
1

Privacy-Preserving Decision-Making over
Blockchain

Jiajie Zhang, Bingsheng Zhang, Andrii Nastenko, Hamed Balogun, Roman Oliynykov

Abstract—Many blockchain applications require democratic on-chain decision-making. In this work, we propose a community-inclusive
decentralised collaborative decision-making system with privacy assurance. Its key component is a two-stage voting scheme inspired
by choice architecture. Our decision-making system is compatible with most existing blockchain infrastructures. In addition, it supports
liquid democracy/delegative voting for better collaborative intelligence. Namely, stake holders can either vote directly on proposals or
delegate their voting power to experts. When majority of voting committee members are honest, no one can derive voters’ voting
preferences or delegations with non-negligible probability. To support concurrent multiple voting events, we design a distributed batch
key generation protocol that can generate multiple keys simultaneously by voting committee members with amortised communication
cost of O(n) per key, where n is the number of participants. Besides, our system supports “evolving committee”, i.e., voting committee
members can be changed during the voting period. We implemented a pilot system in Scala, benchmark results indicate that our
system can support large number of participants with high efficiency.

Index Terms—Decision making, Blockchain, Distributed batch key generation, Two-stage voting.

F

1 INTRODUCTION

B LOCKCHAIN technology enables an opportunity for a
dispersion of power and information, as well as pro-

found possibilities for large-scale collaboration in modern
digital society. The primary advantage of blockchain is its
decentralisation realised by distributing power and value
across the entire network, which makes information and
value exchange more efficient and equitable without a cen-
tral third party. This decentralisation feature makes collabo-
rative intelligence over blockchain promising.

Recently, many decentralised on-chain decision-making
systems have been developed. For example, it solves the
sustainable funding issue for blockchain development and
maintenance in treasury system [1]; it attests to external data
in order to bring it onto the blockchain in decentralised
oracle with robust security guarantee [2], [3]; it enables de-
centralised crowd sourcing for forecasting in decentralised
prediction market [4]; it resolves the software development
problem in decentralised blockchain governance system [5],
[6], [7].

In particular, the treasury system proposed by Zhang et
al. [1] is one of the few provably secure on-chain decision-
making systems. It manages funding and distributes power
to edges to empower the community of individuals, as an
enabling force for change and progress about the blockchain
platform. However, their system has several downsides.

• It uses the Distributed Key Generation (DKG) pro-

• J. Zhang is with the School of Computing and Communication, Lancaster
University, United Kingdom. E-mail: j.zhang41@lancaster.ac.uk

• B.Zhang as the corresponding author is with Input Output HK and
College of Computer Science and Technology, Zhejiang University. E-
mail: bingsheng@zju.edu.cn

• A. Nastenko is with Input Output HK. E-mail: andrii.nastenko@iohk.io
• H. Balogun is with School of Psychology and Computer Science, Univer-

sity of Central Lancashire. E-mail: hbalogun1@uclan.ac.uk
• R. Oliynykov is with Input Output HK and V. N. Karazin Kharkiv

National University. E-mail: roman.oliynykov@iohk.io

tocol by Gennaro et al. [8] for each voting event.
The overall communication of this DKG protocol is
O(n2) per key, where n is the number of participants;
therefore, the committee size cannot scale;

• In their voting protocol, the voters and/or experts
need to make decision on every submitted proposal;
it requires too much voting effort when the number
of proposed proposals becomes large;

• Voting committee needs to hold their key shares
during the entire voting period, which could take 1-3
months in practice; such design increases the risk of
system failure;

• This proposed treasury system does not explicitly
support participatory budgeting (PB, [9], [10]).

In this paper, we preserve the liquid democracy feature
of Zhang et al.’s work, while resolving all above downsides.

To address the first downside, we propose a new Dis-
tributed Batch Key Generation (DBKG) protocol based on
Hyper Invertible Matrix (HIM) [11]. Our DBKG protocol can
generate multiple keys simultaneously, achieving amortised
complexity of O(n) per key. The generated public keys
are used to encrypt the ballots of voters and experts and
keep ballots private. With threshold encryption and non-
interactive zero knowledge proofs, only the delegated vot-
ing power of experts and final tally results are revealed at
the end of voting. Therefore, our system can assure ballots
privacy [12] and guarantee end-to-end verifiability [13].

To address the second downside, we propose a new
Two Stage Voting (TSV) scheme to reduce the community’s
voting effort, which is inspired from choice architecture [14].
In the first stage (preferential voting), voters and experts
publicly announce their encrypted preferences. Depend-
ing on fund availability, a shortlist is produced. In the
second stage (threshold voting), voters and experts vote
YES/NO/ABSTAIN on each shortlisted proposal; proposals



that receives more than threshold supports are funded.
To address the third downside, our system supports

“evolving-committee” [15]. Periodically, a new committee is
selected by cryptographic sortition [15], [16], and the secret
keys are re-shared to the new committee while keeping the
public keys unchanged.

To address the fourth downside, the proposed system
supports participatory budgeting. Namely, proposals, voters
and experts are associated with fields. Each field has its own
fixed budget, the shortlist and winning proposals are tallied
independently of the other fields.

We analyse the security of our proposed protocols un-
der the Universal Composability (UC) framework [17]. In
addition, we also provide prototype implementation of the
proposed decision-making system in Scala programming
language for benchmarking in the real world environment.
All implemented protocols are fully decentralised and are
resilient up to 50% of malicious participants. We launched a
testnet comprising a dozen full nodes successfully operating
hundreds of polling periods with different parameters.

2 PRELIMINARY

2.1 Universal Composability

We prove the security of our protocols under the Universal
Composability (UC) framework [17], which is reflected in
the indistinguishability of environment Z’s views in real
world execution and in ideal world execution. In the UC
framework, we use ideal functionality to represent the
desired security properties of a protocol, which can be
considered as an absolutely honest third party carrying out
the task by definition in ideal world. Ideal functionality
explicitly captures adversary’s influence and knowledge it
can gain from the protocol execution in real world. We use
EXECΠ,A,Z to represent environment Z’s output in real
world when it interacts with parties running protocol Π and
real-world adversary A, while EXECF,S,Z is environment
Z’s output in ideal world, in which it interacts with ideal
functionality F and ideal adversary S .

Definition 1 (UC Realisation [17]). We say that a protocol Π
UC-realises F if for any adversary A there exists an adversary S
such that for any environmentZ that obeys the rules of interaction
for UC security we have EXECΠ,A,Z ≈ EXECF,S,Z .

Theorem 1 (Composition Theorem [17]). For any protocol Π,
with the realised functionality G in the F -hybrid model, F may be
used as a subroutine, and the composed protocol ρπ replacing F
with a secure protocol π also securely realises G in the real world.

We follow the synchronous communication model de-
fined in Canetti’s work [17], where the computation is
proceeded in rounds. In each round, parties receive the
messages sent in last round and they send out messages for
next round. We model parties in our system as Interactive
Turing Machines (ITMs). Every party Pi has a key pair
(pki, ski), all messages sent to blockchain by Pi are signed
by ski. With a slight abuse of notation, Pi is used to represent
both the machine itself and its identity. Additionally, we set
sid as a unique session identifier to specify which session an
ITM belongs to.

2.2 Homomorphic Public Key Encryption
To support efficient zero knowledge proofs and tally compu-
tation, we use homomorphic public key encryption to per-
form additively homomorphic computation on encrypted
messages without decryption. We define group generator
by Gen(1κ), which takes security parameter κ as input, and
outputs group parameter param. Gen(1κ) defines a multi-
plicative cyclic group G with prime order q with generator
g, where |q| = κ.

A public key encryption scheme PKE := (Gen,Enc,Dec)
is additively homomorphic if for all security parameters κ
and all key pairs (pk, sk), it is possible to define a mes-
sage space M and a ciphertext space C such that for any
(m1,m2) ∈ M and (c1, c2) ∈ C with m1 := Decsk(c1)
and m2 := Decsk(c2), it holds that {pk, c1, c2, c1 · c2} =
{pk,Encpk(m1),Encpk(m2),Encpk(m1 +m2)}.

We use Lifted ElGamal encryption scheme [18] as
the candidate of additively homomorphic PKE, which is
IND-CPA secure under the Decisional Diffie-Hellman (DDH)
assumption. It consists of the following four algorithms:

• Gen(param): pick sk ← (Zq)∗, set pk := gsk, output
(pk, sk);

• Encpk(m; r): pick r ← (Zq)∗, output (c1, c2), where
c1 := gr, c2 := gm · pkr ;

• Add((c1,1, c1,2), . . . , (c`,1, c`,2)): output (C1, C2),
where C1 :=

∏`
i=1 ci,1, C2 :=

∏`
i=1 ci,2;

• Decsk(c1, c2): output Dlog(c2 ·c−sk
1 ), where Dlog(x) is

the discrete logarithm of x.

In the rest of the paper, for simplicity, given the key
pair (pk, sk), we use (A,A′) = Encpk(m; r) and m =
Decsk(A,A′) for encryption and decryption operations of
a vector. To support computing discrete logarithm for Lifted
ElGamal decryption, we split message into a vector. Let
p be a perfect power of 2, ` be an integer parameter,
denote vector d[`] by {d1, . . . , d`}, and denote vector p[`] by
{p, . . . , p`}. Message m is mapped to smaller message space
by d[`] = encode(m), where d[`] · p[`] = m, corresponding
decoding function is denoted by m = decode(d[`]).

2.3 Pedersen Commitment
We use Pedersen Commitment [19] in DKG protocols and
zero knowledge proofs to commit messages, which has the
following four algorithms:

• SetupC(param): pick s← Zq , set ck := gs, output ck;
• Comck(m; r): pick r ← Zq , output c := gm · ckr ;
• Open(c): output d := (m, r);
• VerifyC(c, d): return 1 if and only if c = gm · ckr.

Pedersen commitment is perfectly hiding and computation-
ally binding. Moreover, it is additively homomorphic, where
Comck(m1; r1) · Comck(m2; r2) = Comck(m1 +m2; r1 + r2).

2.4 Σ protocol
Σ protocol [20] is a 3-round interactive protocol between a
prover P and a verifier V . We use Σ protocol to construct
non-interactive zero knowledge proofs, which are used in
threshold encryption and ballots validation without convey-
ing any additional information except the statements.

2



Let R be a polynomial time decidable binary relation, w
is said to be a witness for a statement x, if (x,w) ∈ R. We
define the language L := {x | ∃w : (x,w) ∈ RL} as the set
of all statements x that have a witness w for the relation R.
In the protocol, P needs to convince V that it knows some
value w related to a common input x by revealing nothing
except only w. In the first round, P commits x to c and send
it to V ; in the second round, V sends a random challenge e
back; in the last round, P responds to V by sending back a
response z related to e and c, V decides to either accept or
reject. A Σ protocol is perfect complete, special sound, and
special honest verifier zero-knowledge.

2.5 Hyper-Invertible Matrix

Hyper-Invertible Matrix (HIM) [11] is a matrix that any
square submatrix formed by removing rows and columns
of this matrix is invertible.

Definition 2 (Hyper-Invertible Matrix [11]). An m × n
matrix M is a hyper-invertible matrix if for any index sets
I ⊆ {1, . . . ,m} and O ⊆ {1, . . . , n} with |I| = |O| > 0,
the matrix MI

O is invertible of which the rows i ∈ I and columns
j ∈ O.

Theorem 2 (Hyper-Invertible Matrix Mapping [11]). Let M
be a n × n hyper-invertible Matrix, given (y1, . . . , yn) = M ·
(x1, . . . , xn), for any index sets A,B ⊆ {1, . . . , n} where |A|+
|B| = n, there exists an invertible liner function which can map
({xi}i∈A, {yi}i∈B) to the values ({xi}i 6=A, {yi}i 6=B).

HIM can be used to share randomness. In our DBKG pro-
tocol, we use HIM to replace the Shamir secret sharing used
in Gennaro et al.’s work [8] to achieve lower complexity. Let
t be the threshold, applying n sharings to a n × n hyper-
invertible matrix results in n sharings with the following
properties:

Property 1. [11] If any (up to t) of the inputs sharings are
broken, then this can be seen in every subset of t output sharings.

