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NoisFre: Noise-Tolerant Memory Fingerprints
from Commodity Devices for Security Functions

Yansong Gao∗, Yang Su∗, Surya Nepal, Damith C. Ranasinghe†

Abstract—Building hardware security primitives with on-device memory fingerprints is a compelling proposition given the ubiquity of
memory in electronic devices, especially for low-end Internet of Things devices for which cryptographic modules are often unavailable.
However, the use of fingerprints in security functions is challenged by the small, but unpredictable variations in fingerprint
reproductions from the same device due to measurement noise. Our study formulates a novel and pragmatic approach to achieve
highly reliable fingerprints from device memories. We investigate the transformation of raw fingerprints into a noise-tolerant space
where the generation of fingerprints is intrinsically highly reliable. We derive formal performance bounds to support practitioners to
easily adopt our methods for applications. Subsequently, we demonstrate the expressive power of our formalization by using it to
investigate the practicability of extracting noise-tolerant fingerprints from commodity devices. Together with extensive simulations, we
have employed 119 chips from five different manufacturers for extensive experimental validations. Our results, including an end-to-end
implementation demonstration with a low-cost wearable Bluetooth inertial sensor capable of on-demand and runtime key generation,
show that key generators with failure rates less than 10−6 can be efficiently obtained with noise-tolerant fingerprints with a single
fingerprint snapshot to support ease-of-enrollment.

Index Terms—Hardware Fingerprinting, Memory Fingerprinting, SRAM, Flash, EEPROM, Root Key, Error Reconciliation.

F
1 INTRODUCTION

Various schemes have investigated fingerprinting
commercial-off-the-shelf (COTS) devices to build security
applications: verifying the provenance of integrated circuits
(IC) to guard against counterfeiting by fingerprinting IC
packages [1]; identifying unlawful 3D printed products
by fingerprinting unique textures resulting from 3D
printers [2]; authenticating smartphones by fingerprinting
the Photo-Response Non-Uniformity of a camera image
sensor [3]; and identifying commodity mobile devices by
fingerprinting on-board sensors [4], [5].

Compared with fingerprinting methods for on-board
sensors and other components like central processor units
(CPUs) [1], [3]–[11], fingerprinting embedded memories—
including static random access memory (SRAM) [12]–
[14], dynamic random access memory [15], Flash mem-
ory [16], [17], and electrically erasable programmable read-
only memory (EEPROM)—pervasively embedded in COTS
devices is a highly desirable proposition for provisioning se-
curity functions, especially in the absence of cryptographic
modules. Fingerprinting embedded memory is attractive be-
cause: i) memory cells are intrinsic to computing platforms
and available in large volumes to obtain many independent
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fingerprints or secret keys; ii) memory biometrics provides a
physical source of true randomness; iii) it removes the need
for a protected non-volatile memory for secrets (root keys
can be generated on-demand and “forgotten” after usage);
and iv) imparts no extra hardware costs to existing COTS
devices such as medical devices, wireless sensors, credit
cards, wearable devices, and a plethora of low-end Internet
of Thing (IoT) devices, which are projected to grow to 75.44
billion worldwide by 2025 [18].
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Fig. 1: Conventional schemes extract raw fingerprints from individual
memory cells, such as from the random power-up state of each SRAM
cell. However, raw fingerprints f ′i regenerated at different time in-
stances from the same device can mismatch a reference raw fingerprint
template f due to native bit errors introduced by noise ei. The red
curves in the fingerprint symbol depict errors resulting from noise.

1.1 The Challenge
Whenever a fingerprint is generated from the same device,
the digitized fingerprint should be exact for its use in secu-
rity functions. However, fingerprints generated at different
time instances are susceptible to unpredictable noise, such
as thermal noise, supply voltage fluctuations, and device
aging, and, consequently, differ in some bits. First, the
positions of flipped raw bits vary. Second, the number of
flipped raw bits varies from time to time. Thus, it is chal-
lenging to determine reliable raw bits, and existing memory
fingerprinting schemes cannot naturally tolerate noise in the
raw, noisy fingerprint space. Therefore, it is often infeasible
to regenerate a fingerprint identical to a reference template
that is securely stored (e.g., in a server) for directly building
security functions between it and devices, as shown in Fig. 1.
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Fig. 2: Illustrating the use of noise-tolerant memory fingerprints from commodity devices for security functions. We transform the raw fingerprint
from an n-dimensional noisy fingerprint space to an m-dimensional space, we refer to as the noise-tolerant fingerprint space, where m < n. In the
noise-tolerant space, as long as the noise ei is less than a bound θ, the regenerated and transformed fingerprint can be correctly projected to the
reference transformed fingerprint template F securely enrolled and stored on the server. Red curves in the fingerprint symbol depict errors in the
raw fingerprint upon regeneration at time instances t1 to t3. Now, the F obtained can serve as a root of trust or a root key for a security function.

Until now, using approximate and noisy renditions of
biometric fingerprint templates in security functions has
been demonstrated to be possible with fuzzy extractor (FE)
based methods [19], [20]. The FE employs a generation
function to transform “fuzzy” biometrics into private secrets
together with helper data used in a subsequent reproduction
function to reconcile errors and derive the exact private
secret from an approximately close template of the original
biometric [21]–[23]. Employing an FE on a device leads
to two fundamental problems: i) the computation over-
head introduced on a device by FE logic is high [24] and
ii) the associated helper data can be actively manipulated,
in helper data manipulation (HDM) attacks, to weaken or
even compromise the security of the derived fingerprint or
private secret [25], [26]. A generic countermeasure against
HDM attacks remains an open challenge [26].

Hence, there remains a significant leap between the desire for
re-purposing ubiquitously available memory for security

functions and the practicability of exploiting memory
fingerprints for security.

While the notion of exploiting tiny hardware fabrication
variations to generate memory fingerprints is not new, we
challenge the traditional method of reliable fingerprint pro-
visioning and pose the following research questions (RQs):

RQ1: How can we extract intrinsically reliable finger-
prints from device memories?

RQ2: If an approach does exist, is the method prag-
matic and usable for fingerprinting memory resources
on pervasive commodity computing devices?

1.2 Our NoisFre Concept
Current memory fingerprinting schemes extract a finger-
print bit from each memory cell. Fingerprinting under this
scheme is susceptible to noise. To the best of our knowledge,
for commodity memories, existing techniques fail to accu-
rately capture the noise-tolerance degree of each raw bit to
formally determine those extremely reliable bits for direct
key usage without the problematic error reconciliation.

We recognize that device memories are a cost-free
and abundant source of entropy. Attributing to the ever-
decreasing fabrication costs, the size of memory pervasively
embedded within devices has become increasingly large.

Hundreds of kilobytes (KiB), even in low-end devices, are
common (see the devices we tested in Table 1). Conse-
quently, we envision that the entropy of extracted informa-
tion may be sacrificed for improved reliability. Therefore,
we propose the concept of transforming the raw fingerprint
space of high information density into a lower-dimensional
space with the attribute of being largely invariant to noise—
bit flips—observed in the digitized raw fingerprint space or
memory biometrics. We refer to this noise-tolerant memory
fingerprinting concept as NoisFre.

We illustrate our concept in Fig. 2. Building upon a raw
memory biometric source that is a noisy fingerprint space,
we propose extracting new fingerprints F in the deliberately
transformed noise-tolerant fingerprint space, which can tolerate
a desirable noise bound θ. Here, as long as the noise ei
induced number of raw fingerprint bit errors is less than
θ, the regenerated and transformed raw fingerprints are
guaranteed to be projected to its reference counterpart F
enrolled at the server. More generally, the regenerated and
transformed fingerprint F is insensitive to bit errors (result-
ing from noise) in the raw fingerprint space. Therefore, it
can be directly employed—without error reconciliation—as
a root key in a security function, despite the noisy renditions
of the raw fingerprints at times t1, t2, and t3.
Significantly, we recognize that the best strategy for fingerprint
memory is not always directly from the raw noisy fingerprint
space, such as directly treating the power-up state of an SRAM
memory of a cell as a fingerprint bit, the foundation for all current
memory fingerprinting schemes. We argue for exploiting the freely
available, abundant entropy of memories. We do not focus on
individual raw fingerprint bits but seek to find an invariant
property of a group of raw bits to measure, so we can be less
concerned of the complexity about the process generating those
bits.

1.3 Contributions and Results
• We exploit the freely available and abundant entropy

from memories to propose a new concept—NoisFre—
for highly reliable fingerprinting of commodity device
memories. The principle is based on transforming from
a noisy raw fingerprint space to a lower dimensional,
noise-tolerant fingerprint space capable of reconciling
noise inherent across multiple measurements of the
same raw fingerprint. To corroborate the proposed No-
isFre concept, we have developed two specific transfor-
mation methods: i) S-Norm and ii) D-Norm (RQ1).
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• We formulate analytical models with the expressive
power to support the design of security functions and
evaluate the transformation methods. We express i) an
upper bound for the unreliability of the transformed z
bits with respect to the transform function parameters;
and ii) the expected fingerprint extraction efficiency—
the number of transformed z bits that can be extracted
from a given memory size (RQ2).

• We conduct elaborate and extensive evaluations with
a synthetic chip model to obtain the massive num-
ber of repeated fingerprint measurements necessary
to validate our formalization of unreliability and ex-
traction efficiency. Billions of repeated measurements
were simulated using the synthetic chip model with bit-
level modeling capable of capturing bit-error behavior
in SRAM device memories. Our formal models are
confirmed to be worst-case bounds in practice (RQ2).

• We extensively test: i) 110 SRAM memory devices from
three different manufacturers to experimentally vali-
date NoisFre performance. We focus on SRAM mem-
ory, as it is the most commonly embedded memory,
especially for low-cost IoT devices. Further, we employ:
ii) seven Flash memories and iii) two EEPROM memo-
ries for validating the generalizability of NoisFre (RQ2).

• To demonstrate the expressive power of our formal-
ization, we investigate the derivation of a root key—
the foundation for realizing various security functions.
We demonstrate a 128-bit root key with an extremely
low key failure rate of less than 10−6 can be directly
obtained by transformed fingerprints to obviate the
need for costly noise reconciliation. Significantly, a fin-
gerprint snapshot or single measurement is sufficient
for enrolling a key, a process we follow in all our
experiments (RQ2).

• As a case study, we implement a NoisFre key generator
and a security function on a low-end wearable Blue-
tooth inertial sensor. We extract a root key directly
from native SRAM fingerprints transformed into noise-
tolerant z bits for use in a remote attestation prim-
itive. By fundamentally obviating the state-of-the-art
method necessary for reconciling noisy key bits, we
demonstrate a significant overhead reduction (i.e., 54%
compared to reverse FE and 82% compared to FE)
and enhanced security. By utilizing the power isolation
features, we also demonstrate the realization of run-time
and on-demand generation of robust SRAM fingerprints F
on this low-end device. A video demo is available at
https://youtu.be/O5NWZw-swpw (RQ2).

• We release the 100 chip SRAM memory fin-
gerprint dataset that we collected and open-
source code artifacts to facilitate future research at
https://github.com/AdelaideAuto-IDLab/NoisFre.

2 BACKGROUND

We concisely describe the well-known methods of finger-
printing memories. Then we briefly introduce the com-
monly accepted (reverse) FE to reconstitute a “fuzzy” secret
into cryptographic secrets for security functions.

2.1 Fingerprinting Device Memories
We consider the widely used, specifically in low-end de-
vices, SRAM, Flash, and EEPROM memory fingerprinting.
As for the SRAM memory, when SRAM is powered up,
each cell exhibits a favored power-up state; such an initial
state varies from cell to cell and chip to chip. Therefore,
each SRAM cell’s power-up state is treated as a fingerprint
bit. Fingerprinting SRAM is closely related to the SRAM
physical unclonable functions [12], [13].

To extract fingerprints from Flash memory [16], [17],
all Flash cells on the same page are first erased to “1”.
Then partial programming is applied. As a result of tiny
fabrication variations, some cells will remain in state “1”
while others flip to “0”. Which cell remains or flips is
determined by the random and uncontrollable fabrication
process variations. One can treat whether a cell flips as the
fingerprint bit—a flip as logic “0”, and otherwise “1”. The
partial programming period is pre-determined to ensure
balanced “0”/“1” bits in practice. The same procedure is
applicable to fingerprint EEPROM.

2.2 Reliable Secrets with Fuzzy Extractors
A widely accepted method to turn noisy hardware finger-
print bits (key material) into usable cryptographic keys is
to use an FE [19], [20]. In general, the FE consists of two
procedures: i) a secure sketch and ii) an entropy extraction.
The secure sketch reconciles errors in the regenerated bits.
The entropy extraction (e.g., a cryptographic hash function)
compresses the bits into a uniformly distributed crypto-
graphic key with full bit entropy.

