate signal
Gi and the carry propagate signal Pi, where Gi = ai · bi
and Pi = ai + bi. Note that these two terms are only
based on the input bits and can be computed instantly
given the input bits. Then, the original carry calculation
ci+1 = ai·bi+(ai+bi)·ci as in the ripple carry adder can then
be re-formulated as ci+1 = Gi +Pi · ci. Such re-formulation

allows a carry to be computed without waiting for the carry
to ripple through all previous stages, as demonstrated by
the following example (a 4-bit carry look-ahead adder):

1) c1 = G0 + P0 · c0 = G0;
2) c2 = G1 + P1 · c1 = G1 + P1 ·G0;
3) c3 = G2 + P2 · c2 = G2 + P2 · (G1 + P1 ·G0);
4) c4 = G3 +P3 · c3 = G3 +P3 · (G2 +P2 · (G1 +P1 ·G0)).

It can be seen that each carry can be computed without
waiting for the calculation of all previous carries.

With the application of the carry look-ahead adder for
MSB computation for secure decision node evaluation, we
only need to focus on the calculation of the carry cl−1

(e.g., c3 in the above example for 4-bit inputs). That is,
after computing cl−1, the MSB can be derived via MSB =
al−1+bl−1+cl−1 . Note that cl−1 = Gl−2+Pl−2 ·Gl−3+· · ·+
Pl−2 · · ·P1 · G0. We now need to consider how to properly
organize the computation of the carry cl−1 so that we
could effectively achieve O(log2 l) round complexity. Our
observation is that such a computation can be supported by
forming a binary tree over the carry generate terms, carry
propagate terms, and a binary operator � (illustrated in
Fig. 5(a)) defined as: (G∗, P ∗) = (G′′, P ′′) � (G′, P ′), where
G∗ = G′′ + G′ · P ′′ and P ∗ = P ′′ · P ′. For demonstration
of this idea, we show in Fig. 5(b) an example on how the
carry bit essential for MSB computation can be computed in
a recursive manner based on a tree structure, in the case of
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Input: Secret sharing 〈vj〉 for each decision node Dj and [uz] for each leaf node Lz .
Output: Inference result u∗ for the client.

1: For each 〈vj〉, //Conversion from Z2 to Z2l .
a) Let 〈vj〉 be defined as {〈vj〉0 = t1, 〈vj〉1 = t2}.
b) Let [t1] over Z2l be defined as {[t1]0 = t1, [t1]1 = 0} and [t2] as {[t2]0 = 0, [t2]1 = t2}.
c) C0 and C1 compute [vj ] = [t1] + [t2]− 2 · [t1] · [t2] in Z2l .

2: For each decision node Dj ,
a) C0 sets [ELj ]0 = 1 − [vj ]0 and C1 sets [ELj ]1 = [vj ]1. This produces the secret-shared value

of the left outgoing edge.
b) Cm sets [ERj ]m = [vj ]m as the secret-shared value of the right outgoing edge.

3: For each leaf node Lz , C0 and C1 compute a secret-shared polynomial term [gz] by multiplying
the secret-shared values of all edges on its path.

4: C0 and C1 compute
∑
z [gz] · [uz] = [u∗], i.e., the secret sharing of the inference result u∗.

5: Client can retrieve [u∗] and reconstruct u∗ as the inference result for the feature vector x.

Fig. 7. Secure inference generation.

8-bit inputs. As shown, a pair of the carry generate and
propagate terms is put as a leaf node of the tree. Then,
the processing is done upwards attributing to each internal
node the value corresponding to the application of the
operator � between its two children. Such processing leads
to dlog2 le rounds in computing the essential carry cl−1.

For simplicity of illustration, we show here the de-
tails for the case of 4-bit inputs to concretely demon-
strate the computation. In the first round, the follow-
ing terms are computed: (G1

1, P
1
1 ) = (G2, P2) � (G1, P1),

(G1
0, P

1
0 ) = (G0, P0). In the second round, the follow-

ing term is computed: (G2
0, P

2
0 ) = (G1

1, P
1
1 ) � (G1

0, P
1
0 ).

Based on the definition of the binary operator �, we first
have G1

1 = G2 + G1 · P2, P
1
1 = P2 · P1. Then, we have

G2
0 = G1

1 + G1
0 · P 1

1 = G2 + G1 · P2 + G0 · P2P1, which
corresponds to the carry c3.

