
1

Towards Understanding and Mitigating Audio
Adversarial Examples for Speaker Recognition

Guangke Chen, Zhe Zhao, Fu Song, Sen Chen, Lingling Fan, Feng Wang, and Jiashui Wang

Abstract—Speaker recognition systems (SRSs) have recently been shown to be vulnerable to adversarial attacks, raising significant
security concerns. In this work, we systematically investigate transformation and adversarial training based defenses for securing
SRSs. According to the characteristic of SRSs, we present 22 diverse transformations and thoroughly evaluate them using 7 recent
promising adversarial attacks (4 white-box and 3 black-box) on speaker recognition. With careful regard for best practices in defense
evaluations, we analyze the strength of transformations to withstand adaptive attacks. We also evaluate and understand their
effectiveness against adaptive attacks when combined with adversarial training. Our study provides lots of useful insights and findings,
many of them are new or inconsistent with the conclusions in the image and speech recognition domains, e.g., variable and constant
bit rate speech compressions have different performance, and some non-differentiable transformations remain effective against current
promising evasion techniques which often work well in the image domain. We demonstrate that the proposed novel feature-level
transformation combined with adversarial training is rather effective compared to the sole adversarial training in a complete white-box
setting, e.g., increasing the accuracy by 13.62% and attack cost by two orders of magnitude, while other transformations do not
necessarily improve the overall defense capability. This work sheds further light on the research directions in this field. We also release
our evaluation platform SPEAKERGUARD to foster further research.

Index Terms—Speaker recognition, adversarial defenses, adversarial examples, input transformation, adversarial training

F

1 INTRODUCTION

Speaker recognition (SR) is the process of automatically
verifying or identifying individual speakers by extracting
and analyzing their unique acoustic characteristics [1]. State-
of-the-art speaker recognition systems (SRSs), based on ma-
chine learning (including deep learning), have been adopted
by open-source platforms (e.g., Kaldi [2]) and commercial
products (e.g., Microsoft Azure [3] and Amazon Alexa [4]),
and used in safety-critical applications such as remote voice
authentication in financial transaction [5] and device access
control in smart home [6].

The popularity of SRSs has brought new security con-
cerns. Recent studies have shown that both open-source and
commercial SRSs are vulnerable to adversarial attacks [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. To thwart
adversarial attacks, five input transformations [15], [16],
[18], [19] and two adversarial training [9], derived from
other domains, have been studied. However, these defenses
are only evaluated against few non-adaptive attacks. Thus,
it is impossible to fairly compare their performance and also
may lead to a false sense of robustness improvement [20],
limiting their usage in practice. Indeed, these defenses
become ineffective against adaptive attacks using evasion
techniques from the image domain.

In this work, to secure SRSs against adversarial attacks,
we systematically investigate transformation and adversar-
ial training based defenses and thoroughly evaluate their
effectiveness using both non-adaptive and adaptive attacks
under the same settings.

We study transformations according to the characteris-
tic of audio signals and SRS’s architecture. Different from
images and image recognition systems, audio can be trans-
formed at both waveform-level and feature-level, where at

the waveform-level, audio can be transformed in the time-
and frequency-domain while at the feature-level, different
types of features in acoustic feature extraction pipeline
can be transformed. To be diverse and comprehensive, we
consider 22 diverse transformations (4 time-domain and 3
frequency-domain transformations, 7 audio compressions
that transform audio at both time- and frequency-domains,
and 8 novel feature compressions), covering all the 5 trans-
formations studied in [15], [16], [18], [19]. Furthermore, from
the respective of adaptive attacks for evasion, these trans-
formations cover all the differentiable, non-differentiable,
deterministic, and randomized types.

To thoroughly evaluate the defenses, we extend and
implement all the recent promising adversarial attacks [7],
[8], [9], [10], [15], [16], [17], [21], including 4 white-box at-
tacks and 3 black-box attacks. The evaluation on 22 concrete
attacks shows that the effectiveness of transformations does
not necessarily decrease with increase of both distortion and
attack strength, and their effectiveness varies with attacks,
e.g., two time-domain transformations are more effective
than others against L∞ attacks (i.e., perturbations are lim-
ited inL∞ norm) and feature-level transformations are often
more effective than others against L2 white-box attacks.

However, this evaluation does not provide security
guarantees against a future adaptive adversary who has
knowledge of defenses. To evaluate the robustness of de-
fenses against adaptive attacks, we design adaptive attacks
following the most important lessons of [20], incorporat-
ing evasion techniques (Backward Pass Differentiable Ap-
proximation (BPDA) [22], Expectation over Transformation
(EOT) [23], and Natural Evolution Strategy (NES) [24])
that have been shown effective against non-differentiable
or randomized transformations in the image domain, and
specific techniques targeting feature-level transformations.
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We remark that these evasion techniques have never been
considered in the speaker recognition domain except that
NES was adopted to estimate gradients by the black-box
attack FAKEBOB [15]. The evaluation shows that (1) most
transformations including the ones from [15], [16], [18],
[19] become ineffective, (2) some non-differentiable audio
compressions cannot be broken by BPDA which is promising
in the image domain, (3) AAC and MP3 with variable bit
rate are more difficult (resp. easier) to be bypassed than
them with constant bit rate in the black-box (resp. white-
box) setting; and (4) most of the randomized transformations
remain resistant to black-box adaptive attacks.

To explore the effectiveness of transformations combined
with adversarial training, we consider the promising adver-
sarial training of [9] and evaluate the combined defenses
under adaptive attacks. The evaluation shows that while
the combination of a transformation and adversarial train-
ing does not necessarily bring the best of both worlds,
the proposed novel feature-level transformation combined
with adversarial training is very effective, improving the
accuracy of both benign and adversarial examples in a com-
plete white-box setting. We further evaluate this combined
defense by varying various attack parameters. The results
show that it is still effective, improving the accuracy by
13.62%, the attack cost by two orders of magnitude, and the
distortion of adversarial examples, compared over vanilla
adversarial training.

In summary, we make the following main contributions.
• We perform the most comprehensive investigation of

transformation based defenses for securing SRSs accord-
ing to the characteristic of audio signals and SRS’s archi-
tecture and study the impact of their hyper-parameters for
mitigating adversarial voices without incurring too much
negative impact on the benign voices.

• We thoroughly evaluate the proposed transformations for
mitigating recent promising adversarial attacks on SRSs.
With regard for best practices in defense evaluations, we
carefully analyze their strength, on both models trained
naturally and adversarially, to withstand adaptive attacks.

• Our study provides lots of useful insights and findings, ei-
ther newly reported or inconsistent with existing findings
in other domains, which could advance research on adver-
sarial examples in this domain and assist the maintainers
of SRSs to deploy suitable defense solutions to enhance
their systems. Particularly, we find that our novel feature-
level transformations combined with adversarial training
is the most robust one against adaptive attacks.

• We develop the first platform SPEAKERGUARD for sys-
tematic and comprehensive evaluation of adversarial
attacks and defenses on SRSs. It features mainstream
SRSs, datasets, white- and black-box attacks, widely-
used evasion techniques for adaptive attacks, evalua-
tion metrics, and diverse defense solutions. We release
our platform to foster further research in this direction
(https://speakerguard.github.io).

2 BACKGROUND

Speaker Recognition Systems (SRSs). State-of-the-art SRSs
use speaker embedding [25] to represent acoustic character-
istics of speakers as fixed-dimensional vectors. The typical
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Fig. 1. Architecture of SRSs.

speaker embedding is identity-vector (ivector) [26] based on
the Gaussian Mixture Model (GMM) [27]. Recently, deep
embedding was also proposed to compete with ivector. It
uses deep learning to train a deep neural network from
which speaker characteristics are extracted and represented
as vectors, e.g. AudioNet [9], [28] and x-vector [29].

A generic architecture of SRSs is shown in Fig. 1, consist-
ing of: training, enrollment, and recognition phases. In the
training phase, a background model is trained using tens
of thousands of voices from thousands of training speak-
ers, representing the speaker-independent distribution of
acoustic features. In the enrollment phase, the background
model maps the voice uttered by each enrolling speaker to
an enrollment embedding, regarded as the unique identity. In
the recognition phase, given a voice of an unknown speaker,
the voice embedding is extracted from the background model.
The scoring module measures the similarity between the
enrollment embedding and voice embedding based on which the
decision module outputs the result. There are two typical
scoring approaches: Probabilistic Linear Discriminant Anal-
ysis (PLDA) [30] and cosine similarity [31], where PLDA
works well in most situations but needs to be trained using
voices [25] while cosine similarity is a reasonable substitu-
tion of PLDA without requiring training.

The acoustic feature extraction module converts the
raw audio signals to acoustic features carrying character-
istics of the raw audio signals. Common feature extrac-
tion algorithms include Mel-Frequency Cepstral Coefficients
(MFCC) [32] and Filter-Bank [33].

Recognition task. There are three main tasks: close-set
identification (CSI), speaker verification (SV), and open-set
identification (OSI). CSI identifies a speaker from a group
of speakers. SV verifies if an input voice is uttered by the
unique enrolled speaker, according to a preset threshold,
where the input voice may be rejected by regarding the
speaker as an imposter. OSI utilizes the scores and a preset
threshold to identify which enrolled speaker utters the input
voice, where if the highest score is less than the threshold,
the input voice is rejected by regarding the speaker as an
imposter. Moreover, CSI could be classified into two sub-
tasks: CSI with enrollment (CSI-E) and CSI without enroll-
ment (CSI-NE). CSI-E exactly follows the above description.
In contrast, CSI-NE does not have the enrollment phase
and the background model is directly utilized to identify
speakers. Thus, ideally, a recognized speaker in CSI-NE task
is involved in the training phase, while a recognized speaker
in the CSI-E task should have enrolled in the enrollment
phase but may not be involved in the training phase.

Threat model. According to the adversary’s knowledge
about the SRS and deployed defense, we classify attacks
into: white-box non-adaptive, black-box non-adaptive, white-box

https://speakerguard.github.io
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adaptive, and black-box adaptive attacks. The adversary for
white-box attacks has full access to model architecture,
parameters, etc., while the adversary for black-box attacks
has no knowledge about the model but can access the target
model as an oracle, i.e., providing a series of carefully
crafted inputs to the model and observing its outputs.
Under both white-box and black-box settings, the adversary
may be unaware of the deployed defense, or has complete
knowledge of it (e.g., its implementation detail and concrete
values for any tunable parameter) and intends to bypass it.
We consider non-adaptive attacks for the former adversary
and adaptive attacks for the latter adversary.

3 DEFENSES

3.1 Motivation
Recently, adversarial attacks on speaker recognition have
been extensively studied [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17]. Results show that both state-of-the-art
open-source and commercial SRSs can be fooled by adding
small perturbations to the original voice, even playing over
the air in the physical world.

In the image and speech recognition domains, stud-
ies have proposed transformation based defenses that are
able to recover benign counterparts from adversarial exam-
ples, e.g., [34], [35], [36]. While such defenses are effective
for defending against non-adaptive attacks, they may be
evaded by adaptive attacks [20]. Nevertheless, some trans-
formations (but not all) achieve promising results when
combined with adversarial training even in a complete
white-box setting [20], [37]. However, the same conclusion
cannot be drawn on speaker recognition without a careful
and rigorous evaluation, because of the difference between
speaker recognition and image/speech recognitions. Com-
pared with image recognition systems, SRSs have compli-
cated architectures and individual components, in particu-
lar, the acoustic feature extraction pipeline. Also, while the
well-trained vision model is directly exploited to classify
input images into one of the training classes, the well-
trained background model of SRSs is adapted to speaker-
specific models during enrollment and used to map input
utterances into identity embeddings during recognition,
since the enrolled and inference speakers are not necessarily
involved in the training phase. While speech recognition
minimizes speaker-dependent variations to determine the
underlying text or command, speaker recognition treats
the phonetic variations as extraneous noise to determine
the source of the speech signal. All these differences may
lead to inconsistent conclusions in the speaker recognition
domain with other domains. In fact, we indeed found such
inconsistent findings (cf. Section 7).

Therefore, in the speaker recognition domain, five input
transformation [15], [16], [18], [19] and two adversarial
training [9] based defenses have been studied. Though
promising, these defenses are only evaluated against few
attacks on different models, recognition tasks, and datasets,
let alone adaptive attacks [20] and combinations of trans-
formation and adversarial training. Thus, it is impossible to
fairly compare their performance and also may lead to a
false sense of robustness improvement brought by defenses
without considering adaptive attacks, limiting their usage

in practice. It is also unclear if combining a transformation
with adversarial training results in a more effective de-
fense, as many existing defenses combined with adversarial
training result in lower robustness than adversarial training
on its own in the image domain [20]. Therefore, there is
a lack of comprehensive investigation and rigorous quantitative
understanding of defenses on speaker recognition, in particular,
effective defenses. This work is aimed at filling this gap.

3.2 Design Philosophy

According to the architecture of SRSs (cf. Fig. 1), we should
consider both robust training and input transformation,
where the former is conducted during the training phase
and the latter takes effect in the recognition phase. When
combined, they may lead to a more robust defense. For input
transformation, we design audio transformations based on
the following two key characteristics of speaker recognition,
compared over image recognition.