Encoding

Hash

Decoding

Hash

Fuzzy Extractor

Decoding

Hash

Encoding

Hash

In-field device Server In-field deviceServer

Reverse Fuzzy Extractor

Fig. 3: The fuzzy extractor (FE) and the lightweight state-of-the-art re-
verse fuzzy extractor (RFE) for reconciling noisy fingerprint responses
with the aid of helper data p. In an RFE the encoding is embedded in
a device and the computationally heavy decoding is offloaded to the
server.

The secure sketch construction has a pair of operations,
as shown in Fig. 3: i) encoding and ii) decoding. Typically, in
the FE setting, the encoding employing an error correction
code (ECC) encoder is executed by the server during the
fingerprint template enrollment phase to compute helper
data p (redundant information). The decoding employing
an ECC decoder is performed on the in-field device to
recover a reliable fingerprint, sk. By recognizing that the
encoding function’s computational burden is significantly
higher than decoding, it is feasible to place the ECC encoder
on the device-side while leaving the computationally com-
plex ECC decoder to the resource-rich server; this method
is termed reverse FE (RFE) or reusable FE [19], [27], [28].
More specifically, the encoding function is implemented on
the device-side to produce the associated helper data p′ as
well as an sk′ based on on-device fingerprint evaluation f ′,
where p′ is now sent to the server to assist the reconstruction
of sk′. Now, p′ and sk′ could vary every time as the on-
device fingerprint f ′ can differ during each reevaluation. In

https://youtu.be/O5NWZw-swpw
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contrast to an FE setting, the server uses the enrolled f along
with p′ for recovering the key sk′.

3 NOISFRE TRANSFORMATION

We provide the impetus for developing NoisFre finger-
printing and its key insights, followed by two specific and
practical NoisFre transformation methods.

3.1 Our Pragmatic Approach

NoisFre
Transformation

NoisFre fingerprint

"0"

Raw fingerprint
Mapped to the

same    

= "0" = "1"

f

Fig. 4: NoisFre transformation concept. A group of raw bit vectors ex-
hibiting errors measured at different times can be transformed into the
same NoisFre fingerprint bit z (e.g., “0”), attributing to the invariance of
the transform patterns to: i) permutations of raw bit vectors (e.g., at time
t = 0 and t = 1) and ii) vectors with different combinations of raw bits
(e.g., at times t = 2 and t = 3)

In contrast to extracting one fingerprint bit from each
memory cell, we propose a many-to-one transformation
possessing a property of invariance to underlying raw bit
patterns: more generally, invariant to the unpredictable,
complex and dynamic raw fingerprint generating processes.
Our desire is to project all of the fingerprint measurements
conducted from the same block of memory at different time
instances to the exact same transformed bit, z ∈ {0, 1}1 .
The concept is illustrated in Fig. 4. Note that:

• Bit errors leading to permutations of raw bits—where
the positions of “1” and “0” values change in a bit
vector but the number of “1”s and “0”s do not, as seen
at t = 0 and t = 1 in Fig. 4—are projected to the exact
same transformed bit z ∈ {0, 1}1.

• Bit errors leading to vectors constituting different com-
binations of “1”s and “0”s (e.g., the fingerprint from
the same block of memory at time t = 1 with two “1”
binary bits and that regenerated at time t = 2 with only
one “1” binary bit in Fig. 4) are projected to the exact
same transformed bit z ∈ {0, 1}1.

We observe that a transformed bit, z, is able to miti-
gate the impact from multiple raw fingerprint bit errors
manifesting as permutations or combinations of an n-bit
raw fingerprint, f . The concept we propose is surprisingly
simple but efficient and practical because of the important
but inadvertent reality of large memory volumes intrinsic to
devices. From a practical consideration, our critical insight is
that memory embedded within modern electronics is large
and provides abundant entropy to be exploited without addi-
tional costs for security functions. This fact is the foundation
for our NoisFre transformation method: trade-off entropy for
reliability.

This work proposes two specific NoisFre transformation
methods: Single `1-Norm (S-Norm) and Differential `1-
Norm (D-Norm).

3.2 Single `1-Norm Transformation (S-Norm)

The `1-Norm of a vector is the distance of the vector from
an all-zero vector—or the Hamming weight of a vector, as
described in Definition 1.

Definition 1 (`1-Norm). Let f be a binary vector length n
representing a noisy raw fingerprint where fj is the jth bit
in f ; then the `1-Norm of f is defined as:

‖f‖1,
n∑

j=1

fj . (1)

NoisFre fingerprint

"0"

Raw fingerprint

= "0" = "1"
2
2
1

4

5
4 "1"

Block 1

Block 2

At time
instance

is an odd integer

Fig. 5: NoisFre transformation via S-Norm; the transformed bit z is
extracted using the `1-Norm of a group of raw bits. The group size is
an odd integer number (e.g. 7 in this illustration) to ensure a balance
between zeros and ones in the z bits. We illustrate the regenerated
raw fingerprints from two blocks of memory—Block 1 and Block 2—at
times t = 0, 1, and 2.

Interestingly, an `1-Norm of a vector is permutation
invariant. Hence, a new bit z can be obtained by applying
an `1-Norm over a raw fingerprint vector f as ‖f‖1 and as
described by the S-Norm below.

Definition 2 (S-Norm). Let the i-th raw fingerprint bit
vector of n bits, where n is an odd integer, be fi. Then S-
Norm transform is defined as:

z =

{
1, ‖fi‖1≥ dn2 e
0, ‖fi‖1≤ bn2 c

(2)

An illustrative example of S-Norm-based transformation
is provided in Fig. 5. When ‖f‖1> n

2 , where n is an odd
integer, the z bit is “1”, and otherwise “0”. This transform
has the first desirable property of being insensitive to bit
errors manifesting as permutations of a raw fingerprint f .
For example, despite the raw bit errors at time t = 1 for the
raw fingerprint from Block 1 that lead to a permutation
in respect to the bit vector referenced at time t = 0,
the corresponding `1-Norm remains invariant; the memory
Block 1 is still projected to z = “0”. The transform has the
second desirable property of being insensitive to bit errors
manifesting as combinations of an n raw fingerprint bit
vector. Notably, errors that lead to different combinations of
raw binary “1” and “0” values can increment or decrement
`1-Norm but these can still be projected to the same trans-
formed z bit. For example, see `1-Norm values for memory
Block 1 at time t = 1 compared to t = 2 in Fig. 5. Hence, S-
Norm achieves the two qualities we desire from a transform
expressed in Section 3.1 .

In Fig. 5, we can expect the transformed z bit from
Block 2 with `1-Norms at the decision boundary, defined in
equation (2), to more likely be affected by error bits within
the raw fingerprint, resulting in different combinations of
an n-bit raw fingerprint. A resulting combination of n bits
with a single change in the number of raw binary “1”
bits can lead to an `1-Norm projection that crosses the
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decision boundary. We recognize the resulting z bits from
such raw fingerprints to effectively display low reliability.
Therefore, we propose winnowing raw fingerprints based
on treating `1-Norm as a reliability measure for z bits. For
this purpose, we define the S-Norm-based Selection method
described in Definition 3 and generalize the approach using
a noise tolerance parameter θ to provide an upper bound
of tolerance on raw bit errors or the combinations of n-bit
patterns; the transform will faithfully project to a specific z
bit. Interestingly, the evaluation of `1-Norm only require a
single measurement, while a larger θ can be chosen to facili-
tate higher noise tolerance. Therefore, we propose selecting
based on the `1-Norm of raw fingerprint vectors obtained
from a single measurement defined as being at time t = 0.
Notably, this approach facilitates rapid characterization of
raw fingerprints from device memories, as `1-Norms can be
acquired in a single measurement. All our experimental and
theoretical analyses assume such a characterization.

Definition 3 (S-Norm-based Selection). Let the raw finger-
print in the i-th n-bit block extracted at time t be f ti . Then
for a chosen noise tolerance parameter θ ∈ N0, an extracted
raw fingerprint vector f0

i is selected at time t = 0 if:

‖f0
i ‖1≤ b

n

2
c − θ or ‖f0

i ‖1≥ d
n

2
e+ θ (3)

To understand and demonstrate the significant role of
the noise tolerance parameter θ in the mitigation of raw bit
errors, we consider the distribution of ‖f0‖1. We used the
experimental dataset obtained from Nordic Semiconductor
chips detailed in Table 1. Fig. 6 plots the resulting distribu-
tion of enrolling measurements (at time t = 0) for two cases
of a small and a large θ for an f of n = 15-bit. As expected,
the distribution of ‖f0‖1 approximates a bell curve.

Consider the groups of f0 raw fingerprints (green bar)
at the boundary of the selection criteria in equation (3),
where ‖f0

i ‖1= dn2 e + θ for the two cases of a small and
large θ. These groups represent those closest to the decision
boundary, ‖f0

i ‖1= dn2 e (green line), consequently represent-
ing those most likely to lead to a bit error in a transformed
bit z when raw bit errors changes the `1-Norm of f0. When
θ is small (θ = 2), a change in more than two bits in a given
pattern can lead to ‖f‖1 crossing the decision boundary n

2
in a subsequent raw fingerprint extraction, resulting in a z
bit flip.

0
0
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8
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Fig. 6: Illustrating the role of the noise tolerance parameter θ in S-Norm-
based selection. The plots show the `1-Norm distribution of raw noisy
fingerprints. It approximates normal distribution. A larger θ ensures
the transformed z bits can tolerate a higher degree of noise.

In contrast, when θ is large, set to 4, the `1-Norm of the
selected fingerprint vectors or ‖f0‖1 are further away from
the decision boundary. Consequently, a change in more than
four bits in a f is needed to flip the corresponding z in
a subsequent fingerprint evaluation. Such a probability is

smaller than a change in more than two raw fingerprint bit
flips for vectors selected with θ = 2. Therefore we can expect
the z bits selected employing a larger θ to be significantly
more reliable. Our study, thus far, leads to the following
observations:

Observation 1: The S-Norm ‖f‖1 yields a representa-
tion analogous to the reliability of the new bit z.
Observation 2: The S-Norm transformed bits are in-
variant to permutations and combinations of raw bit
patterns. Further, θ provides a desirable lower bound
on raw bit errors tolerated by the transform.
Observation 3: There is an expected trade-off evi-
dence in Fig. 6. While increasing θ increases the noise
tolerance of the transform, it reduces the number of
noise-tolerant fingerprint bits extractable from a given
memory.

3.3 Differential `1-Norm Transformation (D-Norm)
Considering Observation 3 and the distribution in Fig. 6, we
recognize that a distance measure capable of presenting a bimodal
distribution could provide an intrinsic separation of groups of
underlying raw fingerprint bits with the potential to yield
higher numbers of noise-tolerant bits. We hypothesize that
a differential distance measure may afford such a desirable
distribution and propose the D-Norm transform based on a
differential distance measure.

Definition 4 (D-Norm). Let the lowest and highest `1-Norm
of m groups (each group is an n-bit vector) be l and h,
respectively, where:

h , arg max
fi|i∈{1,..,m}

(‖fi‖1) (4)

l , arg min
fi|i∈{1,..,m}

(‖fi‖1) (5)

Now, following the general definition in Section 3.1, the D-
Norm transform is defined as:

z =

{
1, h− l ≥ 0 and [h] < [l]
0, l − h < 0 and [h] > [l]

(6)

Here, we denote the spatial index i (memory address, in
practice) of the vector fi chosen for h based on equation (4)
or l based on equation (5) using a square bracket, “[ ]”.

The D-Norm-based transformation is illustrated in Fig. 7.
In the illustration, the `1-Norm of two blocks of m = 3
groups of n = 8 bit vectors are evaluated at time t = 0. In
subsequent evaluations of the fingerprint at t = 1:

• In Block 1, we can observe the permutation invariance
property, similar to the S-Norm. For example, the high-
est `1-Norm at t = 0 and t = 1 is h = 5 for the third
8-bit vector despite repeated generation of the raw bits
not being exact.

• In Block 2, we further observe the difference of h− l is
6−1 = 5 at t = 0 and shows an extreme case of 3−3 = 0
at t = 1, where z bit of “1” remains invariant. Which
reflects the combination invariance property.

In both Block 1 and Block 2, the fingerprint bit z
remains robust to the raw fingerprint bit error patterns
observed at different measurement times. However, a com-
bination of n bits with a single change in the number of
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Fig. 7: D-Norm-based NoisFre transform illustration, where n = 8 and
m = 3. We show the results of reading out two blocks of memory
(Block 1 and Block 2). Here, each block (n × m bits) is formed by
accessing three bytes from a byte-level addressable memory, and each
block provides a new bit z. Hence, the new bit z is a transformation
from a block of raw bits with m = 3 groups, where each group is an
n = 8 bit vector. The raw bit values are measured at two different time
instances, t = 0 and t = 1, from each block to illustrate the manner in
which the D-Norm transform is reliable against raw bit error.

raw binary “1” bits can lead a D-Norm projection at the
proximity of the decision boundary in equation (6) to cross
that boundary. Hence, the resulting z bits from such raw
fingerprints effectively display low reliability. Therefore,
similar to S-Norm, we propose winnowing raw fingerprints
based on their |h − l| projections. We describe the D-Norm-
based Selection method in Definition 5 and generalize the
approach using a noise tolerance parameter θ to bound the
combinations of bit patterns the transform needs to tolerate,
using the differential `1-Norm of the raw fingerprint vectors
measured once (i.e., at t = 0).