With all the above insights in mind, we now elaborate on
how to support secure decision node evaluation by taking
advantage of the carry look-ahead adder in the ciphertext
domain. From the definition of the operator �, it is noted
that only addition and multiplication are required (in Z2).
So it is easy to see this operator can be securely realized
in the ciphertext domain via secret-shared addition and
multiplication. We denote the secure realization of the op-
erator as (〈G∗〉 , 〈P ∗〉) = (〈G′′〉 , 〈P ′′〉)�̃(〈G′〉 , 〈P ′〉), where
〈·〉 denotes secret sharing in Z2. Note that each call of the
operator needs 2 parallel secret-shared multiplications.

The details of secure decision node evaluation are pro-
vided in Fig. 6. It is noted that for simplicity and without
loss of generality, we demonstrate the procedure assuming
that l = 64, which is the practical parameter setting to be
used in our experiments, and also consistent with the state-
the-art work [12]. Also, to clearly show the computation
that can be done in parallel in each round of secure carry
computation, we intentionally avoid the use of nested loops.
From the procedure shown in Fig. 6, we can see that for
the practical setting l = 64, only 7 rounds are required
through our design for obtaining the secret sharing 〈v〉 of
the comparison result, in comparison with 125 rounds in
the state-of-the-art work [12].

We also point out that the improvement on communi-
cation rounds does not sacrifice the computation efficiency

in terms of number of multiplications (in Z2). Through
analysis, our new design requires 3l − 5 (187 for l = 64)
multiplications while the prior work requires 3l− 5 (187 for
l = 64) multiplications as well. We remark that although
in principle the carry look-ahead adder has higher circuit
complexity than the ripple carry adder when computing all
carries is required, our design only needs the computation
of the essential carry cl−1. This accounts for why our new
design does not enlarge the computation cost in secure
decision node evaluation compared with [12].

4.5 Secure Inference Generation
With the secret-shared evaluation results available at each
decision node, we now describe how to leverage them to
enable the two cloud servers to generate the encrypted in-
ference result. We note that there are two approaches on how
to use the decision node evaluation results [12]: a path cost-
based approach and a polynomial-based approach. From the
perspective of client cost, the main difference between these
approaches is that the path cost-based approach imposes
on the client high communication complexity exponentially
scaling with the tree depth, while the polynomial-based
approach only incurs constant O(1) and minimal commu-
nication cost (just two shares) for the client.

Given that high local efficiency is our first priority, our
system makes use of the polynomial-based approach. This
approach works as follows. Starting from the root node, the
left outgoing edge of each decision node Dj is assigned
the value 1 − vj (denoted as ELj = 1 − vj), while the
right outgoing edge is assigned the value vj (denoted as
ERj = vj). Then, a term gz is computed for each path by
multiplying the edge values of that path. As mentioned
before, only the term for the path leading to the leaf node
carrying the inference result will have the value 1, and all
other terms are 0. Then, we can proceed by multiplying each
term gz with the prediction value uz of each corresponding
leaf node and computing the sum, i.e., u∗ =

∑
z uzgz , which

will lead to the expected inference result u∗.
We use the decision tree in Fig. 1 as an example to

concretely demonstrate the computation. Firstly, there are
four terms {gz}4z=1 given that the depth is 2 and thus four
paths/leaf nodes. These terms are computed as follows:
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g1 = (1− v1) · (1− v2), g2 = (1− v1) · v2, g3 = v1 · (1− v3),
and g4 = v1 ·v3. Suppose that the feature vector is evaluated
along the path of the leaf node L3. We have v1 = 1 and
v3 = 0, and so we have g1 = 0 · (1−v2) = 0, g2 = 0 ·v2 = 0,
g3 = 1 · (1−0) = 1, and g4 = 1 ·0 = 0. It can be seen that all
the terms except the term g3 corresponding to L3 has zero
value. So we have

∑4
z=1 uzgz = u3, obtaining the expected

inference result. The secure realization of this approach in
our system for secure inference generation basically follows
that of [12]. For completeness, we give the details of secure
inference generation in Fig. 7, which realizes polynomial
mechanism introduced above in the secret sharing domain.

