
BLACKLISTING BASED ANONYMOUS AUTHENTICATION
SCHEME FOR SHARING ECONOMY

by
CAVİT ÖZBAY

Submitted to the Faculty of Natural Sciences and Engineering
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
July, 2022

CAVİT ÖZBAY 2022 ©

All Rights Reserved

ABSTRACT

BLACKLISTING BASED ANONYMOUS AUTHENTICATION SCHEME FOR
SHARING ECONOMY

CAVİT ÖZBAY

COMPUTER SCIENCE AND ENGINEERING M.Sci. THESIS, JULY 2022

Thesis Supervisor: Prof. Albert Levi

Keywords: anonymous credential, blacklisting, sharing economy, conditional
anonymity

Authentication and blacklisting mechanisms have a key role for service providers to
deliver the service to correct users through digital channels. On the other hand, a
user may reveal private data through the service, and an authentication/blacklisting
mechanism that identifies the user may be used to link such private data to the user
herself. Thus, there always have been concerns about privacy of the users. While
there are previous works in the literature that provide unconditional anonymity to
users, these schemes prevent service providers from blacklisting misbehaving users.
At this point, the conditional anonymity concept is proposed as a remedy. A re-
cent approach in the literature for conditional anonymity is blacklistable anonymous
credentials, which allows service providers to blacklist users for an authentication
session without identifying the user. In this thesis, we improve user anonymity in
conditionally anonymous schemes using two complementary mechanisms. First, we
define a property, whitelisting property, for blacklistable anonymous credentials and
give a construction of this scheme. The whitelisting property can be used to unlink
an honestly behaved authentication session from the user. Secondly, we propose
an extension of this scheme for a more specific use case, sharing economy services.
This scheme allows a service provider to blacklist a user only if the user have not re-
turned the shared asset in due time. We benchmark the performance of our schemes
by comparing them with the rival schemes. For communication and computation
metrics, our experiments show that our first scheme has comparable performance to
previous works, and our second scheme is advantageous compared to a rival one.

iv

ÖZET

PAYLAŞIM EKONOMİSİ İÇİN KARA LİSTE TABANLI BİR ANONİM
KİMLİK DOĞRULAMA ŞEMASI

CAVİT ÖZBAY

BİLGİSAYAR BİLİMİ VE MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, HAZİRAN
2022

Tez Danışmanı: Prof. Dr. Albert Levi

Anahtar Kelimeler: gizli kimlik, kara liste, paylaşım ekonomisi, koşullu gizlilik

Kimlik doğrulama ve kara liste mekanizmaları dijitaller kanallar üzerinde çalışan
servis sağlayıcılarının doğru kullanıcılara hizmet ulaştırmasında anahtar bir rol
sahibidir. Öte yandan, bir kullanıcı servis süresince mahrem verilerini açığa çıkara-
bilir ve kullanıcıyı gerçek hayattaki kimliğini ortaya çıkaran bir kimlik doğru-
lama/kara liste mekanizması bu verilerin kullanıcıyla ilişkilendirilmesine sebep ola-
bilir. Bu nedenle, bu sistemlerde kullanıcı mahremiyeti üzerine kaygılar bulun-
maktadır. Literatürdeki çalışmalar kullanıcılara koşulsuz gizlilik sağlayan sistem-
ler önerse de bu şemalar kötü niyetli kullanıcıları kara listeye alma imkanı tanı-
maz. Koşullu gizlilik konsepti bu noktada çözüm olarak önerilmektedir. Koşullu
gizlilik için literatürdeki önerilen konseptlerden biri kara listelenebilir gizli kimlik-
lerdir. Bu şema servis sağlayıcıların kullanıcıyı bir kimlik doğrulama oturumu için
kullanıcı hakkında bilgi edinmeden kara listeye almasına imkan sağlar. Bu tezde,
koşullu gizli şemalardaki kullanıcı gizliliği iki mekanizma önererek geliştirilmekte-
dir. İlk olarak kara listelenebilir gizli kimlikler için beyaz liste özelliği tanımlanmakta
ve bu özelliğe sahip bir şema sağlanmaktadır. Beyaz liste özelliği bir kullanıcının
dürüst davranış sergilediği bir kimlik doğrulama oturumuyla ilişkisini kaldırır. İk-
inci olarak, bu şemanın daha özel bir kullanım senaryosu olan paylaşım ekonomisi
için bir uzantısı önerilmektedir. Bu şemada, bir servis sağlayıcısı bir kullanıcıyı yal-
nızca paylaşılan bir varlığı teslim zamanında getirmezse kara listeye alabilir. İki şe-
manın da performansı literatürdeki çalışmalarla karşılaştırılarak değerlendirilmiştir.
Bu değerlendirmeler hesaplama ve iletişim maliyetleri açısından ilk şemanın liter-
atürdeki çalışmalarla kıyaslanabilir performansa sahip olduğunu, ikinci şemanınsa
daha avantajlı performansa sahip olduğunu göstermiştir.

v

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Prof. Albert Levi for his guidance and
encouragement throughout my study. I am grateful to jury members Prof. Erkay
Savaş and Assoc. Prof. Alptekin Küpçü who accepted to review my thesis and be
a part of my thesis jury by spending their valuable time. I also want to thank my
friends and roommates to make my life more enjoyable during my masters study.
Last but not least, I would like to thank my family, especially my mother and sister,
for their endless support in my life.

vi

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

1. INTRODUCTION . 1
1.1. Contribution . 3
1.2. Outline . 4

2. BACKGROUND AND RELATED WORK . 5
2.1. Background . 5

2.1.1. Assumptions . 6
2.1.2. Structure-Preserving Signatures on Equivalence Classes 6
2.1.3. Accumulators. 8
2.1.4. Time-Lock Puzzles . 9
2.1.5. Zero-Knowledge Proofs . 10

2.2. Related Work . 11

3. BLACKLISTABLE ANONYMOUS CREDENTIALS WITH
WHITELISTING PROPERTY . 14
3.1. Definition of Our Blacklistable Anonymous Credential with Whitelist-

ing Property Scheme . 14
3.1.1. Formal Definition of Algorithms . 14
3.1.2. Security Definitions . 15

3.1.2.1. Anonymity Experiment. 17
3.1.2.2. Experiment of Soundness . 17

3.2. Construction and Security Analysis of Our BLACW Scheme 18
3.2.1. Construction . 19
3.2.2. Security Proofs . 23

4. PERFORMANCE ANALYSIS OF OUR BLACW SCHEME 29

5. PRIVACY PRESERVING BORROWING SCHEME 32

vii

5.1. Definition of Our Privacy Preserving Borrowing Scheme 32
5.1.1. Formal Definition of Algorithms . 34
5.1.2. Security Definitions . 35

5.1.2.1. Anonymity Experiment. 37
5.1.2.2. Backward-Unlinkability Experiment 37
5.1.2.3. Experiment of Soundness . 38

5.2. Construction and Security Analysis of Our PPB Scheme. 39
5.2.1. Construction . 39
5.2.2. Time-Lock Puzzle Construction . 44

5.2.2.1. Efficient Proof of Equality to Prime Order Discrete-
Logarithm . 45

5.2.3. Security Proofs . 49
5.3. Practical Applications . 54

6. PERFORMANCE EVALUATION OF OUR PPB SCHEME 57
6.1. Computational Cost of Our PPB Scheme . 57
6.2. Comparative Evaluation with DAPA . 58

6.2.1. Comparison of Computational Cost . 60
6.2.2. Precomputation for PPB . 61
6.2.3. Comparison of Communication Costs . 61

6.3. Discussion on Further Optimizations . 62
6.4. Performance Evaluation for Real-World Suitability. 63

7. CONCLUSION . 67

BIBLIOGRAPHY. 68

viii

LIST OF TABLES

Table 4.1. Credential Issuance Computation Cost Comparison 31
Table 4.2. Communication Cost Comparison. 31

Table 6.1. Communication Cost Comparison. 62
Table 6.2. Specifications for experiment environments . 63
Table 6.3. Issuance Time-Cost . 65
Table 6.4. Borrowing Time-Cost for blacklist size, 3900. 65
Table 6.5. Repayment Time-Cost for blacklist size 3900 and |BIDSu|= 4. 66

ix

LIST OF FIGURES

Figure 1.1. A blacklistable anonymous credential system 2

Figure 3.1. Setup, IssuerKeyGen, and UserKeyGen algorithms. 19
Figure 3.2. IssueCred and ReceiveCred algorithms of BLACW 20
Figure 3.3. VerifyAuth and ProveAuth algorithms of BLACW 22
Figure 3.4. VerifyWhitelist and ProveWhitelist algorithms. 24
Figure 3.5. Blacklist algorithm . 24

Figure 4.1. Authentication cost of users for blacklist size 2500 30
Figure 4.2. Authentication cost of users for blacklist size 4000 30

Figure 5.1. System Architecture. Step 1 corresponds to credential is-
suance. Step 2 corresponds to a borrowing-lending operation. Step
3 and Step 4 are alternatives of each other. If Step 3, repayment-
collecting, is performed successfully, than blacklisting, Step4, the user
is not possible. Otherwise, the user can be efficiently blacklisted as
in Step 4. 33

Figure 5.2. Setup, IssuerKeyGen, and UserKeyGen algorithms of PPB 40
Figure 5.3. IssueCred and ReceiveCred algorithms of PPB 41
Figure 5.4. Lend and Borrow algorithms . 42
Figure 5.5. Collect and Repay algorithms . 43
Figure 5.6. ExtractBid and Blacklist algorithms . 43
Figure 5.7. Distributions for Simulator Responses . 47
Figure 5.8. Car Sharing Architecture. 55

Figure 6.1. Borrow Cost at User for Blacklisted BID’s . 58
Figure 6.2. Borrow Cost at User Side for Debt Number 58
Figure 6.3. Comparison of borrowing-lending cost on the user side between

PPB and DAPA. 59
Figure 6.4. Comparison of borrowing-lending cost on the verifiable server

and issuer sides between PPB and DAPA . 59
Figure 6.5. Comparison of cumulative cost for debt number at user side

between PPB and DAPA . 60
x

Figure 6.6. Architecture of the experiment environment for mobile bench-
marks . 64

xi

1. INTRODUCTION

Identity management systems are fundamental parts of almost all services which are
provided through digital channels. The main task of identity management systems is
to provide an authentication mechanism that allows service providers to deliver the
service to the correct parties. Blacklisting mechanisms, on the other hand, play a
complementary role to the authentication mechanism. Blacklisting mechanisms are
used to prevent a certain party from authenticating herself anymore. While these
mechanisms are mainly built upon the service providers’ concerns, users of these
applications may have concerns on their privacy. If the underlying authentication
mechanism reveal the identity of a user to service providers, then service providers
may learn various private information about the user which is irrelevant to the
provided service. On the other hand, an unconditionally anonymous authentication
mechanism cannot provide a blacklisting mechanism for service providers.

Solutions based on identity management systems to these problems rely on the
notion of conditional anonymity. In the literature, there are two main approaches
to such problems. The first approach relies on a trusted authority (TA) (also named
opening authority or deanonymization authority in different works) who can trace
all users in the system, and the TA recovers the identity of the misbehaved user
to report to service providers. As a reasonable extension to this system, it is also
proposed to provide a mechanism to blacklist the users based on the recovered
identity information. Considering the ability of TA, any vulnerability in TA’s system
may lead to major privacy leaks. Hence, it is obvious that employing a TA with such
an excessive power is detrimental to users’ privacy. At this point, one may think
that the vulnerability of a central TA may be mitigated by dividing its responsibility
among multiple TAs using secret-sharing methods. While this method seems like a
partial solution, it comes with the burden of communication complexity, as multiple
TAs must operate with consensus.

The second line of work is built on the scheme which is called blacklistable anonymous
credential. Blacklistable anonymous credential schemes mainly propose a system in
which service providers can blacklist a user based on the specific session in which
the user got the service. The approach of this system eliminates the role of TA who

1

Figure 1.1 A blacklistable anonymous credential system

recovers users’ identities, since it allows one to blacklist a user without learning the
identity of the user. Figure 1.1 depicts the environment of a blacklistable anony-
mous credential scheme. Users are registered through a credential issuance phase.
In each authentication session, the user provides additional information (blacklist
id bidi) which can be used to blacklist the user for the session. Unlike the opening
authority based blacklisting mechanism, there is no way to link an authentication
session to the real world identity of a user. Commonly, blacklistable anonymous
credential schemes assume that service providers are honest-but-curious. This as-
sumption ensures that the service provider runs the registration and authentication
protocols as defined. However, blacklistable anonymous credential schemes apply
the mechanism subjective blacklisting. It means that there is no determined policy
about the behavior of the service provider about blacklisting a user. In more de-
tail, there is no defined policy on choosing authentication sessions to be blacklisted,
and the service provider can choose sessions to be blacklisted as he wishes. Hence,
the service provider may blacklist a user just to link two authentication sessions
to each other by still keeping his honest-but-curious behavior. This kind of black-
lists are called malicious blacklists and they are the main potential threat against
user privacy in a blacklistable anonymous credential scheme. In short, blacklistable
anonymous credentials may give some room to link authentication sessions of the
same user to each other in a malicious way, even though they do not allow service
providers to link these authentication sessions to the real-world identity of the user.

When we turn our attention to a more specific type of service, sharing-economy
services, we see that the problems we have mentioned in this chapter occur again.
Sharing economy concepts are utilized for diversified use cases, and lots of these
use cases occur through digital channels. While these applications aim to optimize
the use of various resources as common resources, they come with concerns on

2

privacy of users. To be specific, sharing economy applications may leak various kind
of private information of users to service providers, which is not actually related
to the provided service. For instance, tracked location of a rented vehicle may
leak the residence of the user or the location of a private meeting. On the other
hand, service providers have the following legitimate reason to reject the existence
of unconditionally anonymous users. Service providers, lend their assets to users,
so unconditionally anonymous users are not suitable for their business model. For
instance, a user who rented a car may not return back the vehicle in time. Beyond
these two opposing examples, we may consider further scenarios to express the
trade-off between user privacy and accountability. Suppose a user did not return
the rented car because he had an accident, the service provider’s reason is still valid.
However, the user did not misbehave intentionally. Hence, the user may demand
that at least this unintentional misbehaviour should not reveal his entire car rental
history. In other words, the user may demand backward-unlinkability.

1.1 Contribution

In this thesis, we focus on blacklisting mechanisms with improved anonymity features
for users. The contribution of this thesis can be presented in a nutshell as follows.