Architecture characteristic. For state-of-the-art neural net-
work based image recognition, an image is directly fed
to a system without feature engineering. Due to the time-
varying non-stationary property of voices, voices are not
resilient enough to noises and other variations, and audio
waveform signals themselves cannot effectively represent
speaker characteristics [38]. Hence, to achieve better fea-
ture representative capacity and system performance [39],
a modern SRS has an acoustic feature extraction pipeline
for extracting acoustic feature from waveforms (cf. Fig. 1).
This gives rise to waveform-level input transformations (W-
transformations) and feature-level input transformations (F-
transformations).

Audio signal characteristic. While images are natu-
rally two-dimensional, raw audio samples form a one-
dimensional time series signal [40]. Even though audio
signals are often transformed into two-dimensional time-
frequency representations, the two axes, time and frequency,
fundamentally differ from the horizontal and vertical axes
in an image. Furthermore, images are commonly analyzed
as a whole or in patches with little order constraints while
audio signals have to be analyzed sequentially in chrono-
logical order. These properties give rise to audio-specific
W-transformations that can be performed either in time-
domain or frequency-domain.

Based on the above characteristics, to be diverse and
comprehensive, we investigate both W-transformations and
F-transformations, while for the former, we consider both
time-domain and frequency-domain ones. When necessary
and possible, we also evaluate the effectiveness of trans-
formations combined with robust training. When devising
an input transformation based defense, it is also important
to consider if it is differentiable1 and deterministic, due
to the fact that most white-box attacks leverage gradient
to craft adversarial examples. In general, non-differentiable
(resp. randomized) input transformations are more difficult

1. Differentiable here means that a transformation can be im-
plemented in frameworks (e.g., Pytorch) that supports auto-
differentiation [41]. Auto-differentiation enables the gradients to be
back-propagated, providing informative gradients for adversarial ex-
ample generation. Though it is non-rigorous, we use it to keep consis-
tent with [20].
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TABLE 1: Transformations
Name Parameters D R

W
aveform

Level

Tim
e

D
om

ain

Quantization (QT) q: quantized factor 7 7
Audio Turbulence (AT) SNR: signal-to-noise ratio 3 3

Average Smoothing (AS) k: kernel size 3 7
Median Smoothing (MS) k: kernel size 3 7

Frequency
D

om
ain

Down Sampling (DS) τ : downsampling freq. 3 7

Low Pass Filter (LPF) fp: passband edge freq.
fs: stopband edge freq. 3 7

Band Pass Filter (BPF) fpl, fpu: passband edge freq.
fsl, fsu: stopband edge freq. 3 7

Speech
C

om
pression

OPUS bo: compression bitrate 7 7
SPEEX bs: compression bitrate 7 7
AMR br : compression bitrate 7 7

AAC-V qc: quality 7 7
AAC-C bc: compression bitrate 7 7
MP3-V qm: quality 7 7
MP3-C bm: compression bitrate 7 7

Feature
Level

FEATURE COMPRESSION (FeCo)
4 feature types × 2 compression alg.

clm: cluster method
clr : cluster ratio 3 3

Note: D=Differentiable and R=Randomized.

to be evaded than differentiable (resp. deterministic) ones.
Thus, all the types should be addressed to understand
their effectiveness. All the transformations we considered
are summarized in Table 1, covering differentiable, non-
differentiable, deterministic, and randomized types.

3.3 Robust Training
Robust training strengthens the resistance of a model to
adversarial examples during training. We adopt adversarial
training, one of the most effective techniques in the image
domain, which augments the training data with adversarial
examples. Formally, adversarial training intends to find the
model parameter θ which minimizes the following loss:

E(x,y)∼D[maxδ∈Sf(θ, x+δ, y)] ≈
1

n

n∑
i=1

maxδ∈Sf(θ, xi+δ, yi)

where S is the set of allowed perturbations, D is the
underlying data distribution over pairs of samples x and
corresponding labels y, {(xi, yi)}ni=1 is the training dataset
that mimics the data distribution D, and f is the training
loss function, typically the cross-entropy loss. Efficient ad-
versarial attacks such as FGSM [42] and PGD [43] are widely
used to solve the above maximization problem.

3.4 W-Transformations
For W-transformations, we consider both time-domain and
frequency-domain ones. We also consider various speech
compression which can be seen as W-transformations per-
formed both in the time- and frequency-domains.
Time-domain W-transformations. We study four time-
domain W-transformations, inspired by image input trans-
formations [34]. (1) Quantization (QT) rounds the amplitude
of each sample point of a voice to the nearest integer
multiple of a factor q, intended to disrupt the adversarial
perturbation since its amplitude is usually small in the
input space. (2) Audio turbulence (AT) adds random noise
to an input voice in an element-wise way to disrupt the
adversarial perturbation which is assumed to be sensitive
to noise. The magnitude of the noise is adjusted by signal-
to-noise ratio (SNR) 10 log10

PI
Pn

where PI (resp. Pn) is the
power of input voice (resp. random noise). (3) Average
smoothing (AS) and (4) median smoothing (MS) mitigate
adversarial examples by smoothing the waveform of the
input voice. A mean (resp. median) smooth with kernel size

k (must be odd) replaces each element xk with the mean
(resp. median) value of its k neighbors. We remark that QT
is non-differentiable due to the round operation while the
others are differentiable, and AT is randomized while the
others are deterministic.

Frequency-domain W-transformations. We consider three
W-transformations in frequency-domain, all of which are
differentiable and deterministic. (1) Down sampling (DS)
down-samples voices and applies signal recovery to disrupt
adversarial perturbations. The down-sample frequency is
determined by the ratio, denoted by τ , between the new
and original sampling frequencies. (2) Low pass filter (LPF)
assumes that human voices are within relatively lower
frequencies than adversarial perturbation, and applies a
low-pass filter to remove the high-frequent perturbations.
A low-pass filter has two parameters: the edge frequencies
of the passband (fp) and the stopband (fs). (3) Band pass
filter (BPF) combines LPF with a high-pass filter to remove
both high-frequent and low-frequent perturbations. BPF has
four parameters: the lower and upper edge frequencies of
the passband (fpl and fpu), the lower and upper cutoff
frequencies of the stopband (fsl and fsu). We remark that
these transformations are derived from the speech recogni-
tion domain [34], [44], [45], but only DS has been applied
in the speaker recognition against two black-box attacks
FAKEBOB [15] and SirenAttack [16].

Speech compression. Based on the psychoacoustic princi-
ple, speech compression aims to suppress redundant infor-
mation within a speech to improve storage or transmission
efficiency. When an adversarial perturbation is redundant,
it can be eliminated by speech compression. Speech com-
pression achieves the aforementioned purpose by reducing
the bit rate, thus can be seen as transformations performed
both in the time- and frequency-domains. We investigate
7 standard lossy speech compression techniques, grouped
into two categories: Constant Bit Rate (CBR) and Variable
Bit Rate (VBR). The former uses a fixed bit rate and the
latter exploits a dynamic bit rate schedule controlled by
the quality parameter. We consider OPUS [46], SPEEX [47],
AMR [48], AAC-C [49], and MP3-C [50] for CBR, and AAC-
V [49] and MP3-V [50] for VBR. These transformations are
non-differentiable and deterministic.

3.5 F-Transformations

The design of F-transformations is motivated by the follow-
ing research questions: (Q1) What kind of acoustic features can
be transformed? and (Q2) How to transform them?.

To address Q1, we have to understand what kind of fea-
tures are used in SRSs. Fig. 2 shows a typical flow of feature
processing. First, the original features (e.g., MFCC or Filter-
Bank) are extracted from an input raw waveform. Next, to
capture temporal information, time-derivative features [39]
are successively extracted from and added into the original
features, leading to the delta features. After that, cepstral
mean and variance normalization (CMVN) [51] is applied
to reduce channel and reverberation effects, resulting in
cmvn features. Finally, voice activity detection (VAD) [52] is
utilized to remove the unvoiced frames, resulting in final fea-
tures. Therefore, four types of features could be transformed.
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To address Q2, a straightforward idea is to extend
W-transformations. However, (1) W-transformations work
on audio waveforms in two-dimensional time-frequency
representations, while acoustic features are represented
by a matrix, one row of features per frame. It prevents
frequency-domain W-transformations and speech compres-
sion from being extended. (2) The mapping from wave-
forms to features is not linear, and a small perturbation
in the input voice may lead to a large perturbation at
the feature level. This difference refuses time-domain W-
transformations where adversarial perturbations are as-
sumed to be small and/or sensitive to noise.

We propose FEATURE COMPRESSION (FeCo) to disrupt
adversarial perturbations at the feature level. We regard
each feature matrix M with N frames and each frame ai
consisting of d features as N data points in d-dimensional
space and compute a compressed feature matrix with K
frames for K < N . Our idea is described in Algorithm 1.
The number K of clusters is first computed according to the
given cluster ratio clr (line 1). Then, we partition N frames
into K clusters by invoking the cluster oracle O (line 2),
which returns a list of indices b1, · · · , bN such that each
frame ai is assigned to the bi-th cluster. Next, each cluster
Ci is represented by a representative vector mi (line 5).
Finally, K representative vectors are combined to form the
new feature matrixM′.

To partition N frames into K clusters, various clustering
methods, e.g., kmeans [53] and soft-kmeans [54], could be
leveraged. In this work, we use kmeans and its variant
warped-kmeans [55] and leave others as future work. Com-
pared to kmeans, warped-kmeans preserves the temporal
dependency of the data by imposing some constraints on
the partition operation, thus is more suitable to cluster
sequential data. Both kmeans and warped-kmeans use the
average of all the frames in one cluster as the representative.

Algorithm 1 could be applied to any of original, delta,
cmvn, and final features. We use FeCo-o, FeCo-d, FeCo-c,
and FeCo-f to denote these four concrete F-transformations,
all of which are randomized and differentiable. The random-
ness of FeCo lies in the initialization of kmeans and warped-
kmeans algorithms. At the beginning, they randomly select
K vectors fromN vectors as the initial cluster centers, which
will be used in the later clustering operations. Different
initialization may produce different clustering results (Line
2), thus leading to different feature matrixM′.

4 EVALUATION SETUP AND METRICS

4.1 Main Evaluation Setup
To evaluate defenses against adversarial voices on SRSs, we
developed a platform, named SPEAKERGUARD.

Algorithm 1 FeCo

Input: feature matrix M = [a1, · · · ,aN ]; cluster ratio 0 < clr < 1;
cluster oracle O = kmeans or warped-kmeans

Output: compressed feature matrixM′
1: K ← dN × clre . K = number of clusters
2: [b1, · · · , bN ]← O(M,K) . ai is assigned to the bi-th cluster
3: for (i = 1; i ≤ K; i++) do
4: Ci ← {ak | bk = i} . compute the i-th cluster
5: mi ← 1

|Ci|
∑

a∈Ci a . compute the representative vector

6: M′ ← [m1, · · · ,mK ] . concatenate the representative vectors
7: returnM′

TABLE 2: SR models
ivector-PLDA [56] AudioNet [28]

Embedding & Feature types T & MFCC D & Filter-Bank
Add 1st & 2nd time-derivative 3 7

Apply CMVN & VAD 3 7
#Feature dim 72 32

Training algorithm US S
Scoring method PLDA -

Note: T/D means GMM/deep model and (U)S means (un)supervised learning.

Models. We use two mainstream SRSs: a pre-trained model
ivector-PLDA [56] from the popular open-source platform
KALDI having 11.5k stars and 4.9k forks on GitHub [2], and
a one-dimension convolution neural network based model
AudioNet [9], [28]. Details of two models are shown in
TABLE 2. Due to the massive experiments, we only target
the CSI task (i.e., CSI-E and CSI-NE). The results on the SV
and OSI tasks could be similar, as demonstrated in [15].
Datasets. We use four datasets derived from Lib-
rispeech [57]: Spk10-enroll, Spk10-test, Spk251-train, and
Spk251-test. The datasets are summarized in TABLE 3 (de-
tails refer to Appendix A.1 in the supplemental material.)
Attacks. To thoroughly evaluate the defenses, we im-
plement 4 promising white-box attacks (i.e., FGSM [42],
PGD [43], CW∞, and CW2 [58]), and 3 state-of-the-art
black-box attacks (i.e., FAKEBOB [15], SirenAttack [16], and
Kenansville [21]). All of them craft adversarial voices via
solving optimization problems using L∞ norm to limit
perturbations, except that Kenansville is a signal processing-
based decision-only attack and CW2 minimizes adversarial
perturbations in the loss function using L2 norm. To solve
the optimization problems, FGSM, PGD, CW∞, and CW2

use gradients, FAKEBOB uses gradient-estimation, and Sire-
nAttack uses the gradient-free particle swarm optimization.
Note that CW∞ is implemented using the loss function of
the CW attack but optimized by PGD, the same as [43], to
improve the attack efficiency. Details refer to Appendix A.2.

To avoid fake adversarial voices due to the discretization
problem [59], i.e., adversarial voices become benign after
being transformed into concrete voices, they are evaluated
after storing back into the 16-bit PCM form. We only con-
sider untargeted attacks which are more challenging to be
defeated than targeted attacks [22].

We use a machine with Ubuntu 18.04, an Intel Xeon E5-
2697 v2 2.70GHz CPU, 376GiB memory, and a GeForce RTX
2080Ti GPU.