5 SECURITY ANALYSIS

We define and prove the security of our protocol following
the standard simulation-based paradigm. We start with
defining the ideal functionality which captures the desired
security properties for outsourced decision tree inference,
with regard to the threat model mentioned above. We then
give the formal security definition under the ideal function-
ality and show that our protocol securely realizes the ideal
functionality. In what follows, we define the ideal function-
ality for the secure outsourced decision tree inference service
targeted in this paper.

Definition 1. The ideal functionality FSecODT of the outsourced
decision tree inference service is formulated as follows.

- Input. The input to the FSecODT consists of the decision tree
T from the provider and the feature vector x from the client.
The two cloud servers C0 and C1 provide no input to the
FSecODT.

- Computation. Upon receiving the above input, the FSecODT

performs decision tree inference and produces the inference
result denoted as T (x).

- Output. The FSecODT outputs the inference result T (x) to
the client, and outputs nothing to the provider and cloud
servers.

Definition 2. A protocol Π securely realizes the FSecODT in
the semi-honest adversary setting with static corruption if the
following guarantees are satisfied:

- Corrupted provider. A corrupted and semi-honest provider
learns nothing about the values in the client’s feature vector
x. Formally, a probabilistic polynomial time (PPT) simulator
SimP should exist so that ViewΠ

P
c≈SimP(T ), where P

denotes the provider and ViewΠ
P refers to the view of P in

the real-world execution of the protocol Π.
- Corrupted cloud server. A corrupted and semi-honest cloud

server Cm (m ∈ {0, 1}) learns no information about the
client’s feature vector x and the provider’s decision tree T .
Formally, a PPT simulator SimCi should exist such that
ViewΠ

Cm
c≈SimCm , where ViewΠ

Cm denotes the view of the
cloud server Cm in the real-world execution of the protocol
Π. Note that the two cloud servers have no input and output
according to the FSecODT. Since they are non-colluding, C0
and C1 cannot be corrupted by the adversary at the same
time.

- Corrupted client. A corrupted and semi-honest client
learns no information about the provider’s decision tree
other than generic meta-parameters as stated before. For-
mally, a PPT simulator SimU should exist such that

ViewΠ
U
c≈SimU (x, T (x)), where U denotes the client, and

ViewΠ
U refers to the view of U in the real-world execution of

the protocol Π.

Theorem 1. Our protocol is a secure realization of the ideal
functionality FSecODT according to Definition 2.

Proof. As per the security definition, we show the existence
of a simulator for different corrupted parties (the provider,
the client, and either of the cloud servers).

- Simulator for the corrupted provider: In the protocol Π,
the provider only needs to supply the secret shares
of the decision tree and receives no messages. So,
the simulator for the corrupted provider can thus be
constructed in a dummy way by just outputting the
input of the provider. The output of SimP(T ) is iden-
tically distributed to the view ViewΠ

P of the corrupted
provider.

- Simulator for a corrupted cloud server: As two cloud
servers have a symmetric role in our protocol Π, it
suffices to show a simulator SimC0 for C0. It is noted
that the input/output of C0 in our protocol are just
secret shares of some data. The security of additive
secret sharing ensures that these secret shares are purely
random and can be perfectly simulated by SimC0 using
random values. For the interactions between the two
cloud servers in different phases, they are in fact due
to the calls of the oblivious array-entry read procedure
(only used in the secure feature selection phase) and
the secret-shared multiplication procedure based on
Beaver’s triples. Let SimORead

C0 and SimSecMul
C0 denote the

corresponding simulators which can simulate a view
indistinguishable from real view for C0 in the oblivi-
ous array-entry read procedure and the secret-shared
multiplication procedure respectively. It is noted that
the existence of these two simulators has been proved
in prior work. With the existence of these simulators,
SimC0 first runs SimORead

C0 with random strings as input
in the secure feature selection phase. Then, SimC0 sets
the simulated output as the input to the subsequent
phases. On each call of the secret-shared multiplication
procedure, SimC0 runs SimSecMul

C0 in order. Finally, SimC0
combines and outputs in order the simulated view by
SimORead
C0 and SimBMul on every secure multiplication as

its output. This generates the final simulator SimC0 for
the cloud server C0.