1) We propose an extension to blacklistable anonymous credentials, which we
call whitelisting property. Traditionally, blacklistable anonymous credential
schemes have an authentication operation which a user proves that he is not
blacklisted, and he also provides a blacklist id to the service provider which
can be used to blacklist the user for the authenticated session. These schemes
assume that the service provider checks the user behavior for each session
and that the service provider can blacklist the corresponding user if there is
misuse. In the case that the user behaved honestly, the service provider does
not take an action. However, it is possible to blacklist corresponding user
of the session at any time in the future. This flexibility provides a room for
malicious blacklists as service providers can blacklist honest users just to link
them to the future sessions. We define a blacklistable anonymous credential
scheme with whitelisting property such that when the service provider detects
a misuse in a session, the corresponding user can be blacklisted. However,
if there is no misbehavior, the user and the service provider can perform the
whitelisting operation, and the user can no longer be linked to the related
session.

3

2) We provide a scheme which targets more specific scenarios in which users
demand the usage of a resource owned by service providers and worry about
their privacy against service providers and vulnerable TA’s. This scheme is
built upon the blacklistable anonymous credential scheme with whitelisting
property that we define. Using the whitelisting property, a user can unlink
the relationship between his credential and a session. However, the time of this
operation is not fixed. In the sharing economy scenarios, users already interact
with the service provider to end a session when they return the shared asset.
Hence, we can design a dedicated protocol for it, for which the whitelisting
operation can be performed regularly at the end of each session. On top of this
idea, we provide the following extension. Instead of providing the blacklist id to
the service provider in the authentication operation, users provide a tag which
reveals the blacklist id, but only after an amount of time, which is the time for
the user to return shared resource. If the user returns the shared asset in time,
the user and the service provider can perform the whitelisting operation. By
doing that, an honest user has a session such that the corresponding blacklist
id is not revealed before it is whitelisted. On the other hand, if the resource
has not returned in time, the service provider can blacklist the user by using
the revealed blacklist id.

3) We also provide an efficient zero-knowledge proof-of-knowledge protocol to
prove the knowledge of a secret value in a time-lock puzzle that can be opened
to a discrete logarithm value from Zp for some prime p. Even though we
propose to use it in our scheme, we believe it may be useful independently
from this work as will be explained further in this thesis.

4) We provide a detailed performance analysis for both of our schemes.

1.2 Outline

The rest of the thesis is organized as follows. In Chapter 2, we present the necessary
background for the rest of the thesis and an overview of previous related works in the
literature. Chapter 2 defines our blacklistable anonymous credentials with whitelist-
ing property scheme, provides a construction of it, ends with the security analysis of
the construction. Chapter 5 contains the formal definition of the proposed privacy
preserving borrowing scheme, the construction of our privacy preserving borrow-
ing scheme, and its security analysis. Lastly, Chapter 6 includes a comprehensive
performance analysis on the privacy-preserving borrowing scheme, and Chapter 7
concludes the thesis.

4

2. BACKGROUND AND RELATED WORK

In this chapter, we first present the necessary technical background for our protocols
in Section 2.1. To be specific, we provide the formal definitions of cryptographic tools
that will be used throughout this thesis. Then, in Section 2.2, we provide current
related work to the thesis topic and used cryptographic tools in the literature.

2.1 Background

This section presents preliminary information on the cryptographic concepts neces-
sary for the rest of the thesis. Mainly, we provide the formal definitions of underlying
cryptographic concepts (and used constructions for some of them).

We first start with the definition of collision-resistant hash functions.

Definition 1 (Collision-resistant Hash Functions). A set of functions H = {hi :
Di→Ri}i∈I is a family of collision resistant hash functions if:

• There is a p.p.t sampling algorithm Gen(1λ) ∈ I

• For i ∈ I and x ∈Di, hi(x) can be computed in p.p.t.

• For all p.p.t. non-uniform adversaries A and λ ∈ N, there exists a negligible
function µ such that

Pr
[
i← Gen(1λ);x,x′←A(1λ, i) : hi(x) = hi(x′)∧x ̸= x′

]
≤ µ(λ)

Next, we present the definitions related to bilinear pairings for completeness.

Definition 2 (Bilinear Pairing). For ⟨g⟩ = G1, ⟨ĝ⟩ = G2 and GT which groups of
prime order p, e : G1×G2→ GT is a bilinear pairing if it is efficiently computable
and:

• Bilinear: e(ga, ĝb) = e(g, ĝ)ab = e(gb, ĝa) ∀a,b ∈ Zp

5

• Non-degenerate: ⟨e(g, ĝ)⟩= GT , so e(g, ĝ) ̸= 1GT

Throughout the thesis, we use Type-3 pairings, so there is no efficiently computable
isomorphism between G1 and G2.

Definition 3 (Bilinear-group generator). A bilinear-group generator BGGen is a
p.p.t. algorithm which takes a security parameter 1λ and outputs a bilinear pairing
description BG = (e,G1,G2,g, ĝ,p) such that ⟨g⟩= G1, ⟨ĝ⟩= G2, and GT are groups
of prime order p, e : G1×G2→GT is a bilinear pairing, and ⌈log2 p⌉= λ.

2.1.1 Assumptions

We use two traditional assumptions which are well-studied in the literature. The
first one is based on a decisional problem, decisional Diffie-Hellman problem.

Definition 4 (DDH Assumption). For a group of prime order G with order p and
g←G, there exists a negligible function µ(λ) such that

∣∣∣∣∣∣∣∣∣
1
2 −Pr


r,s, t← Zp,
b←{0,1},

b′←A(gr,gs,g(1−b)t+brs)
: b′ = b


∣∣∣∣∣∣∣∣∣≤ µ(λ)

The second assumption is based on strong RSA problem. We do not use this as-
sumption directly, but we use Theorem 1 which can be reduced to the strong RSA
assumption. For the proof of Theorem 1, we refer the reader to (Camenisch &
Shoup, 2003).

Definition 5 (Strong RSA Assumption). Given the RSA modulus N and a random
element g ∈ Z∗

N , it is hard to compute h ∈ Z∗
N and e > 1 such that g = he mod N .

Theorem 1. Under the strong RSA assumption, given an RSA modulus N and two
elements g,h← Z∗

N it is hard to compute w ∈ Z∗
N and integers a, b, c s.t.:

wc = gahb∧ (c ∤ a∨ c ∤ b)

2.1.2 Structure-Preserving Signatures on Equivalence Classes

We take the definition and instantation from (Fuchsbauer, Hanser & Slamanig,
2019) for structure-preserving signatures on equivalence classes. The equivalence

6

class relation R for this scheme is as follows. It worths to point out that this
relationship is an equivalence relation only if G is a prime order group.

R= {(−→M,
−→
N) ∈ (G∗)ℓ× (G∗)ℓ | ∃s ∈ Z∗

p :−→N =−→Ms}

Definition 6 (SPS-EQ). A structure-preserving signature on equivalence classes
scheme is a tuple of algorithms (BGGen,KeyGen,Sign,ChgRep,Verify,VKey) such
that:

• BGGen(1λ): Probabilisticly generates a prime-order bilinear group BG for se-
curity parameter 1λ and outputs it.

• KeyGen(BG,1ℓ): Probabilistic algorithm which generates and outputs a key pair
(sk,pk) for vector length ℓ > 1.

• Sign(sk,−→M): For −→M ∈ (G∗
i)ℓ from equivalence class [−→M], created and outputs

signature σ using secret key sk.

• ChgRep(pk,−→M,σ,µ): Probabilistic algorithm which outputs a valid signature σ′

for −→M ′ = µ ·
−→
M which is a representative of −→M ∈ (G∗

i)ℓ from [−→M].

• Verify(pk,−→M,σ): Deterministic algorithm outputs 1 if σ is a valid signature for
−→
M ∈ (G∗

i)ℓ. Outputs 0, otherwise.

• VKey(sk,pk): Outputs 1 if (ĝxi = X̂i)ℓi=1 holds, for sk = (xi)ℓi=1 and pk =
(X̂i)ℓi=1. Outputs 0, otherwise.

Definition 7 (EUF-CMA). An SPS-EQ over Gi is existentially unforgeable under
chosen message attack (EUF-CMA) if for all ℓ > 1 and all PPT algorithms A, there
is a negligible function µ(·) s.t.:

Pr



BG ← BGGen(1λ),
(sk,pk)← KeyGen(BG,1ℓ),
(−→M∗,σ∗)←ASign(sk,·)(pk)
∀
−→
M ∈Q : [−→M∗] ̸= [−→M],
b= Verify(pk,−→M∗,σ∗)

:b= 1


≤ µ(λ)

for the set of queries issued to the signing oracle by A, Q.

Definition 8 (Perfect Adaptation). For ℓ > 1, an SPS-EQ on (G∗
i)ℓ perfectly adapts

signatures if for all (sk,pk,−→M,σ,µ) satisfying −→M ∈ (G∗
i)ℓ, Verify(pk,−→M,σ) = 1 and

µ ∈ Z∗
p, ChgRep(pk,−→M,σ,µ) has an identical distribution to Sign(sk,µ−→M).

Our scheme uses the following SPS-EQ instantiation from (Fuchsbauer et al., 2019).

7

• BGGen(1λ): Creates and outputs a type-3 bilinear pairing BG according to the
Definition 3.

• KeyGen(BG, ℓ): Choose (xi)i∈[ℓ] ← (Z∗
p)ℓ. Return (sk,pk) which is sk ←

(xi)i∈[ℓ] and (pk← (X̂i)i∈[ℓ] = (ĝxi)i∈[ℓ]).

• Sign(sk,−→M): Choose y ← Z∗
p. Return σ ← (Z,Y, Ŷ) s.t. Z ← (∏

i∈[ℓ]M
xi
i)y,

Y ← g
1
y , Ŷ ← ĝ

1
y .

• Verify(pk,−→M,σ): Return 1 iff e(Y, ĝ) ?= e(g, Ŷ)∧∏
i∈[ℓ] e(Mi, X̂i) ?= e(Z,Ŷ). Oth-

erwise, return 0.

• ChgRep(pk,−→M,σ,µ): Choose ψ← Z∗
p. Parse σ as (Z,Y, Ŷ) and return σ′ ←

(Zµψ,Y
1
µ , Ŷ

1
µ).

2.1.3 Accumulators

Accumulators are widely used cryptographic building blocks for performing mem-
bership and non-membership checks. Following accumulator may be seen as a more
primitive version of (Thakur, 2019) or (Ghosh, Ohrimenko, Papadopoulos, Tamas-
sia & Triandopoulos, 2016). We also benefit from the ideas used to hide the set
of accumulated elements in our protocol from (Ghosh et al., 2016) which is also
proposed in (Fuchsbauer et al., 2019) while constructing hiding set commitments.
Following definitions just follow the aforementioned constructions and notation from
(Badimtsi, Canetti & Yakoubov, 2020).

Definition 9 (Acc). An accumulator scheme Acc is a tuple of 4 algorithms
(Gen,Add,NonMemWitCreate,VerifyNonMem) where

• Gen(1λ,L0): For security parameter λ and initial set L0, outputs public key pk,
accumulator secret key sk, initial accumulator value acc, and auxiliary value
m0. It stores the set L= L0 as the set of accumulated elements.

• Add(pk,at,mt,V): Adds set of elements V to the accumulated set and outputs
at+1, mt+1 and upmsgt+1.

• NonMemWitCreate(pk,at,X,{upmsgi}ti=1): It creates and outputs a non-
membership witness wXt for at and V .

• VerifyNonMem(at,X,wVt): It outputs 1 if all elements of X are not a member
of at. Outputs 0, otherwise.

8

Definition 10 (Collision Freeness). An accumulator is collision-free if for all ppt
adversaries A there exists a negligible function µ(·) such that:

Pr


L0←A()

(pk,acc0)← Gen(1λ,L0),
X,wXt ←AAdd()(pk,acc0),
b= VerNonMem(at,X,wXt)

:
b= 1∧

X ∩Lt ̸= ∅

≤ µ(λ)

Using Definition 9 above, we use the following construction which relies on (Thakur,
2019) and (Ghosh et al., 2016). For simplicity, we assume that q is a constant pa-
rameter that represents the maximum number of elements that can be accumulated
at the same time. We exclude at from the input parameters of Add and sk from
output parameters of Gen, since they are not necessary for the construction.

• Gen(1λ,BG,L0): Choose α ← Zp. Initialize sk ← α and pk ←(
(gαi)i∈[q],(ĝα

i)i∈[q]
)
. Return (pk,a0,m0) for a0 = ĝ and m0 = L0.

• Add(pk,mt,V): Return at+1 = ĝf(α) and mt+1 = mt ∪ V for f(X) =∏
v∈mt+1(X+v).

• NonMemWitCreate(pk,mt,V): For f(X) = ∏
v∈mt

(X + v) and f0(X) =∏
v∈V (X + v), find h(X) and h0(X) s.t. f(X)h(X)− f0(X)h0(X) = 1. Re-

turn wVt = (ŵ1,w2) = (ĝh0(α),gh(α)).

• VerifyNonMem(at,V,wVt): Parse w as (ŵ1,w2). For f0(X) = ∏
v∈V (X + v),

return 1 iff e(gf0(α), ŵ1) = e(w2, Â)e(g, ĝ).

2.1.4 Time-Lock Puzzles

For time-lock puzzles, we rely on the definitions and a variation of a construction
from (Malavolta & Thyagarajan, 2019).

Definition 11 (TLP). A time-lock puzzle scheme TLP is a tuple of algorithms
(PSetup,PGen,PSolve) which has following structure.

• PSetup(λ,T): A probabilistic algorithm to output public parameters pp for se-
curity parameter λ and time hardness parameter T .

• PGen(pp,s): A probabilistic algorithm which outputs puzzle Z for public pa-
rameters pp and solution s ∈ S.

9

• PSolve(pp,Z): A deterministic algorithm which computes the solution s ∈ S
for puzzle Z and public parameters pp.

Definition 12 (TLP Security). A TLP scheme (PSetup,PGen,PSolve) is reusable
secure with gap ε < 1 if there exists a polynomial T̃ (·) such that for all polynomials
T (·) ≥ T̃ (·) and every polynomial-size adversary (A1,A2) = {(A1,A2)λ}λ∈N where
the depth of A2 is bounded from above by T ε(λ), there exists a negligible function
µ(·), such that for all λ ∈ N it holds that

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1
2-Pr



pp← TLP.PSetup(1λ,T (λ)),
τ,s0, s1←A1(pp),

b←{0,1},
Z← TLP.PGen(pp,sb),

b′←A2(Z,τ)

: b′ = b



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

Definition 13 (TLP Correctness). A TLP scheme (PSetup,PGen,PSolve) is correct
if for all λ ∈ N, all polynomials T in λ, all s ∈ S, pp← PSetup(1λ,T), and all
Z← PGen(pp,s) there exists a negligible function µ such that

Pr[PSolve(pp,Z) ̸= s]≤ µ(λ)

2.1.5 Zero-Knowledge Proofs

Definitions below for zero-knowledge proof of knowledge follow the related definitions
from (Boneh & Shoup, 2020).

