Abstract:
Fingerprinting Internet-of-Things(IoT) devices on types and brands is a necessary work for security analysis in the cyberspace. The existing approaches mainly rely on the...Show MoreMetadata
Abstract:
Fingerprinting Internet-of-Things(IoT) devices on types and brands is a necessary work for security analysis in the cyberspace. The existing approaches mainly rely on the dominant features of devices which is response to information in order to identify these online devices. However, the web server components reusing and products rebranding are the common phenomenons of these embedded IoT devices. It caused the existing approaches difficult to identify most devices even errors due to the similar responses. In this paper, we present an approach, IoTXray, which improves the work efficiently of information collection about accelerating the relations between reusing/rebranding devices with the corresponding manufacturers. And these relations can generate more accurate and reliable fingerprints than previous approaches. Using the mixed neural networks, IoTXray comprehensively detects the real manufactures of online IoT devices upon three different kinds of data sources. In the experiment, our approach can identify 7,025,854 IoT devices on HTTP-hosts. The identification rate has reached to several times higher than previous approaches. Our approach has especially detected 3,268,953 reusing and 963,653 rebranding devices with their original manufacturers.
Published in: IEEE Transactions on Dependable and Secure Computing ( Volume: 20, Issue: 5, 01 Sept.-Oct. 2023)