4.2 Evaluation Metrics

Attack effectiveness. To evaluate the effectiveness of an
attack, we use model accuracy on adversarial examples
(Aa), i.e., the proportion of adversarial examples that are
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TABLE 3: Voice datasets
Spk10-enroll Spk10-test Spk251-train Spk251-test

Task CSI-E/SV/OSI CSI-NE
#Speakers 10 (5M,5F) 10 (5M,5F) 251 (126M,125F) 251 (126M,125F)

#Voices 10×10 100×10 25652 2887
Length 3–21s (7.2s) 1–15s (4.3s) 1–24s (12.3s) 1–19s (11.7s)

Note: x-y (z) denotes that the minimal, maximal and average length of voices,
and nM/mF denotes that the number of male/female speakers is n/m.

correctly classified by the model. Thus, smaller Aa indicates
better attack. Note that 100%−Aa is the attack success rate.
Defense effectiveness. A usable defense should not only
improves resistance to adversarial examples, but also sac-
rifices accuracy on benign examples as little as possible.
Thus, we measure the effectiveness of a defense using model
accuracy on adversarial examples (Aa) and model accuracy
on benign examples (Ab), respectively, where the larger Aa
(resp. Ab) is, the better the defense is. We also use the R1
score, R1 = 2×Ab×Aa

Ab+Aa
[45], which assigns equal importance

to Ab and Aa, to quantify the usability of a defense.
Imperceptibility. To measure the imperceptibility, we use
Signal-to-Noise Ratio (SNR) [60] and Perceptual Evaluation
of Speech Quality (PESQ) [61]. SNR is defined as 10 log10

Px
Pδ

,
where Px (resp. Pδ) is the power of the original voice (resp.
perturbation). PESQ is one of the objective perceptual mea-
sures, simulating human auditory system [62]. The calcula-
tion of PESQ is more involved. It first applies an auditory
transform to obtain the loudness spectra of the original and
adversarial voices, and then compares two loudness spectra
to obtain a metric score whose value is in the range of -0.5
to 4.5. We refer readers to [61] for more details. Larger SNR
and higher PESQ indicate better imperceptibility.

5 EVALUATION OF TRANSFORMATIONS

5.1 Evaluation Setup
We limit the perturbation budget ε to 0.002 for L∞ attacks,
the same as [9], [15], unless explicitly stated. The number
of steps for PGD and CW∞ range from 10 to 50 with
step size α = ε

5 = 0.0004 for each step. For CW2, we set
the initial trade-off constant c to 0.001, use 9 binary search
steps to minimize perturbations, run 900-9000 iterations to
converge, and vary the confidence parameter κ from 0,
2, 5, 10, 20 to 50. For FAKEBOB, we limit the number
of iterations to 200 with the parameter samples per draw
of NES m = 50 and κ = 0.5. For SirenAttack, we use
the optimal parameters reported in [16], i.e., the maximum
number of epochs epochmax = 300, the iteration limit of the
PSO subroutine itermax = 30, and the number of particles
n particles = 25. For Kenansville, we use the SSA method
to perturb a voice and set the maximal attack factor to 100
and maximal number of iterations to 30, which is sufficient
for the attack to converge according to our experiments. FFT
method is not considered since it is much less effective than
the SSA method [63].

We consider the ivector-PLDA model for the CSI-E task
which is enrolled with 10 speakers using the Spk10-enroll
dataset. We use the Spk10-test dataset to test the model,
resulting in 99.8% accuracy on benign examples. We also use
the Spk10-test dataset to craft adversarial examples. Though
the ivector-PLDA model is pre-trained without any trans-
formations, it still produces sufficient accuracy on benign
examples, as shown in column (Ab) of TABLE 4. Thus, we

do not re-train it when transformations are deployed. As
each transformation contains at least one tunable parameter
which may affect the effectiveness, we tune parameters and
choose the best ones according to their R1 scores for the
remaining experiments. Details are given in Appendix A.3.

5.2 Results
The results are reported in TABLE 4, where row (Base-
line) shows the accuracy without any defense, indicating
the effectiveness of attacks. In general, the effectiveness of
transformations significantly varies with attacks. The results
provide many interesting and useful findings, including but
not limited to the following ones.
Effectiveness versus level/domain. Time-domain W-
transformations (e.g., QT, AT and MS) are often more effec-
tive than others on L∞ attacks, while F-transformations are
often more effective than others on L2 attacks. Among W-
transformations, FeCo-o and FeCo-d often perform slightly
better than others, as transformation on preceding fea-
tures also affects succeeding features. Between kmeans and
warped-kmeans, the effectiveness varies with attacks and in
general they are almost comparable. In terms of R1 score,
FeCo-o with kmeans, i.e., FeCo-o(k), ranks the first place.

Findings 1. Time-domain (resp. feature-level) transforma-
tions are often more effective than others on L∞ (resp. L2)
attacks.

Effectiveness versus distortion. Almost all the transforma-
tions perform better against FGSM, FAKEBOB, Kenansville
and SirenAttack attacks than PGD, CW∞, and CW2-50
attacks. To find out the reason for this difference, we report
the imperceptibility and strength of non-adaptive attacks in
TABLE 5. According to the imperceptibility metrics SNR
and PESQ, we observe that FGSM, SirenAttack, and Ke-
nansville (resp. FAKEBOB) attacks introduce larger (resp.
comparable) levels of distortion than PGD, CW∞, and CW2

attacks. This indicates that there is no direct correlation
between the distortion of adversarial voices and the ef-
fectiveness of input transformations. In contrast, according
to the loss values of LCE and LM, we observe that the
single-step attack FGSM and the black-box attacks (i.e.,
FAKEBOB, SirenAttack, and Kenansville) are much weaker
than PGD, CW∞, and CW2 attacks. In fact, FGSM is a single-
step attack, FAKEBOB and SirenAttack adopt an early-
stop strategy, and Kenansville is a decision-based attack, so
adversarial examples crafted by them are weak (i.e., close
to the decision boundary), while PGD, CW∞, and CW2-50
continue searching for strong adversarial examples (i.e., far
from the decision boundary) even if an adversarial example
has been found.
Findings 2. The effectiveness of input transformations
does not necessarily decrease with increase of distortion,
since large distortion does not imply stronger adversarial
voices.

Effectiveness versus attack strength. With increase of κ in
CW2 (i.e., attack strength), unsurprisingly, the effectiveness
of all the transformations decreases. However, though the
attack strength of PGD and CW∞ attacks increase with
#Steps (cf. TABLE 5), the effectiveness of the input transfor-
mations (e.g., QT, AT, MS, OPUS, SPEEX and FeCo-o) does
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TABLE 4: Results of transformations against non-adaptive attacks

Defense R1
Score Ab

Aa

L∞ white-box attacks L2 white-box attacks black-box attacks

FGSM PGD CW∞ CW2 Score-based (L∞) Decision-only
10 20 30 40 50 100 10 20 30 40 50 100 0 2 5 10 20 50 FAKEBOB SirenAttack Kenansville

Baseline 8.3% 99.8% 42.3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6.5% 0% 0% 0% 0% 0% 19.8% 18.7% 8.0%
QT 76.0% 86.8% 76.8% 61.2% 55.4% 56.6% 62.5% 59.8% 67.2% 60.7% 55.0% 55.8% 62.2% 57.4% 65.0% 86.8% 86.1% 86.4% 86.2% 84.9% 49.9% 91.3% 88.2% 31.7%
AT 84.5% 89.2% 82.9% 77.8% 75.9% 75.6% 78.5% 76.6% 81.2% 77.9% 76.7% 74.2% 77.8% 75.5% 81.2% 89.1% 89.0% 89.1% 89.2% 88.9% 78.5% 95.4% 94.0% 40.6%
AS 39.8% 98.1% 46.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 96.8% 95.0% 87.4% 65.5% 20.1% 0.0% 47.5% 69.3% 21.9%
MS 53.9% 83.9% 65.6% 21.3% 17.1% 17.3% 22.1% 18.3% 24.5% 21.2% 17.9% 17.1% 23.6% 18.9% 24.4% 77.1% 76.4% 73.2% 68.8% 57.9% 26.9% 71.5% 70.6% 41.8%
DS 38.3% 91.8% 57.2% 0.3% 0.2% 0.2% 0.2% 0.1% 0.2% 0.2% 0.3% 0.3% 0.1% 0.2% 0.3% 77.2% 73.4% 68.1% 59.9% 39.3% 0.7% 67.3% 66.8% 20.2%
LPF 38.2% 96.9% 59.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 84.6% 78.2% 71.7% 59.7% 22.2% 0.0% 54.3% 81.5% 10.6%
BPF 36.1% 91.0% 51.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 79.0% 75.9% 68.5% 52.9% 21.2% 0.2% 58.5% 76.8% 11.6%

OPUS 56.8% 88.6% 67.9% 17.4% 14.1% 15.0% 17.9% 17.1% 23.3% 17.0% 14.2% 15.3% 18.5% 17.9% 22.4% 84.0% 82.9% 81.0% 78.8% 71.8% 31.5% 87.5% 86.0% 37.2%
SPEEX 53.5% 93.8% 71.8% 7.2% 6.6% 7.9% 11.9% 10.6% 21.8% 6.7% 6.8% 7.8% 11.3% 9.6% 22.5% 88.1% 87.5% 84.0% 77.4% 59.6% 18.3% 87.9% 89.0% 30.0%
AMR 55.4% 96.8% 67.4% 6.4% 7.0% 7.7% 11.0% 8.1% 15.9% 5.8% 8.0% 7.8% 11.4% 8.7% 17.3% 94.8% 93.7% 92.3% 88.6% 67.2% 24.6% 94.2% 93.6% 22.9%

AAC-V 29.8% 99.8% 47.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 89.7% 72.4% 37.3% 5.9% 0.0% 0.0% 34.6% 87.5% 10.4%
AAC-C 44.7% 92.7% 64.2% 2.8% 2.3% 1.8% 2.5% 2.4% 2.7% 3.2% 2.3% 1.6% 2.6% 2.2% 2.6% 83.6% 82.3% 78.5% 71.8% 51.1% 8.1% 76.4% 89.8% 12.6%
MP3-V 27.1% 99.6% 48.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 87.4% 62.2% 15.9% 0.3% 0.0% 0.0% 32.0% 90.5% 8.9%
MP3-C 40.9% 96.4% 53.1% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 87.6% 84.3% 79.0% 63.9% 29.3% 0.4% 71.1% 91.1% 11.4%

FeCo-o(k) 58.0% 94.0% 70.4% 16.3% 13.8% 13.0% 17.0% 12.7% 20.8% 14.1% 14.2% 15.2% 15.1% 10.7% 22.5% 91.4% 86.1% 86.5% 83.4% 74.0% 42.0% 85.5% 92.1% 26.7%
FeCo-d(k) 49.6% 99.4% 70.5% 0.2% 0.0% 0.2% 0.9% 0.3% 1.1% 0.1% 0.1% 0.5% 0.6% 0.8% 1.0% 97.1% 94.4% 94.1% 87.3% 62.8% 14.7% 85.6% 94.4% 20.1%
FeCo-c(k) 48.2% 98.8% 68.8% 0.0% 0.2% 0.1% 0.1% 0.1% 0.5% 0.1% 0.3% 0.1% 0.2% 0.3% 1.0% 96.3% 93.8% 91.0% 82.1% 55.0% 11.2% 84.0% 95.1% 20.8%
FeCo-f(k) 47.2% 98.2% 67.1% 0.3% 0.3% 0.5% 0.3% 0.4% 0.9% 0.5% 0.5% 0.6% 0.6% 0.7% 1.0% 93.4% 90.3% 86.6% 78.7% 51.2% 10.8% 83.6% 94.8% 21.0%

FeCo-o(wk) 50.5% 96.7% 66.6% 3.9% 3.5% 3.7% 4.3% 4.0% 6.5% 3.6% 3.2% 4.4% 4.8% 3.9% 7.0% 91.3% 88.5% 84.4% 77.5% 58.5% 26.8% 89.6% 91.7% 24.0%
FeCo-d(wk) 49.8% 98.2% 70.2% 1.7% 1.1% 1.1% 3.0% 1.8% 3.5% 1.4% 0.6% 1.1% 2.7% 2.0% 2.7% 93.9% 90.9% 88.3% 82.9% 64.0% 23.4% 88.1% 88.7% 19.9%
FeCo-c(wk) 48.5% 98.0% 68.3% 1.4% 0.7% 0.7% 2.4% 1.3% 2.5% 1.1% 0.6% 1.0% 2.3% 1.8% 1.8% 93.0% 89.0% 87.1% 79.4% 58.6% 20.1% 87.6% 87.9% 21.2%
FeCo-f(wk) 49.0% 97.6% 68.5% 2.0% 1.2% 0.8% 3.0% 1.5% 3.0% 2.2% 1.5% 1.2% 2.0% 2.2% 3.2% 91.6% 88.7% 85.7% 79.5% 60.4% 22.1% 88.7% 88.8% 22.1%

Note: k (resp. wk) denotes kmeans (resp. warped-kmeans). The top-3 highest/lowest results are highlighted in blue/red color except for Baseline where no
defense is deployed. The accuracy Aa used for computing R1 Score is the average of all the attacks.