Property 2. [11] If any n − t input sharings are uniformly
random, then every subset of size n − t of output sharings is
uniformly random.

Construction 1. Given fixed elements {αi}ni=1 and {βi}ni=1

from Zq , let F (z) be a polynomial such that F (αi) := xi for
i ∈ [n], which maps {xi}ni=1 to {yi}ni=1 by yi = F (βi) for
i ∈ [n]. {yi}ni=1 can be computed by

yi = F (βi) =
n∑
j=1

n∏
k=1,k 6=j

βi − αk
αj − αk

· xj =
n∑
j=1

λi,j · xj ,

where {λi,j}n,ni=1,j=1 is a hyper-invertible matrix HIM.

3 SYSTEM OVERVIEW

The proposed decision-making system runs in iterative pe-
riods, and provides public deliberation and accountability
by cryptographic protocols. As shown in Fig. 1, one period
consists of three epochs: Pre-Voting Epoch, Voting Epoch, and
Post-Voting Epoch. Each epoch takes multiple rounds, and
one round may take several blocks.

3.1 Security Model and Design Goals

There are four types of parties in our system, includ-
ing project proposers, voters, experts and voting commit-
tee members. Proposers, voters, and experts are not fully
trusted, and their behaviours shall be verified in the system.
In addition, at most 1/2 · c − 1 of the voting committee
members can be compromised, where c is the number of
voting committee members. In particular, w.r.t. the voting
protocol, we consider static corruption, where adversary
should decide which parties to corrupt before executing
protocol. Security is modelled under the UC framework
by proving indistinguishability between ideal world execu-
tion and real world execution. We assume the underlying
blockchain infrastructure is trusted.

The goal of this work is to design a privacy-preserving
decision-making system over blockchain. More specifically,
we aim at satisfying the following objectives [12], [21], [22],
[23], [24]

• Privacy. Voter’s voting preference and delegation
choice should be kept secret;

• Fairness. All the participants gain equal treatment
regarding to the receipt of information and involve-
ment in a fair and neutral voting/proposing process.
Namely, no proposers, voters or experts have the
advantage to revise their decisions based on peers’
outputs and published results;

• Flexibility and Efficiency. As voting process takes
relatively long time, voting committee members
should be allowed to work flexibly. In addition,
we aim to minimise the communication cost and
improve overall efficiency as much as possible;

• End-to-end Verifiability.

– Individual Verifiability. Voters and experts
can verify if their ballots are published cor-
rectly and included in the final tally result;

– Universal Verifiability. Anyone can verify the
fairness of voting and correctness of final tally
result based on submitted ballots;

– Eligibility Verifiability. Only registered and
valid parties can submit ballots/proposals,
each voter/expert can only submit one valid
ballot. Anyone can verify that if the finally
tally result comes from the valid ballots and
eligible voters.

3.2 Participatory Budgeting

We categorise proposals, voters and experts into different
fields. Each field has its own budget, and is voted indi-
vidually from other fields. Taking blockchain development
funding as an example [25], budget could be divided into
the following fields:

• Marketing. Activities devoted to cryptocurrency mar-
ket share growth. e.g., market analysis, advertise-
ment, conferences, etc;

• Technology adoption. Costs needed for wider spread-
ing of cryptocurrency. e.g., integration with various
platforms, websites and applications, etc;

3



Fig. 1: Systematic Design: A decision-making period w.r.t. field f .

• Development and security. Costs allocated for funding
core and non-core development. e.g., security inci-
dent response, patch management, running testnets,
similar critical technology areas;

• Organisation and management. Costs on team coordi-
nation and management, legal support, etc;

• Support. Costs on user support, documentation,
maintaining of web-infrastructure needed for the
community and other similar areas;

• General. Proposals not covered by the aforemen-
tioned categories. e.g., research on prospective tech-
nologies for cryptocurrency application, external se-
curity audit, collaboration with other communities,
charity.

3.3 Pre-Voting Epoch
Pre-voting epoch consists of proposal registration, expert
registration, and voter registration.

Proposal Registration: A series of proposal templates
are released, each template shows the scope and require-
ment of relative proposal field, proposal owners can choose
related proposal template to submit their proposals using
Two-Stage Project Proposing procedure to ensure fairness:

• Stage 1: Commit. Proposal owners submit the com-
mitment of their proposals by the deadline.

• Stage 2: Reveal. After the deadline, proposal owners
open the commitment and reveal proposals. All pro-
posals are checked by automated criteria to prevent
spam and DDOS attacks. Only the valid proposals
can be proceed in the next epoch.

Voter Registration: Users/stake holders who are inter-
ested in voting can lock stakes on blockchain to register as

voters. The voting power is proportional to the amount of
locked stakes.

Expert Registration: Stake holders who are highly re-
garded and reputable can register as experts by depositing
a fixed amount of stakes on blockchain. The voting power
of experts only comes from the voting power delegated to
them by voters, which is called “Delegated Voting Power”.

3.4 Voting Epoch
Our system uses two-stage voting to reduce the overall
voting effort. The first stage is preferential voting: voters
and experts announce their preferences, at the end of this
stage, a shortlist is generated according to the budget in
each field §. The second stage is threshold voting: voters and
experts vote on the shortlist and generate a final winning
list. We give an example to show the plaintext version of
their ballots in Fig. 2. We allow voters and experts to submit
multiple ballots, on the condition that only the newest and
valid ballot of voter/expert is considered into the final tally.

Stage 1: Preferential Voting. In this stage, voters and
experts vote on proposals after pre-filter in the pre-voting
epoch using Borda Count Voting [26], [27]. A proposal
shortlist is generated at the end of this stage based on voters’
and experts’ ballots, fund asked by each proposal, and the
total available fund in the corresponding field.

• Voter Cast. Voter can either select its own shortlist or
delegate its voting power to an expert;

• Expert Vote. Expert selects its own shortlist;

§Budget is enough to fund every project in the shortlist.

4



Fig. 2: Ballots examples in two stage voting scheme (Assume all
voters and experts are honest).

• Tally. Voting committee jointly computes and reveals
the tally results; Proposals are ranked according to
the scores. Top ranked proposals are shortlisted until
the total fund is exhausted.

Stage 2: Threshold Voting. In this stage, voters and
experts vote YES, NO, and ABSTAIN to each proposal in the
shortlist. At the end of this stage, the final selected proposals
which can be funded are generated automatically.

• Voter Cast. For each proposal in the shortlist, voter
can vote directly, or delegate its voting power to an
expert †.

• Expert Vote. Expert votes on the shortlist, its ballot is
weighted w.r.t. its delegated voting power.

• Tally. Voting committee jointly computes experts’
delegated voting power and tally results, reveals
tally results (the number of YES votes, NO votes,
and ABSTAIN votes) of each proposal in the shortlist.
Denote the score of each proposal by the number of
YES votes minus the number of NO votes. Proposals

†In threshold voting, voter can delegate each proposal to a different
expert; whereas in preferential voting, voter can only delegate to one
expert. Delegation ballots can be found in Fig. 2 submitted by V

(2)
f .

that got at least 10% (of all votes) of the positive
difference are ranked according to the score, top
ranked proposals are funded.

3.5 Post-Voting Epoch
Winning proposal(s) can be funded in this phase. Simulta-
neously, certain proportion of the fund is used to reward
the parties who made correct decisions including voters
and experts who have delegated voting power. Honest
voting committee members receive a fix amount of reward.
Meanwhile, if a voting committee member cheats or a
voter/expert fails to submit a valid ballot, it loses deposited
stakes as a punishment.

3.6 Evolving Committee
As the whole voting phase may take relatively long time
(e.g., 1 month), to prevent single voting committee from
holding secret key shares (partial secret keys) for a long
time, evolving committee is introduced to replace voting
committee periodically.

In each round, stake holders who want to join voting
committee lock certain amount of stakes on blockchain and
privately perform cryptography sortition [15], [16], the prob-
ability of being selected is proportional to the number of
locked stakes. After winning cryptography sortition, stake
holder posts sortition proof on blockchain to announce its
identity as the voting committee member. The genesis vot-
ing committee in the first round jointly runs DKG protocol
to generate global key pairs (global public key and global
secret key). Afterwards, voting committee in each round
re-shares the global secret key to next voting committee
until the end of voting epoch. At the end of voting epoch,
the voting committee performs the Tally tasks (Delegation
Calculation and Tally Calculation).

4 DISTRIBUTED BATCH KEY GENERATION

As will be mentioned later in the voting scheme (Sec. 5.2 and
Sec. 5.3), we need multiple keys to encrypt ballots from vot-
ers and experts. In this section, we show how to efficiently
generate multiple global key pairs with Distributed Batch
Key Generation (DBKG) protocol based on Hyper Invertible
Matrix (HIM).

Without losing generality, we denote the number of
generated global key pairs by m, the DBKG functionality is
captured by Fn,µ,mDBKG in Fig. 3 to generate m global key pairs,
and we also present protocol Πn,µ,m

DBKG that UC-realises Fn,µ,mDBKG
in Fig. 4. Functionality Fn,µ,mDBKG interacts with n parties
P := {P1, . . . , Pn} of which the threshold is µ (µ ≥ 1/2 · n,
a.k.a, the number of honest parties), and an ideal adversary
S . Each Pi sends (KeyGen, sid, Pi) to Fn,µ,mDBKG to start keys
generation, Fn,µ,mDBKG begins to generate global key pairs until
all parties send this message.

To guarantee the uniformly distribution of global public
keys and secret keys, Fn,µ,mDBKG firstly picks random global
secret keys {gskv}mv=1, and then computes global public keys
gpkv := ggskv for v ∈ [m].

Denote Pc as the set of corrupted parties, Ph as the set
of honest parties, |Pc| + |Ph| = n, and |Pc| ≤ n − µ − 1.

5



Functionality Fn,µ,m
DBKG

Fn,µ,mDBKG interacts with parties P := {P1, . . . , Pn}, and ideal
adversary S. It’s parameterised with threshold µ, and the
number of generated global key pairs m. Denote Pc as the
set of corrupted parties, and Ph as the set of honest parties,
|Pc| + |Ph| = n, and |Pc| ≤ n − µ − 1. Fn,µ,mDBKG maintains a
set N (initially set to ∅).

Fn,µ,mDBKG does the following:

• Upon receiving (KeyGen, sid, Pi) from Pi ∈ P, set
N = N∪{Pi}, send (KEYGENNOTIFY, sid, Pi) to S,
continue to next step until |N| = n;

• Upon receiving message (CORRUPTSHARES, sid,
{j, {pskj,v}mv=1}Pj∈Pc ) from S:

– Pick {gskv}mv=1 ← (Zq)[m], and compute
gpkv := ggskv for v ∈ [m];

– Set a := µ − |Pc| − 1, Ph
′ ⊂ Ph, |Ph

′| = a,
select {pski,v}Pi∈Ph

′,v∈[m] ← (Zq)[m·a];
– For v ∈ [m], construct random polynomial

Fv(x) :=
∑µ−1
b=0 ab · x

b under the restriction
Fv(j) = pskj,v for Pj ∈ {Pc ∪ Ph

′}, and
Fv(0) = gskv ;

– Compute pskv,i := Fv(i) and ppkv,i :=

gpskv,i for Pi ∈ Ph, v ∈ [m];

• Upon receiving (READKEYSHARE, sid, Pi) from S,
send (READKEYSHARERETURN, sid, {pskv,i}mv=1)
to Pi;

• Upon receiving (READPK, sid) from any party,
return the corresponding party the message
(READPKRETURN, sid, {gpkv}mv=1, {ppkv,i}

m,n
v=1,i=1).

Fig. 3: DBKG Ideal Functionality Fn,µ,m
DBKG .