- Simulator for the corrupted client: In the protocol Π, the
client supplies secret shares of the feature vector x
and only receives the two shares [u∗]0 and [u∗]1 of
the inference result, from which the plaintext inference
result u∗ is reconstructed as the output of the client.
The simulator thus only needs to simulate the messages
(two shares) received by the client given his output u∗.
It can set a random value r as one of the shares, say
[u∗]1, and u∗− r for the other share [u∗]0. This is in fact
just a direct application of additive secret sharing, the
security of which ensures that [u∗]0 and [u∗]1 random
values and indistinguishable from the shares received
by the client. The combination of the two simulated
shares also produces u∗, which is the same as the output
in the real protocol execution and thus guarantees cor-
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Fig. 8. Communication performance of the provider.

rectness. So the output of SimU (x, T (x)) is identically
distributed to the view ViewΠ

U of the corrupted client.
The proof of Theorem 1 is completed.

6 EXPERIMENTS

6.1 Setup
Our protocol is implemented in C++. For the oblivious
transfer primitive, we rely on the libOTe library [27] which
provides implementation of the protocol in [28]. Cloud-
side experiments are conducted over two AWS t3.xlarge
instances equipped with Intel Xeon Platinum 8175M CPU
(2.50GHz and 16GB RAM): one in Europe (London) and
one in US East (N. Virginia). The average latency is 75.422
ms and bandwidth is 161 Mbits/s. These two instances
are situated in different regions for simulating the real-
world scenario that the cloud servers are in different trust
domains. The provider and the client are evaluated on an
AWS t2.xlarge instance possessing an Intel Xeon E5-2676 v3
processor (2.40GHz and 16GB RAM). We test with synthetic
decision trees with realistic configurations, following prior
works [12], [15], [16]. The tree depth d varies from 3 to 17,
and the dimension I of the feature vector varies from 9 to 57.
We make comparison with the state-of-the-art prior work by
Zheng et al. [12] (the ZDWWN protocol).

6.2 Local-side Performance Evaluation
We first evaluate the performance on the local side, i.e., the
provider and the client. Fig. 8 and Fig. 9 show the commu-
nication and computation costs of the provider for varying
decisions trees, along with comparison with the ZDWWN
protocol. As the provider in our design just constructs an
index vector of O(J) size rather than a matrix of size
O(J ·I) as in the ZDWWN protocol, he can enjoy significant
cost savings. For different decision trees being tested, the
communication cost of the provider ranges from 0.0003 MB
to 6 MB in our system, while it is from 0.0016 MB to 118 MB
in the ZDWWN protocol. In terms of the provider’s running
time, it varies from 0.01 ms to 33.842 ms in our system,
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Fig. 9. Computation performance of the provider.

TABLE 2
Performace of the Client

d I Computation (ms) Communication (KB)

3 13 0.0057 0.22
4 15 0.0060 0.25
8 9 0.0054 0.16
13 13 0.0056 0.22
17 57 0.0098 0.91

while it is from 0.013 ms to 619.723 ms in the ZDWWN
protocol. Overall, our system can offer the provider up to
19× savings (average of 7×) in communication. In compu-
tation, our system can offer the provider up to 18× savings
(average of 5×). In Table 2, we give the communication cost
and computation cost of the client respectively. It is noted
that the client has minimal costs which only scales with
the dimension of the feature vector. Recall that the client
in our system has the same cost as in the ZDWWN protocol,
given that the polynomial-based mechanism is used in the
phase of secure inference generation which allows the client
to only receive the two shares of the inference result.

6.3 Cloud-side Performance Evaluation

We now examine the performance on the cloud side. Firstly,
we show in Fig. 10 the amount of data transferred between
the cloud servers in our system and make comparison with
the ZDWWN protocol. Our design has relatively higher
communication cost (average of 1.9×) than the ZDWWN
protocol, which is mainly due to the sue of OT in the secure
feature selection phase and the secret-shared multiplications
in the secure inference generation phase. We emphasize that
such overhead in these two phases is the trade-off for the
substantial efficiency improvement on the provider side,
which is the first priority in our design philosophy.
Significantly reduced overall online cloud service latency.
On another hand, it is noted that the overall end-to-end
online inference latency in our system is still much less than
the ZDWWN protocol, as shown in Fig. 11. This means that
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Fig. 10. Communication performance at the cloud.

compared with the ZDWWN protocol, our system provides
much better service experience for the client and fits much
better into the practical realm due to the capability in giving
faster response. In particular, our new design is up to 8×
(average of 5×) faster than the ZDWWN protocol. Such
efficiency is attributed to the significant optimization on the
secure decision node evaluation phase, where the round
complexity is largely reduced from linear (as in the ZD-
WWN protocol) to logarithmic. A breakdown of the overall
cloud-side online inference latency is given in Table 3.