Definition 14 (Existential Soundness). Let Π = (P,V) be a Sigma protocol for
R⊂X ×Y. If there is a negligible function µ(·) s.t. AdvΠ

A ≤ µ(·) for all ppt adver-
saries A runs the protocol Π as prover P , and verifier V (y) outputs 1 for y ̸∈ LR

chosen by A, then Π existentially sound.

Definition 15 (Zero-Knowledge). Let Π = (P,V) be a Sigma protocol for R⊂X ×Y
with challenge space C. If there is an efficient probabilistic algorithm Sim and a
negligible function µ(·) for all (x,y) ∈R s.t.

∣∣∣∣∣∣∣∣∣∣∣∣
1
2 −Pr


b←{0,1}, c0←C

(t0, z0)← Sim(y,c0)
(t1, c1, z1)← ⟨P (x,y),V (Y)⟩

b′←A(tb, cb, zb)

: b= b′



∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(·)

10

then Π is zero-knowledge.

Through out the thesis, we need zero-knowledge proof protocols which can be in-
stantiated as sigma protocols, and we implement all of them by converting them to
non-interactive protocols by applying Fiat-Shamir Heuristic (Fiat & Shamir, 1987).

2.2 Related Work

As far as our knowledge, the common concept of conditional anonymity for anony-
mous authentication first appeared in (Kilian & Petrank, 1998), which is called
identity escrow. According to this scheme, a user gives his identity to only a trusted
third party in the system, which needs to be online only when some users iden-
tity must be revealed. Famous anonymous credential system Idemix ((Camenisch
& Van Herreweghen, 2002)) also implements an anonymity revocation mechanism
on top of the same idea using verifiable encryption scheme of (Camenisch & Shoup,
2003). Verifier-local group signatures are group signatures which signatures can be
revoked only managing a list at verifier side. (Bringer & Patey, 2012; Nakanishi &
Funabiki, 2005) constructs backward-unlinkable VLR group signatures. Their un-
linkability model assumes epochs in the system and provides backward-unlinkability
only for next epochs. (Verheul, 2016) also proposes an approach similar to verifier-
local revocation for identity management systems including Idemix, which aims to
provide blacklisting in 24 hours.

Limited lifetime concept which credentials enclose a validity period is a widely used
concept in digital certificates such as X.509 certificates. (Camenisch, Kohlweiss &
Soriente, 2010) gives a construction on top of this idea for anonymous credentials
by developing methods to perform updates on credential attributes. However, our
scheme differs from this approach as our scheme allows to relate credentials with
pseudonyms corresponding to different events having different deadlines. Unlike our
scheme, time-based credential schemes allow a unique deadline for the credential
itself. (Blömer, Bobolz, Diemert & Eidens, 2019; Bobolz, Eidens, Krenn, Slamanig
& Striecks, 2020) formalize updatable anonymous credentials, and they design incen-
tive systems to provide privacy-preserving point collection schemes. However, the
concept of point collection is not sufficient in our case. Lending schemes require
a valid repayment for each borrowing. Unlike lending schemes, there are no such
dependence between operations in point collection schemes.

When we turn our attention to privacy preserving protocols concerning on sharing
economy applications, we may see following works. (Hu, Zhao, Zheng & Wang,

11

2020) employs a protocol to prevent cross-bank over loans. There is a similar inten-
tion behind this work and ours, as both try to provide some kind of accountability
on borrowers without harming their privacy concerns at the same time. However,
they use blockchain as a public ledger among banks, and each borrower has a unique
registered pseudonym on blockchain. For this reason, operation times of a specific
pseudonym can easily be identified. (Xie, Holmes & Dagher, 2020) proposes a plat-
form to perform transfers for a peer-to-peer lending system, called ZeroLender. It
assumes that borrowers do not have privacy in the real world, and they only aim
to achieve anonymity in Bitcoin network. In this manner, our work takes a com-
plementary role, and focuses on finding a way to provide both borrower privacy
and lending system security. (Huang, Lu, Ni & Shen, 2020) propose a car sharing
mechanism that relies on a trusted party to remove renter anonymity in case of
need. They propose to decentralize identity escrow by first distributing it among
multiple authorities, and second by changing those authorities by time. A line of
work containing (Symeonidis, Aly, Mustafa, Mennink, Dhooghe & Preneel, 2017),
and recently finalized by (Symeonidis, Rotaru, Mustafa, Mennink, Preneel & Pa-
padimitratos, 2022) constructs a system to enable car-sharing in the case of multi-car
owners. In this scenario, individual car owners intend to rent their cars, and the
paper suggests a comprehensive system that covers key management of cars with
several privacy concerns. Nevertheless, their system model does not provide privacy
between car owners and rentee. Thus, our proposal, again, has an integrant role for
this line of work. Lastly, (Liu, Xue, He, Wei & Guizani, 2020) designs a general
framework for IoT device usage in sharing economy. Their scheme also includes
access control mechanism to IoT devices. Futhermore, similar to our system model,
multiple lenders (service providers) can serve using a single issuer (central server) in
their system model. However, the users have no privacy against the central server.
For time-based services, which we focus on, they propose a mechanism called "ser-
vice termination" looks similar to our repayment concept, but they do not provide
accountability on users.

(Tsang, Au, Kapadia & Smith, 2007) defines the blacklistable anonymous creden-
tials such that a service provider is able to blacklist a user whenever it is wished
without relying on any third party. Unlike the solutions relying on trusted third
parties, (Tsang et al., 2007) does not deanonymize a user completely for blacklisting
purposes. (Tsang, Au & Kapadia, 2008) is another blacklistable anonymous creden-
tial scheme that checks whether a user has blacklisted in her last k authentications
for some number k. They also provide another variation of their scheme such that
users can be scored for their negative behaviors and can be blacklisted if their score
is above a threshold. (Nakanishi & Kanatani, 2018) is one of recent blacklistable

12

anonymous credential schemes that allows negative and positive scores on user rep-
utation together. (Yang, Au, Xu & Yu, 2019) designs a blacklistable anonymous
credential system where there is no central credential issuer. All these schemes al-
low service providers to blacklist users as they wish which creates another privacy
concern, as service providers may use blacklisting features maliciously to trace or
deanonymize users.

(Malavolta & Thyagarajan, 2019) proposes homomorphic time-lock puzzles which
can be used to evaluate functions on time-lock puzzles without solving them. Ho-
momorphic time-lock puzzles are also utilized to solve more than one puzzles at
once to optimize the puzzle-solving phase. (Abadi & Kiayias, 2021) constructs a
time-lock puzzle scheme that can generate a single puzzle for multiple secret values
with different opening so that single sequential computation can evaluate a puzzle
to multiple secret values at different points of the computation. (Chvojka, Jager,
Slamanig & Striecks, 2021) further improves this design. Their design allows to
determine evaluation times first, and puzzles can be generated with arbitrary se-
cret values to the determined times at any other time. While these works focus
on optimizing puzzle solving phase, recent implementation areas of time-lock puz-
zles arose two main problems on the verifiability of time-lock puzzles: verifiability
and non-malleability. For the verifiability property, an early work of Boneh and
Naor (Boneh & Naor, 2000) proposed timed commitments which allows commit-
ters to prove that the timed commitment opens to a certain secret value. Recently,
Manevich and Akavia presented the concept of attribute verifiable timed commit-
mens, which allows users to prove that the commitment opens to a secret which
holds a predicate for any predicate (Manevich & Akavia, 2022). (Katz, Loss & Xu,
2020) defines CCA-Secure timed commitments which brings CCA-security notion
to timed commitments to provide non-malleability features. Another recent work
on non-malleability discusses different definitions of non-malleability on time-lock
puzzles in detail and gives constructions for those definitions (Freitag, Komargodski,
Pass & Sirkin, 2021).

13

3. BLACKLISTABLE ANONYMOUS CREDENTIALS WITH
WHITELISTING PROPERTY

This chapter is dedicated to blacklistable anonymous credentials with whitelisting
property (BLACW). Section 3.1 defines BLACW and its properties. Subsequently,
Section 3.2 provides a construction of BLACW and the security analysis of this
construction.

3.1 Definition of Our Blacklistable Anonymous Credential with
Whitelisting Property Scheme

In this section, we present the formal definitions of our blacklistable anonymous
credential with whitelisting property scheme and related security definitions. As in
the previous blacklistable anonymous credential schemes, we also assume that the
service providers are honest-but-curious. As a naming convention, in this chapter
and in the following chapter, we call the service provider also as credential issuer
since the service provider issues credentials to users to register them. Informally,
we add a property to the concept of blacklistable anonymous credentials, which
allows users and service providers to unlink a session from a user if the user behaved
honestly, so that the session can no longer be linked to the user. To make our
motivation clear, it is convenient to compare it with the previous constructions.
(Tsang et al., 2007) defines a blacklistable anonymous credential scheme which a
user can be blacklisted only for last K authentication sessions. While this approach
seems similar to ours, our notion is more flexible, which allows us to decide the
situation of each authentication session regardless with its order of occurrence.

3.1.1 Formal Definition of Algorithms

Formally, a blacklistable anonymous credential with whitelisting property scheme
BLACW is a tuple of algorithms (Setup, IssueCred,ReceiveCred,VerifyAuth,ProveAuth,

14

VerifyWhitelist,ProveWhitelist,Blacklist, IssuerKeyGen,UserKeyGen) such that:

• Setup(1λ): Generates public parameters pp, blacklist public parameters, bpk,
for the blacklist and an empty blacklist L(∅). Finally, outputs (pp,bpk,L(∅)).
For the remaining algorithms, we assume that pp is known by all algorithms,
and we do not express it explicitly.

• IssuerKeyGen(): Generates and outputs a key pair (sk,pk) for an issuer.

• UserKeyGen(pk): Generates and outputs a user key pair (usk,upk).

• IssueCred(sk,pk,upk)↔ReceiveCred(pk,usk,upk): Generates a credential cred
for the user on the double-spent identifier dsid (not known by the issuer) and
outputs cred to the user. Initially, the credential does not include any blacklist
identifier bid, so the set of bid’s the user has, BIDSu = ∅.

• VerifyAuth(sk,pk,L) ↔ ProveAuth(pk,usk,cred,L): User generates a fresh
blacklist id bid and reveals dsid from cred to the issuer. The issuer checks
if dsid belongs to a previously used credential and checks if bid value is a
previously used value. The issuer also checks if cred includes any blacklisted
blacklist id using the blacklist L. Subsequently, generates a credential cred∗

for the user on blacklist id set BIDSu = BIDSu∪{bid}, and a fresh double-
spent identifier dsid∗ (not known by the issuer). Afterwards, the issuer sends
them to the user. If the issuer fails during the process, returns (0,⊥,⊥) and
returns (1,dsid,bid), otherwise. If the user fails during the process, returns ⊥
and returns cred∗, otherwise.

• VerifyWhiteList(sk,pk,bid) ↔ ProveWhitelist(pk,usk,cred,bid): Performs
whitelisting operation for bid ∈ BIDSu. Generates a credential cred∗ for the
user on the set of blacklist id’s BIDS∗

u =BIDSu \{bid} and the double-spent
identifier dsid from the credential cred. The issuer then sends all these values
to the user. The issuer returns ⊥ if there is a failure during the process and
returns bid, otherwise. The user returns ⊥ if there is a failure during the
process and returns cred∗, otherwise.

• Blacklist(bpk,bid,L): Adds bid to L and computes L∗. Outputs L∗.

3.1.2 Security Definitions

We define the security experiments for the properties anonymity and soundness of
our scheme. These experiments are built on top of the oracles below. Both security

15

experiments we have starts by running Setup algorithm. For notational simplicity,
we assume that all oracles have access to the output of this Setup call.

• ORegisterIssuerKey(pk): It stores the issuer key for the user oracles. The ora-
cle must be called before calling one of the oracles OUserKeyGen, OProveAuth, or
OProveWhitelist. It also sets the set of blacklist id’s which there is no corre-
sponding OProveWhitelist call yet, B = ∅.

The following oracles are used to model an honest user in anonymity experiment.

• OUserKeyGen(): Generates a user handle u and a key pair (usku,upku) ←
UserKeyGen(pk) and stores (upku,usku, credu)← (upku,usku,⊥). Finally, it
outputs (u,upku).

• OReceiveCred(u): Runs cred∗ ← ReceiveCred(pk,usku,upku). If cred∗ =⊥, it
outputs ⊥. Otherwise, it updates credu as cred∗. This oracle cannot be called
more than once for a user handle u, and must be called before any calls to
OProveAuth OProveWhitelist with the handle u.

• OProveAuth(u,L): Outputs ⊥ if credu =⊥. Otherwise, it runs (cred∗, bid)←
ProveAuth(pk,usku, credu,L) with the issuer. If cred∗ =⊥, it outputs ⊥.
Otherwise, it updates credu ← cred∗. Lastly, the oracle updates B as B′ =
B∪{(u,bid)} and outputs bid.

• OProveWhitelist(u,bid): Outputs ⊥ if credu =⊥ or if (u,bid) ̸∈ B. Otherwise, it
runs cred∗← ProveWhitelist(pk,usku, credu, bid) with the issuer. If cred∗ =⊥,
it outputs ⊥. Otherwise, it updates credu← cred∗, B as B′←B\{(u,bid)},
and outputs bid (just as a dummy value which is not equal to ⊥).

The following oracles are used to model an honest issuer in a soundness experiment.

• OIssuerKeyGen(): Generates and stores (sk,pk)← IssuerKeyGen(), and outputs
only pk. Sets the set of users U ← ∅. Oracle also sets the set of different
blacklists L= ∅. Adversary is allowed to create arbitrary number of blacklists
using ORegisterBlacklist and L is used to keep track of these blacklists. Lastly,
it sets bidc =⊥ which is the value of challenge bid in the soundness game.

• OIssueCred(upk): If upk ̸∈ U , then tries to run IssueCred(sk,pk,upk). If it runs
successfully, the oracle updates U ← U ∪{upk}.

• OVerifyAuthChl(j): Runs (b,dsid,bid)← VerifyAuth(sk,pk, ,Lj). If b= 0, it out-
puts (b,⊥,⊥). Otherwise, it stores (dsid,bid), sets bidc := bid and outputs
(b,dsid,bid).