To guarantee adversary’s power of controlling global secret
keys shares (partial secret keys) of corrupted parties, we
model that ideal adversary S can send corrupted parties’
partial secret keys {pskj,v}v∈[m],Pj∈Pc

to Fn,µ,mDBKG , Fn,µ,mDBKG
then constructs m degree-(µ − 1) polynomials based on m
random global secret keys, m · |Pc| corrupted partial secret
keys andm·a random partial secret keys of a honest parties,
where a := µ− |Pc| − 1.

4.1 HIM based DBKG Protocol Πn,µ,m
DBKG

Naively, generating multiple keys can be achieved by re-
peatedly executing DKG protocols (such as Gennaro etal.’s
version [8]) with linear complexity. A more efficient way is
to replace the single secret sharing scheme used in DKG
(such as Shamir Secret Sharing) with HIM based random
secret sharing [11], which shares n randomnesses with only
n2 sharings and achieves amortised O(n) communication
cost. However, due to feasible mapping from inputs to
outputs in HIM (Cf. Theorem 2 and Property 2), to ensure
the uniformly distribution of global key pairs, we can only
generate n−µ pairs, where µ is the threshold (|Pc| ≤ µ−1).

We give the protocol Πn,µ,m
DBKG (Fig. 4) that UC-realises

Fn,µ,mDBKG in {FLEDGER}-hybrid world, where FLEDGER is a
blockchain functionality taken from Cheng et al.’s work [28].

Initially, we assume that every party holds a same HIM
denoted by {λv,w}n,nv=1,w=1. Once a party Pi gets message
(KeyGen, sid, Pi) from Z , it selects a random value xi from
Zq and share xi to other parties with polynomial Fi(·),

all the shares are encrypted by receiver’s public key using
Lifted Elgamal encryption. In addition, Pi needs to commit
the polynomial and generate Correct Sharing NIZK σi (Cf.
Sec. 1.1 in supporting document) to show that each share
is correctly computed from the polynomial based on the
commitment and ciphertexts. Later, Pi posts the ciphertexts
together with commitment and σi to FLEDGER

‡.
In next round, Pi gets its shares {sj,i}nj=1 from other

parties and constructs qualified party set QUAL by verifying
Correct Sharing NIZK proofs. Pi’s m partial secret keys can
be locally computed based on the shares from qualified
parties and corresponding HIM parameters, with HIM
based random secret sharing.

For threshold decryption (Cf. Sec. 2 in supporting doc-
ument), Pi commits its polynomial and posts new commit-
ments {Di,k}µ−1

k=0 to FLEDGER. In next round, Pi gets other
parties’ commitments {Dj,k}j∈QUAL,k∈[0,µ−1] and checks if
they are consistent with {sj,i}j∈QUAL by

∏µ−1
k=0(Dj,k)i

k

=
gsj,i . If verification about a party Pj fails, Pi needs to reveal
sj,i and clarify a valid complain about Pj , by generating a
Correct Decryption NIZK σ′i (Cf. Sec. 1.2 in supporting doc-
ument) to prove that it indeed gets sj,i from decrypting the
ciphertexts encrypted by its public key sent by Pj . The rest
parties jointly interpolate Pj ’s polynomial if the complain is
valid, then post correct {Dj,k}µ−1

k=0 to FLEDGER. Pi can com-
pute the global public keys by gpkv :=

∏
j∈QUAL(Dj,0)λv,j

for v ∈ N and post them to FLEDGER, where N ⊂ [n] is a
predefined set and |N| = m.

4.2 Security Analysis

Theorem 3 (Distributed Batch Key Generation). Let µ ≥
n/2, assume Com is perfect hiding and computational binding
with adversary advantage of AdvBind

Com(1κ,A). Assume Correct
Sharing NIZK and Correct Decryption NIZK are perfect complete,
perfect special honest verifier zero knowledge, and computational
sound with adversary advantage of AdvSound

NIZK,Sharing(1
κ,A) and

AdvSound
NIZK,Dec(1

κ,A). Assume Enc is IND-CPA secure with ad-
versary advantage of AdvIND-CPA

Enc (1κ,A). The protocol Πn,µ,m
DBKG in

Fig.4 UC-realises Fn,µ,mDBKG in Fig.3 in {FLEDGER}-hybrid world
against static corruption up to n − µ − 1 parties with distin-
guishing advantage upper bounded by

(n− µ− 1) ·
(
AdvBind

Com(1κ,A) + AdvSound
NIZK,Sharing(1

κ,A)

+ AdvSound
NIZK,Dec(1

κ,A)
)

+(n− 1) · AdvIND-CPA
Enc (1κ,A).

Its proof can be found in the supporting document (Sec.
3.1).

5 TWO STAGE VOTING SCHEME

In this section, we give the security modelling of the pro-
posed Two Stage Voting (TSV) Scheme against static corrup-
tion, and prove the security of each protocol (Preferential
Voting and Threshold Voting) under the UC framework
based on the indistinguishability of ideal world execution
and real world execution.

‡Sender like Pi does not need to post message for itself, we use
j ∈ [n] instead of j ∈ [n] \ {i} in Fig. 4 to make protocol neat.

6



The HIM based DBKG Protocol Πn,µ,m
DBKG

Denote parties set by P := {P1, . . . , Pn}, of which the threshold is µ, each party has a predefined HIM set HIM :=
{λv,w}n,nv=1,w=1and a predefined set N ⊂ [n], where |N| = m. Denote the Elgamal encryption scheme parameters by `, p.

• Upon receiving (KeyGen, sid, Pi) from Z , Pi ∈ P does the following:

– Select xi ← Zq , {ai,k}µ−1
k=1 ← (Zq)[µ−1], construct a polynomial Fi(z) :=

∑µ−1
k=0 ai,k · z

k , where ai,0 := xi;
– Select {a′i,k}

µ−1
k=0 ← (Zq)[µ], compute Ci,k := Comck(ai,k; a′i,k) for k ∈ [0, µ− 1];

– Compute si,j := Fi(j), and (di,j,1, . . . , di,j,`) := ENCODE(si,j) for j ∈ [n];
– Select ri,j,b ← Zq , and compute (Ai,j,b, Bi,j,b) := Encpkj

(di,j,b; ri,j,b) for j ∈ [n] and b ∈ [`];
– Generate Correct Sharing NIZK σi:

σi ← NIZK



(g, ck, {pkj}nj=1, {Ai,j,b, Bi,j,b}
n,`
j=1,b=1, {Ci,k}

µ−1
k=0 ),

({si,j}nj=1, {ri,j,b}
n,`
j=1,b=1, {ai,k, a

′
i,k}

µ−1
k=0 ) :

{
∏`
b=1(Ai,j,b)

pb = g
∑`
b=1 ri,j,b·p

b
}nj=1 ∧ {

∏`
b=1(Bi,j,b)

pb = gsi,j · pk
∑`
b=1 ri,j,b·p

b

j }nj=1

∧{
∏µ−1
k=0 (Ci,k)j

k
= gsi,j · ck

∑µ−1
k=0 (a′i,k)

jk

}nj=1


– Post ({Ai,j,b, Bi,j,b}n,`j=1,b=1, σi, {Ci,k}

µ−1
k=0 ) to FLEDGER ;

– Fetch {{Aj,i,b, Bj,i,b}`b=1, σj , {Cj,k}
µ−1
k=0}}

n
j=1, compute {sj,i = DECODE({Decski (Aj,i,b, Bj,i,b)}

`
b=1)}nj=1;

– For j ∈ [n], if Verify(σj , {Ai,j,b, Bi,j,b}n,`j=1,b=1, {Ci,k}
µ−1
k=0 ) = 0, set QUAL = [n] \ {j};

– Compute Di,k := Comck(ai,k; 0) for k ∈ [0, µ− 1];
– Compute its own partial secret keys as pskv,i :=

∑
j∈QUAL λv,j · sj,i for v ∈ N;

– Post ({Di,k}µ−1
k=0 ) to FLEDGER , fetch {{Dj,k}µ−1

k=0}j∈QUAL\{i} , check if
∏µ−1
k=0 (Dj,k)i

k
= gsj,i holds. If

verification fails for Pj , post (COMPLAINT, sj,i, σ
′
i) to FLEDGER , where σ′i is a Correct Decryption NIZK:

σ′i ← NIZK

{
(g, pki, {Aj,i,b, Bj,i,b}`b=1, sj,i), (ski) :
{dj,i,b = Decski (Aj,i,b, Bj,i,b)}

`
b=1 ∧ sj,i = DECODE({dj,i,b}`b=1) ∧ pki = gski

}
– If any party {Pw}w∈QUAL posted (COMPLAINT, sv,w, σ′w) about Pv to FLEDGER , do the following if

Verify(σ′k, {(Av,w,b, Bv,w,b)}
`
b=1) = 1:

∗ Fetch {sv,j , σ′j}j∈QUAL, select µ values from {sv,j}j∈QUAL, where
∏µ−1
k=0 (Dv,k)j

k
= gsa,j ;

∗ Interpolate Fv(x), compute {Dv,k}µ−1
k=0 , post ({Dv,k}µ−1

k=0 , Pw) to FLEDGER .

– Compute global public keys as gpkv :=
∏
j∈QUAL(Dj,0)λv,j for v ∈ N, post ({gpkv}v∈N) to FLEDGER .

• Upon receiving (READKEYSHARE, sid, Pi) from Z , send (READKEYSHARERETURN, sid, {pskv,i}v∈N) to Z ;
• Upon receiving (READPK, sid) from Z , the party P fetches ({gpkv}v∈N, {Dj,k}

µ−1,n
k=0,j=1), computes

ppkv,i =
∏
j∈QUAL(

∏µ−1
k=0 (Dj,k)i

k
)λv,j for v ∈ N and i ∈ [n], returns the environment Z

(READPKRETURN, sid, ({gpkv}v∈N, {ppkv,i}v∈N,i∈[n])).

Fig. 4: HIM based DBKG Protocol Πn,µ,m
DBKG in {FLEDGER}-hybrid world.

Denote voting committee size by c of which the thresh-
old is µ (µ ≥ 1/2 · c, a.k.a, the number of honest voting
committee members), the number of candidate proposals
by n, the number of selected proposals by s (s ≤ n in
preferential voting, s = n in threshold voting). To start
with, we design a voting ideal functionalityFc,µ,s,nVOTE to cover
security properties in two voting stages. Then we propose
preferential voting protocol Πc,µ,s,n

VOTE1 and threshold voting
protocol Πc,µ,s,n

VOTE2 to realise Fc,µ,s,nVOTE in the corresponding
stage of TSV scheme.

5.1 Voting Ideal Functionality Fc,µ,s,nVOTE

In the ideal world, voting ideal functionality Fc,µ,s,nVOTE inter-
acts with voters, experts, voting committee, and adversary
S . It’s parameterised with a voting stage index γ ∈ {1, 2}, a
delegation calculation algorithm DelAlg (Fig. 6) and a tally
algorithm TallyAlg (Fig. 7) . There are four phases inFc,µ,s,nVOTE ,
Initialisation, Voter Cast, Expert Vote and Tally.

Initialisation Phase. Voting committee member C[c]

sends message (INIT, sid) to Fc,µ,s,nVOTE , then Fc,µ,s,nVOTE notifies
S by (INITNOTIFY, sid,C(t)).

Voter Cast Phase. Voter V
(i)
fld ∈ V

[v]
fld sends its ballots

ai and voting power ηi to Fc,µ,s,nVOTE by (CAST, sid,ai, ηi).
Fc,µ,s,nVOTE notifies S by sending (CASTNOTIFY,V

(i)
fld , sid, ηi).

If more than v − µ − 1 voting committee members are
corrupted, Fc,µ,s,nVOTE additionally leaks voter’s inputs to S by
sending (LEAK,V

(i)
fld ,CAST, sid,ai, ηi).

Expert Vote Phase. Expert E(j)
fld ∈ E

[e]
fld sends its ballots

bj to Fc,µ,s,nVOTE by (VOTE, sid,bj). S is aware of this action
when receiving (VOTENOTIFY,E

(j)
fld , sid) from Fc,µ,s,nVOTE . If

more than v−µ−1 voting committee member are corrupted,
Fc,µ,s,nVOTE additionally leaks expert’s inputs to S .