Definition 5 (D-Norm-based Selection). From a block
of m different n-bit raw noisy fingerprint vectors f0

i for
i ∈ {1, . . . ,m} extracted at t = 0, the block is selected for
fingerprinting the device using D-Norm if h and l as defined
in equation (4) and equation (5) satisfy:

|h− l| ≥ θ (7)

To understand the significance of the D-Norm-based se-
lection method and the role of the noise tolerance parameter
θ, we employ the Nordic Semiconductor chip fingerprint
dataset used in S-Norm. The resulting distribution of en-
rolling measurements (at time t = 0) for two cases of a
small and a large θ for blocks of n×m raw fingerprint bits
is shown in Fig. 8. Interestingly, the distribution of |h − l|
approximates a bimodal distribution; each mode represents
those vectors mapping to z = “1” and “0”, respectively.
Importantly, the two clear groupings of n×m bit blocks based on
the D-Norm distance measure results in an intrinsic separation.

Now, consider the blocks of h − l raw fingerprint bit
vectors (green bar) in blocks at the boundary of the selection
criteria, in equation (7), where |h − l| = θ for the two
cases of a small and a large θ. These blocks of bits represent
those most likely to lead to a bit error in a transformed bit
z. When θ is small, e.g. θ = 2, two bit flips in the raw
fingerprint in a subsequent measurement is enough to push
|h − l| across the h − l = 0 decision boundary, defined in
equation (6), and result in a z bit flip. In contrast, when θ
is large, e.g. θ = 4, at least five raw fingerprint bit changes
are required to flip the z bit in a subsequent evaluation.

Therefore, we can expect the z bits selected upon a larger θ
to be more reliable.

The D-Norm method effectively sacrifices more of the
available entropy (n×m raw bits are transformed into 1-bit
z) than S-Norm. However, the differential distance measure
h − l is bimodal and, thus, D-Norm is expected to yield a
significantly higher number of noise-tolerant z bits.

4 FORMALIZING PERFORMANCE MEASURES

We now formulate and derive analytical models to: i) pro-
vide an upper bound for the unreliability of noise-tolerant
fingerprint bits and ii) evaluate the expected number of
noise-tolerant fingerprint bits that can be extracted from
each of the transform methods—the extraction efficiency. We
summarize the analytical formulations from our detailed
derivations differed to Appendix A for interested readers.

4.1 Reliability
We employ the well-known measure of bit error rate (BER)
to quantify the reliability of transformed fingerprint F:

BERF = FHD(F,F′) (8)
where F and F′ are two fingerprint measurements at

distinct times from the same physical memory. The function
FHD() is the fractional Hamming distance between the
(binary) vectors F and F′. Commonly, F is a reference
fingerprint template measured at t = 0, and F′ is the
reevaluation under a potentially different device operating
condition, such as temperature, and, therefore, is subject to
noise. A lower BERF indicates higher tolerance to noise
introduced from the raw fingerprints.

S-Norm Reliability. The expected BER of noise-tolerant
fingerprints for the S-Norm transformation BERF is formu-
lated in equation (9); we defer details of the derivation to
Appendix A.2:

(9)
BERF =

bn2 c−θ∑

i=0

((1− binocdf(θ + i, dn
2
e+ θ,BERf))

× binopdf(i, bn
2
c − θ,BERf))
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Fig. 8: The role of the noise tolerance parameter θ in D-Norm-based
selection. The plots depict the differential `1-Norm distributions—the
difference between the h and l—of raw fingerprints. The distribution of
differences leads to a bimodal distribution. Here, n = 16 and m = 32,
where n×m raw bits are transformed into a 1-bit z. If [h] has a lower
memory address than [l], the D-Norm would be h− l which is positive
and plotted on the right half of the x-axis (otherwise, left). The reliability
of z increases when the `1-Norm difference between selected groups is
away from 0. Significantly, the proportion of z that tolerates a chosen noise
tolerance θ is greatly increased under D-Norm compared to the S-Norm. For
example, the uncovered (gray area) for D-Norm is much larger than
that of S-Norm in Fig. 6 for the same θ values.
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Here, binopdf and binocdf are density and cumulative
density functions of a binomial distribution, respectively.
The BERF is a function of θ, n and the BER of the raw
noisy fingerprint bits, BERf. If we select the worst-case
BERf of any memory chip, equation (9) provides a worst-
case (upper-bound) assessment of BERF.

D-Norm Reliability. A D-Norm transform employs a block
of m groups—each group with n raw fingerprint bits—to
be transformed into a 1-bit z. The BERF of D-Norm is
expressed in equation (10); we defer the derivation of the
formula to Appendix A.3:

(10)BERF =
n−θ∑

i=0

((1− binocdf(θ + i− 1, n+ θ,BERf))

× binopdf(i, n− θ,BERf))

We can observe the reliability of transformed bits from
the D-Norm to be related to θ (the selection criterion), n
and BERf. Again, equation (10) provides an upper-bound
estimation when the worst-case BERf is assumed. Notably,
the BERF is independent of the number of groups m within
the block.

4.2 Extraction Efficiency
We define extraction efficiency η as the number of obtainable
transformed bits, z, subject to a given noise-tolerance θ, from
the total number of available memory bits expressed in KiB.

S-Norm Extraction Efficiency. The extraction efficiency of
S-Norm can be expressed as below; the detailed derivation
is deferred to Appendix A.4:

(11)
ηSNorm =

1

n
× (1− binocdf(bn

2
c+ θ, n, 0.5)

+ binocdf(dn
2
e− θ− 1, n, 0.5))× (1024× 8)

Here, the term 1 − binocdf(bn2 c + θ, n, 0.5) expresses
the case when the `1-Norm of an n-bit f is larger than
the selection threshold bn2 c + θ, assuming that the prob-
ability of each bit being “1”/“0” is 50%. While the term
binocdf(dn2 e − θ − 1, n, 0.5) formulates the alternative case
when the `1-Norm of a n-bit f is less than or equal to
dn2 e − θ − 1. Both cases comprise vectors that satisfy the
selection criterion in equation (3). We can see that the overall
extraction efficiency should be the sum of the above two
cases divided by n—recall that n raw bits transform into a
1-bit z. The 1024×8 term expresses the extraction efficiency
as bit/KiB—number of selected reliable bits z out of 1 KiB
memory.

D-Norm Extraction Efficiency. A D-Norm transform obtains
a 1-bit z from a block of m, n-bit raw fingerprint vectors.
We define the probability that a given block will meet the
selection criterion (| h − l |≥ θ) in equation (7) as P select

DNorm

(recall that we refer to the lowest `1-Norm as l, and the
highest `1-Norm as h, out of all m groups within a block).
The direct derivation of P select

DNorm is non-trivial. Instead, we
use a different but equivalent problem and defer the details
to Appendix A.5. We formulate the extraction efficiency of
D-Norm as:

ηDNorm =
1

n×m × P
select
DNorm × (1024× 8) (12)

Here, the term of 1
n×m expresses n × m raw bits pro-

ducing a single z bit, while the 1024 × 8 constant facilities
express the result in terms of bits/KiB of memory. Given
the complexity of formulating ηDNorm, the fitness of the
formalized expression is further validated through running
extensive numerical experiments (defined in Section 5), with
the results detailed in Fig. 24 in Appendix.

4.3 Summary
Our formulation of reliability allows a security practitioner to
evaluate, for a given transform, suitable transform parame-
ters (e.g., the number of bits n to employ in a raw fingerprint
vector f and noise tolerance parameter θ) for extracting new
fingerprint F. The extracted F will have an expected worst-
case error bound given by BERF. Then, the η yields the
total number of such noise-tolerant bits BERF that can be
extracted from a given memory size.

5 EXPERIMENTAL VALIDATIONS

For comprehensively evaluating NoisFre we used 119 com-
modity chips consisting of three memory types pervasive
in COTS devices, especially in low-end IoT devices and
extensive simulation based experiments with billions of bit
generations to overcome the practical hurdle of demonstrat-
ing extremely low BER and key failure rates with physical
chips. In the following:

• We validate our analytical models for reliability and
extraction efficiency.

• We we assess the performance of the noise-tolerant fin-
gerprints by evaluating the uniqueness and uniformity
of F.

5.1 Evaluation Approaches
We consider three evaluation approaches described below.
Predictions (Analytical model). In this evaluation, we use
the analytical models formalized in Section 4 to predict
extraction efficiency and the BERF of the transformed fin-
gerprints.
Simulations (Synthetic chip model). To evaluate the relia-
bility of the transformed fingerprint, a massive number of
repeated measurements and the management of the data for
analysis are required. For example, if we want to validate
whether a 128-bit NoisFre enabled key can achieve a failure
rate of 10−6 as done in Section 6.2, the BERF needs to be
no more than 7.81 × 10−9. To test this with physical mea-
surements, approximately 108 repeated measurements are
required from the same chip instance. Such a measurement
process would take more than nine years and generates
roughly 6 Terabyte (TB) of data—this is merely for one
64-KiB chip. Such a massive testing regime is impractical,
as detailed in Measurement (Physical chips). Instead, we
employed a synthetic memory chip model (detailed in Ap-
pendix A.1). The model follows the physical unclonable func-
tion (PUF) response model summarized in [31] and assumes
each bit to have a binomial probability of a bit flip across
repeated measurements based on employing a worst-case
BER measured from a physical SRAM chip (see Table 1) as
the binomial probability parameter value for p. Using the
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TABLE. 1: Memory Datasets.

Manufacturer
Model 1 Abbr

Tech
Node

Memory
Type

Memory
Size Quantity

Repeat
Times

Operating
Range2

Enrolling
Condition

Worst
Condition Worst BERf

Nordic (ours)
nRF52832 NORDIC 55 nm SRAM 64 KiB 12 + 886 100 −15-80°C 25°C 80°C 6.09%

ISSI [29], [30]
IS61WV25616BLL ISSI 110 nm SRAM 256 KiB 4 30 25-80°C 25°C 80°C 8.29%

IDT [29], [30]
IDT71V416S IDT 130 nm SRAM 512 KiB 6 50 25-80°C 25°C 80°C 5.42%

Winbond [17]
W29N02GV Flash 46 nm FLASH

69,696 Bytes/
256 MiB3 7 99

0-100,000
P/E Cycles

0th P/E
Cycle

after 100,000th
P/E Cycles4 16.26%

Microchip (ours)
24LC256 EEPROM 350 nm EEPROM

2 KiB/
32 KiB5 2 100 14-80°C 14°C 80°C 16.37%

1The NORDIC and EEPROM datasets we collected will be released, remaining public datasets are from https://www.trust-hub.org/data.
2Notably these public datasets focus on room temperature and high-temperature evaluations. Other operating corners are incomplete.
3The tested Flash memory size in the public dataset is 69,696 bytes, while the total memory size is 256 MiB.
4Experimental studies demonstrate that the BERf of Flash memory is mainly affected by the programming/erase (P/E) cycles, equivalent to
wear-out or aging, but negligibly affected by voltage and temperature [17]. The maximum endurance is 100,000 according to the datasheet.
5The EEPROM chip has 32 KiB capacity, while the first 2 KiB memory is evaluated here.
6There are 12 chips with three corner measurements {−15, 25, 80}°C and 88 chips with a single 25°C corner measurement.

synthetic chip model, for instance, 100 million (108) times of
simulations can be completed in approximately 53 hours or
2.2 days using a laptop equipped with quad-core Intel Core
i7-10510U CPU and 16 Gigabyte (GiB) RAM. The synthetic
chip, models bit errors and when applied with the worst-
case BER is sufficient for evaluating reliability and extraction
efficiency. Therefore, we employ the data from the simulated
measurements to determine η and the BERF.

Measurements (Physical chips). Performing massive test-
ing on physical chips is impractical. For example, obtaining
100 repeated measurements from an nRF52832 physical chip
(in the NORDIC dataset) takes four minutes and 45 seconds,
and this generates 6.25 Megabyte (MiB) of data (the SRAM
memory size of the single chip is 64 KiB). Then, we can
estimate that 100 million (108) repeated measurements for
a single physical chip under a single operating corner will
take 3,298.6 days (or nine years) and generate 5.96 TB of
data. Therefore, we confirm extraction efficiency and the
transformed fingerprints’ BER validated using the synthetic
chip model with a limited number of repeated physical chip
measurements. However, we dedicate the physical chip
measurements across a large batch of 100 chips to evalu-
ate the quality of the transformed bits because properties
such as fingerprint uniformity and uniqueness are affected
by fabrication variations not incorporated in the synthetic
chip model used for simulations. The datasets we used are
described in Physical chips–Fingerprint Datasets below.