16

• OVerifyAuth(j): Runs (b,dsid,bid)← VerifyAuth(sk,pk, ,Lj). If b= 0, it outputs
(b,⊥,⊥). Otherwise, it stores (dsid,bid) and outputs (b,dsid,bid).

• OVerifyWhitelist(bid): If bid= bidc, then outputs ⊥. Otherwise, the oracle runs
VerifyWhitelist(sk,bid) with the user and outputs bid.

• ORegisterBlacklist(): This oracle just adds another empty blacklist to L. For
j = |L|, it sets Lj = L(∅), adds j to L, and outputs j.

• OBlacklist(j,bid): If Lj ̸∈ L, it outputs ⊥. Otherwise, this oracle runs L∗ ←
Blacklist(Lj , bid), sets Lj = L∗, and outputs L∗.

3.1.2.1 Anonymity Experiment

Definition 16 ensures anonymity of users who do not yet have any authentication
or users who have run ProveWhitelist for all their authentications. The intuition
behind the anonymity experiment is as follows. While steps 1, 2 and 3 perform the
setup steps for two users, u0 and u1, adversary A can make arbitrary calls to oracles
which are denoted by OQuery in step 4. In step 5, A makes a single authentication
oracle call to ub, which is the main challenge phase of the experiment.

Definition 16 (Anonymity). A blacklistable anonymous credential with whitelisting
scheme is anonymous if for all p.p.t adversaries A there exists a negligible function
µ(·), such that for all λ ∈ N,
∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



(pp,bpk,L(∅))← Setup(1λ), b←{0,1}
(pk,st)←A(pp),ORegisterIssuerKey(pk)(

(ui,upki)←OUserKeyGen())
i∈{0,1}

st←AOQuery()(st,u0,upk0,u1,upk1)
B∗ := B, b′←AOProveAuth(ub,·)(st)

:
⊥̸∈ {credu0 , credu1}

∀i ∈ {0,1}, (̸ ∃bid,(ui, bid) ∈ B∗)
b = b′

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

where OQuery() is {OReceiveCred(·),OProveAuth(·,·),OUserKeyGen(),OProveWhitelist(·,·)},
and the adversary A can make arbitrary number of oracle queries in step 4.

3.1.2.2 Experiment of Soundness

Definition 17 provides our definition for soundness. It has a similar notion as the con-
cept of misauthentication resistance in blacklistable anonymous credentials (Tsang
et al., 2007). Before explaining this experiment, we can determine the properties

17

of soundness for our scheme intuitively. First, as a general property of anonymous
credential schemes, credential forgeries must be infeasible. Second, since we provide
a blacklisting property, authentication using a blacklisted credential must be infea-
sible. If upku ̸∈ U and the lending query is successful (b1 = 1), it means that A is
able to forge a credential. Otherwise, the experiment blacklists bid related to this
lending operation and challenges the adversary to perform another lending query
for the same public key upku. If the adversary can perform this operation success-
fully (b2 = 1), it means that the adversary can authenticate even with a blacklisted
credential. If the adversary A can achieve one of these, then A wins and loses
otherwise.

Definition 17 (Soundness). A blacklistable anonymous credential with whitelisting
scheme is sound if for all p.p.t. algorithms A there exists a negligible function µ(·)
such that for all λ ∈ N,

Pr



(pp,bpk,L(∅))← Setup(1λ),(pk)←OIssuerKeyGen()

ORegisterIssuerKeys(pk),AOQuery()(pp,pk)
(b1,dsid,bid)←AOVerifyAuthChl(j)

L∗
k←AOBlacklist(·,bid)

AOQuery()(pp,pk)
(b2,dsid,bid)←AOVerifyAuth(·,k)

: b1 = 1∧L∗
k ̸=⊥ ∧

(upku ̸∈ U ∨ b2 = 1)


≤ µ(λ)

where upku is the public key of the user u which is used by A in steps 3 and 6.

3.2 Construction and Security Analysis of Our BLACW Scheme

In this section, we first provide the construction of our blacklistable anonymous
credential with whitelisting property scheme (BLACW) scheme using structure-
preserving signatures on equivalence classes, time-lock puzzles, accumulators, zero-
knowledge proofs of knowledge, and collision-resistant hash functions. Subsequently,
we prove the anonymity and soundness of this construction according to Definition
16 and Definition 17, respectively.

18

Setup(1λ)

BG ← SPS-EQ.BGGen(1λ)
h4←H(”h4”∥BG)
(bpk,a0,m0)← Acc.Gen(1λ,BG,∅)
L(∅) = (a0,m0),w←H(”w”∥BG)
pp = (BG,h4,w)
return (pp,bpk,L(∅))

IssuerKeyGen()

(skSPS-EQ,pkSPS-EQ)← SPS-EQ.KeyGen(1λ,BG,3)
(qi)i∈[3]← (Zp)3,(hi)i∈[3] = (gi)i∈[3]

sk = (skSPS-EQ,(qi)i∈[3])
pk = (pkSPS-EQ,pkΣ,(hi)i∈[3])
Initialize BIDS = ∅,DSIDS = ∅
return (sk,pk)

UserKeyGen(pk)

return (usk,upk = wusk) for usk← Zp

Figure 3.1 Setup, IssuerKeyGen, and UserKeyGen algorithms

3.2.1 Construction

Our BLACW construction benefits from the concept of updatable anonymous cre-
dentials. To realize the construction of our scheme, we need to enclose the set of
bid’s, BIDSu, as an attribute of user credentials. A credential in our scheme is
mainly a signature of the issuer on two commitments. While the first one is a reg-
ular Pedersen commitment on an attribute vector, the second is a set commitment
that commits to the set of bid’s a user has. Similarly to updatable anonymous
credentials, we perform updates on old credential values using the commitments in
old credentials during authentication and whitelisting operations. Nevertheless, the
existing updatable anonymous credential schemes in the literature do not allow us
to enclose both a set and a vector as a credential attribute at the same time. Thus,
we can not use existing updatable anonymous credential definitions in black-box
fashion, and we propose our method to represent a set as an attribute in our creden-
tial by relying on traditional accumulator schemes and set commitment ideas from
(Fuchsbauer et al., 2019). In the rest of this part, we explain our construction in
detail.

Setup algorithm in Fig. 3.1 creates initial parameters for pairing operations,
commitment, zero-knowledge proofs of knowledge, and accumulator. Subsequently,
it returns the public parameters. It is assumed that Setup is run honestly at the very
beginning of the system. This is a reasonable assumption since there are several
works that propose methods to perform the generation of parameters in these
algorithms employing distributed computation in multi-party setting (Bowe, Gabi-
zon & Miers, 2017; Chen, Cohen, Doerner, Kondi, Lee, Rosefield & Shelat, 2020).

19

IssueCred(sk,pk,upk)↔ ReceiveCred(pk,usk,upk)

Issuer User

ZKP0

dsid∗
user,z∗, t∗,u∗,y∗← Zp

−→
C =

(
g,(husk

1 h
dsid∗

user
2 hz∗

3 ht∗
4),gy∗)

C(pre) =−→C u∗

C(pre),ZKP1

dsid∗
issuer← Zp

−→
C ′ = (C(pre)

0 ,C
(pre)
1 (C(pre)

0)q2dsid∗
issuer

,C
(pre)
2)

σ← SPS-EQ.Sign
(
skSPS-EQ,

−→
C ′)

σ,dsid∗
issuer

−→
C (tmp) = (C(pre)

0 ,C
(pre)
1 h

u∗dsid∗
issuer

2 ,C
(pre)
2)

if SPS-EQ.Verify(pkSPS-EQ,
−→
C (tmp),σ) = 0

then return ⊥

(−→C ∗,σ∗) =

SPS-EQ.ChgRep
(
pkSPS-EQ,

−→
C (tmp),σ,

1
u∗

)
return cred∗ = (−→C ∗,dsid∗,z∗, t∗,y∗,∅,σ∗)

ZKP0 = ZKP [(skSPS-EQ,(qi)i∈[3]) : SPS-EQ.VerKey(skSPS-EQ,pkSPS-EQ) = 1∧i∈[3] hi = gqi]
ZKP1 = ZKP [(usk,dsid∗

user,z∗, t∗,u∗,y∗) : upk = wusk∧

C(pre) = (C(pre)
0 ,C

(pre)
1 ,C

(pre)
2) =

(
gu∗

,(husk
1 h

dsid∗
user

2 hz∗
3 ht∗

4)u∗
,gy∗u∗)

]

Figure 3.2 IssueCred and ReceiveCred algorithms of BLACW

Fig. 3.1 also shows how an issuer creates her keys using the IssuerKeyGen algorithm.
An issuer key includes secret and public parameters of SPS-EQ together with trap-
doors for the commitment to be signed. Trapdoors will be used when it is necessary
to update an attribute on an old credential in further operations. The issuer also
initializes two sets as empty sets during key generation, the set of used dsid values
DSIDS, and the set of used bid values, BIDS.

A new user in the system runs the UserKeyGen algorithm in Fig. 3.1 to initialize his
public and secret parameters. After the issuer creates her keys, any user who created
his keys may be registered by running IssueCred↔ ReceiveCred algorithms with the
issuer, which is presented in Fig. 5.3. At the beginning of this procedure, the issuer

20

proves that her public key is well-formed. Then, the user creates two commitments.
While one of them contains the user part of dsid, dsid∗

user, and user’s secret key,
usk, the other one is the commitment to set of bid’s the user has. Since the set
of bid’ s for the user u, BIDSu, is initially empty, it is actually a commitment to
an empty set. The user then puts them in an instance of SPS-EQ’s equivalence
class and sends it to the issuer together with a proof of well-formedness of all these
values. Issuer checks the proof to see if the values are indeed well-formed, and
halts otherwise. The issuer chooses the issuer part of dsid, dsid∗

issuer, and adds it
to the user part of dsid. As a result of this process, both the user and the issuer
are sure that the final double-spent identifier value dsid∗ is a random choice, since
dsid∗ = dsid∗

user + dsid∗
issuer. Subsequently, issuer signs the credential for the user

and sends both the signature and the issuer part of dsid to the user. Since the
issuer changed the first commitment that the user sent by adding the issuer part
to dsid, the user needs to compute that member first. Finally, the user changes
the representation of the SPS-EQ signature so that the first element of the signed
message is g.

To perform authentication, a user with an issued credential must run the
VerifyAuth↔ ProveAuth algorithms demonstrated in Fig. 3.3, with the issuer. The
main flow of a authenticaion operation is similar to a credential update operation of
an updatable anonymous credential. Particularly, old dsid value from the old cre-
dential is updated with a new one, and the fresh blacklist identifier value (denoted
by bid∗ in the Fig. 3.3) is added to BIDSu. While doing these operations, the user
performs the similar operations to the credential issuance process for the updated
credential. Together with these parameters, the user also sends dsid value of old
credential so that old credential becomes invalid. She also sends bid which can be
used to blacklist the user for this session. The last element that the user sends to
the issuer is ZKP2, which contains proof of nonmembership to the input blacklist,
and proof of well-formedness of other sent values. Proof of non-membership relies on
accumulator non-membership witness. Proof of well-formedness of the sent values
is performed as follows. User sends −→C and the signature on −→C of the old credential.
While proving the well-formedness of the updated credential, she proves that the
updated credential only has two updates, which we mentioned above on the old cre-
dential. The issuer checks this proof of well-formedness and the signature of the old
credential. Issuer also checks that dsid ̸∈DSIDS and bid ̸∈ BIDS. If any of them
do not hold, the issuer returns (0,⊥,⊥). Otherwise, the issuer follows steps similar
to the issuance phase while creating the updated credential and returns (1,dsid,bid).
The user also performs similar steps she followed while she gets her credential, and
she returns the updated credential value.

21

VerifyAuth(sk,pk,L)↔ ProveAuth(pk,usk,cred,L)

Issuer User
Parse L = (a,m)

and cred = (−→C ,dsid,z, t,y,BIDSu,σ)
(dsid∗

user,z∗, t∗,y∗,u∗, bid∗)← Zp

BIDS∗
u = BIDSu +{bid∗}

−→
C ′ = (g,(husk

1 h
dsid∗

user
2 hz∗

3 ht∗
4),gf∗

0 (α)y∗)
−→
C (pre) = (−→C ′)u∗

wit = Acc.CreateNonMem(bpk,m,BIDSu)

dsid,σ,
−→
C ,
−→
C (pre), bid∗,ZKP2

b = SPS-EQ.Verify(pkSPS-EQ,C,σ)
if b = 0∨dsid ∈DSIDS∨ bid ∈BIDS

then return (0,⊥,⊥)
DSIDS = DSIDS∪{dsid}
BIDS = BIDS∪{bid}
dsid∗

issuer← Zp

−→
C ′ = (C(pre)

0 ,C
(pre)
1 (C(pre)

0)q2dsid∗
issuer ,

C
(pre)
2)

σ′← SPS-EQ.Sign
(
skSPS-EQ,

−→
C ′)

return (1,dsid,btag)

σ′,dsid∗
issuer

−→
C ′ = (C(pre)

0 ,C
(pre)
1 h

u∗dsid∗
issuer

2 ,C
(pre)
2)

if SPS-EQ.Verify(pkSPS-EQ,
−→
C (tmp),σ) = 0

then return ⊥

(−→C ∗,σ∗) =

SPS-EQ.ChgRep
(
pkSPS-EQ,

−→
C ′,σ,

1
u∗

)
cred∗ = (−→C ∗,dsid∗,z∗, t∗,y∗,BIDS∗

u,σ∗)
return cred∗

ZKP2 = ZKP [(usk,v,z,z∗, t, t∗,u∗,dsid,dsid∗
user,BIDSu,wit) :

−→
C =

(
g,husk

1 hdsid
2 hz

3ht
4,gyf0(α))∧−→C (pre) =

(
gu∗

,(husk
1 h

dsid∗
user

2 hz∗
3 ht∗

4)u∗
,gu∗y∗f∗

0 (α))∧
e(C2, ĝα+bid∗)y∗·u∗ = e(C(pre)

2 , ĝ)y ∧e(C2, ŵ1) = e(w2,a)ye(g, ĝ)y]

Figure 3.3 VerifyAuth and ProveAuth algorithms of BLACW

22

Whitelisting operations can be performed after each service if it turns out that the
user does not get into any act to be blacklisted. This operation which is displayed
explicitly in Fig. 3.4, is relatively easier task than the authentication operation, since
they produce a credential with a higher credit for users at the end. To be clear, users
do not have an incentive to use the old credential they have at the beginning of the
whitelisting operation because their new credential is more advantageous than the
old one by the nature of the whitelisting procedure. Therefore, there is no need to
reveal the double-spent identifier dsid of the old credential, and they can be directly
used for the freshly created credential with higher credibility. Hence, we only need
to deal with changes according to the revealed bid value, which means that the only
updated credential attribute is BIDSu. This gives us the following optimization
that the first commitment, which includes usk and dsid does not change. Hence,
it can be used directly. However, the second commitment is updated, and user
computes a new commitment, C∗

2 , to the updated set of bid’s, BIDS∗
u, for that.