Tally Phase. Fc,µ,s,nVOTE firstly computes delegated vot-
ing power of experts by getting (CALDEL, sid) from
voting committee member C(t) ∈ C[c], and sends
(CALDELNOTIFY, sid,C(t)) to S . If there are more than µ
voting committee members, Fc,µ,s,nVOTE can compute delegated
voting power by {Dj}ej=1 ← DelAlg(n, s, e, γ, {ai, ηi}vi=1),
which is revealed to S if corruption exceeds µ.
Fc,µ,s,nVOTE begins to compute the tally results of each pro-

posal and notify S by (TALLYNOTIFY, sid,C(t)), once it gets

7



Voting Ideal Functionality Fc,µ,s,n
VOTE

Fc,µ,s,nVOTE interacts with voters V [v]
fld := {V(i)

fld }
v
i=1, experts E [e]fld := {E(j)

fld }
e
j=1, voting committee C[c] := {C(t)}ct=1 of which

the threshold is µ, and adversary S. Fc,µ,s,nVOTE is parameterised with three committee flag sets Ckey , Cdel, Ctally , and
a voting stage index γ ∈ {1, 2}, a delegation calculation algorithm DelAlg, a tally algorithm TallyAlg, corrupted voting
committee Ccor, honest voting committee Chon, the number of candidate proposals n, and the number of selected proposals
s (s ≤ n in preferential voting, s = n in threshold voting).

Fc,µ,s,nVOTE does the following:
Initialisation Phase:

• Upon receiving (INIT, sid) from a voting committee member C(t) ∈ C[c], send (INITNOTIFY, sid,C(t)) to S, and set
Ckey := Ckey ∪ {C(t)}, continue to next step until |Ckey | = c.

Voter Cast Phase:

• Upon receiving (CAST, sid,ai, ηi) from a voter V
(i)
fld ∈ V [v]

fld , send (CASTNOTIFY,V
(i)
fld , sid, ηi) to S. Send

(LEAK,V
(i)
fld ,CAST, sid,ai, ηi) to S if |Ccor| ≥ v − µ− 1.

Expert Vote Phase:

• Upon receiving (VOTE, sid,bj) from an expert E
(j)
fld ∈ E [e]fld , send (VOTENOTIFY,E

(j)
fld , sid) to S. Send

(LEAK,E
(j)
fld ,VOTE, sid,bj) to S if |Ccor| ≥ v − µ− 1.

Tally Phase:

• Upon receiving (CALDEL, sid) from a voting committee member C(t) ∈ C[c], does the following:

– Set Cdel := Cdel ∪ {C(t)}, send (CALDELNOTIFY, sid,C(t)) to S;
– If |Cdel| ≥ µ, compute {Dj}ej=1 ← DelAlg(n, s, e, γ, {ai, ηi}vi=1), Cf. Fig.6;
– Send (LEAKDEL, sid,DelAlg(n, s, e, γ, {ai, ηi}vi=1)) to S if |Cdel ∩ Ccor| ≥ µ.

• Upon receiving (TALLY, sid,T) from a voting committee member C(t) ∈ C[c], does the following:

– Set Ctally := Ctally ∪ {C(t)}, send (TALLYNOTIFY, sid,C(t)) to S;
– If |Ctally | ≥ µ, compute {fl}nl=1 ← TallyAlg(n, s, γ, {ai, ηi}vi=1, {bj,Dj}ej=1,T), Cf. Fig.7;
– Send (LEAKCASTING, sid,TallyAlg(n, s, γ, {ai, ηi}vi=1, {bj,Dj}ej=1,T)) to S if |Ctally ∩ Ccor| ≥ µ;

• Upon receiving (READTALLY, sid) from any party, return (READTALLYRETURN, sid, {fl}nl=1) to the requester;
• Upon receiving (REVEAL, sid,E

(j)
fld ) from any party, return (REVEALEXPERT, sid,bj) to the requester.

Fig. 5: The ideal functionality Fc,µ,s,n
VOTE .

(TALLY, sid,T) from a voting committee member C(t) ∈ C[c].
When more than µ voting committee members send this
command, Fc,µ,s,nVOTE calculates tally results of each proposal
by {fl}nl=1 ← TallyAlg(n, s, γ, {ai, ηi}vi=1, {bj,Dj}ej=1,T),
which is leaked to S if more than µ members are corrupted.

Algorithm DelAlg(n, s, e, γ, {ai, ηi}vi=1)

Input: The number of candidate proposals n, the number
of selected proposals s, the number of experts e, the voting
stage index γ, voters’ ballots and voting power {ai, ηi}vi=1.
Delegation Calculation:

• If γ = 1: For i ∈ [v], parse ai to
({vi,l,k}s,nl=1,k=1, {v

′
i,j}ej=1). For j ∈ [e], compute

Dj :=
∑v
i=1 v

′
i,j · ηi. Set Dj := Dj .

• If γ = 2: For i ∈ [v], parse ai to ({wi,l,k}s,3+el=1,k=1).
For j ∈ [e], l ∈ [s], compute Dj,l :=

∑v
i=1 wi,l,j+2 ·

ηi. Set Dj := {Dj,l}sl=1;

Output: Experts’ delegated voting power {Dj}ej=1.

Fig. 6: Delegation Calculation Algorithm.

5.2 Stage 1: Preferential Voting protocol Πc,µ,s,n
VOTE1

Fig. 8 presents preferential voting protocol Πc,µ,s,n
VOTE1 to realise

Fc,µ,s,nVOTE in {FLEDGER,Fc,µ,1DBKG}-hybrid world.
Voter Cast Phase. Once a voter V

(i)
fld ∈ V [v]

fld gets
(CAST, sid,ai, ηi) from Z , it casts ballots based on ai

‡.
Firstly, V(i) parses ai to ballots ({vi,k

[n]}sk=1,v
′
i
[e]

) (see
examples in Fig. 2), where {vi,k

[n]}sk=1 are shortlist vectors
and v′i

[e] is a delegation vector. V(i)
fld encrypts all ballots with

a global public key generated by voting committee, and
outputs ciphertexts {(Ai,k

[n],A′i,k
[n]

)}sk=1 and (Bi
[e],B′i

[e]
).

V
(i)
fld generates a Valid Ballot NIZK proof σi (Cf. Sec. 1.6

in supporting document) to show its ballot is valid:

• For k ∈ [s], (Ai,k
[n]||Bi

[e],A′i,k
[n]||B′i

[e]
) encrypts a

unit vector [1], of which only one element is 1, the
rest are 0;

• For l ∈ [n], (
∏s
k=1Ai,k,l,

∏s
k=1A

′
i,k,l) encrypts

either 0 or 1, where {(Ai,k,l, A′i,k,l)}
s,n
k=1,l=1 :=

(Ai,k
[n],A′i,k

[n]
).

Afterwards, V(i) posts ciphertexts and σi to FLEDGER.

‡We remark that in the case where participants’ voting devices
are not trusted, we can use cast-or-audit technique such as Benaloh
challenge [29], [30] or Véronique etal.’s work [31] to support audit for
every participant without voting again.

8



Algorithm
TallyAlg(n, s, γ, {ai, ηi}vi=1, {bj,Dj}ej=1,T)

Input: The number of candidate proposals n, the number of
selected proposals s, the voting stage index γ, voters’ ballots
and voting power {ai, ηi}vi=1, experts’ ballots and voting
power {bj,Dj}ej=1, the weight of each selected proposals
T := {τl}sl=1.
Tally Calculation:

• If γ = 1: For i ∈ [v],

– Parse ai to ({vi,l,k}s,nl=1,k=1, {v
′
i,j}ej=1) ;

– Parse bj to ({pj,l,k}s,nl=1,k=1) for j ∈ [e];
– For k ∈ [n], compute fk :=

(
∑v
i=1(

∑s
l=1 vi,l,k · τl) · ηi) +

(
∑e
j=1(

∑s
l=1 pj,l,k · τl) ·Dj)), set fk := fk .

• If γ = 2:

– Parse ai to ({wi,k,l}s,3+ek=1,l=1) for i ∈ [v];
– Parse bj to ({qj,k,l}s,3k=1,l=1) for j ∈ [e];
– For k ∈ [n], compute the following:

∗ fk,1 := (
∑v
i=1 wi,k,1 · ηi) +

(
∑e
j=1 qj,k,1 ·Dj,k);

∗ fk,2 := (
∑v
i=1 wi,k,2 · ηi) +

(
∑e
j=1 qj,k,2 ·Dj,k);

∗ fk,3 := (
∑v
i=1 wi,k,3 · ηi) +

(
∑e
j=1 qj,k,3 ·Dj,k).

– For k ∈ [n], set fk := {fk,1, fk,2, fk,3}.

Output: Tally results of each proposal {fk}nk=1.

Fig. 7: Tally Calculation Algorithm.

Expert Vote Phase. E(j)
fld ∈ E

[e]
fld begins to vote when it gets

(VOTE, sid,bj) from Z . E(j)
fld parses bj to {pj,k

[n]}sk=1 (see
examples in Fig. 2) and encrypts the ballots to ciphertexts
{(Kj,k

[n],K′j,k
[n]

)}sk=1. E(j)
fld generates a Valid Ballot NIZK

proof δj to show its ballot is valid:

• For k ∈ [s], (Kj,k
[n],K′j,k

[n]
) encrypts a unit vector;

• For l ∈ [n], (
∏s
k=1Kj,k,l,

∏s
k=1K

′
j,k,l) encrypts

either 0 or 1, where {(Kj,k,l,K
′
j,k,l)}nl=1 :=

(Kj,k
[n],K′j,k

[n]
).

Lastly, E(j)
fld posts the encrypted ballot and δj to FLEDGER.

Tally Phase. Voting committee member C(t) ∈ C[c] com-
putes delegated voting power of each expert and tally result
of each proposal once it gets (CALDEL, sid) and (TALLY, sid)
from Z . C(t) removes repeated ballots and invalid ballots.
Voting committee computes delegated voting power and
tally results based on ciphertexts with additively homomor-
phic property, and jointly decrypt final voting result ∗.

Theorem 4 (Preferential Voting). Assume that Valid bal-
lot NIZK is perfect complete, perfect special honest verifier
zero knowledge, and computational sound with adversary ad-
vantage of AdvSound

NIZK,Ballot(1
κ,A). Assume Lifted Elgamal en-

cryption Enc is IND-CPA secure with adversary advantage
of AdvIND-CPA

Enc (1κ,A). The protocol Πc,µ,s,n
VOTE1 in Fig. 8 UC-

∗Note that expert’s ballot is not considered in final tally, if it does
not have delegated voting power.

realises Fc,µ,s,nVOTE in Fig. 5 in {FLEDGER,Fc,µ,1DBKG}-hybrid world
against a static adversary with distinguishing advantage

(2ns+ e) · AdvIND-CPA
Enc (1κ,A) + 2 · AdvSound

NIZK,Ballot(1
κ,A).

Its proof can be found in the supporting document (Sec.
3.2).

5.3 Stage 2: Threshold Voting protocol Πc,µ,s,n
VOTE2

Assume that disqualified voters and experts who do not
follow Πc,µ,s,n

VOTE1 have been banned from participating the
second stage, we give threshold voting protocol Πc,µ,s,n

VOTE2 in
Fig. 9 to realise Fc,µ,s,nVOTE in {FLEDGER,Fc,µ,sDBKG}-hybrid world.

In voter cast phase and expert vote phase, experts and
voters need generate Unit Vector NIZK to prove the ballot
for each proposal encrypted a unit vector (Cf. Sec. 2.5 in
supporting document). In tally phase, voting committee
computes the number of YES votes, NO votes and ABSTAIN
votes for each shortlisted proposal.