TABLE 5: Imperceptibility and strength of non-adaptive attacks

Attack Imperceptibility Loss
SNR PESQ LCE LM

FGSM 28.53 2.23 3.91 -1.66

PGD-x

x=10 32.77 2.85 45.88 -45.87
x=20 31.57 2.72 54.50 -54.50
x=30 31.42 2.70 58.38 -58.38
x=40 31.45 2.71 60.52 -60.52
x=50 31.31 2.69 62.23 -62.23
x=100 31.29 2.70 67.10 -67.10

CW∞-x

x=10 32.74 2.85 44.59 -44.56
x=20 31.88 2.76 53.21 -53.19
x=30 31.62 2.73 57.36 -57.35
x=40 31.51 2.72 59.94 -59.93
x=50 31.45 2.71 61.04 -61.03
x=100 31.38 2.71 66.36 -66.36

CW2-κ

κ=0 52.99 4.24 1.54 -1.12
κ=2 51.42 4.19 2.94 -2.87
κ=5 49.73 4.10 6.42 -6.35
κ=10 47.09 3.95 11.28 -11.31
κ=20 42.14 3.60 21.70 -21.25
κ=50 30.44 2.46 51.88 -51.43

FAKEBOB 31.40 2.71 0.91 -0.10
SirenAttack 31.03 2.66 0.91 -0.10
Kenansville 8.73 1.87 3.32 -2.82

Note: LCE and LM respectively denote cross entropy loss and margin
loss. The larger LCE (resp. the smaller LM), the stronger the attack.

not decrease monotonically. To understand this, we analyze
the strength of adversarial voices before/after applying
MS in Fig. 3 and find that the strength of the adversarial
examples crafted by CW2 remains monotonic after applying
MS with increase of κ, while the strength of the adversarial
examples crafted by PGD becomes non-monotonic after
applying MS with increase of #Steps. This may be because
CW2 introduces larger distortion with increase of κ, but
PGD does not introduce obviously larger distortion with
increase of #Steps, as shown in TABLE 5.

Since the step size α may impact the capacity of the PGD
attack, we also adopt another three dynamic strategies α =

ε
5×#Steps , α = ε

#Steps , and α = 10×ε
#Steps which reduces the step

size α with increase of #Steps (Recall that previously we set
α = ε

5 ). The same phenomenon also occurs (cf. TABLE 9 in
Appendix A.4.1), indicating this phenomenon is not due to
unsuitable step size.

Findings 3. The effectiveness of input transformations
does not necessarily decrease with increase of attack
strength.

Overall effectiveness. Transformations are often more ef-
fective against L2 white-box, L∞ black-box, and signal pro-
cessing attacks than L∞ white-box attacks. For instance, AS,
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Fig. 3. The loss values (i.e., strength) of the adversarial voices on the
model without/with the MS input transformation versus #Steps of PGD
and κ of CW2. The larger the loss of PGD (resp. the smaller the loss of
CW2), the stronger the adversarial examples. The loss of PGD is scaled
for better visualization.

LPF, AAC-V, and MP3-V cannot improve any robustness
against the PGD and CW∞ attacks regardless of #Steps, and
the CW2-50 attack. By analyzing the strength of adversarial
voices in TABLE 5, we found that:

Findings 4. AS, LPF, AAC-V, and MP3-V are completely
ineffective against attacks that craft high-confidence ad-
versarial voices (i.e., PGD, CW∞ and CW2 with κ = 50),
in non-adaptive setting.

VBR and CBR in speech compression. We noticed sig-
nificant difference of effectiveness between VBR speech
compression (e.g., AAC-V and MP3-V) and CBR speech
compression (OPUS, SPEEX, AMR, AAC-C, and MP3-C).
For instance, the accuracy of MP3-C (resp. AAC-C) against
CW2-10 is 212 (resp. 11) times larger than that of MP3-V
(resp. AAC-V). Compared to CBR speech compression, VBR
speech compression dynamically adjusts the bit rate of the
voices to better fit to the psychoacoustic perception of the
human ear and thus achieves better quality. As a result,
although they incur less side effect on the benign voices
(Ab of AAC-V and MP3-V only drops by 0% and 0.2%
compared to the Baseline), they are limited in disrupting
the adversarial perturbation.

Findings 5. VBR speech compression has less side-effect,
but are less effective in mitigating adversarial voices.

More findings in the non-adaptive setting refer to Ap-
pendix A.4.2.
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6 ADAPTIVE ATTACKS

To evaluate the robustness of transformations in the adap-
tive setting where the adversary has complete knowledge
of defense and attempts to bypass the defense, we design
adaptive attacks tailored to input transformations, following
the suggestions of [20], i.e., being as simple as possible while
resolving any potential optimization difficulties.

To bypass a certain input transformation g(·), the ad-
versary attempts to find an adversarial voice xadv from
a benign voice x such that xadv remains adversarial after
being transformed by g(·), namely, solving the following
optimization problem:

argminxadv L(g(xadv), y) such that ‖xadv − x‖p ≤ ε

where L is the loss function used in non-adaptive attack
(cross-entropy loss for FGSM, PGD, and margin loss for
CW∞, CW2, FAKEBOB, and SirenAttack), p = 2,∞ is the
Lp norm-based distance, and y is the ground-truth label of
x for untargeted attack.

FAKEBOB, SirenAttack, and Kenansville solve the opti-
mization problem without gradient back-propagation, thus
can be directly mounted, except that the adaptive version
goes through the deployed transformation when querying
the model, while the non-adaptive one does not. For differ-
entiable and deterministic transformations (i.e., AS, MS, DS,
LPF, and BPF) on which reliable and informative gradients
can be computed via back-propagation, the optimization
problem can be easily solved by white-box attacks using gra-
dient descents. However, the gradient of the loss function L
w.r.t. xadv cannot be back-propagated for non-differentiable
transformations (e.g., QT and speech compressions) while
the gradient is less reliable and informative for randomized
transformations (e.g., AT and FeCo). To address this issue,
we adopt evasion techniques for white-box attacks (i.e.,
FGSM, PGD, CW∞, and CW2 attacks).

6.1 Bypassing W-Transformations

To enable backpropagation of the gradient from a non-
differentiable but deterministic W-transformation g, the ad-
versary may utilize Backward Pass Differentiable Approxi-
mation (BPDA) [22]. Specifically, during the forward pass,
the adversary directly uses g to compute the loss, while
uses a differentiable function ĝ in the backward pass, i.e.,
approximating ∇xg(x) with ∇xĝ(x). We set ĝ(x) = x,
i.e., the identity function, which has been shown effective
for breaking non-differentiable input transformations in the
image domain [20].

To tackle randomized transformations, the adversary
may exploit Expectation over Transformation (EOT) [23],
i.e., the loss function is reformulated as Er[L(gr(x), y)] ≈
1
R

∑R
i=1 L(gri(x), y) where r denotes the randomness of g,

ri is an independent draw of the randomness, and R is the
number of independent draws. Intuitively, a randomized
transformation is independently sampled multiple times
and the average of the loss function is used during gradient
descent. It reduces the variance of the gradient and enables
a more stable search direction. We remark that four differen-
tiable and randomized transformation based defenses have
been broken using EOT in the image domain [20], [22].

Algorithm 2 Replicating features

Input: feature matrix M = [a1, · · · ,aN ]; cluster ratio 0 < clr < 1;
cluster oracle O = kmeans or warped-kmeans

Output: replicated feature matrixM′
1: k ← b 1

clr
c

2: for (i = 1; i ≤ N ; i + +) do Ai ← matrix that replicats the vector
ai k times

3: for (i = 1; d(N×k+ i−1)×clre 6= N ; i++) do append the vector
ai to Ai

4: M1 ← [A1, · · · ,AN ] . concatenate the replicated vectors
5: [b1, · · · , b|M1|]← O(M1, N)
6: Let i1, · · · , iN be a permutation of 1, · · · , N s.t. for each 1 ≤ j ≤ N ,

most of vectors of Aij are divided into the bij -cluster
7: M′ ← [Ai1 , · · · ,AiN ]
8: returnM′

6.2 Bypassing F-Transformations

Since FeCo is differentiable and randomized, one could use
EOT to bypass FeCo (cf. Section 6.1). Below, we design more
specific evasion techniques for white-box attacks, tailored to
FeCo, called Replicate attack, including Replicate-F(feature)
and Replicate-W(ave).
Replicate-F. To bypass FeCo, the adversary first crafts an
adversarial voice x′ on the model without FeCo, and then
builds a new feature matrixM′ from the feature matrixM
of x′ with the goal FeCo(M′) = M, i.e., when M′ is fed
to the model defended by FeCo,M′ is likely compressed to
M, leading to a successful attack.

The desired feature matrix M′ is built by applying
Algorithm 2. Suppose M = [a1, · · · ,aN ] where ai is the
feature vector of the i-th frame. It first replicates each
feature vector ai of M by k = b 1

clr
c times and then

appends vectors to the replicated vectors Ai’s until the
concatenated matrix M1 of [A1, · · · ,AN ] will lead to a
feature matrix with N frames after applying FeCo. It is
expected that FeCo(M1) has the same frames asM. How-
ever, the order of frames of FeCo(M1) may differ from that
of M. To overcome this problem, we run the clustering
algorithm with the parameter clr on the matrix M1 to get
the order of the frames of FeCo(M1). This order is used
to permute the replicated vectors Ai’s intended to make
FeCo(M′) = [

∑
Ai1
|Ai1 |

, · · · ,
∑
AiN
|AiN |

] beingM.

Replicate-W. Replicate-F is infeasible in practice, as the API
exposed by a SRS only accepts waveforms. Therefore, we
introduce Replicate-W, which is similar to Replicate-F except
that the adversarial voice xadv is reconstructed from M′
using Griffin-Lim algorithm [64] and fed to SRS defended
with FeCo.

7 EVALUATION OF ADAPTIVE ATTACKS

7.1 Evaluation Setup

We evaluate transformations in the same setup as in Sec-
tion 5 against adaptive attacks derived from a subset of
representative attacks according to Section 6. For adaptive
attacks derived from FGSM, CW2-0, FAKEBOB, SirenAttack
and Kenansville, we consider all the transformations, as
they are effective in the non-adaptive setting, but the effec-
tiveness varies. For adaptive attacks derived from PGD-10,
PGD-100, CW∞-10, and CW∞-100, we do not consider AS,
DS, LPF, and BPF, as they are differentiable, deterministic,
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TABLE 6: Results (Aa, SNR, PESQ) of transformations against adaptive attacks

Defense Adaptive
Techniques

L∞ white-box attacks L2 white-box attacks black-box attacks
FGSM PGD-10 PGD-100 CW∞-10 CW∞-100 CW2-0 CW2-2 CW2-50 FAKEBOB SirenAttack Kenansville
Aa Aa Aa Aa Aa Aa SNR PESQ Aa SNR PESQ Aa SNR PESQ Aa Aa Aa

QT BPDA 18.6% 0% 0% 0% 0% 14.6% 46.81 3.86 0% 44.04 3.71 - 40.1% 75.0% 9.9%
AT EOT 18.7% 4.3% 1.8% 4.5% 1.9% 64.4% 37.47 3.03 26.2% 35.45 2.88 0% 20.71 1.70 96.67% 95.0% 18.5%
AS 7 31.5% - - - - 19.0% 49.70 4.16 0% 48.49 4.11 - 14.5% 93.0% 9.8%
MS 7 1.6% 0% 0% 0% 0% 4.7% 61.76 4.45 - - 0.3% 23.0% 6.5%
DS 7 24.2% - - - - 18.2% 57.28 4.35 0% 55.02 4.29 - 15.0% 93.0% 8.5%
LPF 7 32.6% - - - - 20.2% 55.34 4.35 0% 53.46 4.29 - 18.8% 95.9% 7.1%
BPF 7 26.4% - - - - 17.3% 57.98 4.37 0% 55.99 4.31 - 12.3% 82.7% 6.8%

OPUS BPDA 89.1% 86.8% 84.4% 86.5% 84.0% 25.1% 20.97 1.89 0% 15.94 1.71 - 82.3% 73.2% 8.7%
SPEEX BPDA 89.7% 80.6% 75.4% 80.0% 75.2% 1.9% 24.33 1.92 - - 87.7% 72.0% 7.2%
AMR BPDA 90.4% 73.2% 63.4% 73.5% 63.5% 2.1% 24.30 1.96 - - 92.0% 80.1% 6.3%

AAC-V BPDA 51.9% 0% 0% 0% 0% 2.3% 48.96 4.06 - - 44.9% 97.0% 9.1%
AAC-C BPDA 88.8% 43.2% 6.2% 44.5% 6.7% 19.9% 32.67 2.59 0% 29.23 2.36 - 23.1% 65.0% 8.3%
MP3-V BPDA 52.2% 0% 0% 0% 0% 2.4% 49.95 4.12 - - 46.4% 96.1% 6.9%
MP3-C BPDA 89.4% 10.2% 0.9% 10.5% 1.2% 15.5% 34.70 2.88 0% 31.11 2.64 - 54.2% 64.2% 7.3%

EOT 54.1% 0% 0% 0% 0% 90.4% 56.20 4.14 88.0% 53.54 4.05 1.2% 18.38 1.57 92.17% 96.4% 31.0%
Replicate-W 68.0% 39.4% 49.0% 39.3% 49.9% 82.7% - - 78.7% - - 58.6% - - 87.8% 83.9% 20.0%FeCo-o(k)
Replicate-F 72.4% 7.9% 15.6% 7.3% 14.5% 92.8% - - 88.6% - - 36.7% - - 98.1% 93.2% 22.6%

Note: The accuracy in red indicates that an adaptive attack is not stronger than its non-adaptive version. The cells with gray (resp. green) color indicate that the
transformations are non-differentiable (resp. randomized). Distortion levels of L∞ attacks are not reported since they are similar. The distortion levels of Replicate
attacks are not reported since the benign and adversarial voices do not align with each other due to the replication operation.

and almost completely ineffective in the non-adaptive set-
ting. The CW2-2 (resp. CW2-50) attack is considered only
when a transformation is effective (i.e., at least 5% accuracy)
against CW2-0 (resp. CW2-2). We do not consider all the
combinations of attacks and transformations, as the current
experiments already require substantial effort.