Physical chips–Fingerprint Datasets. Specifications of: i)
three SRAM; ii) one Flash memory; and iii) one EEPROM
datasets are summarized in Table 1 and described in detail
in Appendix. C. Each dataset is obtained from chips from a
different manufacturer. Further, the datasets describe multiple
repeated measurements of raw fingerprint bits under each
operating condition—see the operating range in Table 1.

We use the NORDIC dataset for extensive validations,
considering the fact that it is collected with the broadest
operating range and highest number of repeated measure-
ments (100 repeated measurements). In addition, we use
the remaining datasets to corroborate the generality of our
approaches. When we evaluate the BER of transformed bits,
BERF, we report the average from repeated evaluations.
Notably, the enrolled reference template is only based on
the first single measurement.

5.2 Validating Extraction Efficiency and Bit Error Rate
We employ simulations with the synthetic chip model to
conduct the necessary massive number of repeated mea-
surements to assess the reliability of transformed fingerprint
F. To generate the results, for each parameter combination
(i.e., n, θ in S-Norm andm, n, and θ in D-Norm) of a NoisFre
transform in Fig. 9 for S-Norm and Fig. 10 for D-Norm,
we simulated one million repeated measurements using a
synthetic chip with a memory capacity of up to 16 MiB1

5.2.1 Using Simulations
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10-5

100

B
E

R

n = 7

1 4 7

10-5

100
n = 15

2 4 6 8

10-5

100
n = 31

2 6 10

10-5

100
n = 63

1 2 3
0

200

400

600

S
N

or
m

 (
bi

t/K
by

te
)

1 4 7
0

200

400

0

100

200

0

50

100

2 4 6 8 2 6 10

Prediction Simulation (Synthetic Chip Model)

Prediction

Theshold 

Simulation (Synthetic Chip Model)

F

Fig. 9: S-Norm BERF and extraction efficiency ηSNorm validation
using the synthetic chip model constructed based on the NORDIC
chip dataset. The evaluation is conducted for different n and noise-
tolerance parameter θ, where θ ranges from 1 to n/2. Here, n raw bits
are transformed into one z bit.

S-Norm. The evaluation results from S-Norm are detailed
in Fig. 9 under various n and θ settings. Based on Fig. 9, we
can confirm that the formalization of BERF in equation (9)
provides a conservative estimation of the selected z bits.
The results for extraction efficiency are in good agreement
with equation (11) used to predict the number of z bits that
can be expected from a given chip.

D-Norm. The validation results of D-Norm are shown in
Fig. 10. As expected, the BERF plotted in Fig. 10 reduces
substantially as the θ is increased. Again, we can confirm

1. We start with a memory size of 64 KiB, the SRAM capacity of the
NORDIC chip, but we double the size when a 128-bit F cannot be
obtained. Thus, for each parameter setting, at least 128 bits are ensured
to be produced.

https://www.trust-hub.org/data
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that the formalized BERF in equation (10) is a conservative
estimate because it is always shown to be higher than
the synthetic chip model results. Further, the extraction
efficiency derived in equation (12) provides an accurate
prediction of the number of bits of F that can be expected
from a given chip under various D-Norm settings (n,m, and
θ).
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Fig. 10: D-Norm BERF and extraction efficiency ηDNorm validation
on the synthetic chip model constructed based on the NORDIC chip
dataset. The evaluation is conducted under different n and noise-
tolerance parameter θ where θ ranges from 1 to n and m = 4. Here
n×m raw bits are transformed into one z bit.

5.2.2 Using Measurements
Three SRAM datasets (our NORDIC, public ISSI and IDT
datasets); one Flash dataset; and our EEPROM dataset are
used to validate the generality of the NoisFre approach
based on physical chip measurements. The results of S-Norm
and D-Norm validated on these five datasets are detailed
in Fig. 11. In contrast to our simulation-based study in
Section 5.2.1, here we use a synthetic chip of identical data
capacity and worst-case BERf matching the physical chip
under investigation and simulate 100 repeated measure-
ments in sympathy with the physical measurement regime.2

Overall, we can observe from the plots in Fig. 11 that
simulations with the synthetic chip model agree well with
the measurements for both S-Norm and D-Norm.

Based on our comprehensive experimental validations on
SRAM memories from three different manufacturers, Flash mem-
ories, and EEPROM memories, we can now conclude that our
formalized model of the unreliability, BERF, and extraction
efficiency, η, in Section 4 are indeed reliable measures. Most
importantly, the formalized models serve as bounds for BERF

and η in practice; the measurement results and synthetic chip
model results are the same or better than those predicted by the
analytical models.

5.3 Evaluating Uniformity and Uniqueness

In addition to the two crucial performance measures we
formulated, reliability and extraction efficiency, we further
consider measures that evaluate other qualities of the trans-
formed bits in terms of uniqueness and uniformity (see [32]
for a definition of these measures). In the following, our

2. One hundred measurements are due to the impracticality of con-
ducting the necessary number of repeated measurements with physical
chips, as detailed in Section 5.1

evaluations are based on the measurements obtained from
the 100 physical chips in the augmented NORDIC dataset.

Uniqueness Evaluation. Essentially, uniqueness measures
how different the fingerprints are between devices. How-
ever, the formal definition of uniqueness based on fractional
Hamming distance 3 [32] cannot be directly applied for
F fingerprints because the transformed bits are generated
from different physical memory blocks from chip to chip,
and the number of such bits obtained could also vary from
chip to chip. To account for this, we propose evaluating
the uniqueness of S-Norm and D-Norm transformed finger-
prints based on the following approach:

1) Given a set of transformation parameters (such as n,m,
and θ for D-Norm), we extract all the z bits for each of
the N (i.e., 100) devices.

2) Given a pair of devices out of
(N

2

)
, we identify the

device which produces the F string with the smaller
number of z bits within this pair, and truncate the
longer bit string to the same length. Then, we calculate
the fractional inter-chip Hamming distance for this pair.

3) We repeat the process in Step 2) for all the
(N

2

)
pairs to

obtain the uniqueness measurement over the 100-chip
dataset.

The uniqueness of raw fingerprints, S-Norm fingerprints,
and D-Norm fingerprints is illustrated in Fig. 12. The mean
uniqueness of the raw fingerprints is 0.48, with a stan-
dard derivation of 0.037. For S-Norm, the mean uniqueness
achieves the ideal value of 0.50 under all tested settings, and
the largest standard derivation is 0.037 under the setting of
(n = 15 and θ = 7) and (n = 47 and θ = 9). The mean
uniqueness of the D-Norm fingerprints also exhibits the
ideal value of 0.50, except for settings (n = 32, m = 128,
θ = 16), but the mean uniqueness of 0.49 is still nearly
the ideal value. In general, as the number of extracted
fingerprints in a tested sample decreases, we also observe
an increase in standard deviation; this is expected because
of the resulting small sample size for statistical analysis.

Uniformity (Bias) Evaluation. Uniformity measures the
balance between zeros and ones in a fingerprint vector. The
uniformity distribution of raw fingerprints, S-Norm finger-
prints and D-Norm fingerprints is illustrated in Fig. 13.
The uniformity of the raw fingerprint is very close to the
ideal value of 0.5, with a very small standard deviation.
The uniformity of S-Norm and D-Norm methods—across
the various parameter settings—is close to the ideal value,
albeit with a slight bias toward “1”. Notably, such slight
biases are acceptable for key derivation and can be simply
compensated by using a few more fingerprint bits when
deriving a key [33].

6 DERIVING CRYPTOGRAPHIC KEYS FOR SECU-
RITY FUNCTIONS

We demonstrate the expressive power of our formalization by
investigating the derivation of root keys from commodity
memory chips facilitated by our analytical models. The

3. Fractional Hamming distance (FHD) is a distance measure be-
tween two vectors of equal length, defined as the number of positions in
the two vectors with different values, normalized by the vector length.
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Fig. 11: S-Norm and D-Norm validation on the datasets including three types of SRAM memories from three different manufacturers (NORDIC,
ISSI, and IDT), one type of Flash memory, and one type of EEPROM memory with S-Norm setting (n = 63) and D-Norm settings (n = 64, m = 4).
Note 1 : the number of repeated measurements is finite (see Table 1) and inadequate to demonstrate any errors when the expected BERF is
considerably less than 1/(number of repeated measurements).

0 0.5 1
0

500

1000 RAW

Fractional Hamming Distance

O
cc

ur
re

nc
e

0 0.5 1
0

500

1000
D(16,64,13)

0 0.5 1

D(16,128,13)

0 0.5 1

D(32,16,16)

0 0.5 1

D(32,32,16)

0 0.5 1

D(32,64,16)

0 0.5 1

D(32,128,16)

Raw Uniqueness

48
37

S-Norm Uniqueness

D-Norm Uniqueness

O
cc

ur
re

nc
e

O
cc

ur
re

nc
e

Fractional Hamming DistanceFractional Hamming
Distance

0 0.5 1
0

500

1000
S(15,7)

0 0.5 1

S(31,10)

0 0.5 1

S(39,9)

0 0.5 1

S(47,9)
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θ) applied to our large dataset of 100 chips.

dynamic and direct generation of cryptographic keys from
memory fingerprint transformations into noise-tolerant bits
is a basis for building security functions because: i) memory
biometrics is a true source of randomness and ii) it removes
the need for a protected non-volatile memory—keys can be
generated on-demand and “forgotten” after usage.

In the following sections, we elaborate on a method for
employing the new fingerprint F obtained from the NoisFre
transformation to realize a cryptographic key generator
(Section 6.1) and evaluate the practical realization of such
a key generator (Section 6.2); we defer the security analysis
of the key generation process to Section 8.3.

6.1 A Method for Realizing a NoisFre Key Generator
A typical memory fingerprint-based key generation method
involves two steps: i) a one-time secure key enrollment
on the server-side and ii) on-demand secure key regener-
ation on the device-side [22], [24], [34], [35]. Positions of
transformed bits z should be provisioned during the key
enrollment phase and provided during the key regeneration
phase. We refer to these positions using a mask. Recall that
we have referred to those raw bits that produce a 1-bit z as
a block. For the S-Norm, one block has n raw bits, while one
block has n×m raw bits in the D-Norm; for both methods,
n raw bits form one `1-Norm. In the discussion that follows,
we consider key generation under two practical settings:

• Devices with write once read many (WORM) memory
for storage of the mask defined to select the memory
regions to be used in the NoisFre transform prior to
deployment.

• Devices without WORM memory where the mask has
to be transmitted, for example, through a wireless com-
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munication channel.

6.1.1 On-Server Secure Key Enrollment
First, we describe the one-time secure key enrollment pro-
cess, depicted in Fig. 14. This process is performed in a
secure environment by the server.

NoisFre.
Transform
Selection 

Fingerprint
memory 

Device Server

WORM
memory

(optional) 

Fig. 14: NoisFre secure key enrollment process. The raw fingerprints
are extracted and used in the NoisFre Transform Selection process (as
defined in equations (6) and (7) for D-Norm) to determine the selected
memory addresses (mask) for subsequent use in security functions.
Although we have only focused on the generation of a single mask,
several masks may be defined to allow the server to subsequently
generate different secret keys on-demand.

Protocol. The one-off on-server secure key enrollment proto-
col with NoisFre is as follows:

1) Fingerprint memory is a memory region from which
the raw device memory fingerprint f is extracted.

2) The raw fingerprint f is processed by the server. The No-
isFre Transform Selection process determines a noise-
tolerant fingerprint vector F and the corresponding
mask based on the parameters n, m, and θ determined
by a security practitioner. Notably, a practitioner can
employ the analytical expressions derived in Section 4
to determine the appropriate parameter values.

3) Both F and the mask are stored in the server’s secure
database (DB, indexed by, for example, the device iden-
tification number [id], although not explicitly shown
here for simplicity).

4) Optionally, the mask can be stored inside the device’s
WORM memory.

6.1.2 Dynamic On-Device Secure Key Generation
Now, we consider the realization of on-device secure key
generation with a device memory fingerprint biometric. We
illustrate the key generation method in Fig. 15.

Protocol. The dynamic on-device secure key generation pro-
tocol with NoisFre is as follows:

1) If the device implements WORM memory to store the
mask, as in Fig. 15 (a), the server fetches device-specific
information from the DB, such as the enrolled F.

2) If the device does not implement WORM memory, the
server fetches device-specific information from the DB,
such as the enrolled F and mask, as in Fig. 15 (b).
The mask is transferred from the server to the device
over a (non-secure) wireless communication channel.
To ensure the integrity of the mask, a message authen-
tication code (MAC) tag is computed by the server as
tag← MACF(mask) and appended to the mask.

3) The device dynamically generates a new noisy raw
fingerprint f′ from the fingerprint memory.

4) The device computes F ← NoisFre.Transform(f′,
mask), where NoisFre.Transform() is a function defined
by, for example, the D-Norm transform in equation (6).