Theorem 5 (Threshold Voting). Assume Unit Vector
NIZK is perfect complete, perfect special honest verifier
zero knowledge, and computational sound with adversary
advantage of AdvSound

NIZK,Unit(1
κ,A). Assume Lifted Elgamal

encryption Enc is IND-CPA secure with adversary advantage
of AdvIND-CPA

Enc (1κ,A). The protocol Πc,µ,s,n
VOTE2 in Fig. 9 UC-

realises Fc,µ,s,nVOTE in Fig. 5 in {Fc,µ,sDBKG,FLEDGER}-hybrid
world against a static adversary with distinguishing advantage
((3 + e) · s+ 3s) · AdvIND-CPA

Enc (1κ,A) + 2 · AdvSound
NIZK,Unit(1

κ,A).

Its proof can be found in the supporting document (Sec.
3.3).

6 EVOLVING COMMITTEE

As mentioned before, voting committee need to generate
global key pair(s) and reveal the final tally results. For the
reason that the whole voting epoch might take relatively
long time (e.g., 1-3 month), to avoid voting committee to
be online and hold global key pair(s) shares for a long time,
our proposed system support evolving committee to replace
voting committee periodically.

In each round, stake holders who want to join voting
committee need to lock some stakes on blockchain to show
their honesty and play cryptographic sortition privately.
Once a party wins sortition, it posts sortition proof on
blockchain and announces its identity as voting committee
member in current round. We give cryptographic sortition
ideal functionality FnSortition in Sec. 5 of the supporting
document to show how a voting committee is generated.

In the first round, the first voting committee is online
to generate global key pairs with Πn,t,m

DBKG. Starting from
the second round to the last round, we have two voting
committees online, previous committee gets identities of
the next committee and re-shares the global secret keys to
the next committee. At the end of voting epoch, the voting
committee performs the Tally tasks (Cf. Fig. 8 and Fig. 9).

Honest Majority. In terms of security, with overwhelming
probability, the majority of the voting committee members
in every round are honest, which can guarantee the privacy
of ballots and protocol termination. If a cheating voting

9



Stage 1: Preferential Voting Protocol Πc,µ,s,n
VOTE1

Initialisation Phase:

• Upon receiving (INIT, sid) from Z , the voting committee member C(t) ∈ C[c] sends (KEYGEN, sid,C(t)) and
(READKEYSHARE, sid,C(t)) to Fc,µ,1DBKG , then receives (READKEYSHARERETURN, sid, pski).

Voter Cast Phase:

• Upon receiving (CAST, sid,ai, ηi) from Z , the voter V
(i)
fld ∈ V

[v]
fld does the following:

– Send (READPK, sid) to Fc,µ,1DBKG and receive (READPKRETURN, gpk, {ppka}ca=1);
– Parse ai to ({vi,k

[n]}sk=1,v
′
i
[e]), select {ri,k[n]}sk=1 ← (Zq)[n∗s], and r′i

[e] ← (Zq)[e];
– For k ∈ [s], compute (Ai,k

[n],A′i,k
[n]) := Encgpk(vi,k

[n]; ri,k
[n]);

– Compute (Bi
[e],B′i

[e]) := Encgpk(v′i
[e]; r′i

[e]);
– Generate Valid Casting NIZK proof σi:

∗ For k ∈ [s], (Ai,k
[n]||Bi

[e],A′i,k
[n]||B′i

[e]) encrypts a unit vector;
∗ For l ∈ [n], (

∏s
k=1 Ai,k,l,

∏s
k=1 A

′
i,k,l) encrypts either 0 or 1, where {(Ai,k,l, A′i,k,l)}

s,n
k=1,l=1 :=

(Ai,k
[n],A′i,k

[n]).

– Post ({(Ai,k
[n],A′i,k

[n])}sk=1, (Bi
[e],B′i

[e]), σi, ηi) to FLEDGER .

Expert Vote Phase:

• Upon receiving (VOTE, sid,bj) from Z , the expert E
(j)
fld ∈ E

[e]
fld does the following:

– Send (READPK, sid) to Fc,µ,1DBKG , and receive (READPKRETURN, gpk, {ppka}ca=1) from Fc,µ,1DBKG ;
– Parse bj to ({pj,k

[n]}sk=1), select {rj,k[n]}sk=1 ← (Zq)[n∗s];
– For k ∈ [s], compute (Kj,k

[n],K′j,k
[n]) := Encgpk(pj,k

[n]; rj,k
[n]);

– Generate Valid Voting NIZK proof δj :

∗ For k ∈ [s], (Kj,k
[n],K′j,k

[n]) encrypts a unit vector;
∗ For l ∈ [n], (

∏s
k=1Kj,k,l,

∏s
k=1K

′
j,k,l) encrypts either 0 or 1, where {(Kj,k,l,K′j,k,l)}

n
l=1 :=

(Kj,k
[n],K′j,k

[n]).

– Post ({(Kj,k
[n],K′j,k

[n])}sk=1, δj) to FLEDGER .

Tally Phase:

• Upon receiving (CALDEL, sid) from Z , the voting committee member C(t) ∈ C[c] does the following:

– Fetch {({(Ai,k
[n],A′i,k

[n])}sk=1, (Bi
[e],B′i

[e]), σi, ηi)}vi=1 and {({(Kj,k
[n],K′j,k

[n])}sk=1, δj)}
e
j=1 ;

– Check if Verify({(Ai,k
[n],A′i,k

[n])}sk=1, (Bi
[e],B′i

[e]), σi) = 1 for i ∈ [v], remove all the invalid casting
ballots. If there are repeated ciphertexts in {({(Ai,k

[n],A′i,k
[n])}sk=1, (Bi

[e],B′i
[e]))}vi=1, remove all the

repeated casting ballots except the first one sent to FLEDGER . Set VI
[α]
fld as a set of voter index in new ascending

order who provides valid ballots;
– Check if Verify({(Kj,k

[n],K′j,k
[n])}sk=1, δj) = 1 for j ∈ [e], remove all the invalid voting ballots. If there are

repeated ciphertexts in {({(Kj,k
[n],K′j,k

[n])}sk=1)}ej=1, remove all the repeated voting ballots except the

first one sent to FLEDGER . Set EI
[β]
fld as a set of voter index in new ascending order who provides valid ballots;

– Remove the ciphertexts sent by experts/voters, and sent to invalid experts, denote the rest ciphertexts by
{({(Ai,k

[n],A′i,k
[n])}sk=1, (Bi

[β],B′i
[β]), σi, ηi)}αi=1 and {({(Kj,k

[n],K′j,k
[n])}sk=1, δj)}

β
j=1;

– Compute I[β] :=
∏α
i=1(Bi

[β])ηi , I′[β] :=
∏α
i=1(B′i

[β])ηi ;
– C[c] jointly decrypt (I[β], I′[β]) to {mj}βj=1;
– Post {mj}βj=1 to FLEDGER .

• Upon receiving (TALLY, sid) from Z , the voting committee member C(t) ∈ C[c] does the following:

– Denote the Borda Count Voting parameters by {τk}sk=1, for l ∈ [n], compute the following:

∗ Sl :=
∏α
i=1

∏s
k=1(Ai,k)τk·ηi ·

∏β
j=1

∏s
k=1(Kj,k)τk·mj ;

∗ S′l :=
∏α
i=1

∏s
k=1(A′i,k)τk·ηi ·

∏β
j=1

∏s
k=1(K′j,k)τk·mj ;

– C[c] jointly decrypt (Sl, S
′
l) to fl for l ∈ [n];

– Post ({fl}nl=1) to FLEDGER .

• Upon receiving (REVEAL, sid,E
(j)
fld ) from Z , the expert E

(j)
fld ∈ E

[e]
fld posts {rj,k[n],pj,k

[n]}sk=1 to FLEDGER , returns
(REVEALEXPERT, sid, {rj,k[n],pj,k

[n]}sk=1) to Z ;
• Upon receiving (READTALLY, sid) from Z , the party P returns (READTALLYRETURN, sid, ({fl}nl=1) to Z after

fetching ({fl}nl=1).

Fig. 8: Stage 1: Preferential Voting protocol Πc,µ,s,n
VOTE1 in {FLEDGER,Fc,µ,1

DBKG}-hybrid world.

10



Stage 2: Threshold Voting protocol Πc,µ,s,n
VOTE2

Initialisation Phase:

• Upon receiving (INIT, sid) from Z , the voting committee member C(t) ∈ C[c] sends (KEYGEN, sid,C(t)) and
(READKEYSHARE, sid,C(t)) to Fc,µ,sDBKG , receives (READKEYSHARERETURN, sid, {pskl,i}sl=1) from Fc,µ,sDBKG .

Voter Cast Phase:

• Upon receiving (CAST, sid,vi, ηi) from Z , the voter V
(i)
fld ∈ V

[v]
fld does the following:

– Send (READPK, sid) to Fc,µ,sDBKG , and receive (READPKRETURN, sid, {gpkl}sl=1, {ppkl,a}
s,c
l=1,a=1);

– Parse vi to ({wi,l
[3+e]}sl=1), select {ri,l[3+e]}sl=1 ← (Zp)[(3+e)∗s];

– For l ∈ [s], compute (Xi,l
[3+e],X′i,l

[3+e]) := Encgpkl
(wi,l

[3+e], ri,l
[3+e]);

– Generate Unit Vector Encryption NIZK proof ∆i to prove (Xi,l
[3+e],X′i,l

[3+e]) encrypts a unit vector for
l ∈ [s];

– Post ({(Xi,l
[3+e],X′i,l

[3+e])}sl=1,∆i, ηi) to FLEDGER .

Expert Vote Phase:

• Upon receiving (VOTE, sid,bj) from Z , the expert E
(j)
fld ∈ E

[e]
fld does the following:

– Send (READPK, sid) to Fc,µ,sDBKG , and receive (READPKRETURN, sid, {gpkl}sl=1, {ppkl,a}
s,c
l=1,a=1);

– Parse vj
[s] to ({qj,l

[3]}sl=1, select {r′j,l
[3]}sl=1 ← (Zp)[s∗3];

– For l ∈ [s], compute (Yj,l
[3],Y′j,l

[3]) = Encgpkl
(q′j,l

[3]; r′j,l
[3]);

– Generate Unit Vector Encryption NIZK proof γj to prove (Yj,l
[3],Y′j,l

[3]) encrypts a unit vector for l ∈ [s];
– Post ({(Yj,l

[3],Y′j,l
[3])}sl=1, γj) to FLEDGER .

Tally Phase:

• Upon receiving (CALDEL, sid) from Z , the voting committee member C(t) ∈ C[c] does the following:

– Fetch {({(Xi,l
[3+e],X′i,l

[3+e])}sl=1,∆i, ηi)}vi=1 and {({(Yj,l
[3],Y′j,l

[3])}sl=1, γj)}
e
j=1 ;

– Check if Verify({(Xi,l
[3+e],X′i,l

[3+e])}sl=1,∆i, ηi) = 1 for i ∈ [v], remove all the invalid casting ballots. If
there are repeated ciphertexts in {({(Xi,l

[3+e],X′i,l
[3+e])}sl=1,∆i, ηi)}vi=1, remove all the repeated casting

ballots except the first one sent to FLEDGER . Set VI
[v′]
fld as a set of voter index in new ascending order who

provided valid ballots;
– Check if Verify({({(Yj,l

[3],Y′j,l
[3])}sl=1, γj) = 1 for j ∈ [e], remove all the invalid voting ballots. If there are

repeated ciphertexts in {({(Yj,l
[3],Y′j,l

[3])}sl=1)}ej=1, remove all the repeated voting ballots except the first

one sent to FLEDGER . Set EI
[e]
fld as a set of voter index in new ascending order who provided valid ballots;

– Remove the ciphertexts sent by experts/voters, and sent to invalid experts, denote the rest ciphertexts by
{({(Xi,l

[3+e′],X′i,l
[3+e′])}sl=1,∆i, ηi)}v

′
i=1 and {({(Yj,l

[3],Y′j,l
[3])}e′j=1;

– For j ∈ [e′], for l ∈ [s], compute Ij,l :=
∏v′

i=1(Xi,l,3+j)
ηi , I′j,l :=

∏v′

i=1(X′i,l,3+j)
ηi ;

– C[c] jointly decrypt (Ij,l, I
′
j,l) to mj,l for j ∈ [e′], for l ∈ [s].