7.2 Results
The results are shown in TABLE 6. Overall, the effectiveness
varies with transformations and attacks. Below, we compare
the results with those obtained in the non-adaptive setting
(i.e., TABLE 4), by distinguishing if the transformations are
differentiable or not.
Results of non-differentiable transformations (gray color
in TABLE 6). First, QT becomes less effective against both
white-box and black-box attacks, indicating both BPDA and
adaptive black-box attacks are able to circumvent QT.

Second, against adaptive white-box attacks, the effective-
ness of CBR speech compressions (i.e., OPUS, SPEEX, AMR,
AAC/MP3-C) does not decrease, indicating that BPDA is
not able to circumvent them. Indeed, (1) BPDA cannot
reduce the accuracy of speech CBR compressions on the
adversarial examples crafted by FGSM, PGD, and CW∞-
0 when compared with the results in TABLE 4. (2) Though
BPDA can reduce the accuracy on the adversarial examples
crafted by CW2-0 and CW2-2, much more distortions are
introduced than the non-adaptive CW2 attack, e.g., the SNR
of the adaptive CW2-0 (with BPDA) on AAC-C (resp. MP3-
C) is 32.67 dB (resp. 34.70 dB), 20 dB (resp. 18 dB) smaller
than that of the non-adaptive CW2-0 (52.99 dB, cf. TABLE 5).
Recall that CW2 does not have any perturbation threshold,
while other attacks have. Thus, adaptive CW2 attacks still
achieve high attack success rate at the cost of distortion.

In contrast, we found that BPDA with the identity func-
tion is effective in breaking VBR speech compression (i.e.,
AAC/MP3-V). Compared with the result of non-adaptive
CW2-0 attack in TABLE 4, the adaptive CW2-0 attack
equipped with BPDA reduces the accuracy of AAC-V (resp.
MP3-V) by 70.1% (resp. 59.8%) with no more than 0.2 and
4.1 dB decrease in PESQ and SNR, respectively.

To understand why BPDA has different effectiveness be-
tween QT, CBR and VBR speech compressions, we checked
the appropriateness of approximating non-differentiable
transformations by the identity function and found that

QT and VBR speech compressions are much closer to the
identity function than CBR speech compressions (cf. Ap-
pendix A.5), indicating that BPDA with the identity function
is not strong enough to bypass CBR speech compressions,
and better approximation functions are required to circum-
vent them. We leave this as future work (cf. Section 9.1 for
discussion).

Findings 6. BPDA with identity function can evade non-
differentiable QT and VBR speech compressions, but fail
to evade CBR speech compressions.

We highlight that in the image domain, [22] and [20]
successfully evade all the seven input transformation-based
adversarial defenses using BPDA with the identity function,
which is inconsistent with our Findings 6. Also, while [65]
showed MP3 robust audio adversarial examples against
speech recognition models can be crafted with BPDA at the
cost of approximately 15dB larger distortion (close to our
result of MP3-C), Findings 6 shows that MP3-V can be easily
evaded with BPDA without obvious distortion increase.

Third, CBR speech compressions become less effec-
tive against adaptive FAKEBOB and SirenAttack, espe-
cially, AAC-C and MP3-C reduce 53.3% and 16.90% ac-
curacy against adaptive FAKEBOB, respectively. However,
AAC/MP3-V achieve higher accuracy, indicating that adap-
tive FAKEBOB and SirenAttack are limited in circumvent-
ing VBR speech compressions. It is because the gradients
estimated by NES of FAKEBOB for AAC/MP3-V are not
informative enough, and the particles moving direction of
PSO in SirenAttack is not stable, due to the variable bit rate
of AAC/MP3-V.

Findings 7. Variable bit rate (VBR) makes speech compres-
sions more resistant against adaptive black-box attacks.

Results of differentiable transformations (non-gray color
in TABLE 6). All the deterministic transformations become
less effective against white-box and black-box adaptive at-
tacks, except for AS, DS, LPF, and BPF against SirenAttack
because the perturbation budget ε = 0.002 is not sufficient
enough for SirenAttack to evade these transformations.
When ε = 0.02, the adaptive SirenAttack becomes stronger
than the non-adaptive one, reducing at least 16% accuracy,
on these transformations (cf. Appendix A.6).
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Randomized transformations (i.e., AT and FeCo-o(k))
can also be evaded by the white-box adaptive attacks
with EOT or larger parameter κ. However, AT and FeCo-
o(k) remain effective on the adversarial examples crafted
by the black-box adaptive attacks FAKEBOB, SirenAttack,
and Kenansville (except for AT due to the larger distor-
tion introduced by Kenansville which suffices to overcome
the randomness of AT). This is because: their randomness
makes the estimated gradients of NES uninformative for
FAKEBOB, the moving direction of PSO unreliable for Sire-
nAttack, and randomized decision for Kenansville.

Findings 8. Differentiable transformations become less
effective against the white-box adaptive attacks, but ran-
domized transformations remain resistant to the black-box
adaptive attacks.

Replicate attack versus EOT. We observe that EOT is more
effective than the Replicate attack to bypass FeCo-o(k). To
understand the reason, we analyze if the expectation (i.e.,
FeCo(M′) = M) of the Replicate attack is satisfied. We
found that FeCo(M′) has almost the same frames (i.e.,
feature vectors) as M, but their orders are not the same,
due to the randomness of FeCo. Indeed, it is impossible
to ensure the same orders, even if a brute-force adversary
can enumerate the randomness, where the adversary has to
craft and submit an adversarial voice for each randomness,
would result in a low success rate (cf. Appendix A.7).
In contrast, EOT allows to craft an adversarial voice that
remains adversarial against the randomness of FeCo by
taking average of the loss functions conditioned at multiple
randomness during the gradient descent.

Besides, Relicate attack replicates the speech content of
each frame, and the lossy reconstruction of voices from
features introduce additional noise, making the adversar-
ial voices more perceptible (visit our website for listening
audios) and less robust (i.e., Replicate-W is worse than
Replicate-F for strong attacks).

Findings 9. Against FeCo, EOT is more effective than
Replicate attack in terms of both attack success rate and
imperceptibility.

8 EVALUATION OF TRANSFORMATIONS ON AD-
VERSARIALLY TRAINED MODEL

8.1 Evaluation Setup

As ivector-PLDA cannot be adversarially trained due to
unsupervised learning, we adversarially train AudioNet for
the CSI-NE task using the datasets Spk251-train and Spk251-
test for training and testing, respectively. The training uses a
minibatch of size 128 for 300 epoches, cross-entropy loss as
the objective function, and Adam [66] to optimize trainable
parameters. The naturally trained model is denoted by
Standard. For adversarial training, we use PGD with 10
steps (i.e., PGD-10) to generate adversarial examples. The
model is denoted by Vanilla-AdvT.

For each chosen transformation X, we implement it as
a proper layer in AudioNet. Note that this layer does
not involve any trainable parameter, similar to the ReLU
activation layer [67]. The resulting network is adversarially

trained the same as above, except that BPDA is leveraged
for training the network with non-differentiable transfor-
mations and EOT with R=10 is leveraged for training the
network with randomized transformations. The resulting
model is denoted by AdvT+X. We do not consider speech
compressions, LPF and BPF, as BPDA is not effective for
estimating the gradients of speech compressions, and the
accuracy of the resulting model with LPF/BPF is extreme
low on both training dataset (i.e., 24.10%/23.65%) and test-
ing dataset (i.e., 2.04%/2.25%).

The adaptive attacks are derived from FGSM, PGD-10,
PGD-100, CW∞-10, CW∞-100, CW2-1, FAKEBOB, SirenAt-
tack, and Kenansville, armed with EOT (R=50) and BPDA to
evade randomized and non-differentiable transformations.
To improve the attack capability of FAKEBOB, we increase
the parameter samples per draw m to 300, allowing more
precise gradient estimation at the cost of increased attack
overhead. Since adversarially trained models tend to yield
smaller loss than naturally trained one, we increase the
initial trade-off constant c of CW2 attack from 0.001 to
0.1 when attacking Vanilla-AdvT and AdvT+X. This helps
finding adversarial examples with better imperceptibility
according to our experiments.

8.2 Results

The results are reported in TABLE 7. We observe that the
sole adversarial training (i.e., Vanilla-AdvT) is effective for
defeating adversarial examples compared over Standard
except for Kenansville, at the cost of slightly sacrificing ac-
curacy on benign examples (i.e., Ab reduces from 99.06% to
95.67%). Adversarial training either significantly improves
the accuracy by more than 53% on the adversarial examples
crafted by L∞ attacks, or amplifies the distortions of the
adversarial examples crafted by CW2-1 (the SNR of Vanilla-
AdvT is 18 dB smaller than that of Standard). However,
adversarial training does not improve the model accuracy
on the adversarial examples crafted by Kenansville. This is
not surprising since Kenansville is a signal processing-based
attack while the adversarial examples used for adversarial
training is generated by the optimization-based attack PGD-
10. We also tried to improve the model robustness against
Kenansville by incorporating Kenansville in adversarial
training, but the result is not promising (cf. Section 9.1 for
discussion).

While sole adversarial training is often effective com-
pared over Standard, the combination of adversarial train-
ing with a transformation, highlighted in green color in
TABLE 7, does not necessarily bring the best of both worlds,
which also exists in image domain [20].

Interestingly, we found that adversarial training com-
bined with FeCo-o(k), i.e., AdvT+FeCo-o(k), is very effec-
tive, achieving higher accuracy on both the adversarial
and benign examples compared with Vanilla-AdvT. This
improvement is brought by the randomness of FeCo. In fact,
during the training of AdvT+FeCo-o(k), the training data
are randomly transformed by FeCo, which enhances the
quantity and diversity of the training data, similar to data
augmentation in the image domain [37]. Consequently, the
distribution mimicked by the training dataset {(xi, yi)}Bi=1

becomes closer to the underlying data distribution D (cf.
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TABLE 7: Results (Aa, SNR, PESQ) on Standard, Vanilla-AdvT, and AdvT+Transformation

R1
Score Ab

L∞ white-box attacks L2 white-box attacks black-box attacks
FGSM PGD-10 PGD-100 CW∞-10 CW∞-100 CW2-1 FAKEBOB SirenAttack Kenansville
Aa Aa Aa Aa Aa Aa SNR PESQ Aa Aa Aa

Standard 6.54 99.06% 19.61% 0% 0% 0% 0% 0% 55.87 4.47 0.35% 0.38% 0.03%
Vanilla-AdvT 61.48 95.67% 75.20% 58.19% 53.83% 58.95% 55.56% 0% 36.96 3.91 85.63% 86.73% 0.03%

AdvT+QT 67.68 95.74% 88.19% 72.12% 64.08% 73.20% 65.43% 0.7% 46.59 3.86 79.84% 88.81% 0.31%
AdvT+AT 71.11 95.57% 71.10% 61.10% 59.22% 61.47% 59.89% 9.3% 36.21 3.90 94.69% 95.39% 39.80%
AdvT+AS 58.35 93.59% 82.72% 53.83% 43.12% 54.10% 45.24% 0% 35.46 3.45 83.55% 87.08% 0.03%
AdvT+MS 54.66 92.76% 65.85% 49.77% 44.13% 50.33% 46.66% 0% 37.85 3.66 76.38% 77.24% 0.17%
AdvT+DS 56.41 95.32% 70.14% 51.44% 44.06% 52.13% 45.41% 0% 36.23 3.91 79.91% 85.04% 0.69%

AdvT+FeCo-o(k) 88.03 97.81% 95.06% 93.65% 85.50% 94.14% 86.11% 96.0% 29.89 2.53 98.08% 97.42% 39.94%

Note: The top-1 is highlighted in blue excluding Standard. The results in green background indicate that the transformation worsens adversarial training.
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Fig. 4. x-axis is EOT size (R) and y-axis is Aa.

Section 3.3), on which AdvT+FeCo-o(k) encounters more
diverse adversarial examples during training. Thus, it be-
comes more robust than Vanilla-AdvT.

Compared to the other transformations, FeCo enjoys
larger randomness space than AT (cf. Section 8.3) and other
deterministic transformations (without randomness), hence
AdvT+FeCo-o(k) outperforms other AdvT+X.