5) If the device does not implement a WORM memory,
then the mask is sent by the server, as shown in
Fig. 15 (b); the device computes tag′ ← MACF(mask).
To check the integrity of the mask, the tag′ is compared
to the tag supplied by the server. If the two values
match, output the NoisFre fingerprint F; otherwise,
output ⊥.

6) Now both the server and the device share the same
highly reliable F to be used as a shared secret in a
security function.

NoisFre.
Transform 

MAC

yes

no

MAC

Fingerprint
memory 

Server Device

==

NoisFre.
Transform Fingerprint

memory 

WORM
memory

Device

(a)

(b)

Server

Fig. 15: On-device NoisFre key generation: (a) the mask is stored in a
device’s WORM memory; (b) the mask is supplied by the server over
the wireless communication channel, if there is no WORM memory
available on-device, for example. Although the illustration shows the
production of one F-based key using one mask, it is possible to enroll
and generate several keys if desired.

6.2 Evaluations
We begin our systematic evaluation of cryptographic key
generation with the following question and employ the
formal models and the physical chip measurements for our
evaluations.

What is the reliability of a k-bit NoisFre fingerprint F?

Transformed fingerprint F can be directly utilized as a
cryptographic key because they are invariant to a desirably
high number of noise-induced bit error patterns—these z
bits exhibit a high noise tolerance. The overall failure rate
P fail
F of a k-bit noise-tolerant key F can be expressed as:

P fail
F = 1− (1− BERF)

k (13)
Recall that the formalized BERF in Section 4.1 is con-

servative. Therefore, the P fail
F in equation (13) will also

yield a conservative estimation. We expect a key failure
rate in practice to be lower than our prediction here. This
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hypothesis is validated with an extensive simulation-based
on a large simulated chip with up to one billion repeated
noise-tolerant key bit extraction, as illustrated in Fig. 16.

2 4 6 8 10 12 14 16
10-10

10-5

1

P
fa

il

Prediction

P fail =10-6

θ

Simulation (Synthetic Chip Model)

Noise-tolerance parameter

F F

Fig. 16: Validation of equation (13). The simulated chips are based
on the worst-case BERf = 6.09% from the NORDIC chip set. The
parameters selected are n = 32, m = 16 and varied D-norm parameter
θ from 1, . . . , 17. We conducted 10 million re-evaluations of a 128-bit
noise-tolerant fingerprint for each value of θ = 1, . . . , 16 and one
billion evaluations for θ = 17. Our results corroborates equation (10)
and equation (13) as an upper bound on the failure rate of a NoisFre
fingerprint employed as a cryptographic key. An even lower P fail

F is
achievable if a larger θ is used. We halted our investigation at θ=17 as
it answers the question we investigated.

Next, considering a practitioner’s desire for a P fail
F <

10−6 performance target 4 for typical industrial applications,
as highlighted in [36] and recent studies [26], [34], [37]–[40],
we investigate the following question.

What is the most efficient transformation method pre-
senting the highest extraction efficiency while ensuring
sufficient reliability for F to be direct use as a 128-bit
cryptographic key with a failure rate lower than 10−6

under worst-case raw fingerprint BERf?

We employ NORDIC SRAM-based synthetic data to
facilitate the massive number of evaluations necessary to
address the question. The evaluation process is described
below:
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Fig. 17: Extraction efficiency comparison between D-Norm and S-Norm.
For S-Norm and D-Norm extractions, we have evaluated 16,384 and
8,388,480 parameters combinations, respectively. The θ of D-Norm
may take any value in [1, n], while in S-Norm, the θ is restricted
within [1, n/2]. Meanwhile, D-Norm extraction employs the additional
parameter, m. Therefore, the possible combinations of parameters for
D-Norm are magnitudes larger than that of S-Norm.

1) We determine the BERF corresponding to a 128-bit key
with a failure rate of 10−6 using equation (13). The
resulting BERF is 7.81× 10−9.

2) For each n ∈ {1, 2, 3, ..., 256}, evaluate the minimum
θ for the required BERF (equation (9) for S-Norm
and equation (10) for D-Norm) to ensure BERF <
7.81 × 10−9. In these equations, we employ the mean
of the worst-case BERf = 6.09% of NORDIC dataset to

4. Notably, there is nothing fundamentally preventing us from aim-
ing for a lower key failure rate. We can see from Fig. 16 that a larger θ
will achieve a lower failure probability.

compute an upper bound for BERF.

3) For S-Norm, the extraction efficiency η is calculated
with equation (11) using the n and θ determined in the
previous step.

4) D-Norm requires us to further determine the m value
that can provide the highest η. As observed in Fig. 24 in
the Appendix, η changes smoothly with respect to m.
To reduce the search-time overhead, we applied a grid-
based search technique: i) evenly select j sample points
from the entire domain of m ∈ {1, 256}. ii) calculate
the η for each m = 1, 2, 3, .., j; iii) find the m values
corresponding to the highest and the second highest
η; iv) refine the search domain to be between the two
points found in step iii); and v) repeat from i) to iv) to
locate the m that gives the highest η.

The results from our investigation are depicted in Fig. 17;
here, we plot the occurrences of extraction efficiency as a
function of η from all the combinations of S-Norm param-
eters (n and θ) and D-Norm parameters( n, θ and m). We
can conclude that the D-Norm always affords significantly
higher extraction efficiencies conditioned on the 128-bit
P fail
F < 10−6 constraint. Therefore, in the following discussion,

we focus on the D-Norm.
Given: i) different sizes of memories embedded within

various COTS electronics and ii) BERf characteristics of
noisy fingerprints from different memory technologies:

What is the lowest key failure rate P fail
F achievable for

a 128-bit key F from each memory technology and
manufacturer considered in our study?

This scenario resembles a practical application setting
where the computing platform or micro-controller unit, for
example, needs to be selected based on meeting security
and application requirements. We can assume that inher-
ent (worst-case) BERf of raw fingerprints are known (i.e.,
published measurement studies on memory technologies).
Thus, we test our suite of memory technologies using the
following approach:

1) For each memory dataset listed in Table 2, we conduct
an exhaustive parameter search using possible combi-
nations of D-Norm parameters (n,m ∈ [1, 128], and
θ ∈ [1, n]) using our analytical models. This step identi-
fies the (n,m, θ) combination exhibiting the lowest P fail

F

while still providing least 128-bit F.

2) We employ the formulated equation (10) to obtain the
BERF of the extracted F using the identified m, n, θ
and the mean of BERf characterized across the chips in
a given memory type dataset.

3) We use BERF substituted into equation (13) to deter-
mine the best P fail

F of the selected and transformed F
with at least 128 bits.

Results are summarized in Table 2. Taking the expected
BERf across the smallest SRAM dataset, the lowest P fail

F

expected from a chip with SRAM capacity of 64 KiB is in
the magnitude of 10−5. Notably, P fail

F reported in Table 2
is conservatively estimated from formulations. In practice,
P fail
F is expected to be much better. Importantly, with more

abundant and freely available on-chip SRAM, represented
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TABLE. 2: The lowest key failure rate P fail
F achievable for obtaining

a 128-bit key F for each investigated memory dataset using D-Norm.
Here Mem. size is the abbreviation for Memory size. Worst case BERf

is the mean of the value calculated across the chips in a given dataset.
Notably, as described in Section 6.2 and illustrated in Fig. 16, equation
(13) provides a conservative upper bound, the actual key failure rates
will be much lower in practice.

Dataset
(Type)

worst case
BERf (mean)

Mem.
size n m θ

P fail
F

equation (13)

NORDIC
(SRAM) 6.09% 64 KiB 29 65 13 4.04× 10−5

ISSI
(SRAM) 8.29% 256 KiB 50 128 19 3.56× 10−5

IDT
(SRAM) 5.42% 512 KiB 83 128 25 5.29× 10−9

Winbond
(Flash) 16.26% 256 MiB 1 120 128 41 2.52× 10−4

Microchip
(EEPROM) 16.37% 32 KiB 1 14 61 9 4.01× 10−1

1Recall that the tested size of Flash and EEPROM memory are 69 KiB
and 2 KiB. When calculating the number of selected noise-tolerant bits,
the memory sizes are scaled up by assuming the entire 256 MiB Flash
memory and 32 KiB EEPROM memory are available for fingerprinting.

in the IDT dataset, a remarkably low key failure rate of
5.29× 10−9 is achievable.

As expected, the higher worst-case BERf of the EEPROM
and Flash datasets implies that the techniques in NoisFre are
not able to select a 128-bit F with a satisfactory P fail

F . How-
ever, the Flash memory tested benefits from a high memory
capacity (256 MiB compared to 32 KiB for EEPROM) and we
can achieve orders-of-magnitude better P fail

F than EEPROM.
In summary, for SRAM—the most prevalent memory

type in IoT devices—a 128-bit key with a key failure rate
less than 10−6 can be efficiently obtained given an adequate
SRAM memory capacity. However, for memory types ex-
hibiting severely high BERf, for example, EEPROM and
Flash, the method itself is insufficient to gain a satisfactory
P fail
F . Although, NoisFre does significantly reduce the key

failure rate given the higher capacity of Flash memory
for selecting bits. Notably, with such high BERf memory
characteristics, even the state-of-the-art, efficient method of
RFE-based key generators are unlikely to deliver a compu-
tationally tractable solution on resource limited devices. We
discuss this limitation further in Section 8.4.

7 SECURITY FUNCTION IMPLEMENTATION FOR
COMPARISON

Here, we describe a case study implementing a NoisFre-
based key generator followed by performance and imple-
mentation overhead comparisons against the lightweight,
state-of-the-art (R)FE-based method.

7.1 An Overview
The entities, a Verifier and a Prover, involved in this case
study are illustrated in Fig. 18 (a). The Verifier consists of a
server and a wireless network gateway (smartphone). The
Prover refers to a wireless sensor node (Bluetooth sensor). In
this setup, the server functions as a coordinator, holds the
enrolled Prover’s information in the database, and issues
commands to instruct the Prover to perform remote attesta-
tion. The gateway bridges the communication between the
server and the Prover. The traffic between the server and the

Network

Server Gateway Sensor node

Prover

(a)

(b)
1

2
3

Secure network channel Insecure wireless
channel

Verifier

Fig. 18: (a) System overview. (b) Experiment setup: Verifier consists of
1 a laptop as the cloud server and 2 a smartphone as the gateway; de-

vice is 3 a commercial widely used nRF52832 Bluetooth-LE sensor. See
the demo video for more details https://youtu.be/O5NWZw-swpw.

gateway is assumed to be secure by applying standard se-
curity protection mechanisms. The Prover, communicating
wirelessly, is deployed in an (insecure) environment. Details
of the corresponding attestation protocol are provided in
Fig. 19. Our case study aims to:

• Implement a lightweight remote attestation routine
suitable for a Prover with a constrained resource by
following [41].

• Experimentally demonstrate that SRAM fingerprints can
be accessed on-demand and at run-time by exploiting the
low-cost micro controller unit (MCU)’s memory power
control features—SRAM regions are arranged in blocks
can be individually powered on or off.

Verifier Prover
DB = {(id,F,mask), ...} id,Memory
App = (bin, addr, length)

hello
−−−−→

id
if id ∈ DB ←−−−−
[F,mask]← DB(id)
tag← MACF(mask)

else mask, tag
abort −−−−−−−−−−−−→ Power cycling

Fingerprint zone
f ′← Memory(Fingerprint zone)
F← NoisFre.Transform(f ′,mask)
tag′← MACF(mask)
if tag 6= tag′

reject and abort
ready for attestation else
←−−−−−−−−−−−− continue

chal← RNG() chal, addr, length
−−−−−−−−−−−−→ bin′← Memory(addr, length)

resp← MACF(bin, chal) resp′← MACF(bin, chal)
resp′

if resp == resp′ ←−−−−
attestation succeed

else
reject

Fig. 19: Remote attestation protocol, with mask transmitted from the
Verifier, In case the WORM is not supported on the Prover device.

https://youtu.be/O5NWZw-swpw
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Remote Attestation Mechanism. An overview of the remote
attestation mechanism based on a NoisFre key generator is
illustrated in: i) Fig. 19, where we assume the Prover has
no WORM memory available for storing a mask and that
it has to be transmitted over the wireless communication
channel (the worst-case setting in terms of implementation
overhead) and ii) Fig. 20, where we assume the Prover
has available WORM memory. We assume the Prover has
already undergone the enrollment phase we described in
Section 6.1.1. The enrollment is conducted by the Verifier in
the current setting.