– Post ({mj,l}sl=1) to FLEDGER .

• Upon receiving (TALLY, sid) from Z , the voting committee member C(t) ∈ C[c] does the following:

– For l ∈ [s], compute the following:

∗ Sl,1 := (
∏v′

i=1(Xi,l,1)ηi ) · (
∏e′

j=1(Yi,l,1)mj,l ), S′l,1 := (
∏v′

i=1(X′i,l,1)ηi ) · (
∏e′

j=1(Y ′i,l,1)mj,l );

∗ Sl,2 := (
∏v′

i=1(Xi,l,2)ηi ) · (
∏e′

j=1(Yi,l,2)mj,l ), S′l,2 := (
∏v′

i=1(X′i,l,2)ηi ) · (
∏e′

j=1(Y ′i,l,2)mj,l );

∗ Sl,3 := (
∏v′

i=1(Xi,l,3)ηi ) · (
∏e′

j=1(Yi,l,3)mj,l ), S′l,3 := (
∏v′

i=1(X′i,l,3)ηi ) · (
∏e′

j=1(Y ′i,l,3)mj,l );

– For l ∈ [s], C[c] jointly decrypt the following:

∗ (Sl,1, S
′
l,1) to fl,1;

∗ (Sl,2, S
′
l,2) to fl,2;

∗ (Sl,3, S
′
l,3) to fl,3.

– Post ({fl,1, fl,2, fl,3}sl=1) to FLEDGER .

• Upon receiving (REVEAL, sid,E
(j)
fld ) from Z , the expert E

(j)
fld ∈ E

[e]
fld posts {rj,k[s],pj,k

[s]}sk=1 to FLEDGER , returns
(REVEALEXPERT, sid, {rj,k[s],pj,k

[s]}sk=1) to Z ;
• Upon receiving (READTALLY, sid) from Z , the party P fetches ({fl,1, fl,2, fl,3}sl=1) , and return Z the message

(READTALLYRETURN, sid, ({fl,1, fl,2, fl,3}sl=1).

Fig. 9: Stage 2: Threshold Voting protocol Πc,µ,s,n
VOTE2 {FLEDGER,Fc,µ,s

DBKG}-hybrid world.

11



Fig. 10: (a) The probability that at least Rhv of the n voting
committee members are honest if Rhs of the whole stakes are
honest; (b) The probability that adversary corrupts at least Rmv
of the n voting committee members if it takes over Rms of the
whole stakes.

committee member is detected, it loses all the deposit, and
get banned by decision-making system forever.

Assume the majority of the stake of all the registered
voters is honest; therefore, the probability that a selected
committee member is honest is p = 1/2 + ε for any
ε ∈ (0, 1/2]. Let X be the number of malicious committee
members selected among all λ′ committee members. Since
λ′ = ω(log λ), by Chernoff bound, we have

Pr[X ≥ λ′/2] = Pr[X ≥ (1 + δ)(1/2− ε)λ′]
< exp(−δ2(1/2− ε)λ′/4)

=
1

exp(ω(log λ))
= negl(λ)

for δ = 2ε/(1− 2ε).
We discuss the honest of voting majority in Fig. 10.

Combinatorial analysis of voting committee’s honesty can
be found in Sec. 4 of supporting document. Based on
the analysis, we suggest that committee size should be
at least 70 members, and at least 60% of the committee
members should participant for threshold signature. Within
the assumptions and recommended parameters, the prob-
ability of adversary preventing honest participants to put
the corresponding transaction on blockchain is less than
0.0001 for a single decision-making period. The probability
of adversarial control over the decision-making fund (within
the same assumptions and parameters) is negligibly small.
Handover. Handover ideal functionality FHandover[G] is
presented in Fig. 11 to support Evolving Committee. It
interacts with two continuous voting committees: previous
committee C[nr]

r , and new committee C[nr+1]
r+1 . Upon receiving

(HANDOVER, sid, {ppkv,j}
m,nr
v=1,j=1, {pskv,i}mv=1) from previ-

ous committee C
(i)
r ∈ C[nr]

r , FHandover[G] reconstructs
the global secret keys {gskv}mv=1 and notifies S by
(HANDOVERNOTIFY, sid,C

(i)
r , {ppkv,j}

m,nr
v=1,j=1).

We model that adversary can choose shares for the
corrupted new committee members by letting S send
(CORRUPTSHARES, sid, {i, {pskv,i}mv=1}C

(i)
r+1∈C

[nr+1]

c,r+1

)) to

FHandover[G]. For v ∈ [m], FHandover[G] constructs random
polynomial based on all the shares and gskv . Then every
new committee member can send (READNEWSHARE, sid)
to FHandover[G] asking for their shares. FHandover[G]

FHandover[G]

FHandover[G] interacts C[nr ]r , C[nr+1]
r+1 of which the thresh-

olds are tr and tr+1 respectively, and maintains a set O
(Initially set to ∅). Denote Cc,r+1 as corrupted voting com-
mittee members in C[nr+1]

r+1 , and Ch,r+1 as honest voting

committee members in C[nr+1]
r+1 , |C[nr+1]

c,r+1 |+|C
[nr+1]
r | = nr+1,

and |Ch,r+1| ≥ tr+1.

FHandover[G] does the following:

• Upon receiving (HANDOVER, sid, {ppkv,j}
m,nr
v=1,j=1,

{pskv,i}mv=1) from C
(i)
r ∈ C

[nr ]
r :

– Set O := O ∪ {ppkv,j}
m,nr
v=1,j=1;

– If there are more than tr values of
{ppkv,j}

m,nr
v=1,j=1 in O are the same, assert all

{ppkv,j}
m,nr
v=1,j=1 to this value, and continue

to next step;
– For v ∈ [m], compute gskv :=

∏
j∈R λv,j ·

pskv,j , where R is the set of honest parties’
indexes in C[nr ]r , |R| = tr , {λv,j}v∈[m],j∈R
are Lagrange Interpolation coefficients;

– Send (HANDOVERNOTIFY, sid,C
(i)
r ,

{ppkv,j}
m,nr
v=1,j=1) to S.

• Upon receiving (CORRUPTSHARES, sid,
{i, {pskv,i}mv=1}C

(i)
r+1∈C

[nr+1]

c,r+1

)) from S:

– Set a := tr+1 − |Cc,r+1| − 1,
C′h,r+1 ⊂ Ch,r+1, |C′h,r+1| = a, select
{pskv,i}C

(i)
r+1∈C

′
h,r+1,v∈[m]

← (Zq)[m·a];

– For v ∈ [m], construct random polynomial
Fv(z) :=

∑tr+1−1
t=0 av,t ·zt under the restric-

tion Fv(j) = pskj,v for C
(i)
r+1 ∈ {C′h,r+1 ∪

Cc,r+1}, and Fv(0) = gskv .

• Upon receiving (READNEWSHARE, sid) from
C
(j)
r+1 ∈ C

[nr+1]
c,r+1 :

– For v ∈ [m], j ∈ [nr+1], compute psk′v,j :=
Fv(j), ppk′v,j := gsv,j ;

– Send (READNEWSHARERETURN, sid,

{psk′v,j}mv=1, {ppk′v,j}
m,nr+1

v=1,j=1) to C
(j)
r+1;

• Upon receiving (READPK, sid) from
any party, compute gpkv :=∏tr+1

j=1 (ppk′v,j)
γv,j for v ∈ [m] and return

(READPKRETURN, sid, {gpkv}mv=1, {ppk′v,i}
m,nr+1

v=1,i=1)
to the requester.

Fig. 11: The Key Handover functionality, FHandover[G].

computes partial secret key and partial global key for C(j)
r+1

based on the polynomials generated in last step, and returns
(READNEWSHARERETURN, sid, {psk′v,j}mv=1, {ppk

′
v,j}

m,nr+1

v=1,j=1).
We give ΠHandover[G] in {FLEDGER} -hybrid world to re-

alise FHandover[G] in Fig. 12. The previous committee share
their partial secret keys {pskv,i}mv=1 to new committee, and
encrypt shares with recipients’ public keys. New committee
can verify if the shares are valid through verifiable secret
sharing, and compute their own partial secret keys and
partial public keys.

Theorem 6 (Handover). Let tr+1 ≥ 1/2 · C[nr+1]
r+1 ,

assume Lifted Elgamal encryption Enc is IND-CPA secure
with adversary advantage of AdvIND-CPA

Enc (1κ,A). Assume
Correct Decryption NIZK is perfect complete, perfect special

12



Handover Protocol ΠHandover[G]

Assume that the party have its own key pair (pki, ski).

• Upon receiving (HANDOVER, sid, {ppkv,j}
m,nr
v=1,j=1,

{pskv,i}mv=1) from Z , C
(i)
r ∈ C

[nr ]
r does the follow-

ing:

– Select random polynomial Fv,i(z) :=∑tr+1−1
t=0 av,i,t · zt, where av,i,0 = pskv,i,

{av,i,t}
tr+1−1
t=1 ← (Zq)[tr+1−1];

– Compute sv,i,j := Fv,i(j) for j ∈ [nr+1];
– Choose {rv,i,j}

nr+1

j=1 ← (Zq)[nr+1], com-
pute (Av,i,j , Bv,i,j) := Encpkj

(sv,i,j ; rv,i,j)

for j ∈ [nr+1], v ∈ [m];
– Compute Hv,i,t := Comck(av,i,t; 0) for v ∈

[m], t ∈ [1, tr+1 − 1];
– Post ({Hv,i,t}

m,tr+1−1
v=1,t=1 , {Av,i,j , Bv,i,j}

m,nr+1

v=1,j=1,

{ppkv,j}
nr,m
j=1,v=1) to FLEDGER .

• Upon receiving (READNEWSHARE, sid) from Z ,
C
(i)
r+1 ∈ C

[nr+1]
r+1 does the following:

– Fetch ({{Hv,j,t}
tr+1−1
t=1 , Av,j,i, Bv,j,i,

ppkv,j}
m,nr
v=1,j=1);

– Assert {ppkv,j}
m,nr
v=1,j=1 following majority

rule;
– Compute sv,j,i = Decskj (Av,j,i, Bv,j,i) for

v ∈ [m], j ∈ [nr];
– For j ∈ [nr], for v ∈ [m], setHv,j,0 = ppkv,j ,

check if gsv,j,i =
∏tr+1−1
t=0 (Hv,j,t)

it .
If this verification fails for C

(j)
r , post

(COMPLAINT, sv,j,i, σi) to FLEDGER , where σi
is Correct Decryption NIZK:

σi ← NIZK


(g, pki, {Av,j,i, Bv,j,i}

nr
j=1),

(ski) : pki = gski

∧sv,j,i = Decski (Av,j,i, Bv,j,i)


– If there is a valid complain to FLEDGER about

C
(j)
r ∈ C[nr ]r , set V := [nr] \ {j}, select any
tr+1 values from V as V′;

– For v ∈ [m], compute psk′v,i :=∑
j∈V′ sv,j,i · γv,j by interpolation;

– Compute ppk′v,k :=∏
j∈V′ (

∏tr+1−1
t=0 (Hv,j,t)

kt )γv,j

for v ∈ [m], k ∈ [nr+1], post
({{ppk′v,k}

m,nr+1

v=1,k=1}) to FLEDGER .

• Upon receiving (READPK, sid) from any party
P , P fetches {ppk′v,j}

m,nr+1

v=1,j=1, computes

gpkv :=
∏tr+1

j=1 (ppk′v,j)
γv,j , and return

(READPKRETURN, sid, {gpkv}v∈[m], {ppk′v,j}
m,nr+1

v=1,j=1)
to Z .