8.3 Attack Parameters Tuning
To thoroughly evaluate the robustness of AdvT+FeCo-o(k)
against adaptive versions of the PGD and CW2 attacks,
we further conduct a series of experiments by tuning the
attack parameters, including EOT size (R), number of steps
(#Steps), step size (α), and confidence (κ). Since these ex-
periments on the entire Spk251-test dataset require huge
effort, we randomly select 1,000 voices out of 2,887 voices
in Spk251-test from which adversarial examples are crafted.
EOT size (R). We study the impact of EOT size (R) on the
effectiveness of AdvT+FeCo-o(k). We set PGD’s step size
α = ε/5 = 0.0004 (the same as previous experiments)
and #Steps=1, 100, 200. For each number of steps (#Steps),
EOT size (R) ranges from 1 to 300. The results are shown in
Fig. 4. We observe that with the increase of EOT size (R), the
accuracy of both AdvT+FeCo-o(k) and AdvT+AT decreases.
This is because larger EOT size (R) allows EOT to more ac-
curately approximate the distributions of randomized trans-
formations, enabling the PGD attack to obtain more reliable
gradient and thus more stable search direction for adver-
sarial examples. However, when R ≥ 275 (resp. R ≥ 50),
further increasing R has negligible effect on AdvT+FeCo-
o(k) (resp. AdvT+AT), i.e., the accuracy becomes stable.
Note that AdvT+FeCo-o(k) converges at a larger EOT size
(R) than AdvT+AT, i.e., 275 vs. 50. Recall that EOT is
exploited to overcome the randomness of a transformation.
Thus, EOT size (R) is a reasonable metric for quantifying
the degree of randomness that a transformation introduces.
Accordingly, we can conclude that FeCo introduces larger
randomness than AT.
Number of steps (#Steps). We study the impact of the num-
ber of steps (#Steps) in the PGD attack on the effectiveness of
AdvT+FeCo-o(k). We set PGD’s step size α = ε/5 = 0.0004
and EOT size R = 1, 100, 300. The number of steps (#Steps)
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Fig. 6. Tuning the step size (α) and confidence (κ).

ranges from 1 to 200 for every EOT size (R). The results
are shown in Fig. 5. We observe that the accuracy of
AdvT+FeCo-o(k) decreases gradually when #Steps increase
from 1 to 100. This is not surprising as increasing #Steps
improves the strength of adversarial examples (cf. Fig. 3
in Appendix). However, when #Steps>100, the accuracy
of AdvT+FeCo-o(k) remains almost unchanged with the
increase of the number of steps (#Steps).
Step size (α). Based on the above results, we fix #Steps=100
and EOT size R = 275 when studying the impact of
step size (α) on the effectiveness of AdvT+FeCo-o(k) by
setting α = ε/100, ε/40, ε/30, ε/20, ε/10, ε/5. The results
are shown in Fig. 6(a). We found that decreasing step size
reduces the accuracy of both Vanilla-AdvT and AdvT+FeCo-
o(k). We conjecture that the PGD attack with small step size
is less likely to oscillate across different directions, thus
can search for adversarial examples in a more stable way.
However, when α ≤ ε/20 (resp. α ≤ ε/40), decreasing
step size (α) reduces the attack success rate on AdvT+FeCo-
o(k) (resp. Vanilla-AdvT).

From the above three stuides, we can observe that
the accuracy of AdvT+FeCo-o(k) plateaus at 60.62% with
R = 275, #Steps=100, and α = ε/20, while the accuracy of
Vanilla-AdvT plateaus at 47.0% withR = 1, #Steps=100, and
α = ε/40. Thus, AdvT+FeCo-o(k) achieves 13.62% higher
accuracy than Vanilla-AdvT. Furthermore, the attack has
to query the AdvT+FeCo-o(k) model 275 × 100 = 27, 500
times, while it only has to query the Vanilla-AdvT model
1 × 100 = 100 times. This indicates that FeCo-o(k) signifi-
cantly improves the attack cost by two orders of magnitude.
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Confidence (κ). We launch the CW2 attack by setting the
parameter κ = 1, 5, 10, 15, 20, 25, where the larger κ, the
stronger the attack. As shown in Fig. 6(b), though the
accuracy on the adversarial examples decreases with the
increase of κ, the distortion also increases. For instance,
when κ = 25, the attack success rate is nearly 100%, but
the SNR (resp. PESQ) is 15.61 dB (resp. 1.40), 3 times (resp.
2 times) smaller than that of Standard, indicating that the
adversarial examples become much less imperceptible. This
demonstrates the effectiveness of AdvT+FeCo-o(k) against
powerful attacks.

Findings 10. Among the adversarially trained models
combined with transformations, AdvT+FeCo-o(k) is the
unique one that is effective against all the adaptive attacks.
Compared with Vanilla-AdvT, it improves the accuracy on
both benign examples and adversarial examples against
L∞, L2 and signal processing-based adaptive attacks,
largely increases the attack cost of the PGD based adaptive
attack, and significantly worsens the imperceptibility of
adversarial examples crafted by the CW2 based adaptive
attack.

9 DISCUSSION

We discuss some key findings and the limitations of our
study, interspersed with possible future works motivated
by them.

9.1 Discussion of Findings
Combination of different transformations. According to
Findings 1, TABLE 4, and TABLE 6, the effectiveness of
transformations varies with attacks. Moreover, different
types of transformations operate on different domains (time
vs. frequency), different levels (waveform vs. acoustic fea-
ture) and own different properties (differentiable vs. non-
differentiable, deterministic vs. randomized). Therefore, it is
interesting to study if the combinations of transformations
(e.g., AT and FeCo) could improve adversarial robustness.
Attacks against speech compression defenses. Findings
6 and Findings 7 reveal that BPDA, FAKEBOB and Sire-
nAttack are hard to circumvent non-differentiable CBR and
VBR speech compression, respectively. BPDA cannot suc-
ceed since replacing speech compression with the identity
function in the backward pass is not precise enough (cf.
Fig. 10 in Appendix). Diving deeper into speech compres-
sion, we found that its bit allocation would assign unequal
number of bits to voice sample points, according to their
contribution to human perception of the voices. Conse-
quently, the transformed voice by speech compression does
not align with the original one in time axis, making speech
compression far from the identity function. To improve
BPDA, we may utilize time sequence alignment techniques,
e.g., dynamic time warping [68], to align the original and
transformed voices to make speech compression close to
the identity function as much as possible, or adopt more
accurate approximation functions than the identity function.
The failure of FAKEBOB and SireAttack may be attributed
to the large non-smoothness introduced by the variable bit
rate of speech compression. The smoothness assumption
of NES and PSO does not hold anymore [69], making the

estimated gradient of NES and the search direction of PSO
not reliable and informative enough for gradient descent.
NATTACK [69], which will not be impeded by the non-
smoothness of models, and gradient-free decision-only at-
tacks from the image domain, e.g., boundary attack [70] and
evolutionary attack [71], may be good alternatives to evade
speech compression.
Black-box attacks against randomized defenses. According
to Findings 8, all the black-box attacks (FAKEBOB, SirenAt-
tack, and Kenansville) have limited attack success rate on
the models with randomized transformations (e.g., AT and
FeCo). This is probably because NES of FAKEBOB becomes
ineffective for estimating gradients, PSO of SirenAttack
becomes unstable for searching better particle locations,
and Kenansville gets misled in updating the attack factor,
in presence of randomness. To bypass such randomized
transformations, one may use NATTACK which is effective
in breaking the randomized defenses in the image domain.
Adapting NATTACK to speaker recognition is an interest-
ing future work.
Robust training against Kenansville. The results in TA-
BLE 7 show that adversarial training fails to improve robust-
ness against Kenansville. The reason is that the adversarial
training uses the optimization-based attack PGD, while
Kenansville is a signal processing-based attack. We also
tried to incorporate Kenansville into adversarial training
but found that it not only fails to increase adversarial ro-
bustness against Kenansville, but also significantly degrades
accuracy on benign voices. The former may be due to low-
confidence of adversarial examples crafted by Kenansville
that are not suitable for solving the inner maximization
problem in adversarial training (cf. in Section 3.3) while
the latter may be due to large distortion introduced by
Kenansville. Details refer to TABLE 5 in Appendix. Since
adversarial training does not work well for Kenansville,
we may turn to other robustness training techniques, e.g.,
Lipschitz regularization [9]. We leave this as future work.

9.2 Discussion of Limitations

Suitability of audio imperceptibility metrics. We use L∞
and L2 norms to quantify the perturbation magnitude in
adversarial example generation, and adopt SNR and PESQ
to measure the imperceptibility of crafted adversarial voices.
These metrics have been widely adopted in the literature [9],
[10], [11], [13], [14], [15], [16] and in general, can consistently
reflect the degree of distortions according to our experi-
mental results. Moreover, PESQ is an objective perceptual
measure simulating the human auditory system [62]. How-
ever, it remains unknown to what extent do these metrics
correlate with human hearing perception. In the image
domain, the proximity of two images measured by Lp norm
is neither necessary nor sufficient for them to be visually
indistinguishable by humans [72]. Therefore, it is worthy
to explore in future the sufficiency and necessity of these
metrics in quantifying the audio perceptual similarity.
Securing commercial SRSs. We did not directly target com-
mercial SRSs, although they are also vulnerable to black-box
attacks [15], [73]. The reason is that it is more important
to consider the most powerful adversaries when evaluat-
ing defenses, while the adversaries are not able to mount
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white-box attacks without having access to the internal
structures of commercial SRSs. Instead, we directly evaluate
defenses against the black-box attacks FAKEBOB [15], Sire-
nAttack [16] and Kenansville [21] which could be used to
attack commercial SRSs and FAKEBOB is able to fool com-
mercial SRSs. Investigating and evaluating if our findings
are applicable to commercial SRSs is left for future work.
Detection of adversarial voices. While we focus on adver-
sarial training and transformation based defenses against
adversarial attacks, effective transformations could be lever-
aged to detect adversarial voices by comparing the degree-
of-change of benign and adversarial voices before and af-
ter transformations [35], [36]. This is reasonable as benign
voices are generally more robust [74], their results are less
likely to change after transformations, which is validated by
our Findings 11 in Appendix A.4.2.
Defending against over-the-air attacks. Our evaluation fo-
cuses on digital attacks where adversarial voices are directly
fed to the SRS via exposed API, as it is more important
to evaluate defenses against powerful adversaries while
over-the-air attack will be compromised by various sources
of distortions [75]. We emphasize that input transforma-
tions are also applicable to over-the-air attacks where the
adversarial voices are played and recorded by hardware
and transmitted in the air. Transformations can back-up
liveness detection [76], [77] when liveness detection has false
negatives, where liveness detection detects over-the-air at-
tacks by exploiting the different characteristics of the voices
generated by human vocal tract and electronic loudspeaker.
Evaluating the effectiveness of these transformations in de-
fending against over-the-air attacks is left for future work.
Input transformations against other attacks. This work
focuses on defending against adversarial attacks. There are
other attacks against SRSs which have different attack goals
and scenarios from adversarial attack. Thus, it is interesting
to investigate whether input transformations can defend
against those attacks. As a first attempt, we carry out a
preliminary evaluation against hidden voice attack [78] and
speech synthesis attack [79] (cf. Appendix A.8). We found
that input transformations are also effective in mitigating
these two attacks and speech synthesis attack is more dif-
ficult to defeat than the other two attacks. More thorough
evaluations against more other attacks are needed in the
future.

10 RELATED WORK

Adversarial attacks and defenses in the speech and speaker
recognition domains recently have attracted intensive at-
tention. Though both of them share a similar feature ex-
traction pipeline, they perform different tasks and speaker
recognition owns unique enrollment phase and decision
making mechanism [15], [80]. Thus, in this section, we do
not discuss adversarial attacks and defenses that focus on
speech recognition [34], [60], [65], [81], [82], [83], [84], [85],
[86], [87] (cf. [63], [80] for survey). There are other voice
attacks in the speaker recognition domain, such as hidden
voice attacks [78] and spoofing attacks [79], [88], [89], [90],
[91], [92]. Though these attacks have different attack goals
and scenarios from adversarial attacks [15], our preliminary
evaluation shows that it is possible to mitigate hidden

voice attack [78] and speech synthesis attack [79] via input
transformations. Below, we discuss adversarial attacks and
defenses in the speaker recognition domain.
Adversarial attacks. Existing white-box attacks in the
speaker recognition domain are derived from the attacks
in the image recognition domain. The FGSM method was
adopted to attack the CSI-NE task [17] and the SV task [7],
[8]. Zhang at al. used PGD to attack the CSI-NE task [10].
Jati at al. attacked the CSI-NE task by leveraging FGSM,
PGD, CW∞ and CW2 [9] methods. However, these attacks
have not been thoroughly evaluated on the systems with
various defenses and it is difficult to conclude which one
is better due to inconsistent benchmarks (e.g., models and
datasets). We consider all these white-box attacks and adap-
tive variants thereof in this work. Though our main goal is
to investigate and evaluate transformation and adversarial
training based defenses, our results also provide a fair
comparison of these attacks under the same settings when
various defenses are deployed.

There are also some specific white-box attacks, aiming
at crafting universal perturbations [11], [12] or improving
the imperceptibility of adversarial voices [13], [14], yet these
works did not consider any defense. We do not incorporate
these attacks into our study, as all of them are not publicly
available and non-trivial to reproduce.

FAKEBOB [15], SirenAttack [16], Kenansville [21], and
Occam [73] are four black-box adversarial attacks target-
ing SRSs, where FAKEBOB, SirenAttack, and Occam are
optimization-based attacks, and Kenansville is a signal
processing-based attack. All of them, except for Occam
which is not publicly available and non-trivial to reproduce,
have been used to evaluate defenses in this work.
Adversarial defenses: mitigation and detection. Robust
training is one way to mitigate adversarial examples. [9],
[16] showed that adversarial training can enhance the ro-
bustness of models. [9] also proposed another technique
which adds a regularization term using Lipschitz smooth-
ness to the loss function for model training. This technique
performs better than FGSM based adversarial training, but
worse than PGD based adversarial training. This motivated
us to evaluate PGD based adversarial training in this work.