Other procedures include the proof of well-formedness of the new commitment to
BIDS∗

u. If the proof of well-formedness holds, σ′ is a valid signature on −→C ′, the
issuer signs the new credential and sends it to the user. User side to complete the
process is similar to the credential issuance and authentication operations.

Lastly, the Blacklist algorithm in Fig. 3.5 performs blacklisting simply by adding
the given bid to the accumulator. The Setup outputs anything which is necessary
to manage a blacklist and anyone can manage arbitrary numbers of blacklists using
the public parameters. However, by default, we assume that the input blacklist for
authentication operation is managed by the issuer.

3.2.2 Security Proofs

The following theorems show that our scheme is anonymous and sound according
to Definition 16 and Definition 17, respectively.

Theorem 2. Given blacklistable anonymous credential scheme is anonymous in
the random oracle model, if the underlying zero-knowledge proofs of knowledge are
HVZK and sound, DDH assumption holds, and underlying SPS-EQ signature scheme
SPS-EQ is a signature scheme with perfect adaptation property.

Proof. For the rest of the proof, the event Si is the case where the adversary A
wins Gamei. Game0 is identical to the original anonymity game.

23

VerifyWhitelist(sk,pk,bid)↔ ProveWhitelist(pk,usk,cred,bid)

Issuer User

Parse cred = (−→C ,dsid,z, t,y,BIDSu,σ)
BIDS∗

u = BIDSu \{bid}
C∗

2 ← gf∗
0 (α)y∗s for s,y∗← Zp

(
−→
C ′,σ′)← SPS-EQ.ChgRep(pkSPS-EQ,

−→
C ,σ,s)

−→
C ′,σ′, bid,

C∗
2 ,ZKP3

if SPS-EQ.Verify(pkSPS-EQ,
−→
C (tmp),σ) = 0

then return ⊥

Parse
−→
C ′as(C ′

0,C ′
1,C ′

2)
σ′′← SPS-EQ.Sign

(
skSPS-EQ,(C ′

0,C ′
1,C∗

2)
)
σ′′

−→
C (tmp) = (gs,Cs

1 ,C∗
2)

if SPS-EQ.Verify(pkSPS-EQ,
−→
C (tmp),σ) = 0

then return ⊥

(−→C ∗,σ∗) =

SPS-EQ.ChgRep
(
pkSPS-EQ,

−→
C (tmp),σ′′,

1
s

,
)

return cred∗ = (−→C ∗,dsid,z, t,y∗,BIDS∗
u,σ∗)

ZKP3 = ZKP [(y,y∗,s,BIDS∗
u) : e(C ′

2, ĝ)y∗ = e(C∗
2 , ĝα+bid)y·s]

Figure 3.4 VerifyWhitelist and ProveWhitelist algorithms

Blacklist(bpk,bid,L)

Parse L as (at,mt)
(at+1,mt+1)← Acc.Add(bpk,mt,{bid})
return L∗ = (at+1,mt+1)

Figure 3.5 Blacklist algorithm

24

Game1: In Game1, on the first call of the adversary to ReceiveCred, we run
the ZKP extractor and get sk = (skSPS-EQ, ·, q1, ..., q3). Let the event F be the case
that Game1 can not extract the zero-knowledge witness. In this case, Game1 aborts.
Since Game0 and Game1 behaves identically if F does not hold,

Pr[S1]−Pr[S0]≤ Pr[F]

we can also imply that,
Pr[F]≤ µsnd(λ)

Hence, Game0 and Game1 are computationally indistinguishable.

Game2: In this game, we simulate all zero-knowledge proofs of knowledge in
OProveAuth and OProveWhitelist.

Pr[S2]−Pr[S1]≤ µzk(λ)

Game3: In this game, all calls to SPS–EQ.ChgRep are changed to SPS–EQ.Sign. Due
to perfect adaptation of SPS–EQ,

Pr[S2] = Pr[S3]

Game4: In Game4, we guess the index of last call to OProveAuth (or OReceiveCred) for
u0, i0. If the guess is wrong, we choose a random bit b′ and simulate it as the
adversary A’s output. Let the event E4 be the case that Game4’s guess is wrong.
Since the events E4 and S3 are independent events and the event ¬E4 occurs with
non-negligible probability,

|Pr[S4]−1/2|= Pr[¬E4] · |Pr[S3]−1/2|

Game5: In this game, we choose Z,R← G, and r,r′, ru,← Zp. Then, we program
random oracle such that

h4 =H(”h4”∥BG) :=R
1
r g− r′

r

For the query i0, we initialize C(pre) as

C(pre) =
(
gru ,Zru ,gf

∗
0 (α)y∗ru

)
,y∗← Zp,f∗

0 (X) =
∏

bid∈BIDS∗
u

(X+ bid)

25

Again, for i0’th query, we change the stored cred value to

cred=
(
(g,R′,gf

′
0(α)y′

),dsiduser, z, t,y′,BIDS′
u,σ

)

where dsiduser ← Zp. R′ = Rh
dsid∗

issuer
2 and BIDS′

u = BIDS∗
u if i0 is the last

oracle call before the guessing phase. Otherwise, for the set of all whitelisted bid’s
after the i0’th query, ⋃

j{bidj}, BIDS′
u = BIDS∗

u \ (⋃
j{bidj}). For appropriately

initialized BIDS′
u, let f ′

0(X) = ∏
bid∈BIDS′

u
(X+ bid). Finally, t= r and z = 1

q3
(r′−

(q1usku0 + q2dsid)).

Game4→ Game5: Indistinguishability of these two games can loosely be re-
ducted to class-hiding property of SPS-EQ. However, we can provide a strict
reduction to DDH still inspired by the security reduction of the class hiding
property ((Fuchsbauer et al., 2019)), but also by considering our special case. We
prove that by using any adversary A that can distinguish between Game4 and
Game5 with non-negligible probability, we can create an adversary that can win
DDH game with a non-negligible probability. Before starting this reduction, let us
point out that using Z instead of a new commitment instance in the i0’th query
is indistinguishable, since the underlying commitment is perfectly hiding. Thus,
we only need to prove that A cannot distinguish whether Z or R has been used
in the very last query. To prove this, we take a DDH instance. For a DDH tuple
(U,V,W) = (gr,gs,g(1−b)t+brs), let us program the random oracle as R := V . Then,
we initialize C(pre) = (U,W,Y ∗) for the i0’th query. Let V ′ = V h

dsid∗
issuer

2 , and
C = (g,V ′,Y) for the very last query, where Y ∗,Y ← G∗. Observe that using Y ∗

and Y instead of gf∗
0 (α)y∗u∗ for some u∗ and gf

′
0(α)y′ is indistinguishable, since both

gf
∗
0 (α)y∗u∗ and gf

′
0(α)y′ are uniformly random in G∗ for y∗,y′← Zp. Hence, if b = 1

for DDH tuple, we are in Game4. Otherwise, we are in Game5.

|Pr[S5]−Pr[S4]| ≤ µDDH(λ)

Game6: The repetition of Game4 for u1.

|Pr[S6]−1/2|= Pr[¬E6] · |Pr[S5]−1/2|

Game7: Game7 is the repetition of Game5 for u1.

|Pr[S7]−Pr[S6]| ≤ µDDH(λ)

In Game7, both u0 and u1 answer the last OBorrow call with freshly created random
credentials, and Game7 is indistinguishable from Game0, which is equal to original

26

experiment, under our security assumptions.

Theorem 3. If underlying hash functions are collision-resistant hash functions,
underlying zero-knowledge proofs of knowledge is HVZK and sound, the discrete log-
arithm problem is hard in G1, underlying accumulator is a collision-resistant accu-
mulator, and sunderlying SPS-EQ scheme is EUF-CMA, then the given blacklistable
anonymous credential with whitelisting scheme is sound.

Proof. Our construction includes a signature on two commitments which contain
the attributes of a credential. Obviously, any adversary who is able to forge
signatures would be able to create arbitrary credentials. However, we should
also consider that any adversary who can provide different openings to signed
commitments would also be able to win the game.
Case 1. In this case, we look at where b1 = 1∧upku ̸∈ U . We would like to point
out that the user secret key usk ∈ Zp is an attribute of credentials in our system,
and there is a one-to-one mapping between user secret keys and user public keys.
Hence, if any adversary wins the game in this case, it means that the adversary
is able to create a valid credential on a user secret key usk′ by following one of
two possible ways. Obviously, the former performs a SPS-EQ signature forgery
so that the adversary can create a signature on a message which is not signed by
an honest issuer oracle OIssueCred. The latter provides a second opening to the
Pedersen commitment in the credential. In this case, there are two cases that an
adversary can follow. The adversary can either find a different opening directly
or the adversary can perform the zero-knowledge proof of knowledge protocols for
a user secret key usk′, which is different from the one in opening that the user knows.

Case 2. Now we investigate the remaining case where b1 = 1 ∧ upk ∈ U .
For this case, the only possible way that an adversary wins the game is the case
that b2 = 1. We can easily conclude that if b1 = 1 and b2 = 1, then the adversary
is able to present a credential on the user secret key usk which corresponds to
upk ∈ U , and set of bid’s BIDSu such that the blacklisted bid ̸∈ BIDS′

u. Again,
this is possible in three ways.

• Adversary performs a SPS-EQ signature forgery.

• Adversary performs a zero-knowledge proof of knowledge for an old creden-
tial that does not contain bid with a fresh dsid′ value. This case is similar
to performing a zero-knowledge proof of knowledge for a usk′. dsid is an-
other member of the signed Pedersen commitment. Hence, if adversary can
perform this zero-knowledge proof, the underlying commitment algorithm is

27

not binding, or underlying zero-knowledge proof of knowledge protocol is not
sound.

• Adversary performs zero-knowledge proof of non-membership for a BIDS′
u

such that bid ̸∈ BIDS′
u. This is again possible in two ways. The adver-

sary must be able to find an opening to the commitment for a BIDS′
u such

that bid ̸∈ BIDS′
u or the adversary must perform the zero-knowledge proof

of non-membership for BIDSu even if bid ∈ BIDSu. For the first case we
can easily have the following reduction. Assume that there is an adversary
that can provide openings y0 and y1 for two different sets S0 and S1. Let
f0(X) = ∏

d∈S0(X + d) and f1(X) = ∏
d∈S1(X + d). We know that they are

openings for the same commitment value, so gy0f0(α) = gy1f1(α). Subsequently,
we know y0f0(α) mod p = y1f1(α) mod p. Since S0 ̸= S1, we know f0(X)
and f1(X) have different roots. Hence, y0f0(X) ̸= y1f1(X), which means
f ′(X) = y0f0(X)−y1f1(X) is a non-zero polynomial, but f ′(α) = 0. By finding
the roots of f ′(α), one can learn the accumulator trapdoor α. Hence, we can
construct an adversary against underlying accumulator’s collision-resistence,
if the set commitments are not binding. Now the remaining way is perform-
ing a successful zero-knowledge proof of non-membership even if blacklisted
bid ∈ BIDSu. One can straightforwardly design an adversary against the
soundness of the underlying zero-knowledge protocol’s soundness or accumu-
lator’s collision resistance by using any such adversary.

28

4. PERFORMANCE ANALYSIS OF OUR BLACW SCHEME

In this chapter, we analyze the performance of our BLACW scheme. We implemented
our scheme in proof-of-concept level to measure its run-time. We also implemented
two previously existing blacklistable anonymous credential schemes, (Aikou, Sadiah
& Nakanishi, 2017) and (Tsang et al., 2007) to compare it with our BLACW scheme.

(Tsang et al., 2007) applies anonymous credentials and accumulators with a different
approach than ours. They use an anonymous credential scheme which can enclose a
vector of attributes with size K, and a user must prove that none of these attributes
are blacklisted during an authentication procedure. To do that, the user instantiates
K non-membership proofs to an accumulator. In each authentication, the blacklist id
related to the oldest authentication session is unlinked with the credential. Thus, if a
misbehaved user is not blacklisted before K authentication, he cannot be blacklisted
anymore.

(Aikou et al., 2017) has a closer approach to our scheme. First, it provides constant-
time algorithms on the service provider side, as our algorithms. Secondly, it also
utilizes accumulators. While the accumulator construction they use allows for more
efficient witness updates, it comes with the following drawback. The accumulator
they use can be used to accumulate values in the range [1,n] for some n which
is chosen during the accumulator setup and cannot be changed. It means that
this accumulator cannot be used after n authentications for a service provider. Our
accumulator choice also has a limitation of n as a maximum size for the accumulator.
However, it can contain values from Zp for some prime number p. Thus, it can be
used until n blacklisted value. Another disadvantage of (Aikou et al., 2017) is that
it lacks a formal security analysis.

We developed the implementation of three schemes in C++ language using MIRACL
library for pairing-based/RSA-based cryptography and NTL library for polynomial
arithmetic. All algorithms were run on a Lenovo Thinkpad laptop with a 1.60GHz
Intel Core i5-10210U CPU and 16 GB memory.

Figures 4.1 and 4.2 compare the user’s computation cost for authentication of our
BLACW scheme with (Aikou et al., 2017)’s scheme for blacklist sizes 2500 and 4000,

29

0 50 100 150 200

1,000

2,000

Number of authentications

tim
e(

m
s)

BLACW (Aikou et al., 2017) (Tsang et al., 2007), K = 5

Figure 4.1 Authentication cost of users for blacklist size 2500

0 50 100 150 200

2,000

4,000

Number of authentications

tim
e(

m
s)

BLACW (Aikou et al., 2017)
(Tsang et al., 2007), K = 5 (Tsang et al., 2007), K = 10

Figure 4.2 Authentication cost of users for blacklist size 4000

respectively. To make the constructions comparable, we measured our scheme with-
out applying a whitelisting operation. Figures show that our scheme’s cost gets more
efficient after some number of authentications, while (Aikou et al., 2017)’s scheme
is more efficient for the first few operations. (Tsang et al., 2007) assume that non-
membership proofs are created by the service provider using accumulator trapdoor
and users update the witnesses before each update. We kept the blacklist constant
for (Tsang et al., 2007)’s favour, so the cost of non-membership proof updates are
not included in the following costs. For K = 5, (Tsang et al., 2007) takes 2418.27
ms on the user side. For K = 10, (Tsang et al., 2007) takes 5003.04 ms on user side.