Fig. 12: Handover Protocol, ΠHandover[G] in {FLEDGER} -hybrid
world.

honest verifier zero knowledge, and computational sound
with adversary advantage of AdvSound

NIZK,Dec(1
κ,A). Assume

Enc is IND-CPA secure with adversary advantage of
AdvIND-CPA

Enc (1κ,A). The protocol ΠHandover[G] in Fig.12
UC-realises FHandover[G] in Fig.11 in {FLEDGER} -hybrid
world against static corruption up to nr+1 − tr+1 − 1
parties with distinguishing advantage upper bounded by
(m · nr+1) · AdvIND-CPA

Enc (1κ,A) + (nr+1 − tr+1 − 1) · AdvSound
NIZK,Dec(1

κ,A).

The proof can be found in supporting document (Sec.
3.4).

7 SECURITY AND PERFORMANCE

7.1 Secuirty
We first examine how our decision-making system satisfies
the design properties:

• Privacy: Voters’ ballots are encrypted by Lift Elgamal
encryption with public keys generated by voting
committee. Based on DDH assumption, it is infea-
sible to infer the original message from the cipher-
texts. Moreover, during the tally phase, voting com-
mittee members compute tally based on additively
homomorphic property without decrypting ballots.
If majority of the voting committee members are
uncorrupted, ballots privacy is guaranteed;

• Fairness: In the pre-voting epoch, the final proposals
are made public by deadline based on a two-stage
project proposing procedure, which separates sub-
mission of proposal commitment from revealing the
proposals on blockchain. Therefore, proposers can-
not know other proposals in advance based on the
hiding property of commitment. In the voting epoch,
voters and experts should submit encrypted ballots
together with zero-knowledge proofs. Because of
DDH assumption, no one can infer original messages
from ciphertexts, therefore voters and experts cannot
change their ballots by counting on others’ outputs.
Additionally, each ballot contains a NIZK proof, even
if some party directly copy-pastes and randomises
others’ ballots to avoid duplication, it cannot provide
valid NIZK proof. Moreover, the finally tally results
are only revealed at the end of voting epoch, voters
and experts cannot change their decisions after see-
ing the final tally results;

• Efficiency and Flexibility: In the pre-voting epoch,
we use a commitment based two-stage project
proposing procedure to avoid advantage over late
submission and guarantee fairness, which improves
the proposal submission efficiency. In the voting
epoch, we introduce a new two-stage voting to save
voters and experts’ voting effort, which improves
overall voting efficiency. Besides, we propose a new
DBKG protocol to generate distributed keys with
amortised communication cost of O(n). Moreover,
our Handover protocol supports changing voting
committee members flexibly in each round;

• End-to-end verifiability:
Individual Verifiability. Voters and experts can ver-
ify if their ballots are recorded on blockchain, which
is guaranteed by the immutability, traceability and
auditability of blockchain. As mentioned before, the
honesty of an untrusted voting device can be assured
by cryptographic techniques such as Benaloh chal-
lenge [29], [30] and the protocol proposed in [31].
In addition, voters and experts can validate the cor-
rectness of tally results and get decrypted delegated
voting power of all experts by checking NIZK proofs.
Therefore, they can check if the correct encrypted
tally results contain their ballots by additively homo-
morphically computing based on all the encrypted
ballots, voting power of voters and delegated voting
power.

13



Universal Verifiability. Everyone can check the mes-
sages posted on blockchain to verify fairness of
proposal submission and voting, including proposal
commitment, encrypted ballots, and final tally re-
sults. Based on the encrypted ballots, voters’ vot-
ing power, experts’ delegated voting power, public
keys, decryption shares and final tally results on
blockchain, everyone can verify correctness of final
tally result.
Eligibility Verifiability. To participant voting, voters
and experts are required to lock stakes on blockchain
and submit encrypted ballots to blockchain. As all
transactions on blockchain are signed by the sender’s
secret key, everyone can check if the final tally con-
tains ballots from valid parties together with univer-
sal verifiability.

7.2 Performance

We compared our voting scheme with the existing voting
schemes, in terms of basic security requirements including
privacy, fairness, end-to-end (E2E) verifiability, and new
properties including universal composability (UC) security,
flexibility and 2-stage voting. All the voting schemes guar-
antee ballots privacy and end-to-end verifiability, some of
the schemes cannot guarantee fairness which gives voters
additional advantage. For example, Yu etal. [32] introduced
a single voting administrator to trigger and reveal tally,
which breaks fairness if it reveals partial tally to some
voters. We check if the schemes are proved under the
UC framework and find that only [1], [33] are universal
composable. The comparison results in in Table 1 shows
that our voting scheme is the only one that provides UC
security and flexible 2-stage voting to save voting efforts and
improve voting efficiency besides satisfying all the security
properties.

We now present the theoretical analysis of our decision-
making system. In the DBKG protocol Πn,µ,m

DBKG when generat-
ingO(n) keys, every party needs to compute and sendO(n)
cipher-texts and commitments. The Correct Sharing NIZK
has O(n) computation and communication cost for proving
and verification. Therefore, the overall cost for DBKG proto-
col is amortisedO(n). In the Preferential Voting stage, every
voter computes its ballots with O(n · s + e) cost. The cost
of Valid Casting NIZK proof for voter’s ballot validation is
O(s · log(n+ e) +n+ s) for proving, verifier’s computation
cost is O(s · log(n+ e)). An expert costs O(n · s) to generate
ballots, the cost of Valid Voting NIZK proof for expert’s bal-
lot validation isO(s·log n+n+s) for proving,O(s·log n) for
computation on verifier’s side. In the Tally phase, the com-
putation cost isO(e ·s), communication cost isO(s). Hence,
overall cost of Πc,µ,s,n

VOTE1 is O(v · s · n). Similarly, the overall
cost of Πc,µ,s,n

VOTE2 is O(v · s · e). In the Handover protocol, for a
previous committee member, computation cost is O(nr+1),
communication cost is O(max(nr+1, nr)). For a new com-
mittee member, the computation cost is O(max(nr+1, nr)),
the communication cost is O(nr+1). The overall communi-
cation cost of ΠHandover[G] is O(max(nr+1, nr) ·nr+1), and
computation cost is O(max(nr+1, nr)

2) for per key.

Fig. 13: DKG Execution Time and Overall Traffic.

Fig. 14: Handover Execution Time and Overall Traffic.

We developed a special set of tests as a part of the
cryptographic library to evaluate performance of the crypto-
graphic protocols in the proposed decision-making system.
The configuration of the work station is : Intel Core i7-6500U
CPU @ 2.50GHz, 16GB RAM, running Linux Ubuntu 16.04
64 bit, Scala Version “2.12.3”, OpenJDK Runtime Environ-
ment (build 1.8.0 131-8u131-b11-2ubuntu1.16.04.3-b11), and
org.bouncycastle “1.58” as the Elliptic Curve Math Library.
The parameter of the elliptic curve is Secp256k1.

To evaluate the performance of our proposed DBKG
protocol, we benchmarked the execution time and overall
traffic for generating one key comparing with Gennaro et
al.’s DKG in Fig. 13, regarding to different committee size
(from 10 to 100) and different percentages of corrupted
committee members (from 0 to c/2 − 1, where c is the
number of voting committee members). For Lift Elgamal
encryption, segments are taken of minimal size (e.g., 8-bit)
to minimise overall time of protocol execution as DLOG
bruteforcing during cyphertexts decryption takes significant
time for bigger segments. For example, the overall time with
5 members is 29 sec for 16-bit segments, while 0.5 s for 8-bit
segments. The larger segments decrease overall traffic about
linearly (for the case with 5 members the overall traffic is 32
KB for 16-bit segments instead of 61 KB for 8-bit segments).

In addition, we tested the execution time and overall
traffic about Handover protocol in Fig. 14, regarding to
different numbers of committee members c (from 10 to
100), and different numbers of corrupted parties (from 0 to
c/2− 1), the segment size is 32.

Fig. 15 demonstrates the performance evaluation of Cor-

14



TABLE 1: Comparison with other voting schemes.

Schemes [34] [35] [36] [37] [38] [32] [39] [1] [40] [41] [42] [43] [44] [33] [45] [46] [47] [48] Ours
Privacy 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Fairness 3 7 7 7 3 7 7 3 3 3 3 3 7 3 3 3 3 3 3

E2E
Verifiability 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

UC
Security 7 7 7 7 7 7 7 3 7 7 7 7 7 3 7 7 7 7 3

Flexibility 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3
2-stage
Voting 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3

Fig. 15: The prover’s running time, verifier’s running time and the proof size for NIZK proofs.

Fig. 16: Ballot size and creation time for each voter and expert
in Preferential Voting Stage.

rect Sharing NIZK proof used in DBKG protocol, Bactched 0
or 1 NIZK proof and Unit Vector NIZK proof used in ballot
casting in two stage voting. For Correct Decryption NIZK
proof used in DBKG protocol and Handover protocol, the
prover’s running time is 0.889 ms, verifier’s running time is
0.924 ms, and the proof size is 102B.

We tested ballot creation time and size for a voter and an
expert in Preferential Voting Stage in Fig. 16. In the Thresh-
old Voting Stage, ballot is done once by a voter and takes
less than 1 second for several hundreds of experts, so it has
very small influence on the voting protocol performance.
With 5000 voters and 50 experts, the overall communication
is approximately 20 MB per project in the Threshold Voting
Stage.

8 CONCLUSION

In this work, we initiated the study of privacy-preserving
decision-making system over blockchain by leveraging the
techniques of [1]. Firstly, we proposed a low complexity
Distributed Batch Key Generation (DBKG) protocol to gen-
erate multiple keys simultaneously. Secondly, we designed

a new Two-Stage Voting scheme to reduce voting effort.
Thirdly, we extend the previous work to enable participa-
tory budgeting. Fourthly, we support Evolving Commit-
tee to replace voting committee during the voting epoch.
Moreover, we proved all our protocols secure under the
UC framework, and analysed how the proposed system
guarantees ballots privacy and end-to-end verifiability. Tests
from our prototype implementation show that the proposed
system is practical.

ACKNOWLEDGEMENTS

Bingsheng Zhang is supported by the National Key R&D
Program of China (No. 2021YFB3101601) and the National
Natural Science Foundation of China (Grant No. 62072401
and No. 62232002). This project is also supported by Input
Output (iohk.io).

REFERENCES

[1] B. Zhang, R. Oliynykov, and H. Balogun, “A treasury system
for cryptocurrencies: Enabling better collaborative intelligence,”
in The Network and Distributed System Security Symposium (NDSS
’19), 2019.

[2] J. Adler, R. Berryhill, A. G. Veneris, Z. Poulos, N. Veira, and
A. Kastania, “Astraea: A decentralized blockchain oracle,” in IEEE
International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), iThings/GreenCom/CPSCom/SmartData 2018, Halifax,
NS, Canada, July 30 - August 3, 2018. IEEE, 2018, pp. 1145–1152.
[Online]. Available: https://doi.org/10.1109/Cybermatics\ 2018.
2018.00207

[3] K. Nelaturu, J. Adler, M. Merlini, R. Berryhill, N. Veira, Z. Poulos,
and A. G. Veneris, “On public crowdsource-based mechanisms
for a decentralized blockchain oracle,” IEEE Trans. Engineering
Management, vol. 67, no. 4, pp. 1444–1458, 2020. [Online].
Available: https://doi.org/10.1109/TEM.2020.2993673

[4] J. Peterson, J. Krug, M. Zoltu, A. K. Williams, and S. Alexander,
“Augur: a decentralized oracle and prediction market platform,”
arXiv preprint arXiv:1501.01042, 2015.

15



[5] E. Duffield and D. Diaz, “Dash: A payments-focused cryptocur-
rency,” Whitepaper, https://github. com/dashpay/dash/wiki/Whitepaper,
2018.

[6] Decred, “Decred governance,” online; date last accessed: 2021-
12-27. [Online]. Available: https://docs.decred.org/governance/
overview

[7] T. Hanke, M. Movahedi, and D. Williams, “Dfinity tech-
nology overview series, consensus system,” arXiv preprint
arXiv:1805.04548, 2018.