The transformations (QT, MS and DS) and (DS and AS)
have been evaluated against FAKEBOB and SirenAttack re-
spectively. But, they were neither combined with adversarial
training nor thoroughly evaluated under various attacks.
Our evaluation shows that these transformations are not
effective against adaptive attacks and cannot improve the
adversarial robustness of adversarially trained models. Fur-
thermore, we investigate and evaluate significantly more
defenses against both non-adaptive and adaptive attacks.
We note that AT, Auto-Encoder [36], [74], and GAN [93]
have been evaluated against four white-black attacks in
[94]. Compared to the transformations considered in this
work, Auto-Encoder and GAN are data-dependent meth-
ods which require additional overhead for training from
benign examples to model the distribution of unperturbed
voices, thus may exhibit different performance on differ-
ence datasets. Although BPDA was used to solve the non-
differentiability of GAN in [94], the randomness of AT was
not properly addressed, leading to false sense of adversarial
robustness. Our findings show that AT becomes ineffective
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against adaptive attack armed with EOT to address the
randomness. Moreover, [94] did not consider black-box at-
tacks, while we did and found some useful related findings
(Findings 6-8).

Detection is another way to defend against adversarial
voices. [95] proposed to detect adversarial examples by
training a CNN-based binary classifier, while [96] checks the
consistence of results of twin models. However, these ap-
proaches have not been evaluated against adaptive attacks
and may be evaded by incorporating the detector into loss
functions [97]. Another direction is liveness detection [76],
[77] which detects malicious audios by exploiting the dif-
ferent characteristics of the voices generated by human
vocal tract and electronic loudspeaker. Liveness detection
is a promising approach for defeating physical adversarial
attacks. However, it is not suitable for API attacks where
adversarial voices are directly fed to the SRSs in the form of
audio file via exposed API.

11 CONCLUSION

We have systematically investigated diverse transforma-
tions for mitigating adversarial voices in the speaker recog-
nition domain, including waveform-level transformations
in both time-domain and frequency-domain, speech com-
pression, and feature-level transformations, and covering
all the differentiable, non-differentiable, deterministic, and
randomized types. We have thoroughly evaluated those
transformations on both naturally trained and adversarially
trained models against promising white-box and black-box
attacks, as well as carefully designed adaptive variants for
circumventing different types of transformations. Our study
revealed lots of interesting and useful findings for both
researchers and practitioners.

Among all the transformations, we showed that our
novel feature-level transformation FeCo is rather effective
against black-box attacks and improves the robustness of
adversarially trained models against both white-box and
black-box adaptive attacks in terms of accuracy, attack cost,
and distortion level. This opens up a new research direction
on transformations for mitigating adversarial examples. We
pointed out many possible future works in both adversarial
attacks and defenses in the speaker recognition domain, and
released our evaluation platform SPEAKERGUARD to foster
further research.
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APPENDIX A
SUPPLEMENTAL MATERIAL

A.1 Details of the Datasets
Spk10-enroll consists of 10 speakers (5 males and 5 females),
10 voices per speaker. The speakers are randomly selected
from the “test-other” and “dev-other” subsets of the pop-
ular dataset Librispeech [9], [10], [11], [15], [57]. For each
speaker, we select the top-10 longest voices in order to have
better enrollment embedding [98], [99]. The voices in Spk10-
enroll are used for speaker enrollment of the CSI-E, SV, and
OSI tasks. Spk10-test consists 10 speakers (5 males and 5
females), 100 randomly selected voices per speaker. Spk10-
test has the same speakers as Spk10-enroll, but distinct
voices.

Both Spk251-train and Spk251-test are taken from the
“train-clean-100” subset of Librispeech, each of which has
the same 251 speakers (126 males and 125 females). Follow-
ing [9], for each speaker, 90% of his/her voices are added
into Spk251-train, and the remaining 10% are added into
Spk251-test. Spk251-train is used to train background models
while Spk251-test is used for adversarial attacks on the CSI-
NE task. Note that there are no overlapping speakers among
Spk251-train, Spk10-enroll and Spk10-test.

A.2 Attacks

A plethora of adversarial attacks have been proposed, most
of which are primarily studied in computer vision [100]. It
is largely unknown if they can successfully be ported to
the speaker recognition domain. Thus, we only consider the
attacks that have been demonstrated to be effective on at
least one speaker recognition task, including four white-box
attacks: Fast Gradient Sign Method (FGSM) [42], Projected
Gradient Descent (PGD) [43], Carlini and Wagner’s attack
(CW) [58], an integration of the CW and PGD attacks, and
three black-box attacks: FAKEBOB [15], SirenAttack [16],
and Kenansville [21].

FGSM perturbs an input x by performing one-step
gradient ascent to maximize a loss function. Formally, a
potential adversarial example is:

x̂ = x+ ε× sign(∇xL(x, y)),

where ε is the step size of gradient ascent, sign is the sign
function, and L(x, y) is the loss function describing the cost
of classifying x as label y.

PGD is an iterative version of FGSM. In each iteration,
PGD applies FGSM with a small step size α and clips the
result to ensure that it stays within an ε-neighborhood of
the original input x. The intermediate example after the i-th
iteration is:

xi = clipx,ε(x
i−1 + α× sign(∇xL(xi−1, y))).

Note that the PGD attack starts from a randomly perturbed
example, which helps the attack find a better local optimum.
We denote by PGD-n the PGD attack with n iteration steps,
where the larger n is, the stronger the attack is.

CW is introduced to search for adversarial examples
with the small magnitude of perturbations. It formulates
finding adversarial examples as an optimization problem
whose objective function is the trade-off (controlled by a

factor c) between the effectiveness and imperceptibility of
adversarial examples. The effectiveness is measured by a
loss function L(x, y) such that L(x, y) ≤ 0 if and only if
the attack succeeds. The imperceptibility can be instanti-
ated by L0, L2, and L∞ distance between adversarial and
original examples, leading to three versions of CW attack,
denoted by CW0, CW2, and CW∞, respectively. CW attack
is equipped with a parameter κ, where the larger κ is, the
stronger the adversarial examples are. We consider CW2 and
CW∞ in this works and denote by CW2-x (resp. CW∞-n)
the CW2 (resp. CW∞) attack with κ = x (resp. n iteration
steps).

FAKEBOB is similar to PGD except that it estimates
gradients via Natural Evolution Strategy (NES) [24] that
only relies on the output of the model. NES first creates m
noisy examples by adding Gaussian noises onto an example.
Then, the values of the loss function of m examples are
obtained by querying the model, which are finally exploited
to approximate the gradient. FAKEBOB adopts an early-
stop strategy to reduce the number of queries, i.e., stop
searching once an adversarial example is found. Similar to
the CW attack, FAKEBOB also provides an option to control
the confidence of adversarial examples via a parameter κ.
FAKEBOB also proposed the first algorithm to estimate the
threshold for SV and OSI tasks. One of the crucial parameter
of FAKEBOB is the samples per draw m of NES.

Integration of the CW and PGD attacks (i.e., CW∞ in
our evaluation) uses the loss function of the CW attack but
optimized by PGD, the same as [43], to improve the attack
efficiency.

SirenAttack is a gradient-free black-box attack based on
Particle Swarm Optimization (PSO) [101] that only relies
on the output of the model. PSO maintains a swarm of
particles, each of which is a candidate solution to the op-
timization problem. They are iteratively updated via the
weighted linear combination of three parts, i.e., inertia,
local best solution, and global best solution. When the
algorithm terminates, the global best solution returns an
optima. SirenAttack runs the PSO subroutine multiple times
(each run called an epoch) and globally keeps track of the
best solution. One of the crucial parameter of SirenAttack is
the number of particles n particles used in PSO.

Kenansville is a signal-processing based attack which
crafts adversarial voices by decomposing benign voices and
then reconstructing voices using part of the decomposing
information (other decomposing information is discarded).
The amount of information used in reconstruction is con-
trolled by the attack factor which will be iteratively updated
via a binary search to improve the imperceptibility of the
attack. Kenansville features two signal processing methods,
i.e., Fast Fourier Transform (FFT) and Singular Spectrum
Analysis (SSA), where FFT method is not considered in
our evaluation since it is much less effective than the SSA
method [63].

A.3 Tuning the Parameters of Transformations
To tune the parameters of the transformations, we vary the
parameters as shown in Table 8 and conduct all the attacks
mentioned in Section 5.

The results are depicted as curves in Fig. 7, Fig. 8, and
Fig. 9. We choose the optimal parameters according to the
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TABLE 8: The ranges and optimal values for parameters of
transformations.

Transformation
(Parameter) Range Optimal

QT (q) 128, 256, 512, 1024 512
AT (snr) 2 to 20 dB, step 2 dB 16 dB

AS (k) 3 to 21, step 2 17
MS (k) 3 to 21, step 2 7
DS (τ ) 0.05 to 0.95, step 0.05 0.45

LPF (fp, fs) fp: 4000 Hz
fs: 4500 to 8000 Hz, step 500 Hz fs=4500 Hz

BPF
(fpl, fpu, fsl, fsu)

fpl: 300 Hz
fpu: 4000 Hz

fsl: 50 to 200 Hz, step 50 Hz
fsu: 5000 Hz to 8000 Hz, step 500 Hz

fsl=150 Hz
fsu=6000 Hz

OPUS (bo) 6-20 kbps, step 1 kbps 8 kbps
SPEEX (bs) 4-44 kbps, step 2 kbps 11 kbps

AMR (br) 6.6, 8.85, 12.65, 14.25, 15.85
18.25, 19.85, 23.05, 23.85 kbps 6.6 kbps

AAC-V (qc) 1-5, step 1 1
AAC-C (bc) 15-85 kbps, step 5 kbps 15 kbps
MP3-V (qm) 0-9, step 1 4

MP3-C (bm) 8, 16, 24, 32, 40, 48,
64, 80, 96, 112, 128, 160 kbps 24 kbps

FeCo (clm, clr) clm: kmeans/warped-kmeans
clr : 0.05 to 0.95, step 0.05

FeCo-o(k): clr=0.2
FeCo-o(wk): clr=0.35

FeCo-d: clr=0.1
FeCo-c: clr=0.1
FeCo-f: clr=0.1

R1 score on FGSM, as R1 score assigns equal importance
to the accuracy on benign examples and the accuracy on
adversarial examples. We consider FGSM as it is the weakest
one among all the attacks, as shown in the (Baseline) row
of TABLE 4, and a good parameter should provide strong
resilience to the weakest attack. Although these optimal
parameters may not be the optimal ones against the other
attacks, they are still very promising.

A.4 More Details of Section 7
In this section, we report more detailed results of the evalu-
ation of transformations against non-adaptive attacks.

A.4.1 Impact of Step size in PGD Attack
TABLE 9 reports the effectiveness of input transformations
in terms of accuracy against the PGD attack when step size
α is fractional to the number #Steps of steps, namely,
α = ε

5#Steps , α = ε
#Steps , and α = 10×ε

#Steps (Recall that previously
we set α = ε

5 ). We can observe that increasing the number
#Steps of steps and simultaneously decreasing step size
α does not necessarily reduce the effectiveness of input
transformations (e.g., QT, AT, MS, OPUS, SPEEX and FeCo-
o).

A.4.2 More Findings
In this subsection, we discuss in more detail the side effect
of transformations on benign examples and usability of
transformations.
Side effect on benign examples. Most transformations
slightly degrade accuracy on benign examples, but the
degradation varies. The accuracy degradation reflects the
degree of distortions induced by each transformation, i.e.,
how well the transformation preserves the speech quality.
Among all the transformations, QT, AT, MS, and OPUS
cause the greatest accuracy degradation (> 10%), indicating
that they add more distortions. AAC-V, MP3-V and FeCo-
d(k) almost have no side effects, reducing only 0%, 0.2%
and 0.4% accuracy on benign examples, respectively. We

observe that dynamic bit rate based speech compressions
have fewer side effects (e.g., MP3-V vs. MP3-C, and AAC-V
vs. AAC-C), as they preserve the better quality of voices.
Among the feature-level transformations, we observe that
FeCo-d outperforms the others, indicating that FeCo has
fewer effects on the delta features than the others.
Findings 11. Most of transformations can be freely com-
posed with pre-trained models to defeat adversarial ex-
amples with slight accuracy degradation on the benign
examples. Input transformations with dynamic bit rate
and delta feature transformation have the least side effects,
while the input transformations QT, AT, MS, and OPUS
have the greatest side effects.

Usability of transformations. Though effective transfor-
mations against adversarial examples degrade accuracy on
benign examples, compared to Baseline, all transformations
show good usability in terms of the R1 score. The best one
(i.e., AT) improves the R1 score by 77.3% and the worst one
(i.e., MP3-V) improves it by 19.4%. This is because in gen-
eral, the accuracy improvements on adversarial examples
are often larger than the accuracy degradation on benign
examples.

Among the feature-level transformations, we can ob-
serve that FeCo-o and FeCo-d often significantly outper-
form. This is because transformation on preceding features
also affects succeeding features, which amplifies the effect
of the transformation. Between two clustering algorithms
kmeans and warped-kmeans, the effectiveness varies with
attacks and in general they are almost comparable. In terms
of the R1 score, FeCo-o with kmeans, i.e., FeCo-o(k), ranks
the first place.

Findings 12. All transformations exhibit good usability
since they lead to significantly better R1 scores. While
the transformations QT, AT, and FeCo-o(k) degrade the
accuracy on benign examples, they are the three most
effective transformations against non-adaptive attacks.

A.5 Approximation of Non-differentiable Transforma-
tions by the Identity Function
To measure how accurate it is to substitute a non-
differentiable transformation with the identity function, we
compute the average L2 distance between the original
voices and the voices after the transformation. The results
are shown in Fig. 10, where the L2 distance is given in the
caption of each sub-figure, and the curves in each sub-figure
are the waveform of a random chosen voice and the voice
after transformation.