On the service provider side, both schemes have constant costs. While it takes 99.37
ms for a service provider to authenticate a user in (Aikou et al., 2017)’s scheme, it
takes 46.94 ms for our BLACW scheme. (Tsang et al., 2007) takes 3726.15 ms for

30

Table 4.1 Credential Issuance Computation Cost
Comparison

Protocol Time (ms)
User Service Provider

(Tsang et al., 2007) 51.17 45.47
(Aikou et al., 2017) 33.32 4.17

Our BLACW Construction 16.0 3.9

Table 4.2 Communication Cost Comparison

Operation Communication (kB)
(Aikou et al.,
2017)

(Tsang et al.,
2007)

BLACW (Sec-
tion 3.2)

Issuance 3.85 2.63+0.13 ·K 3.88
Authentication 10.45 38.38+33.47 ·K 9.06
Whitelisting - - 3.90

K = 5 and 1787.89 ms for K = 10 on the service provider side. Computational cost
for credential issuance is displayed in Table 4.1 for all three schemes.

For the whitelisting operation, the service provider side has constant cost with av-
erage 18.20 ms, respectively. For the user side, whitelisting operations have compu-
tational costs that requires O(d) exponentiations in pairing group for d= |BIDSu|,
which yields lightweight repayment operations such as 25.71 ms for d= 20.

Communication cost comparison of three schemes is presented in Table 4.2. The
communication cost for the authentication operation in Table 4.2 covers only the
constant cost and does not contain the communication cost related to the blacklists.
For blacklist size n, (Aikou et al., 2017)’s blacklist is n · log2n/8 bytes, our BLACW
scheme’s blacklist is n ·64 bytes, and (Tsang et al., 2007)’s blacklist is n ·127 bytes.

31

5. PRIVACY PRESERVING BORROWING SCHEME

In this chapter, we first define the privacy preserving borrowing (PPB) scheme and
its security properties. Then, we provide construction of our PPB scheme and the
construction of time-lock puzzle scheme that is used in our PPB scheme. Sub-
sequently, we provide the security analysis of the PPB construction. Finally, we
review the applications of our PPB scheme.

5.1 Definition of Our Privacy Preserving Borrowing Scheme

In this section, we present the formal definitions of our privacy-preserving borrowing
scheme and related security definitions. In this scheme, we provide a variant of
our BLACW scheme by considering the sharing-economy environment. We define
three entities for this system. The user/borrower is the entity who wishes to
borrow assets in a sharing economy environment. Lender is the entity which
correspond to the service providers of sharing-economy environment. Lenders
share their asset with users/borrowers according to the agreement between
them. Finally, issuer entity serves to register new users into the system by
issuing credentials to them, checking that a user has a valid credential which
not blacklisting during borrowing-lending procedure, and ending a asset sharing
service by performing repayment-collecting procedure if there is no problem during
the service. The main difference of this definition from blacklistable anonymous
credentials is that the service provider entity, the lender, is separate from the
credential issuer. Previous work in the literature defines these two authorities
separately from each other and we follow this logic. This distinction mainly
serves to supporting multiple service provider with the same credential. In our
scheme, service providers, lenders, only have the role of informing the issuer in
both borrowing-lending and repayment-collecting operations (for starting a service
and for ending a service). Our PPB scheme is not vulnerable against the collision
of lenders with the issuer as it will become obvious in our security definitions.

32

Figure 5.1 System Architecture. Step 1 corresponds to
credential issuance. Step 2 corresponds to a

borrowing-lending operation. Step 3 and Step 4 are
alternatives of each other. If Step 3, repayment-collecting, is
performed successfully, than blacklisting, Step4, the user is

not possible. Otherwise, the user can be efficiently
blacklisted as in Step 4.

33

Figure 5.1 displays the relation among the system entities. Similar to blacklistable
anonymous credentials, there is a initial credential issuance procedure for each user
to register them. When a user borrows and asset from a lender, the issuer and
the user run borrowing-lending operation which is similar to the authentication
operation in blacklistable anonymous credentials. However, instead of revealing the
blacklist id directly, the user provides a tag, btag which can be used to learn blacklist
id only after a time. When an asset sharing service is completed successfully between
the user and the lender, the issuer and the user perform a repayment collection
operation, similar to the whitelisting operation of our BLACW scheme. As a result
of this operation, the users credential is updated in a way that it can not be linked
to this sharing service anymore. Since the related blacklist id is not revealed directly
by the user, if the user returns the shared asset honestly in time, then the user’s
credential is updated by running the repayment-collecting operation. It means that
the user is whitelisted for the sharing service before the corresponding blacklist id
is revealed to anyone else.

5.1.1 Formal Definition of Algorithms

A privacy-preserving borrowing scheme PPB is a tuple of algorithms (Setup,
IssueCred,ReceiveCred,Lend,Borrow,Collect,Repay,ExtractBid,Blacklist, IssuerKeyGen,
UserKeyGen) such that:

• Setup(1λ,T): Generates public parameters pp, blacklist public parame-
ters, bpk, for the blacklist and an empty blacklist L(∅). Finally, outputs
(pp,bpk,L(∅)). For remaining algorithms, we assume that pp is known by all
algorithms and we do not express it explicitly.

• IssuerKeyGen(): Generates and outputs a key pair (sk,pk) for an issuer.

• UserKeyGen(pk): Generates and outputs a user key pair (usk,upk).

• IssueCred(sk,pk,upk)↔ReceiveCred(pk,usk,upk): Generates a credential cred
for the user on the double-spent identifier dsid (not known by the issuer) and
outputs cred to the user. Initially, the credential does not include any borrow
identifier bid, so the set of bid’s user has, BIDSu = ∅.

• Lend(sk,pk,L)↔Borrow(pk,usk,cred,L): Generates a borrow tag btag on the
borrow identifier bid that reveals bid only after T amount of time has passed,
and outputs btag to all parties. Reveals dsid from cred to the issuer, and
the issuer checks if dsid belongs to a previously used credential. Checks if

34

cred includes any blacklisted borrow identifier by the lender using blacklist L.
Subsequently, generates a credential cred∗ for the user on borrow identifier set
BIDSu∪{bid}, and a fresh double-spent identifier dsid∗ (not known by the
issuer). Afterwards, the issuer sends them to the user. If there is a failure
during the process, it outputs ⊥ to all parties.

• Collect(sk,pk,btag)↔ Repay(pk,usk,cred,btag,bid): Reveals user’s bid related
to btag to all parties, and generates a credential cred∗ for the user on the set
of borrow identifiers BIDSu \{bid} and double-spent identifier dsid from the
credential cred. The issuer then sends all these values to the user. If there is
a failure during the process, outputs ⊥.

• Blacklist(bpk,bid,L): Adds bid to L and computes L∗. Outputs L∗.

• ExtractBid(btag): Computes and outputs bid for input btag, which takes at
least T amount of time.

5.1.2 Security Definitions

We define the security experiments for the properties anonymity, backward-
unlinkability, and soundness of our scheme. These experiments are built on top
of the oracles below.

• ORegisterIssuerKey(pk): It stores the issuer key for the user oracles. The oracle
must be called before calling one of the oracles OUserKeyGen, OBorrow, or ORepay.
It also initializes two sets, the set of successful borrowing calls B = ∅, and the
set of successful repayment calls W = ∅. Lastly, it sets btagbuc =⊥ which will
be used to keep the challenge value btag for the backward-unlinkability game.

• OUserKeyGen(): Generates a user handle u and a key pair (usku,upku) ←
UserKeyGen(pk) and stores (upku,usku, credu)← (upku,usku,⊥).

• OReceiveCred(u): Runs cred∗ ← ReceiveCred(pk,usku,upku). If cred∗ =⊥, it
outputs ⊥. Otherwise, it updates credu as cred∗.

• OBorrow(u,L,k): Outputs ⊥ if credu =⊥. Otherwise, it runs (cred∗, btag)←
Borrow(pk,usku, credu,L) with the issuer. If cred∗ =⊥, it outputs ⊥. Oth-
erwise, it updates credu ← cred∗. Lastly, the oracle updates B as B′ =
B∪{(u,btag,k)} outputs btag.

• ORepay(u,btag,k): Outputs ⊥ if credu =⊥ or there does not exist any (u,btag, ·)∈
B. Otherwise, it runs cred∗← Repay(pk,usku, credu, btag,bid) with the issuer

35

for bid value which corresponds to btag. If cred∗ =⊥, it outputs ⊥. Otherwise,
it updates credu← cred∗, W as W ′ =W∪{(u,btag,k)}, and outputs btag.

• OBorrowChl(u,L,k): Outputs ⊥ if credu =⊥. Otherwise, it runs (cred∗, btag)←
Borrow(pk,usku, credu,L) with the issuer. If cred∗ =⊥, it outputs ⊥. Oth-
erwise, it updates credu ← cred∗. Lastly, the oracle updates B as B′ =
B∪{(u,btag,k)}, updates btagbuc as btagbuc = btag, and outputs btag.

• ORepayChl(u,k): Outputs⊥ if credu =⊥ or btagbuc =⊥ or there does not exist any
(u,btag, ·) ∈ B. Otherwise, it runs cred∗← Repay(pk,usku, credu, btagbuc, bid)
with the issuer for bid value which corresponds to btagbuc. If cred∗ =⊥, it
outputs⊥. Otherwise, it updates credu← cred∗,W asW ′ =W∪{(u,btag,k)},
and outputs btag.

• OIssuerKeyGen(): Generates and stores (sk,pk)← IssuerKeyGen(), and outputs
only pk. Sets the set of users U ← ∅. Oracle also sets the set of different
blacklists L= ∅. Adversary is allowed to create arbitrary number of blacklists
using ORegisterBlacklist and L is used to keep track of these blacklists. Lastly,
it sets btagc =⊥ which is the challenge btag value in soundness game.

• OIssueCred(upk): If upk ̸∈ U , then runs IssueCred(sk,pk,upk), and updates U ←
U ∪{upk}.

• OLend(j): Runs (b,dsid,btag) ← Lend(sk,pk,Lj). If b = 0, it outputs
(b,dsid,btag). Otherwise, it stores (dsid,btag) and outputs (b,dsid,btag).

• OLendChl(j): Runs (b,dsid,btag) ← Lend(sk,pk,Lj). If b = 0, it outputs
(b,dsid,btag). Otherwise, it stores (dsid,btag), sets btagc← btag and outputs
(b,dsid,btag).

• OCollect(btag): If btag = btagc outputs ⊥. Otherwise, it runs Collect(sk,btag)
with the user and outputs btag.

• ORegisterBlacklist(): This oracle just adds another empty blacklist to L. For
j = |L|, it sets Lj = L(∅), adds j to L, and outputs j.

• OBlacklist(j,bid): This oracle runs L∗ ← Blacklist(bpk,Lj , bid), sets Lj = L∗,
and outputs L∗.

36

5.1.2.1 Anonymity Experiment

Definition 18 ensures anonymity for honest users in the scheme. The intuition be-
hind the anonymity experiment is as follows. While steps 1, 2 and 3 perform the
setup steps for two users u0 and u1, the adversary A can make an arbitrary num-
ber of calls to oracles which are denoted by OQuery in steps 4 and 5. In step 6, A
makes a single borrowing oracle call to ub, which is the main challenge phase of the
experiment. An important restriction on the oracle calls made by the adversary is
that the sum of depths of all Ak’s between a borrowing oracle query and the corre-
sponding repayment oracle query cannot be greater than the define upper bound in
the definition. This restriction models the behavior of an honest user, as an honest
user must return the shared asset in time.

Definition 18 (Anonymity). A privacy preserving borrowing scheme is anonymous
with gap 0 < ϵ < 1 if there exists a polynomial T̃ (·) such that for all polynomials
T (·) fulfilling that T (·) ≥ T̃ (·), for all polynomials n in λ, for all polynomial size
adversaries A = (Ak)k∈[n] there exists a negligible function µ(·) such that for all
λ ∈ N, it holds∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr



(pp,bpk,L(∅))← Setup(1λ,T), b←{0,1}
(pk,st′

0)←A0(pp),ORegisterIssuerKey(pk)(
(ui,upki)←OUserKeyGen())

i∈{0,1}

st0←A0(st′
0,u0,upk0,u1,upk1)

for k in [1,n−1],stk←AOQuery

k (stk−1)
b′←AOBorrow(ub,·,n)

n (stn−1)

: ⊥̸∈ {credu0 , credu1}
∧b = b′


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

where each Ak in step 5 can make at most a single query from OQuery :=
{OReceiveCred(·),OBorrow(·,·,k),OUserKeyGen(),ORepay(·,·,k)}. We require that for all
(ui, btag,k) ∈ B with i ∈ {0,1}, if there exists a k′ such that (ui, btag,k′) ∈W, then
the sum of depths from Ak to Ak′ is at most T ϵ(λ). Otherwise, the sum of depths
from Ak to An is at most T ϵ(λ).

5.1.2.2 Backward-Unlinkability Experiment

Definition 19 ensures that completed honest events of a user can not be linked to
the users future misbehaviour. The definition of backward-unlinkability is built on
top of anonymity definition (Definition 18). Similar to the anonymity game, steps
1, 2, and 3 perform setup steps of the system and two honest users. Steps 6 and
8 perform the challenge event for the honest user ub, and the adversary can make
arbitrary number of calls to OQuery′ in step 9.

37

Definition 19 (Backward-Unlinkability). A privacy preserving borrowing scheme
is backward-unlinkable with gap 0< ϵ < 1 if there exists a polynomial T̃ (·) such that
for all polynomials T (·) fulfilling that T (·)≥ T̃ (·), for all polynomials n in λ, for all
polynomial size adversaries A= (Ak)k∈[n] there exists a negligible function µ(·) such
that for all λ ∈ N, it holds
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr



(pp,bpk,L(∅))← Setup(1λ,T), b←{0,1}
(pk,st′

0)←A0(pp),ORegisterIssuerKey(pk)(
(ui,upki)←OUserKeyGen())

i∈{0,1}

st0←A0(st′
0,u0,upk0,u1,upk1)

for k in [1,m−1],stk←AOQuery

k (stk−1)
stm←AOBorrowChl(ub,·,m)

m (stm−1)
for k in [m+1,n−2],stk←AOQuery

k (stk−1)
stn−1←AORepayChl(ub,n)

n−1 (stn−2)
b′←AOQuery′

n (stn−2)

: ⊥̸∈ {credu0 , credu1}
∧b = b′



− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ µ(λ)

where each Ak in step 5 and step 7 can make at most a single query from
OQuery := {OReceiveCred(·),OBorrow(·,·,k),OUserKeyGen(),ORepay(·,·,k)}. In step 9, An
can make arbitrary number of queries to OQuery′ := {OReceiveCred(·),OBorrow(·,·,n),

OUserKeyGen(),ORepay(·,·,n)}. We require that for all (ui, btag,k) ∈ B with i ∈ {0,1}
such that k < n, if there exists a k′ < n such that (ui, btag,k′) ∈W, then the sum of
depths from Ak to Ak′ is at most T ϵ(λ). Otherwise, the sum of depths from Ak to
An−1 is at most T ϵ(λ).