A remote attestation can be requested anytime. First,
the Verifier scans for visible Provers by sending a “hello”
message. Once there is a Prover in the horizon responding
with its unique identifier id, the Verifier fetches the Prover’s
information (e.g., F and mask) from the secure database
DB by using the id as an index. Second, if the received id
matches one of that stored in the Verifier’s DB, the Verifier
instructs the Prover to perform attestation—by sending the
mask and MAC tag for Provers with no WORM memory,
as in Fig. 19. In this context, the Prover performs a power
cycling of memory banks solely corresponding to the fin-
gerprint zone5 and dynamically generates Fi following the
steps described in Section 6.1.2. After confirming a ready
acknowledgment from the Prover, the Verifier randomly
generates a challenge (a nonce) chal, and sends it to the
Prover along with the address addr and the length of the
target application program (App) code bin in the Prover’s
memory. The Prover’s response resp′ is generated using
MAC computed with the noise-tolerant fingerprint F. The
Verifier compares the received response resp with a locally
calculated reference response resp′. The remote attestation
is accepted if resp and resp′ match and rejected otherwise.

Verifier Prover
DB = {(id,F), ...} id,Memory
App = (bin, addr, length) WORM

hello
−−−−→

id
if id ∈ DB ←−−−−
F← DB(id)

else prepare for attestation
abort −−−−−−−−−−−−→ Power cycling

Fingerprint zone
f ′← Memory(Fingerprint zone)

ready for attestation mask← WORM
←−−−−−−−−−−−− F← NoisFre.Transform(f ′,mask)

chal← RNG() chal, addr, length
−−−−−−−−−−−−→ bin′← Memory(addr, length)

resp← MACF(bin, chal) resp′← MACF(bin, chal)
resp′

if resp == resp′ ←−−−−
attestation succeed

else
reject

Fig. 20: Remote attestation protocol, with mask stored in Prover’s
WORM. In the demo, we implement this version.

If the Prover device implements WORM memory for
storing a mask, the protocol can be simplified as shown
in Fig. 20; in our end-to-end demo implementation, we
consider this simpler case, and describe the implementation
details in Fig. 26 in Appendix. B.

5. Each memory bank can be individually powered off by exploit-
ing particular power control registers, thus enabling run-time SRAM
fingerprinting.

7.2 Overhead Comparisons
Implementation Details. We provide an overview of
the system implemented in Fig. 18 (b) and defer de-
tails to Appendix B. Further, we refer the reader to
our open-source code release6 for detailed descriptions
of our implementation, including dynamic and run-time
key generation from SRAM fingerprints. A video demon-
stration of the end-to-end implementation is available at
https://youtu.be/O5NWZw-swpw.

We implemented a D-Norm-based key generator on an
nRF52832 chip with the smallest on-chip SRAM capacity
and BERf of 4.93% tested under −15 to 80°C operating
range. We used n=32, m=48, θ=13 for D-Norm parameters
determined by equation (10), (12), and (13) to be able to
extract a 128-bit NoisFre key capable of a key failure rate
below 9.15× 10−6.

For comparisons, we implemented the (R)FE-based key
generators summarized in Table 3 to achieve a key failure
rate to closely match 10−6. As discussed in Section 2.2,
in an FE, the device executes the computationally-heavy
decoding function, while in an RFE, the device executes
the more lightweight encoding function. In our end-to-
end demonstration, to achieve a comparable failure rate to
that of the D-Norm-based NoisFre key generator, the (R)FE
implementation needs 13 parallel blocks of (n = 63, k = 10,
t = 13) BCH code7 to provide a similar key failure rate.

Implementation Overhead. The implementation overhead
evaluates the usage of two system resources: random-access
memory (for run-time data) and clock cycles (for code
executions). Overall, in terms of obtaining a 128-bit reliable
key with a key failure rate of 9.15 × 10−6, the implementa-
tion of the D-Norm-based NoisFre method with parameters
(n=32, m=48, θ=13) takes 51,044 clock cycles8. If the mask
is provided by the server and transmitted over a wireless
channel, an additional 45,622 clock cycles are required for
mask integrity checks.

In contrast, the FE-based and the lightweight state-of-
the-art RFE-based method introduces significantly higher
overheads to achieve a 128-bit reliable key with a slightly
inferior key failure rate of 2.45 × 10−5. Specifically, as
evaluated and shown in Fig. 21, the on-device FE decoding
and RFE encoding functions consume 285,311 and 109,850
clock cycles, respectively. Both methods need an additional
60,755 clock cycles for helper data integrity checks. In com-
parison with the state-of-the-art FE and RFE, for meeting a
comparable key failure rate, NoisFre reduces clock overhead
by 72% and 43%, respectively, if the mask or helper data is
transmitted over the wireless channel requiring helper data
integrity checks. However, if the mask or helper data for
all of the method are stored on a device’s WORM memory,
clock cycles required in comparison to NoisFre reduces by
82% (compared to FE) and 54% (compared to RFE).

It is worth ephasizing that we have compared NoisFre
with an RFE capable of deriving a key with a failure rate

6. See https://github.com/AdelaideAuto-IDLab/NoisFre
7. BCH code is a class of cyclic error-correcting codes, named after

its inventors Bose, Chaudhuri, and Hocquenghem, constructed using
polynomials over Galois field

8. This was tested with nRF52832 SoC, via J-link EDU V10.1 debug-
ger, with nRF5 SDK Ver. 15.3.0, Keil uvision 5.25.2.0 and ARM CC
compiler Ver. 5.06 Update 6. Optimization setting = -O3.

https://youtu.be/O5NWZw-swpw
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Fig. 21: Comparison of implementation overhead of the proposed
NoisFre key derivation against traditional (R)FE-based key derivation.
The integrity checks are necessary if the helper data or the mask is
transmitted over a wireless channel.

of P fail
F ≈ 10−6. However, as we show in Table 2, if an

IDT chip is used in the implementation, we can obtain a
key with a significantly lower key failure rate by exploiting
the free, abundant memory; now, P fail

F can be ≈ 5 × 10−9.
Attempting to achieve such a small P fail

F using an (R)FE
will lead to significantly higher overheads. The (R)FE-based
key provisioning method introduces increasing execution
overheads if a lower key failure rate is desired as illustrated
in Table 3. For example, if an IDT SRAM chip is used as
the fingerprinting barometric source instead of the NORDIC
chips’ internal SRAM, a 128-bit key with failure rate of
1.69× 10−9 requires 188,487 (3.69 times larger) clock cycles
with the REF-based method or 967,599 (18.95 times larger)
clock cycles with the FE-based method, compared with
51,044 clock cycles for our NoisFre-based method. Hence, in
contrast to (R)FE methods, the on-device computational overhead
of the proposed NoisFre key generator remains constant, regardless
of the desired key reliability and only depends on the size of the
key to be derived.

8 DISCUSSION

8.1 Generality of NoisFre

Although our work focused predominantly on SRAM, con-
sidering its ubiquity in low-end IoT devices and the simplistic
nature of fingerprint extraction, the NoisFre fingerprinting
methods presented are applicable for other memories, in-
cluding Flash and EEPROM memories validated in our
study. In principle, it can be applied to other hardware
fingerprinting methods [42], [43], given an abundant raw
digital fingerprint bit space.

8.2 Provisioning Fingerprints at Run-time

Flash and EEPROM memory fingerprints can be accessed
during run-time. However, for SRAM fingerprinting, the

most common method is to utilize its initialization pat-
tern at power-up as a fingerprint, although there are other
means [44]; for example using data retention voltage [44] or
intentionally putting SRAM cells under a meta-stable state.
Those methods usually require customized peripheral cir-
cuitry, which tends to be unavailable in COTS devices. Thus,
SRAM fingerprinting generally requires power cycling to
read the start-up values. As a matter of fact, some low-end
microcontrollers allow direct control over the powering of
individual SRAM banks [45] (e.g., the low-end nRF52832
studied in this work). Consequently, by leveraging such a
feature, SRAM fingerprint-based root keys can be requested
during run-time.

8.3 Security Analysis

We have looked at the problem of achieving a pragmatic,
on-device key derivation method using noisy memory fin-
gerprints. NoisFre fundamentally obviates the need for com-
putationally intensive on-device ECC logic for the task. It is
thus immune to HDM attacks [25], [26] that strategically
tamper the helper data associated with the ECC to weaken
or compromise the key extracted using the state-of-the-art
(R)FE methods. The vulnerability is induced by the usage
of ECCs (see Section 2.2). Various ECCs are examined and
shown to be vulnerable to HDM attacks [26]. A generic
countermeasure against HDM attacks appears to be an open
challenge. The NoisFre scheme has sought to remove the
necessity for helper data associated with key generation
in an RFE and, thus, avoid the HDM attacks that exploit
helper data. In the following, we consider the security of
our proposed key derivation method in the context of prior
methods based on the state-of-the-art (R)FE methods.

8.3.1 Threat Model
Memory fingerprint-based key provisioning studies rarely
explicitly define a threat model [33], [39], [46] and operate
under the assumption that the key material (i.e., memory
fingerprint) cannot be directly accessed. However, studies
focusing on incorporating key derivation methods to pro-
vide a security function, such as authentication or remote
attestation [47]–[50], follow a threat model. Therefore, we
follow the threat model reasoned therein, along with the as-
sumption that the key material cannot be directly accessed.

Specifically, we consider that an adversary cannot access
the raw fingerprint and temporary data stored in RAM or
internal chip registers during key derivation. The attacker
can tamper with public information used to assist the key
derivation. Notably, in prior work, such information would
be the ECC associated helper data in a (R)FE-based re-
liable key derivation method [26]—in our key derivation
approach, we assume the mask is public information. The
mask is sent to a device over a communication channel
together with a method for assessing the integrity of the
mask or is stored in WORM.

TABLE. 3: Implementation overhead of R(FE) employing BCH codes.

Fingerprint source
(BERf )

BCH(n,k,t) Block number Key failure rate Key size Helper data size
Clock cycles

Fuzzy Extractor
decoding

Reverse Fuzzy
Extractor encoding

Helper data
integrity check

NORDIC (4.93%) (63,10,13) 13 2.45× 10−5 130 689 285,311 109,850 60,755
IDT (5.42%) (127,15,27) 9 1.69× 10−9 135 1008 967,599 188,487 84,013
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8.3.2 Mask Manipulation Attack
In use cases where the mask is sent to a device over a
communication channel, it is possible for an attacker to ma-
nipulate the mask. Therefore, we consider mask manipulation
attacks.

In the context of a NoisFre-based key generator, a
MAC tag is produced over the mask using the derived
F to ensure the integrity of the mask—more specifically,
tag ←MACF(mask), with F being the reliable secret key,
as illustrated in Fig. 15 (b). The mask and MAC tag can
be publicly stored off-chip and/or stored on-chip. Subse-
quently, the MAC tag can be regenerated to validate the
integrity of a mask stored on-device or transmitted to the
device prior to the use of the key derived on-demand, as
illustrated in Fig. 15 (b). Now, the probability of making a
modification without being detected is 1

2k with k the length
of the derived key. It will be 1

2128 for a typical 128-bit key.
Although we adopted a simple mechanism in this study

to ensure mask integrity, other mechanisms have been pro-
posed to ensure the integrity of helper data in the context
of state-of-the-art (R)FE methods [25]. Thus, we can also
employ these existing methods to ensure the integrity of
the mask for NoisFre key derivation method.

8.3.3 Brute-force Attack
For completeness, we also assess the attack complexity
of a brute-force attack on a NoisFre-based key derivation
method. The attacker may utilize a brute-force attack to
determine the derived key. However, this is extremely chal-
lenging when the key is appropriately sized. For a brute-
force attack, the probability of finding the correct derived
key is 1

2k , which is computationally infeasible given a reli-
able key with a typical length of k = 128 bits.

8.3.4 Aging Attack
The data stored in a SRAM cell can gradually affect its start-
up state. This is called data-dependent aging [51]. Given that
the key derivation is based on a physical primitive, we also
consider aging attacks that may attempt to exploit the small
changes in behavior of memory cells that occur as a result
of aging the underlying electronic components.

In use cases where a write access protected (e.g., using
a memory protection unit [MPU]) memory cannot be al-
located for generating fingerprints and where the memory
space used for fingerprints must be shared with user appli-
cation code, an attacker may utilize malicious code on the
device to continuously write specific memory patterns to the
SRAM used for device fingerprinting. Such an attempt can
accelerate aging and can potentially degrade the reliability
of a NoisFre key generation method.

In use cases where a dedicated memory cannot be allo-
cated for generating fingerprints, several simple mitigation
strategies already exist. First, the aging effect is data depen-
dent. The user can employ an anti-aging method, such as
writing reverse data patterns to mitigate the aging effect
validated as an efficient approach to counter aging [51].
Second, the SRAM unreliability induced by aging, even over
six years, is small—only 2% [51]. Hence, a simple anti-aging
method for NoisFre is to allow the server to intentionally
assume a higher worst-case BERf during the enrollment
phase to count for or tolerate the aging effect by trading off a

slight increase in SRAM volume required to retain the same
NoisFre key reliability. If the available memory volume is
constrained, a further low-cost anti-aging measure is for the
server to adopt the trial-and-error method reported in [52]
to recover the least reliable transformed z bits, because the
server can ascertain the bit-specific reliability of each z bit.
Notably, in this approach, all the computation overhead is
offloaded to the server without imparting any overhead to
the device.