From Fig. 10, we can observe that the L2 distance
of QT, AAC-V and MP3-V is much smaller than that of
OPUS, SPEEX, AMR, AAC-C and MP3-C, indicating that
QT, AAC-V and MP3-V are much closer to the identity
function. We can also observe that the difference between
the original voice and the voice after transformation of CBR
speech compressions is more significant than that of QT
and VBR speech compressions (i.e., AAC-V and MP3-V).
In conclusion, it seems that it suffices to replace QT and
VBR speech compressions with the identity function in the
backward pass, but more accurate approximation functions
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Fig. 7. The performance of input transformations vs. parameter values.
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Fig. 8. The performance of input transformations vs. parameter values. For better visualization, we fix fsl = 150 Hz of BPF and shows how its
performance varies with fsu.
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Fig. 9. The performance of input transformations vs. parameter values.
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TABLE 9: The effectiveness of input transformations in terms of accuracy (%) against non-adaptive PGD attack when the step size is fractional to
the number of steps (#Steps).

α = ε
5#Steps α = ε

#Steps α = 10ε
#Steps

10 20 30 40 50 100 10 20 30 40 50 100 10 20 30 40 50 100
QT 52.4 60.3 64.1 66.3 68.4 71.7 72.1 76.0 77.2 78.4 79.1 81.2 48.7 55.3 58.3 61.7 63.7 70.2
AT 76.3 81.9 85.1 86.8 88.2 90.3 86.4 90.5 91.0 91.8 92.2 92.6 68.6 75.0 78.3 81.0 81.9 87.6
AS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 5.4 9.5 24.8 0.0 0.0 0.0 0.0 0.0 0.0
MS 13.6 22.3 29.1 35.8 38.6 50.4 31.2 39.4 46.6 50.0 52.1 58.0 22.5 17.9 15.1 15.1 14.8 28.8
DS 0.0 0.0 0.1 0.6 1.2 4.1 0.8 0.6 1.5 2.2 3.9 9.5 6.5 0.7 0.0 0.0 0.0 0.1
LPF 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.3 0.6 1.2 3.8 0.8 0.0 0.0 0.0 0.0 0.1
BPF 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 1.2 2.1 3.2 9.1 1.0 0.0 0.0 0.0 0.0 0.0

OPUS 13.7 17.0 21.6 26.2 31.5 44.6 29.9 38.2 44.6 48.2 51.9 59.3 31.8 19.1 15.2 14.3 15.4 26.9
SPEEX 1.7 2.9 6.3 9.9 14.2 28.7 6.4 14.1 21.9 27.0 31.7 44.0 16.8 7.5 4.8 4.5 5.5 14.6
AMR 5.5 8.5 14.9 19.5 24.4 38.4 11.1 21.1 29.3 34.6 39.9 48.7 18.5 10.6 5.8 6.1 7.4 17.8

AAC-V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.7 0.0 0.0 0.0 0.0 0.0 0.0
AAC-C 1.5 1.7 3.0 4.5 6.0 13.1 2.3 4.0 6.3 7.3 10.1 19.2 14.3 1.5 0.3 0.4 0.4 1.3
MP3-V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MP3-C 0.0 0.1 0.1 0.3 0.8 3.1 0.2 0.3 1.7 2.5 3.0 7.8 1.9 0.1 0.0 0.0 0.0 0.0

FeCo-o(k) 10.4 12.9 14.9 19.3 20.5 29.4 22.4 26.5 27.7 33.1 36.3 38.2 40.3 22.1 19.0 16.7 17.3 22.1
FeCo-d(k) 0.6 0.6 1.2 0.9 2.3 5.6 1.2 3.7 5.3 6.2 8.0 13.5 9.2 2.7 1.0 1.0 1.6 4.8
FeCo-c(k) 0.5 0.6 1.2 1.2 1.4 6.6 1.8 2.1 3.9 4.5 6.3 12.2 8.8 1.8 0.8 0.5 1.1 2.9
FeCo-f(k) 0.6 0.7 1.0 1.2 1.7 6.9 1.8 2.2 3.8 4.8 7.0 12.5 8.0 2.0 0.6 0.5 1.5 2.6

FeCo-o(wk) 2.4 2.5 2.8 3.8 3.9 8.2 3.1 3.5 5.7 6.2 8.0 12.6 18.8 9.4 5.7 4.6 4.4 5.0
FeCo-d(wk) 1.9 2.5 2.4 4.1 5.4 12.7 4.3 7.8 11.2 12.5 13.6 21.4 19.2 6.3 3.5 3.0 2.9 7.7
FeCo-c(wk) 1.5 1.6 2.1 2.8 3.7 9.9 2.7 4.8 7.0 8.9 10.5 17.6 16.9 4.8 2.8 2.0 1.8 6.7
FeCo-f(wk) 1.3 1.8 1.9 2.6 3.8 11.2 2.2 5.0 6.8 9.0 10.6 18.1 16.0 5.0 3.2 2.3 2.0 7.5
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Fig. 10. The visualization of an original voice and transformed voice by different input transformations. The average L2 distance between original
and transformed voices is listed right of the transformation name.

TABLE 10: Non-adaptive and adaptive SirenAttack against AS, DS,
LPF, and BPF when ε = 0.02 in terms of model accuracy.

AS DS LPF BPF
Non-adaptive 42.9% 53.3% 58.0% 48.0%

Adaptive 0% 0% 42.0% 16.3%

or more advanced adaptive attacks than BPDA are required
to circumvent other speech compressions.

A.6 SirenAttack to AS, DS, LPF and BPF

The results are shown in TABLE 10 when ε = 0.02 for the
adaptive SirenAttack. We can observe that the adaptive Sire-
nAttack reduces the accuracy of these input transformations
by at least 16% compared to the non-adaptive one.

A.7 Brute-force Replicate Attack

Replicate attack is not strong due to the randomness of
FeCo. The adversary may attempt to improve the attack by
enumerating the randomness in a brute-force way. Below we
analyze the success probability such a brute-force adversary
can achieve.

Suppose the randomness space is B = {B1, · · · , BQ}
where Bi denotes a possible clustering result. In each
trail of the brute-force, suppose the adversary sam-
ples Ba and the victim model samples Br, we have:
Pr[the attack succeeds] ≥ Pr[Br = Ba] =

1
Q .

The size of the randomness space Q depends on the
duration of the voice and the initial method of the clustering
algorithm. For a voice with duration of one second (the min-
imal duration of the voices in Spk10 test and Spk251 test),
the number N of frames is nearly 100. If the initial method
is kmeans++ [102], Q = kN = 500 (k = 1

clr
= 1

0.2 = 5
for FeCo-o(k)) and Pr[the attack succeeds] ≥ 0.2%. If the
initial method is random, Q = CNkN > 2.04 × 10107 and
Pr[the attack succeeds] is close to 0% in the worst case. The
success probability of the brute-force attack is very low.

A.8 Defending against Hidden Voice and Speech Syn-
thesis Attacks

To be comprehensive, apart from adversarial attacks, we
also evaluate the input transformation-based defenses
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against hidden voice and speech synthesis attacks under
both the non-adaptive and adaptive settings.

Hidden voice and speech synthesis attacks have different
attack purposes from adversarial attacks. Given a voice
uttered by a source speaker, an adversarial attack intends to
perturb the voice such that the perturbed voice is recognized
as another speaker by the target SRS, but still recognized
as the source speaker by human. In contrast, hidden voice
attack aims to craft a perturbed voice which is treated as
mere noise by human, but still correctly recognized as the
source speaker by the target SRS, and a speech synthesis
attack attempts to produce a voice that contains the desired
speech content and sound as spoken by the source speaker
from the perspective of both human and the target SRS.

For hidden voice attack, we consider the signal
processing-based attack in [78]. It generates incomprehensi-
ble voices for human by inverting the speech in the time do-
main (Time Domain Inversion, TDI), accelerating the speed
of the speech (Time Scaling, TS), adding high-frequency
signal, or generating random phases. We exploit TDI and
TS to perturb each speech since they are the two most
effective methods [78]. TDI and TS feature the parameters
window size w and scaling factor β, respectively, where
the smaller w (resp. larger β), the less comprehensible the
voices for human and the harder the voices to be correctly
recognized by the target SRS. As suggested in [78], we
use a linear search to find the optimal parameters where
the attack can produce the least understandable voices for
human when ensuring the correct recognition of the target
SRS. Specifically, to find the optimal w, the TDI attack starts
from w = 1 milliseconds (ms), gradually increases to 10
ms with step of 0.5 ms, and terminates once the target SRS
correctly recognizes the perturbed voice. To find the optimal
β, the TS attack starts from β = 20, gradually reduces to 1.5
with step of 0.5, and terminates once the target SRS correctly
recognizes the perturbed voice. Since both TDI and TS are
black-box attacks, their adaptive versions are similar to the
non-adaptive versions except that the attack terminates once
the defended SRS correctly recognizes the perturbed voice.

For speech synthesis attack, we exploit the deep
learning-based speech synthesis tool used in [79]. The tool
takes as input a set of voice samples of the source speaker
and the desired speech content. We use the voices in
Spk10 enroll as the set of voice samples (10 speakers and 10
voices per speaker) and the ten sentences used in [79] as the
desired speech content. We consider the following adaptive
adversary: (1) running the non-adaptive speech synthesis
attack with input voice samples x1, · · · , xN . Suppose the
output voice is x̂; (2) generating adversarial perturbation δ
for x̂ with the objective of minimizing 1

N

∑N
i=1 d(Enc(g(x̂+

δ))−Enc(xi)) where g is the input transformation, Enc(x)
extracts the embedding (i.e., the vector representing the
speaker characteristic) of the voice x, and d measures the
distance between two embeddings; (3) using x̂+ δ to attack
the defended SRS. Specifically, in step (2), we use cosine
distance to measure distance between two embeddings and
exploit PGD with ε = 0.002 and #Steps=50 to craft δ.

The results are shown in TABLE 11. We can observe that
all the input transformations are able to reduce the attack
success rate under the non-adaptive setting compared to
Baseline without any defense, indicating they can also be

TABLE 11: Results of input transformations against hidden voice and
speech synthesis attacks under both non-adaptive and adaptive

settings in terms of attack success rate (%).
Non-adaptive Adaptive

Hidden Speech
Synthesis

Hidden Speech
SynthesisTDI TS TDI TS

Baseline 96.1 96.0 96.0 96.1 96.0 96.0
QT 49.2 43.3 76.2 77.7 73.9 85.7
AT 55.6 52.7 72.1 79.7 71.8 79.1
AS 70.0 73.7 91.0 93.8 89.5 92.5
MS 52.8 49.3 66.3 81.2 84.0 84.5
DS 51.2 54.0 72.4 79.7 85.3 80.7
LPF 42.4 59.6 88.6 78.5 86.9 92.8
BPF 31.6 49.0 80.0 70.8 85.1 92.6

OPUS 38.0 49.8 78.3 69.4 79.2 72.2
SPEEX 64.0 59.0 80.2 93.2 89.6 70.6
AMR 49.5 62.2 88.6 92.7 93.0 88.2

AAC-V 89.9 90.3 94.9 96.5 95.2 97.9
AAC-C 31.6 53.8 86.9 69.1 88.8 90.2
MP3-V 88.9 90.7 95.2 95.5 96.4 98.2
MP3-C 23.3 56.3 88.5 68.0 88.4 90.9

FeCo-o(k) 43.3 57.1 83.8 53.8 67.4 79.1
FeCo-d(k) 52.1 49.2 88.2 72.4 74.8 83.2
FeCo-c(k) 52.3 47.8 86.7 68.8 75.3 81.0
FeCo-f(k) 52.2 47.6 86.5 68.2 75.0 80.8

FeCo-o(wk) 59.6 60.0 84.5 74.1 75.5 89.5
FeCo-d(wk) 49.8 46.5 87.3 71.8 74.9 87.9
FeCo-c(wk) 52.8 44.3 86.3 70.0 72.5 86.6
FeCo-f(wk) 52.4 44.2 86.8 70.0 72.3 86.6

exploited to mitigate hidden voice and speech synthesis
attacks. We also notice that regardless of the attack types,
AS, MP3-V and AAC-V are the least effective ones while
CBR speech compressions are more effective than VBR
ones. However, we should point out some transformations
performing differently between adversarial, hidden voice
and speech synthesis attacks. While the time-domain W-
transformations, especially QT and AT, are quite effective
against adversarial attacks, they are not as much effective
against hidden voice attack. Input transformations are in
general less effective against speech synthesis attack than
the other two attacks. The reason is that speech synthe-
sis attack attempts to synthesize high-quality and natural
speeches to deceive both human and the target SRS, unlike
adversarial and hidden command attacks which perturb
the original voice to cause inconsistent recognition between
human and the target SRS.

Under the adaptive setting, the adaptive hidden voice
attack achieves much higher attack success rate against all
the input transformations than the non-adaptive one, e.g.,
the success rate improves by over 43% on AMR. However,
the adaptive speech synthesis attack does not perform better
than the non-adaptive one on some input transformations,
e.g., OPUS, SPEEX, AMR, and some FeCo. The reason is
that the adaptive speech synthesis attack involves solving an
optimization problem, and these transformations introduce
optimization obstacles, i.e., non-differenetiability of OPUS,
SPEEX, and AMR, and the randomness of FeCo.

Findings 13. Input transformations exhibits general de-
fense capability against adversarial, hidden voice, and
speech synthesis attacks, although with some differences.
Speech synthesis attack is more difficult to defeat by input
transformations than the other two attacks.
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