5.1.2.3 Experiment of Soundness

Definition 20 (Soundness). A privacy-preserving borrowing scheme is sound if for
all p.p.t. algorithms A there exists a negligible function µ(·) such that for all λ ∈N,

Pr



(pp,bpk,L(∅))← Setup(1λ,T),(pk)←OIssuerKeyGen()

ORegisterIssuerKeys(pk),AOQuery(pk)
(b1,dsid,bid)←AOLendChl(·)

bid← ExtractBid(btag),L∗
k←AOBlacklist(·,bid)

AOQuery(pk)
(b2,dsid,bid)←AOLend(k)

: b1 = 1∧L∗
k ̸=⊥ ∧

(upku ̸∈ U ∨ b2 = 1)


≤ µ(λ)

where upku is the public key of the user u which is used by A in step
3 and step 6, and A can make arbitrary number of queries to OQuery =

38

{OLend(·),OBlacklist(·,·),OCollect(·),ORegisterBlacklist(),OIssueCred(·)}

Definition 20 provides our definition for soundness. This definition is similar to
Definition 17, the soundness definition of BLACW except a small change. After
getting OLendChl query, the experiment must run ExtractBid as btag can not be
blacklisted directly. Beyond this change, two definitions are similar.

5.2 Construction and Security Analysis of Our PPB Scheme

In this section, we first provide the construction of our privacy-preserving borrowing
scheme (PPB) using structure-preserving signatures on equivalence classes, time-lock
puzzles, accumulators, zero-knowledge proofs of knowledge, and collision-resistant
hash functions. Subsequently, we prove the anonymity, backward-unlinkability, and
soundness of this construction according to Definition 18, 19, and Definition 20,
respectively.

5.2.1 Construction

Our PPB construction builds upon our BLACW construction from Chapter 3.2.

Similar to BLACW, Setup algorithm in Fig. 5.2 creates initial parameters for pairing
operations, commitment, zero-knowledge proofs of knowledge, time-lock puzzle, and
accumulator. Subsequently, it returns the public parameters. Since we assume that
Setup is run honestly at the very beginning of the system, we would like to point out
that these parameters can be computed by performing distributed computation in
multi-party setting (Bowe et al., 2017; Chen et al., 2020). For notational simplicity,
in the rest of the paper, we generate only a single time-lock puzzle in Setup algorithm.
However, it can easily be generalized to multiple time-lock puzzles.

IssuerKeyGen, UserKeyGen, IssueCred, and ReceiveCred algorithms in Figure 5.2 and
Figure 5.3 are identical to the related algorithms in our BLACW construction from
Chapter 3.2.

Any user with a valid credential can perform a borrowing/lending operation if he can
make a deal with a lender/service provider on the conditions of borrow. To perform
a borrowing operation, a user needs to run Lend↔ Borrow algorithms demonstrated
in Fig. 5.4, with the issuer. Of course, the issuer runs the protocol only if she is
informed by the related lender of the borrowing operation. The main flow of a bor-

39

Setup(1λ,T)

BG ← SPS-EQ.BGGen(1λ)
ppTLP← TLP.PSetup(1λ,T)
ppZKP← ZKP.Gen(1λ)
h4←H(”h4”∥BG)
(bpk,a0,m0)← Acc.Gen(1λ,BG,∅)
L(∅) = (a0,m0),w←H(”w”∥BG)
pp = (BG,h4,w,ppTLP,ppZKP)
return (pp,bpk,L(∅))

IssuerKeyGen(pp)

(skSPS-EQ,pkSPS-EQ)← SPS-EQ.KeyGen(1λ,BG,3)
(qi)i∈[3]← (Zp)3,(hi)i∈[3] = (gi)i∈[3]

sk = (skSPS-EQ,(qi)i∈[3])
pk = (pkSPS-EQ,pkΣ,(hi)i∈[3])
Initialize DSIDS = ∅,BIDS = ∅
return (sk,pk)

UserKeyGen(pp,pk)

return (usk,upk = wusk) for usk← Zp

Figure 5.2 Setup, IssuerKeyGen, and UserKeyGen algorithms
of PPB

rowing/lending operation is similar to the authentication operation of our BLACW
construction. The difference from the BLACW is that, instead of sending the bid
directly to the issuer, the user sends btag which includes a time-lock puzzle instance
on bid∗. Additionally, since bid is not revealed during the operation, ZKP2 also
contains proof of knowledge of bid. Furthermore, the user also proves that the new
element of BIDSu, bid∗, is encapsulated in btag. This part of the proof contains
cross group proofs between Z∗

N2 and G which are not straightforward to construct.
However, thanks to the change we make in TLP.PSolve, we can perform this proof
efficiently. The detailed explanation of this protocol and the function recons() that
is used in ZKP2 are provided in Section 5.2.2. The issuer checks this proof of well-
formedness and the signature of the old credential. If any of them do not hold, the
issuer aborts. Otherwise, the issuer follows steps similar to the issuance phase while
creating the updated credential and returns (1,dsid,btag). The user also performs
similar steps she followed while she gets her credential, and she returns the updated
credential value.

Repayment/collection operations must be performed at the end of each service,
and the issuer starts this only after the lender’s approval. This operation which
is displayed explicitly in Fig. 5.5, and it is similar to thw whitelisting operation
of our BLACW construction. The difference is that since bid is not revealed to the
issuer at the beginning, the user reveals it during the operation. If the proof of
well-formedness holds, σ′ is a valid signature on −→C ′, and bid corresponds to btag (it
can be easily verified by checking that if btag2 = gbid or not), the issuer signs the
new credential and sends it to the user. User side to complete the process is similar
to the credential issuance and borrowing/lending operations.

40

IssueCred(sk,pk,upk)↔ ReceiveCred(pk,usk,upk)

Issuer User

ZKP0

dsid∗
user,z∗, t∗,u∗,y∗← Zp

−→
C =

(
g,(husk

1 h
dsid∗

user
2 hz∗

3 ht∗
4),gy∗)

C(pre) =−→C u∗

C(pre),ZKP1

dsid∗
issuer← Zp

−→
C ′ = (C(pre)

0 ,C
(pre)
1 (C(pre)

0)q2dsid∗
issuer

,C
(pre)
2)

σ← SPS-EQ.Sign
(
skSPS-EQ,

−→
C ′)

σ,dsid∗
issuer

−→
C (tmp) = (C(pre)

0 ,C
(pre)
1 h

u∗dsid∗
issuer

2 ,C
(pre)
2)

if SPS-EQ.Verify(pkSPS-EQ,
−→
C (tmp),σ)

then return ⊥

(−→C ∗,σ∗) =

SPS-EQ.ChgRep
(
pkSPS-EQ,

−→
C (tmp),σ,

1
u∗

)
return cred∗ = (−→C ∗,dsid∗,z∗, t∗,y∗,∅,σ∗)

ZKP0 = ZKP [(skSPS-EQ,(qi)i∈[3]) : SPS-EQ.VerKey(skSPS-EQ,pkSPS-EQ) = 1∧i∈[3] hi = gqi]
ZKP1 = ZKP [(usk,dsid∗

user,z∗, t∗,u∗,y∗) : upk = wusk∧

C(pre) = (C(pre)
0 ,C

(pre)
1 ,C

(pre)
2) =

(
gu∗

,(husk
1 h

dsid∗
user

2 hz∗
3 ht∗

4)u∗
,gy∗u∗)

]

Figure 5.3 IssueCred and ReceiveCred algorithms of PPB

41

Lend(sk,pk,L)↔ Borrow(pk,usk,cred,L)

Issuer User
Parse L = (a,m)

and cred = (−→C ,dsid,z, t,y,BIDSu,σ)
(dsid∗

user,z∗, t∗,y∗,u∗, bid∗)← Zp

BIDS∗
u = BIDSu +{bid∗}

−→
C ′ = (g,(husk

1 h
dsid∗

user
2 hz∗

3 ht∗
4),gf∗

0 (α)y∗)
−→
C (pre) = (−→C ′)u∗

wit = Acc.CreateNonMem(bpk,m,BIDSu)
btag← (TLP.Create(λ,bid∗),gbid∗)

dsid,σ,
−→
C ,
−→
C (pre), btag,ZKP2

b = SPS-EQ.Verify(C,σ,pkSPS-EQ)
if b = 0∨dsid ∈DSIDS

then return (0,⊥,⊥)
DIDS = DSIDS∪{dsid}
dsid∗

issuer← Zp

−→
C ′ = (C(pre)

0 ,C
(pre)
1 (C(pre)

0)q2dsid∗
issuer ,

C
(pre)
2)

σ′← SPS-EQ.Sign
(
skSPS-EQ,

−→
C ′)

return (1,dsid,btag)

σ′,dsid∗
issuer

−→
C ′ = (C(pre)

0 ,C
(pre)
1 h

u∗dsid∗
issuer

2 ,C
(pre)
2)

if SPS-EQ.Verify(pkSPS-EQ,
−→
C (tmp),σ)

then return ⊥

(−→C ∗,σ∗) =

SPS-EQ.ChgRep
(−→
C ′,σ,

1
u∗ ,pkSPS-EQ

)
cred∗ = (−→C ∗,dsid∗,z∗, t∗,y∗,BIDS∗

u,σ∗)
return cred∗

ZKP2 = ZKP [(usk,v,z,z∗, t, t∗,u∗,dsid,dsid∗
user,BIDSu, bid∗,wit,r) :

−→
C =

(
g,husk

1 hdsid
2 hz

3ht
4,gyf0(α))∧−→C (pre) =

(
gu∗

,(husk
1 h

dsid∗
user

2 hz∗
3 ht∗

4)u∗
,gu∗y∗f∗

0 (α))∧
btag1 = TLP.PGen(pp,bid∗;r)∧ btag2 = grecons(bid∗)∧

e(C2, ĝα+bid∗)y∗·u∗ = e(C(pre)
2 , ĝ)y ∧e(C2, ŵ1) = e(w2,a)ye(g, ĝ)y]

Figure 5.4 Lend and Borrow algorithms

42

Collect(pp,sk,btag)↔ Repay(pp,usk,pk,cred,btag,bid)

Issuer User

Parse cred = (−→C ,dsid,z, t,y,BIDSu,σ)
BIDS∗

u = BIDSu \{bid}
C∗

2 ← gf∗
0 (α)y∗s for s,y∗← Zp

(
−→
C ′,σ′)← SPS-EQ.ChgRep(−→C ,σ,s,pkSPS-EQ)

−→
C ′,σ′, bid,C∗

2 ,ZKP3

b = SPS-EQ.Verify(
−→
C ′,σ,pkSPS-EQ)

if b = 0∨ btag2 ̸= gbid

then return (0,⊥,⊥)

Parse
−→
C ′as(C ′

0,C ′
1,C ′

2)
σ′′← SPS-EQ.Sign

(
skSPS-EQ,(C ′

0,C ′
1,C∗

2)
)
σ′′

−→
C (tmp) = (gs,Cs

1 ,C∗
2)

if SPS-EQ.Verify(pkSPS-EQ,
−→
C (tmp),σ) = 0

then return ⊥

(−→C ∗,σ∗) =

SPS-EQ.ChgRep
(
pkSPS-EQ,

−→
C (tmp),σ′′,

1
s

,
)

return cred∗ = (−→C ∗,dsid,z, t,y∗,BIDS∗
u,σ∗)

ZKP3 = ZKP [(y,y∗,s,BIDS∗
u) : e(C ′

2, ĝ)y∗ = e(C∗
2 , ĝα+bid)y·s]

Figure 5.5 Collect and Repay algorithms

Blacklist(bpk,bid,L)

Parse L as (at,mt)
(at+1,mt+1)← Acc.Add(bpk,mt,{bid})
return L∗ = (at+1,mt+1)

ExtractBid(pp,btag)

Parse btag as ((u,v), btag2)
bid← TLP.PSolve(u,v)
return bid

Figure 5.6 ExtractBid and Blacklist algorithms

43

Lastly, the Blacklist algorithm in Fig. 5.6 is also identical to the Blacklist algorithm of
BLACW construction in Chapter 3.2. The ExtractBid algorithm in Fig. 5.6 extracts
bid from btag by force opening the time-lock puzzle instance. Our scheme allows an
arbitrary number of blacklists in the system. However, by default, it is reasonable to
assume that the lenders have their blacklists and run ExtractBid on each btag they
get from the users of the service they provided.

5.2.2 Time-Lock Puzzle Construction

The following TLP scheme is used to instantiate our PPB scheme. It is the same
construction as (Malavolta & Thyagarajan, 2019) except for the small change in
the PSolve step. This change does not affect the security proof of the previous
scheme, since there is no change in the algorithms PSetup and PGen. This change
provides us to give efficient zero-knowledge proofs for time-lock puzzles we need in
our construction which will be discussed later in this section.

• PSetup(1λ,T): Generate RSA modulus n = pq. Choose ġ← Z∗
N . Define g̃ =

−ġ2 mod N and h= g̃2T . Output pp= (T,N, g̃,h).

• PGen(pp,s): Parse pp as (T,N,g,h). In the rest of the paper, let h̃ =
(1 +N) mod N for notational simplicity. Choose r ← ZN2 and compute
u= g̃r mod N and v = hr·N · h̃s mod N2. Output Z = (u,v).

• PSolve(pp,Z): Parse pp and Z as (T,N, g̃,h) and (u,v), respectively. Let
t= 2−1 mod N . Compute w = u2T

mod N and output s= s̃2t mod N2−1
N for

s̃= v/(w)N mod N2.