8.4 Limitations and Future Work
Our study is not without limitations. As shown in Fig. 17,
the highest extraction efficiency (i.e., the number of finger-
print bits with a BERF < 7.81 × 10−9 that can be extracted
from a unit-sized memory block) that NoisFre can achieve
is 0.62 bits per KiB. Hence, extracting a usable (e.g., 128-
bit) secure key from a highly resource-limited device with
a mere 2 KiB memory space (i.e., the SRAM size of the
passively powered computational radio frequency identifi-
cation (CRFID) device studied in [35]) with NoisFre is not
immediately possible.

The investigation of potential methods for improving
the performance, in particular enhancing the BERF and/or
extraction efficiency η, is left out of scope for our current
study focused on developing NoisFre, formalizations, and
extensive evaluations. As a potential direction for future
work, it will be interesting to consider approaches, for
example, to extract more bits from a given memory. Al-
though our formulation for reliability is applicable for such
a method, the analytical formulation of extraction efficiency
for such new methods will likely require considerable effort
to develop. Importantly, the complexity of the task will
provide an interesting direction for future work. Therefore,
we leave the investigation of potential means for improving
the NoisFre performance, in particular enhancing the BERF

and/or extraction efficiency η, as potential directions for
future research.

9 RELATED WORK

Besides memories, various on-board sensors, such as cam-
eras, accelerometers, gyroscopes, magnetometers, and other
components, such as CPU magnetic radiations, are utilized
to provide fingerprints [3]–[11]. Other recent works also
explore commodity scanners to fingerprint 3D objects to
track them [2] and exploit the package variations as finger-
prints for anti-counterfeiting [1]. However, to obtain hard-
ware fingerprints, those fingerprint extractions are relatively
complicated in comparison with memory, especially SRAM,
enabled fingerprints.

Notably, hardware fingerprinting is closely related to
the notion of PUFs [34], [53]–[56]. Commodity memory
fingerprinting, such as SRAM PUF and Flash PUF, is not
new. However, mounting them on low-end IoT devices to
derive a usable key for security functions relies on post-error
correction to reconcile bits errors, which is cumbersome in
terms of both overhead and security in practice. Our sim-
ple yet efficient NoisFre memory-fingerprinting approach
addresses this gap.

We exploit the idea of a differential measurement in
the formulation of the D-Norm method based on the base
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distance (`1-Norm) to improve the extraction efficiency (num-
ber of z bits with a desired noise tolerance) from a given
memory. Interestingly, in PUF studies, formulating methods
to exploit a differential gap or comparison has been utilized
by extrinsic PUFs–implemented with additional hardware—
such as ring oscillator PUF (RO-PUF) [55]–[58] and arbiter
PUF (APUF) [59] to obtain responses with improved reliabil-
ity. The concept has subsequently been applied in [55], [56]
to enhance reliability and address aging of electronic com-
ponents in RO-PUFs facilitated by the ease with which RO
frequency differences are already measured and can be di-
rectly used. In our intrinsic memory studies, we exploit a base
distance, `1-Norm, to generate a differential measurement to
build the D-Norm transform for memory PUFs intrinsic to
COTS devices. As discussed in Section 3.3, we recognized
that the differential formulation can yield significantly more
reliable bits compared to S-Norm employing (simply, the `1-
Norm base distance). Thus, in our work, we combine these
two mathematical concepts (base distance with a differential
measure) together to extract more noise-tolerant bits from
a memory PUF—a method that can be used with intrinsic
memories widely exist in COTS devices.

10 CONCLUSION

By exploiting ubiquitously embedded memory within com-
modity computing devices, the proposed NoisFre approach
constructively extracts transformed memory fingerprints
that were embodied with a high tolerance to noise affecting
the generation of fingerprints. With a simple, single, one-
off fingerprint enrollment measurement, NoisFre is able to
judiciously identify highly reliable transformed fingerprints
serving as hardware root key or root of trust to directly
support various security functions for a wide range of COTS
electronic devices. Besides formalization of two specific
S-Norm and D-Norm fingerprint transformation methods
and extensive empirical validations on SRAM, Flash, and
EEPROM memories using 119 physical chips in total, we
have conducted a case study with an end-to-end implemen-
tation of a remote attestation security service employing
NoisFre fingerprints to significantly reduce the overhead
in comparison with the state-of-the-art RFE method for
constructing reliable fingerprints for a key generator. We
also demonstrate how SRAM fingerprints can be generated
at run-time by utilizing individual memory-bank power
control features on MCUs. Overall, NoisFre is a simple but
practical method, especially for existing low-end commodity
electronic devices.
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APPENDIX A
DERIVATION OF PERFORMANCE METRIC MODELS

In this section, we detail the derivation of equations in
Section 4, where the following ideal chip model is adopted.

A.1 Synthetic Chip Model
Due to the size limitation of physical chips and difficulty of
taking a massive number of repeated measurements from
physical chips, we adopt a synthetic chip model to evaluate
our analytic predictions. The synthetic chip model used is
from [31] and is built under the following settings:

1) Each bit has a 50% chance being logic “1” or “0” during
the enrollment phase. Each initial bit value is randomly
generated during chip initialization.

2) Each bit has an equal probability, BERf, of being
flipped during a regeneration.

3) The values of bits are independent and identically dis-
tributed (iid); hence, we assume no spatial or temporal
correlations.

A.2 Unreliability Formalization of S-Norm Transforma-
tion
As described in Section 3.2, all possible cases of noise-
tolerant S-Norm transformed bit z are shown below.

z← TSNorm(fn×1, θ) =





1, ‖f‖1≥ dn2 e+ θ

0, ‖f‖1≤ bn2 c − θ
⊥, Otherwise

= "0"

Unstable

Fail

Stable

= "1"

 any single bit in B flipped

any single bit in A flipped

A B
Case①:

Case②:

Case③:

Use                  as an example:

BA

AB any      bits in A flipped

Boundary condition: when    

Boundary condition: when    

is unaffected if the size of segment A 
is larger than

flips if segment A size falls below

"1"

"0"

"1"

f

f

Fig. 22: S-Norm-based NoisFre. Two boundary conditions are illus-
trated: when z = “1” where ‖f‖1=dn

2
e + θ, and when z = “0” where

‖f‖1=bn
2
c − θ. Here we use z =“1” as an example to demonstrate

the influence of flipped raw bits on their transformed 1-bit z. The
generated `1-Norm is partitioned into two segments: A and B. Consider
three representative cases: 1 any single raw bit flip in B will enhance
the reliability of the transformed bit z; otherwise 2 any single raw
bits flip in segment A will deteriorate reliability of the z; 3 the z will
fail/flip if there are θ or more raw bits flipped in segment A.

The formalization is visualized in Fig. 22. Recall that a z
bit can be transformed from n raw bits and the `1-Norm of
the z is between [0, n]. To assess the worst-case BERF, we
consider the condition where the selected word’s `1-Norm
is exactly equal to dn2 e+ θ, as shown in boundary condition
z =“1” in Fig. 22. Here, θ is a threshold to select highly
reliable z bits.

Each raw bit is with BERf probability to be flipped
under reevaluation. Using boundary condition z =“1” as
an example, on the one hand, 1 , if there are raw bits of “0”

(marked as segment B) flipping, it will increase the tolerance
of the number of raw bits of “1” that allows being flipped (in
segment A) without influencing z bit. In contrast, 2 flipping
raw bits of “1” (marked as segment A) will potentially result
in an error to the z bit. Further, 3 , supposing that raw bits
of “0” (marked as segment B) remain unchanged, if more
than θ raw bits of “1” flip, the z will exhibit an error—
flipping from “1” to “0”. To be precise, the transformed z
bit will not exhibit error unless more than θ + i raw bits of
“1” flipping.

Overall, bit flipping within raw bits of “0” (marked
as segment B) increases the reliability of extracted F. In
contrast, bit flipping within raw bits of “1” (marked as
segment A) decreases the reliability of extracted F. The
boundary condition z = “0” is logically equivalent to the
case z = “1” but, only inverts z’s “0”/“1” value rather
than its BERF.

Without losing generality, we focus on one case shown
in 1 in Fig. 22. ‖fi‖1 = dn2 e + θ, the probability of
having exact x error bits in segment A can be expressed
as Prflip

|x|∈A = binopdf(x, n2 + θ,BERf), given that each
raw bit has a BERf probability of flipping. Similarly, the
probability of y bits in segment B to be flipped is formulated
as Prflip

|y|∈B = binopdf(y, n2 − θ,BERf).
Although bit flip could occur in either segment A or B,

consequential BERF of z bits are opposite: flipped bits in
segment A reduction in the margin or potentially increases
the BERF (shown as the dashed boundary line in Fig. 22
that moves toward the left). In contrast, flipped bits in seg-
ment B increase the margin or potentially decrease BERF

(the boundary moves toward the right). If the boundary
crosses the middle point of n

2 , the ‖fi‖1 falls below n
2 , and

consequently, the z bit flipped—exhibiting an error.
Starting from the extreme but straightforward

condition—there is no bit flip in segment B (i.e., y = 0). the
maximum number of erroneous bits that can be tolerated
is θ as discussed above. This can be expressed as P fail

‖fi‖1 =
Pr(x−y ≥ θ) = Pr(x ≥ θ | y = 0) = Pr(x ≥ θ)×Pr(y = 0),
where the term Pr(x ≥ θ) can be expressed as 1 − Pr(x <

θ) = 1−∑θ
x=0

(
Prflip
|x|∈A

)
= 1− binocdf|(θ, dn2 e+ θ,BERf).

By substituting Prflip
|y|∈B = binopdf(0, bn2 c − θ,BERf) into

the P fail
‖fi‖1 equation, P fail

‖fi‖1 is expressed:

P fail
‖fi‖1 =

(
1− binocdf(θ, dn

2
e+ θ,BERf)

)

× binocdf(0, bn
2
c − θ,BERf)

However, there is more than one case that satisfies x −
y ≥ θ for {(x, y) : |x|∈ A, |y|∈ B}. Since A and B are finite
sets, the combination of x and y are numerable. Another
property worth mentioning is |A|> |B|. Therefore the total
number of combinations is up bounded by |B|= dn2 e − θ
where “| |” denotes the cardinality or the size of a set. If we
enumerate and sum up all possible combinations, we obtain
the complete form of equation (9):

BERF =

bn2 c−θ∑

i=0

((
1− binocdf(θ + i, dn

2
e+ θ,BERf)

)

× binopdf(i, bn
2
c − θ,BERf)

)
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Fig. 23: D-Norm-based NoisFre (a) Two boundary conditions are illustrated: when z = ”0” where (h − l = θ) ∧ ([h] > [l]); and when z = ”1”
where (h− l = θ) ∧ ([l] > [h]). (b) Here we use z = ”0” as an example to demonstrate the influence of flipped raw bits on their transformed 1-bit
z. The two `1-Norms are firstly reshaped to a single row as shown above to backtrack to the same formulation strategy in S-Norm. The reshaped
`1-Norm is partitioned into two segments: A and B, the size of segment A is n+ θ, and the size of B is n− θ under the boundary condition z =
”0”. Consider three cases: 1 any single raw bit flip in B will enhance the reliability of transformed z bit; otherwise, 2 any single raw bit flip in
segment A will degrade the reliability of F. The case of z will fail/flip 3 if there are θ or more raw bits flipped in segment A.

A.3 Unreliability Formalization of D-Norm Transforma-
tion
As discussed in Section 3.2. The transformed bit via D-Norm
is determined as below:

z← TDNorm(fn×m, θ)

=





1, h− l ≥ θ ∧ [h] < [l]

0, h− l ≥ θ ∧ [h] > [l]

⊥, h− l < θ

where [] indicates the index.
To apply the same derivation strategy as the S-Norm, as

illustrated in Fig. 23 (b), the two `1-Norms are reshaped into
a single row, and four partitions are now rearranged as two
segments: A and B. The length of segment A is eventually
h + (n − l) by considering the fact h = l + θ, whereas we
can see that the length of A is n + θ. The largest number of
errors/flips within raw bits f that still can not result in error
or flip to the transformed z bit is (n+ θ)− n = θ.

The rest of the steps are identical to those in S-Norm.
Using 1 as an example, on the one hand, Case 1 , if one
raw bit in segment B is flipped, it will increase the tolerance
of the number of raw bits in segment A which allows being
flipped without influencing z bit. On the other hand, Case
2 flipping one raw bit in segment A will potentially result

in an error to the z bit. Further, for Case 3 , supposing
that segment B’s raw bits remain unchanged, if more than θ
raw bits flipped in segment A, the F will exhibit an error—
flipping from “0” to “1”. To be precise, the transformed
F will not exhibit error unless more than θ + i raw bits in
segment A flip.

Now, an extreme condition is considered as a starting
point: as shown in the third column in Fig. 23, we have
two words, labeled with spatial index the “first” and the
“second”. We denote the raw bits as ffirst and fsecond, re-
spectively.