7 RELATED WORK

There has been some work on secure decision tree inference
[15], [16], [17], [18], [29], [30]. Most of prior works [15],
[16], [17], [18], [29], [30] focus on the non-outsourcing set-
ting where a customized protocol is designed for running
between the provider and the client. For example, in [16],
to achieve secure feature selection, the client sends to the
provider the ciphertext of the feature vector under homo-
morphic encryption, and then the provider directly selects
the ciphertext of each feature for each decision node based
on his plaintext selection mapping. Whether these protocols
can be effectively adapted to the outsourcing setting re-
mains largely unclear, since the outsourced service requires
operations to conducted over encrypted decision tree and
feature vector from the very beginning and also raises
more design considerations for security and functionality.
Moreover, many protocols make use of heavy cryptographic
tools (e.g., fully/partially homomorphic encryption, garbled
circuits, and ORAM) in the latency-sensitive online interac-
tions. Although the protocol in [18] uses secret sharing, it
is yet designed to fully and inefficiently work on binary
representations of the decision tree as well as the feature
vector provided from the very beginning, with all the secure
processing conducted at bitwise level. So their protocol is
also not directly adaptable for efficient secure outsourcing.

Very recently, the work [12] presents the first design
tailored for secure outsourcing of decision tree inference,
which runs under the two-server model and only makes
use of additive secret sharing to securely realize the various
components for the online execution of the service. As an
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Fig. 11. Overall end-to-end online runtime performance at the cloud over
realistic WAN.

initial attempt, however, its performance is yet to be opti-
mized. Our new highly efficient design presents significant
optimizations which largely improves the overall online
end-to-end latency of the secure inference service provided
by the cloud, as well as the provider’s performance.

Our work is also related to the line of work (e.g., [22],
[29], [31], [32], [33], to just list a few) on securely evaluating
other machine learning models, such as hyperplane decision
[29], Naı̈ve Bayes [29], neural networks [22], [31], [32], [33].
The common blueprint therein is to build specializaedpro-
tocols tailored for the specific computation required by dif-
ferent models through different cryptographic techniques.
For example, the work of Liu et al. [31] supports secure
neural network evaluation using secret sharing and garbled
circuits; the work of Juvekar et al. [32] relies on highly
customized use of homomorphic encryption and garbled
circuits to support low latency in secure neural network
evaluation. Most of these works operate under the non-
outsourcing and aim to protect privacy for the model and
client input. There are some works [22], [34] also operat-
ing under the two-server model as in this work, with the
tailored support for secure evaluation of models such as
linear regression, logistic regression, and neural networks.
Some recent efforts have also been presented on secure ma-
chine learning under the three-server [35], [36]/four-server
[37] model (for models other than decision trees), where
three/four servers have to engage in the online interactions.

8 CONCLUSION

In this paper, we design, implement, and evaluate a new
system that allows highly efficient secure outsourcing of
decision tree inference. Through the synergy of several
delicate optimizations which securely shift most workload
of the provider to the cloud and reduce the communication
round complexities between the cloud servers, our system
significantly improves upon the state-of-the-art prior work.
Extensive experiments demonstrated that compared with
the state-of-the-art, our new system achieves up to 8×
better online end-to-end inference latency between the cloud
servers over realistic WAN, as well as allows the provider to



11

TABLE 3
Breakdown of Runtimes in Different Phases (in seconds) at the Cloud Servers, over WAN

Parameters Secure Feature Selection Secure Decision Node Evaluation Secure Inference Generation

d I ZDWWN Ours ZDWWN Ours ZDWWN Ours

3 13 0.151 0.527 9.38 0.529 0.154 0.154
4 15 0.156 0.529 9.454 0.53 0.306 0.306
8 9 0.167 0.533 9.456 0.532 0.383 0.383
13 13 0.393 0.91 10.03 1.735 0.69 0.69
17 57 19.376 21.006 11.669 4.281 1.785 1.785

enjoy 19× savings in communication cost and 18× savings
in computation cost.
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