[8] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure
distributed key generation for discrete-log based cryptosystems,”
J. Cryptol., vol. 20, no. 1, pp. 51–83, 2007. [Online]. Available:
https://doi.org/10.1007/s00145-006-0347-3

[9] A. Shah, Participatory budgeting. World Bank Publications, 2007.
[10] Y. Cabannes, “Participatory budgeting: a significant contribution

to participatory democracy,” Environment and urbanization, vol. 16,
no. 1, pp. 27–46, 2004.

[11] Z. Beerliová-Trubı́niová and M. Hirt, “Perfectly-secure MPC with
linear communication complexity,” in Theory of Cryptography, Fifth
Theory of Cryptography Conference, TCC 2008, New York, USA, March
19-21, 2008, ser. Lecture Notes in Computer Science, R. Canetti,
Ed., vol. 4948. Springer, 2008, pp. 213–230. [Online]. Available:
https://doi.org/10.1007/978-3-540-78524-8\ 13

[12] J. C. P. Carcı́a, A. Benslimane, and S. Boutalbi, “Blockchain-based
system for e-voting using blind signature protocol,” in IEEE Global
Communications Conference, GLOBECOM 2021, Madrid, Spain,
December 7-11, 2021. IEEE, 2021, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/GLOBECOM46510.2021.9685189

[13] S. Kremer, M. Ryan, and B. Smyth, “Election verifiability in
electronic voting protocols,” in European Symposium on Research
in Computer Security. Springer, 2010, pp. 389–404.

[14] R. H. Thaler, C. R. Sunstein, and J. P. Balz, “Choice architecture,”
in The behavioral foundations of public policy. Princeton University
Press, 2013, pp. 428–439.

[15] F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk,
C. Lin, T. Rabin, and L. Reyzin, “Can a public blockchain keep a
secret?” in Theory of Cryptography Conference. Springer, 2020, pp.
260–290.

[16] H. U. Kumar and R. P. SG, “Algorand: A better distributed ledger,”
in 2019 1st International Conference on Advances in Information
Technology (ICAIT). IEEE, 2019, pp. 496–499.

[17] R. Canetti, “Universally composable security: A new paradigm
for cryptographic protocols,” in 42nd Annual Symposium on
Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las
Vegas, Nevada, USA. IEEE Computer Society, 2001, pp. 136–145.
[Online]. Available: https://doi.org/10.1109/SFCS.2001.959888

[18] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE transactions on information
theory, vol. 31, no. 4, pp. 469–472, 1985.

[19] T. Pedersen and B. Petersen, “Explaining gradually increasing
resource commitment to a foreign market,” International business
review, vol. 7, no. 5, pp. 483–501, 1998.

[20] I. Damgård. On Σ-Protocols, year = 2010, url =
https://cs.au.dk/ ivan/Sigma.pdf, urldate = 2021-09-27.

[21] P. G. Neumann, “Security criteria for electronic voting,” in 16th
National Computer Security Conference, vol. 29, 1993, pp. 478–481.

[22] S. Kremer, M. Ryan, and B. Smyth, “Election verifiability in
electronic voting protocols,” in Computer Security - ESORICS 2010,
15th European Symposium on Research in Computer Security, Athens,
Greece, September 20-22, 2010. Proceedings, ser. Lecture Notes in
Computer Science, D. Gritzalis, B. Preneel, and M. Theoharidou,
Eds., vol. 6345. Springer, 2010, pp. 389–404. [Online]. Available:
https://doi.org/10.1007/978-3-642-15497-3\ 24

[23] Y. Yang, Z. Guan, Z. Wan, J. Weng, H. Pang, and R. H.
Deng, “Priscore: Blockchain-based self-tallying election system
supporting score voting,” IEEE Trans. Inf. Forensics Secur.,
vol. 16, pp. 4705–4720, 2021. [Online]. Available: https:
//doi.org/10.1109/TIFS.2021.3108494

[24] Y. Li, W. Susilo, G. Yang, Y. Yu, D. Liu, X. Du, and
M. Guizani, “A blockchain-based self-tallying voting protocol
in decentralized iot,” IEEE Trans. Dependable Secur. Comput.,
vol. 19, no. 1, pp. 119–130, 2022. [Online]. Available: https:
//doi.org/10.1109/TDSC.2020.2979856

[25] D. Kaidalov, A. Nastenko et al., “Dash governance system:
Analysis and suggestions for improvements.” [Online]. Available:
https://iohk.io/research/papers/#NSJ554WR

[26] J. Fraenkel and B. Grofman, “The borda count and its real-world
alternatives: Comparing scoring rules in nauru and slovenia,”
Australian Journal of Political Science, vol. 49, no. 2, pp. 186–205,
2014.

[27] B. Reilly, “Social choice in the south seas: Electoral innovation
and the borda count in the pacific island countries,” International
Political Science Review, vol. 23, no. 4, pp. 355–372, 2002.

[28] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. M.
Johnson, A. Juels, A. Miller, and D. Song, “Ekiden: A platform
for confidentiality-preserving, trustworthy, and performant
smart contracts,” in IEEE European Symposium on Security
and Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-
19, 2019. IEEE, 2019, pp. 185–200. [Online]. Available:
https://doi.org/10.1109/EuroSP.2019.00023

[29] O. d. M. Ben Adida and O. Pereira, “Helios voting system,”
online; date last accessed: 2022-8-21. [Online]. Available:
https://vote.heliosvoting.org

[30] B. Adida, O. De Marneffe, O. Pereira, J.-J. Quisquater et al.,
“Electing a university president using open-audit voting: Analysis
of real-world use of helios,” EVT/WOTE, vol. 9, no. 10, 2009.

[31] V. Cortier, J. Dreier, P. Gaudry, and M. Turuani, “A simple alter-
native to benaloh challenge for the cast-as-intended property in
helios/belenios,” 2019.

[32] B. Yu, J. K. Liu, A. Sakzad, S. Nepal, R. Steinfeld, P. Rimba,
and M. H. Au, “Platform-independent secure blockchain-based
voting system,” in International Conference on Information Security.
Springer, 2018, pp. 369–386.

[33] R. Küsters, J. Liedtke, J. Müller, D. Rausch, and A. Vogt, “Ordinos:
A verifiable tally-hiding e-voting system,” in 2020 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2020, pp.
216–235.

[34] A. Kiayias and M. Yung, “Self-tallying elections and perfect ballot
secrecy,” in International Workshop on Public Key Cryptography.
Springer, 2002, pp. 141–158.

[35] F. Hao, P. Y. Ryan, and P. Zieliński, “Anonymous voting by two-
round public discussion,” IET Information Security, vol. 4, no. 2, pp.
62–67, 2010.

[36] Z. Zhao and T.-H. H. Chan, “How to vote privately using bitcoin,”
in International Conference on Information and Communications Secu-
rity. Springer, 2015, pp. 82–96.

[37] S. Bistarelli, M. Mantilacci, P. Santancini, and F. Santini, “An
end-to-end voting-system based on bitcoin,” in Proceedings of the
Symposium on Applied Computing, 2017, pp. 1836–1841.

[38] P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract for
boardroom voting with maximum voter privacy,” in International
conference on financial cryptography and data security. Springer, 2017,
pp. 357–375.

[39] W.-J. Lai, Y.-C. Hsieh, C.-W. Hsueh, and J.-L. Wu, “Date: A decen-
tralized, anonymous, and transparent e-voting system,” in 2018
1st IEEE international conference on hot information-centric networking
(HotICN). IEEE, 2018, pp. 24–29.

[40] K. M. R. Alam, S. Tamura, S. S. Rahman, and Y. Morimoto, “An
electronic voting scheme based on revised-svrm and confirmation
numbers,” IEEE Transactions on Dependable and Secure Computing,
vol. 18, no. 1, pp. 400–410, 2019.

[41] R. Krishnamurthy, G. Rathee, and N. Jaglan, “An enhanced
security mechanism through blockchain for e-polling/counting
process using iot devices,” Wireless Networks, vol. 26, no. 4, pp.
2391–2402, 2020.

[42] H. Li, Y. Li, Y. Yu, B. Wang, and K. Chen, “A blockchain-based
traceable self-tallying e-voting protocol in ai era,” IEEE Transac-
tions on Network Science and Engineering, vol. 8, no. 2, pp. 1019–
1032, 2020.

[43] C. Angsuchotmetee, P. Setthawong, and S. Udomviriyalanon,
“Blockvote: An architecture of a blockchain-based electronic vot-
ing system,” in 2019 23rd International Computer Science and Engi-
neering Conference (ICSEC). IEEE, 2019, pp. 110–116.

[44] S. T. Alvi, M. N. Uddin, and L. Islam, “Digital voting: A
blockchain-based e-voting system using biohash and smart con-
tract,” in 2020 Third International Conference on Smart Systems and
Inventive Technology (ICSSIT). IEEE, 2020, pp. 228–233.

[45] Y. Li, W. Susilo, G. Yang, Y. Yu, D. Liu, X. Du, and M. Guizani,
“A blockchain-based self-tallying voting protocol in decentralized
iot,” IEEE Transactions on Dependable and Secure Computing, 2020.

[46] X. Zhang, B. Zhang, A. Kiayias, T. Zacharias, and K. Ren, “An
efficient e2e crowd verifiable e-voting system,” IEEE Transactions
on Dependable and Secure Computing, 2021.

16



[47] J. C. P. Carcia, A. Benslimane, and S. Boutalbi, “Blockchain-based
system for e-voting using blind signature protocol,” in 2021 IEEE
Global Communications Conference (GLOBECOM). IEEE, 2021, pp.
01–06.

[48] Y. Yang, Z. Guan, Z. Wan, J. Weng, H. H. Pang, and R. H. Deng,
“Priscore: blockchain-based self-tallying election system support-
ing score voting,” IEEE Transactions on Information Forensics and
Security, vol. 16, pp. 4705–4720, 2021.

JIAJIE ZHANG received the B.Sc. (Hons) in
Computer Science from Jinan University, China.
She is currently pursuing the Ph.D. degree at
Lancaster University, U.K. Her research interests
include Applied Cryptography, Privacy Preserv-
ing Computation, and Blockchain.

Bingsheng Zhang received the B.E. degree
from the Zhejiang University of Technology,
Hangzhou, China, in 2007, the M.S. degree from
University College London, UK, in 2008, and
the Ph.D. degree from the University of Tartu,
Estonia, in 2011. He is currently a Professor
with the College of Computer Science and Tech-
nology, Zhejiang University, Hangzhou, China.
Before that, he was program director of Lan-
caster University’s master’s degree in cyberse-
curity and leader of the university’s security re-

search group. He specialises in cryptography, verifiable electronic voting
(e-voting), and zero-knowledge proofs. In recent years, his research
interests include secure computing, collaborative decision-making, and
blockchain security.

Andrii Nastenko received a Ph.D. degree in
symmetric cryptography at Kharkiv National Uni-
versity of Radioelectronics, Ukraine. Currently
he is IOG Junior Research Fellow. His re-
search interests are: modern cryptographic algo-
rithms, symmetric block and stream ciphers and
blockchain technologies.

Hamed Balogun lectures at the University of
Central Lancashire, United Kingdom. He ob-
tained his PhD in computer science from Lan-
caster University, UK, where his research fo-
cused on secure blockchain development. His
research efforts and interests span privacy (in
online social networks), security, and applied
cryptography.

Roman Oliynykov received a Dr.Habil de-
gree in symmetric cryptology at Kharkiv National
University of Radio Electronics, Ukraine. Cur-
rently he is a professor at Information Systems
and Technologies Security Department at V.N.
Karazin Kharkiv National University, Ukraine;
visiting professor at Information Technologies
Security Department at Kharkiv National Univer-
sity of Radio Electronics, Ukraine; IOG Research
Fellow. He also lectured as an invited professor
in South Korea and Norway and was involved in

training of Ukrainian cyberpolice officers. His professional experience
includes the development of Ukrainian cryptographic standards: the
Kalyna block cipher and the Kupyna hash function. His research inter-
ests are: blockchain technologies, design and analysis of cryptographic
primitives, software security, computer networks security. Biography text
here.

17