In the exemplified case, ffirst has the lowest `1-Norm
while the fsecond has the highest `1-Norm in the m-word
block. (i.e., ‖ffirst‖1= l, ‖fsecond‖1= h). From the diagram,
we can write the following equation:

‖fsecond‖1 − ‖ffirst‖1 = θ

By substituting ‖fsecond‖1= h and ‖ffirst‖1= l into the
equation above (the case 1 in Fig. 23 (a)), we obtain:

h− l = θ

Add n (number of bits in one word/group) to both sides of
the equation. We obtain:

h+ (n− l) = n+ θ

If we reshuffle the four partitions in Fig. 23 (b), the error
rate of D-Norm can be formalized in a similar manner as
the S-Norm (equation (9)). The margin (denoted as a dashed
line) reduces and results in an unstable trend if any bit flips
in the segment A. Once the margin crosses n (marked as a
solid line) from the right to the left, the transformed F is
therefore erroneous. In contrast, bits flipped in segment B
increase the margin and stabilize the F.

The probability of x error bits occurring in segment A
can be expressed as Prflip

|x|∈A = binopdf(x, n + θ,BERf).
Similarly for y bits in segment B to be flipped can be
expressed as Prflip

|y|∈B = binopdf(y, n− θ,BERf).
Now consider the special case where there is no bit flip

in segment B; then the highest number of bits allowed to
be flipped in segment A is simply θ. Otherwise, the F will
exhibit errors. Consequently, the P fail

DNorm can be expressed
as:

P fail
DNorm(y = 0) =

(
1− binocdf(θ − 1, n+ θ,BERf)

)

× binopdf(0, n− θ,BERf)

If the number of flipped bits in segment B is non-zero,
Prflip
|y|∈B = binopdf(y, n − θ,BERf), where y ∈ [0, |B|],

|B|= n− θ. In other words, flipped bits in segment B allows
more tolerance of error bits in segment A, before F exhibit-
ing error. Therefore, the D-Norm, BERF, is the summation
of P fail

DNorm(y) for all possible y, finally formulated as in
equation:

BERF =
n−θ∑

y=0

((
1− binocdf(y + θ − 1, n+ θ,BERf)

)

×binopdf(y, n− θ,BERf)

)

A.4 Extraction Efficiency of S-Norm Transformation

For the S-Norm, if one group/word f is selected, it must
satisfy the selection criteria ‖f‖1∈ [0, bn2 c− θ]∪ [dn2 e+ θ, n].
Hence, the probability of a group being selected can be
expressed as:
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P select
SNorm = Pr(‖f‖1≤ b

n

2
c − θ) + Pr(‖f‖1≥ d

n

2
e+ θ)

=

bn2 c−θ∑

i=0

(
Pr(‖f‖1= i)

)
+

n∑

k=dn2 e+θ

(
Pr(‖f‖1= k)

)

By substituting Pr(‖f‖1≤ i) = binocdf(i, n, 0.5) and
Pr(‖f‖1≥ k) = 1− binocdf(k, n, 0.5), we get:

P select
SNorm = binocdf(dn

2
e − θ − 1, n, 0.5)

+
(
1− binocdf(bn

2
c+ θ, n, 0.5)

)

The P select
SNorm formulates the probability that one group is

selected under S-Norm. The extraction efficiency ηSNorm can
be directly expressed via P select

SNorm:

ηSNorm =
1

n
× P select

SNorm × (1024× 8)

Where 1
n means that a transformed z bit is from n raw bits,

The last term 1024 × 8 is the conversion factor between bit
and KiByte (bit/KiB). By substituting P select

SNorm into ηSNorm,
we can finally obtain equation (11).

ηSNorm =
1

n
×
(

binocdf(dn
2
e − θ − 1, n, 0.5)

+
(
1− binocdf(bn

2
c+ θ, n, 0.5)

))
× (1024× 8)
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Fig. 24: Validation on equation (12) (extraction efficiency of D-Norm)
using a simulated chip (the Simulation test setting in Section 5). Here,
n = 32, while m and the noise tolerance parameter θ are varied.
Overall,the simulation agrees well with the prediction, as two values
overlaps.

A.5 Extraction Efficiency of D-Norm Transformation

To estimate the extraction efficiency of D-Norm, what we
need to do first is estimate the probability that among m
groups/words f1, f2, . . . , fm), the minimum `1-Norm ‖fi‖1
is any given value a from 0 to n, and the maximum `1 norm
‖fi‖1 is another given value z from 0 to n:

P (a, z) , Pr
(
l = a ∧ h = z

)

Recall that:
h , arg max

fi|i∈{1,..,m}
(‖fi‖1)

l , arg min
fi|i∈{1,..,m}

(‖fi‖1)

Once we comply with the above principle, the P select
block ,

that one block to be selected for noise-tolerant fingerprint
extraction is simply the sum of all P (a, z) over z − a ≥ θ.

P select
block =

n−θ∑

a=1

n∑

z=a+θ

P (a, z)

P (a, z) is a non-trivial to estimate. Fortunately, we can
solve an easier and related problem first:

Q(a, z) , Prob
(
l ≥ a ∧ h ≤ z

)
=
( z∑

i=a

binopdf(i, n, 0.5)
)m

Another angle to look at Q(a, z) is: What is the proba-
bility that among m words in a block with all `1-Norm are
at least a and at most z? That question can be answered
because it poses an independent question on each word fi:
is a ≤ ‖fi‖1≤ z or not? The answer must be ”yes” for all
m words, and it is ”yes” for a single word with probability∑z
i=a binopdf(i, n, 0.5) (the usual formula for the number of

‖fi‖1 meet θ divided by the number of all m words), and
because those events are independent, the probabilities can
be consequentially multiplied.

The question becomes: how do we get from Q(a, z) to
P (a, z)?

Note that:
{(f1, f2, . . . , fm) : (l = a ∧ h = z)}

= {(f1, f2, . . . , fm) : (l ≥ a ∧ h = z)} − {(f1, f2, . . . , fm) : (l ≥ a+ 1 ∧ h = z)}
because for the l to be equal to a it is equivalent to ask for

the l to be at least a but not to be at least a+ 1. In addition,
the set we are subtracting is actually a subset of the set we
are subtracting from, so we obtain:

P (a, z) = Prob{(f1, f2, . . . , fm) : (l = a ∧ h = z)}
= Pr{(f1, f2, . . . , fm) : (l ≥ a ∧ h = z)} − Pr{(f1, f2, . . . , fm) : (l ≥ a+ 1 ∧ h = z)}

Our two operands are of the same type. We can do
the same operation to reduce each probability to something
expressible by some Q(r, s):

P (a, z) = {(f1, f2, . . . , fm) : (l ≥ r ∧ h = z)}
= {(f1, f2, . . . , fm) : (l ≥ r ∧ h ≤ z)} − {(f1, f2, . . . , fm) : (l ≥ r ∧ h ≤ z − 1)}
And we obtain:

Pr{(f1, f2, . . . , fm) : (l ≥ r ∧ h = z)} =
Pr{(f1, f2, . . . , fm) : (l ≥ r ∧ h ≤ z)} − Pr{(f1, f2, . . . , fm) : (l ≥ r ∧ h ≤ z − 1)}
= Q(r, z)−Q(r, z − 1)

And finally, for P (a, z), by substituting this in the above
formula:
P (a, z) = (Q(a, z)−Q(a, z − 1))− (Q(a+ 1, z)−Q(a+ 1, z − 1))

words

(  ,  )
(  ,  -1)
(  +1,  )
(  +1,  -1)
(  ,  )

...

P

Q
Q
Q
Q

a z

m

a z
a z
a z
a z
a z

Fig. 25: Showing the relationship between Pblock and Q terms

The normalized D-Norm extraction efficiency ηDNorm is
finally given:

ηDNorm =
1

n×m × P
select
block × (1024× 8)

To be concise, we keep P select
block , Pblock and Q(l, h) to be

expressed separately. The term of 1
n×m stands for n × m
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raw bits producing a 1-bit noise-tolerant bit, per (1024×8) 1
KiB memory. It tends be hard to follow when we substitute
all terms and write a huge equation. To be concise, we keep
express P select

DNorm, Pblock and Q(l, h) separately.

APPENDIX B
REMOTE ATTESTATION

The following description is based on the setting shown
in Fig. 20 where the Prover device implements a secure
WORM memory for storing the enrolled mask. During the
one-time enrollment conducted by the trusted Verifier, we
use a cabled JTAG interface and Segger J-link command-line
tool to read out the start-up state (fingerprints) of Prover’s
(Nordic Semiconductor nRF52832) SRAM. Readout raw fin-
gerprints are saved as binary files and then processed (using
Matlab) for performing the D-Norm transform and selection
(Section 3). Such a process produces: i) a database entry
containing Prover id and selected reliable noise-tolerant z
bit and ii) a C language header file containing the mask
indicating the memory addresses of raw fingerprint bits to
be employed for obtaining z bits to be compiled with the
sensor node code. Next, we elaborate on an efficient means
for organizing the memory addresses defined by the mask.

D-Norm Mask. The mask first specify the starting ad-
dress of the fingerprint zone, which is set to 0x4000, reserv-
ing the lower 16 KiB of SRAM space for system run-time
operations. To reduce the storage footprint of the mask, only
the relative offsets between selected memory addresses,
rather than the 32-bit absolute addresses are recorded. Once
the mask is determined, the server computes a MAC tag
over the mask with the derived key F for integrity checks.

Implemented System. During the attestation phase, we
employ a command-line Verifier tool, 1 shown in Fig. 18
(b), to randomly generate a challenge (nonce). We look up
the DB according to the Prover’s returned id and compute
the expected response. To visualize the data exchange for
demonstration purposes, we built our Gateway 2 using an
Android demo APP based on FastBLE library9 and used
the smartphone’s built-in Bluetooth-LE interface to commu-
nicate with the Prover. In practice, the Gateway could be
realized by any base station with a Bluetooth-LE transceiver.
The Prover 3 in this case study is a representative low-
end sensor node equipped with an ARM-Cortex M4-based
nRF52832 Bluetooth-LE SOC. The code to be attested on the
Prover is statically allocated with a linker Preprocessor com-
mand.10 The noise-tolerant fingerprint regeneration func-
tion, the mask, and the immutable bootloader are placed
in WORM memory using an ARM MPU.

APPENDIX C
MEMORY FINGERPRINT DATASETS

Below we detail the collected NORDIC dataset since the
details of the public SRAM datasets are in [29], [30]. In
addition to the SRAM datasets, we also employed a public
FLASH dataset [17] and collected EEPROM datasets for

9. FastBLE is available: https://github.com/Jasonchenlijian/FastBle
10. For example attribute ((section(“.ARM. at˙0x50000”))) in

Keil uVision specifies placing the function at memory starting from
address 0x50000.

Fingerprint zone

App code zone

NoisFre
Transform 

FLASH

addr
length

SRAM

MAC

chal

Token Memory

WORM

Fig. 26: Memory management and data flow for the remote attestation
at the Prover. Notably, the total SRAM memory size is 64 KiB. We only
use 48 KiB for the fingerprint zone and reserve 16 KiB for system run-
time operations.

generalization. The Winbond W29N02GV Flash used in [17]
is a single-level cell (SLC) Flash and its partial programming
time is set to be 150 us [17]. The BERf of Flash memory
fingerprints are negligibly affected by changes in voltage
and temperature but programming cycles impart chip ag-
ing. Hence, we only consider aging induced BERf for Flash
memory. Our method for collecting EEPROM data is similar
to that employed for Flash [16] based on leveraging partial
programming. Different from Flash, EEPROM can only be
programmed byte-by-byte. Consequently, partial program-
ming consumes a longer period of time on EEPROM than
on Flash. The partial programming latency depends on the
temperature, at 25°C, it takes at least 40 ms to evaluate one
byte.
NORDIC. We first collected 12 nRF52832 chips under each
of the three operating temperatures (see one such chip in
Fig. 18). The nRF52832 is a popular RF-enabled MCU, and
supports various protocols including Bluetooth 5, Bluetooth
mesh, ANT, and NFC. This chip has a 64 KiB SRAM mem-
ory. The NORDIC chip is representative of a typical low-
cost IoT device MCU. Three temperature corners {−15°C,
25°C, 80°C} are evaluated to measure the reliability of raw
bits using 100 repeated measurements taken under each
operating corner. The worst-case BERf of 6.09% occurs
under 80°C when the reference template is collected at 25°C.
We have collected a further 88 nRF52832 chips under room
temperature conditions of 25°C to augment the dataset. This
extensive dataset of 100 chips (at room temperature) is used
to evaluate uniformity and uniqueness as these metrics benefit
from a larger sample of chips but are normally insensitive
to operating conditions. In our evaluations, unless otherwise
stated, we use the 12-chip dataset (with evaluations at three
operating corners) when referring to the NORDIC chip
dataset.

https://github.com/Jasonchenlijian/FastBle
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