Before showing the correctness of the scheme, it is noteworthy to recap the structure
of group Z∗

N2 as we will also refer to it for our proof of knowledge protocol in
the following of this section. Z∗

N2 can be decomposed to internal direct product
(GN ·GN ′ ·G2 ·T), for N ′ = p′q′, where Gi is a cyclic group of order i, and T =
⟨(−1 mod N2)⟩ is a cyclic group of order 2. While GN , GN ′ , and T are unique,
G2 has two possible groups choices:

• G2 = ⟨g2⟩ where g2 = 1 mod p2 and g2 =−1 mod q2

• G2 = ⟨g2⟩ where g2 =−1 mod p2 and g2 = 1 mod q2

44

The correctness of the scheme can be observed as follows.

s′ = s̃2t mod N2−1
N

=

(
v/(w)N mod N2

)2t

mod N2−1
N

=

(
hr·N ·(1+N)s/(u2T

mod N)N mod N2
)2t

mod N2−1
N

=

(
hr·N ·(1+N)s/(hr mod N)N mod N2

)2t

mod N2−1
N

=

(
hr·N ·(1+N)s/hr·N mod N2

)2t

mod N2−1
N

=

(
(1+N)s

)2t

mod N2−1
N

Now, we refer to the decomposition of Z∗
N2 . Since (1+N) ∈GN ,

(
(1+N)s

)2t
mod N2−1
N

= (1+N)s mod N2−1
N

= 1+N · s−1
N

= s

5.2.2.1 Efficient Proof of Equality to Prime Order Discrete-Logarithm

We need an efficient zero-knowledge proof of knowledge of equality between a discrete
logarithm in a prime order group and a secret value in a time-lock puzzle. We
come up with the following protocol which satisfies our needs. This protocol closely
follows a similar protocol from (Camenisch & Shoup, 2003) which also benefits from
integer commitments (Damgård & Fujisaki, 2002). Informally, this protocol does
not directly prove that solving time-lock puzzle reveals the discrete logarithm in a
prime order group. However, it proves that a mapping recons : ZN → Zp maps the
secret value which is revealed by solving time-lock puzzle to the discrete logarithm
value in the prime order group. It is obvious that this is not a direct equivalence
proof. Nevertheless, it is enough for our purpose as we only need to ensure verifiers
of this protocol that by solving the related time-lock puzzle instance for an event
they can learn the secret bid value for that event. It is also important that the
mapping recons must be efficient and we use a function that only computes two
modulo operations, which will be explained in detail.

First, we underline that we assume that the factorization of the RSA modulus N
must be unknown to the prover for the soundness of this protocol. This is not a
problem for our scheme since we already assume a trusted setup procedure in our
scheme. Furthermore, this assumption is also used in (Camenisch & Shoup, 2003;
Damgård & Fujisaki, 2002) and other protocols with similar aims. For N = pq,

45

p= 2p′ +1, and q = 2q′ +1, let N ′ = p′q′. Let g and h be generators of QRN which
is the group of quadratic residues modulo N . We would like to remind the reader
that QRN has order N ′. Furthermore, let Γ be a prime order group of order ρ and
let γ be a generator of Γ. Let δ = γm. For the relation between group orders, we
need to define two more parameters k and k′ that determine the size of the challenge
space and the quality of zero knowledge, respectively. We need ρ < N2−k−k′−3 and
2k <min(p′, q′,ρ). We define a mapping rem : Z×Z→Z to compute the balanced
remainder st. a rem b = a−⌈a/b⌋b. Similar to (Camenisch & Van Herreweghen,
2002), our protocol applies the mapping recons(m) =m rem N mod ρ. As a result
of the explanation above, we denote this protocol as:

PK{(r,m) : Z = TLP.PGen(pp,m;r)∧ δ = γrecons(m)}

Finally, we assume that the prover and the verifier both know two random generators
g and h such that ⟨g⟩= ⟨h⟩=QRN . For our PPB scheme, these two parameters is
generated in Setup with ZKP.Gen call.

Prover and verifier both know u, v, γ such that u= g̃r(mod N), v = hrh̃m(mod N2),
and δ = γm for r ← {1, ...,N2}. The prover further computes l = gmhs for s←
{1, ...,n/4} and sends it to the verifier.

Now, the prover computes the following values:

s′← [−N2k+k′−2,N2k+k′−2]

r′← [−N22k+k′
,N22k+k′

]

m′← [−ρ2k+k′
,ρ2k+k′

]

tu = g̃2r′
mod N

tv = h2r′N h̃2m′
mod N2

tδ = γm
′

tl = gm
′
hs

′
mod N

and sends them to the verifier. Subsequently, the verifier sends a challenge value
c← {0,1}k to the prover. The prover sends the following response values to the
verifier.

zr = r′− cr zm =m′− cm zs = s′− cs

46

D0 Same as the protocol

D1

zr← [−cr−N22k+k′
,−cr+N22k+k′]

zs← [−cs−N2k+k′−2,−cs+N2k+k′−2]
zm← [−cm−ρ2k+k′

,−cm+ρ2k+k′]
tv = h2N(zr+cr)h̃2(zm+cm) mod N2

tδ = γzm+cm

tl = gzm+cmhzs+cs mod N

g̃2(zr+cr) mod N

D2

(z values are the same as D1)
tl = gzmhzslc mod N
tu = g̃2zru2c mod N

tv = h2Nzr h̃2zmv2c mod N2

tδ = γzmδc

D3

t values are the same as D2
zs← [−N2k+k′−2,N2k+k′−2]
zm← [−ρ2k+k′

,ρ2k+k′]
zr← [−N22k+k′

,N22k+k′]

Figure 5.7 Distributions for Simulator Responses

Lastly, the verifier checks the relationships below.

tv = h2zr h̃2zmv2c mod N2

tu = g̃2zru2c mod N

tδ = γzmδc

tl = gzmhzslc mod N

−N/4< zm <N/4

If any of them does not hold, the verifier outputs 0. Otherwise, it outputs 1.

Proof. We provide a sketch for the statistical honest-verifier zero-knowledge property
of the protocol above as follows. Fig. 5.7 contains four distributions such that
the first one is identical to the output of a protocol run and the last one is the
output of an efficient simulator which we use for statistical HVZK property. It is
straightforward to observe that D0, D1, and D2 are identical. Therefore, we need
to show that these distributions are statistically indistinguishable from D3. For
distribution of zr in Di, D(i)

zr , let ∆zr denote the distance between D(2)
zr and D(3)

zr .
Also, for notational simplicity, let η =N22k+k′ . Then

47

∆zr =
η∑

Z=−cr−η

∣∣∣Pr
[
z←D(2)

zr : z = Z
]
−Pr

[
z←D(3)

zr : z = Z
]∣∣∣

=
−1−η∑

Z=−cr−η
1
2η +

η∑
Z=−cr+η+1

1
2η = cr 1

η ≤ 2kN2 1
η = 2−k′

Similarly, we can show that ∆zm ≤ 2−k′ and ∆zs ≤ 2−k′ . Hence, the distance
between D2 and D3 is bounded form above by 3 ·2−k.

Now, we left with the soundness proof of the protocol. To prove the soundness
of the protocol, we show that there is an efficient knowledge extractor that takes
tu, tv, tδ, tl, two valid answers z(1)

r , z
(1)
s , z

(1)
m and z

(2)
r , z

(2)
s , z

(2)
m for challenges c(1) and

c(2), respectively. Without loss of generality, suppose that c(2) > c(1). Subsequently,
let ∆c = c(2)−c(1), ∆r = z

(1)
r −z(2)

r , ∆s = z
(1)
s −z(2)

s , and ∆m = z
(1)
m −z(2)

m . From the
verification equations, we know that

u2∆c = g̃2∆r mod N

v2∆c = g̃2N∆r h̃2∆m mod N2

δ∆c = γ∆m

l∆c = g∆mh∆s mod N

Since we are able to compute l, ∆c, ∆m, and ∆s for l∆c = g∆mh∆s mod N , we
may assume ∆c|∆m and ∆c|∆s, by Theorem 1. Moreover, ∆c is invertible modulo
all primes p, q, p′, q′, and ρ since ∆c < min(p,q,p′, q′,ρ). Thus we are sure that
ĉ= ∆−1

c mod NN ′ exists. We also know that u2 has an order which divides N ′, so
u2 = g̃2∆r ĉ mod N . Following that,

u= w1g̃
∆r ĉ mod N

δ = γ∆m/∆c

v = w2g̃
N∆r ĉh̃∆m/∆c mod N2

for some w1 and w2 with order 2. Thanks to the exponentiation with 2t for t =
2−1 mod N in our force opening algorithm, force opening (u,v) results with m̌ =
∆m/∆c mod N . Now we need to show that recons(m̌) = ∆m/∆c mod ρ. Since
|z(1)
m |, |z(2)

m |<N/4 and ∆c|∆m, we have |∆m/∆c|<N/2. Due to the provided range,

∆m/∆c = ((∆m/∆c mod N) rem N) = (m̌ rem N)

48

Thus,
recons(m̌) = ∆m/∆c mod ρ

5.2.3 Security Proofs

The following theorems show that our scheme is anonymous, backward-unlinkable,
and sound according to the related definitions in Section 5.1.

Theorem 4. Given privacy-preserving borrowing scheme is anonymous in the ran-
dom oracle model, if the underlying zero-knowledge proofs of knowledge are HVZK
and sound, DDH assumption holds, underlying time-lock puzzle scheme TLP is se-
cure, and underlying SPS-EQ signature scheme SPS-EQ is a signature scheme with
perfect adaptation property.

Proof. For the rest of the proof, the event Si is the case that the adversary A wins
Gamei. Game0 is identical to the original anonymity game.

Game1: In Game1, on the first call of the adversary to ReceiveCred, we run
the ZKP extractor and get sk = (skSPS-EQ, ·, q1, ..., q3). Let the event F be the case
that Game1 can not extract the witness of ZKP. In this case Game1 aborts. Since
Game0 and Game1 behaves identically if F does not occur,

|Pr[S1]−Pr[S0]| ≤ Pr[F]

We can also imply that,
Pr[F]≤ µsnd(λ)

Hence, Game0 and Game1 are computationally indistinguishable.

Game2: In this game, we simulate all zero-knowledge proofs of knowledge in
OBorrow and ORepay.

|Pr[S2]−Pr[S1]| ≤ µzk(λ)

Game3: In this game, all calls to SPS–EQ.ChgRep are changed to SPS–EQ.Sign. Due
to perfect adaptation of SPS–EQ,

Pr[S3] = Pr[S2]

49

Game4: Game4 is the same with Game3 except that for all calls to borrowing
oracle for u0 we change btag1 responses of u0 with btag′

1 for btag′
1← TLP.PGen(bid′)

where bid′← Zp is freshly sampled for each borrowing oracle query for u0.

Game3→ Game4: In this transition, we instantiate an adversary against the
security of time-lock puzzles by using each borrowing oracle call of our adversary.
Let qb,0 be the number of successful borrowing oracle calls for the user u0. For this
transition, we define the games Gameu0,0, ...,Gameu0,qb,0 . For notational simplicity,
let bidu0,i correspond to bid value which is used in i’th borrowing query for u0.
Gameu0,0 is identical to Game3. Each Gameu0,i for i > 0 is identical to Gameu0,i−1

except that we change btagu0,i,1 which corresponds to bidu0,i with btag′
u0,i,1 for

btag′
u0,i,1 ← TLP.PGen(bid′

u0,i) where bid′
u0,i ← Zp. By the iterative definition,

we have Gameu0,qb,0 = Game4. Now, we need to prove that all these games are
indistinguishable. We provide a general transition between Gameu0,i and Gameu0,i−1.
For any adversary that distinguishes these two games with non-negligible proba-
bility, we can generate an adversary wins TLP security game with non-negligible
probability as follows. First, we use the time-lock puzzle public parameters which
are provided by the TLP security game challenger as ppTLP in our Setup algorithm.
This does not change our adversaries view anyhow. Then, we run our anonymity
game until the i’th borrowing query. At this point, we output the s0 = bid and
s1 = bid′

u0,i to the TLP security game challenger. We get Z as a challenged TLP
instance and use this against our adversary. Let (u0, ·,k) be the member of B
corresponding the i’th query and (u0, ·,k′) be the corresponding member of W for
the related repayment borrowing oracle query. If there is no such repayment oracle
query, then we set k′ ← n. Now, we can run Ak to Ak′ against the TLP security
game. If the TLP security game challenger choose bid as the challenge, then we are
in Gameu0,i−1. Otherwise, we are in Gameu0,i. Thus we can conclude that

|Pr[Su0,i]−Pr[Su0,i−1]| ≤ µtlp(λ)

By the iterative definition,

|Pr[S3]−Pr[S4]| ≤ qb,0 ·µtlp(λ)

Game5: In Game5, we guess the index of last call to OBorrow (or OReceiveCred) for u0,
i0. If the guess is wrong, Game5 chooses a random bit b′ and simulates it as A’
output. Let the event E5 be the case that Game5’s guess is wrong. Since the events
E5 and S4 are independent events and the event ¬E5 occurs with non-negligible
probability,

50

|Pr[S5]−1/2|= Pr[¬E5] · |Pr[S4]−1/2|

Game6: In this game, we choose Z,R← G, and r,r′, ru,← Zp. Then, we program
random oracle such that

h4 =H(”h4”∥BG) :=R
1
r g− r′

r

For query i0, we initialize C(pre) as

C(pre) =
(
gru ,Zru ,gf

∗
0 (α)y∗ru

)
,y∗← Zp,f∗

0 (X) =
∏

bid∈BIDS∗
u

(X+ bid)

Again, for i0’th query, we change the stored cred value to

cred=
(
(g,R′,gf

′
0(α)y′

),dsiduser, z, t,y′,BIDS′
u,σ

)

where dsiduser ← Zp. R′ = Rh
dsid∗

issuer
2 and BIDS′

u = BIDS∗
u if i0 is the last

oracle call before the guessing phase. Otherwise, for the set of all whitelisted bid’s
after the i0’th query, ⋃

j{bidj}, BIDS′
u = BIDS∗

u \ (⋃
j{bidj}). For appropriately

initialized BIDS′
u, let f ′

0(X) = ∏
bid∈BIDS′

u
(X+ bid). Finally, t= r and z = 1

q3
(r′−

(q1usku0 + q2dsid)).

Game5→ Game6: Indistinguishability of these two games can loosely be re-
ducted to class-hiding property of SPS-EQ. However, we can provide a strict
reduction to DDH still inspired by the security reduction of the class hiding
property ((Fuchsbauer et al., 2019)), but also by considering our special case. We
prove that by using any adversary A that can distinguish between Game5 and
Game6 with non-negligible probability, we can create an adversary that can win
DDH game with a non-negligible probability. Before starting this reduction, let us
point out that using Z instead of a new commitment instance in the i0’th query
is indistinguishable, since the underlying commitment is perfectly hiding. Thus,
we only need to prove that A cannot distinguish whether Z or R has been used
in the very last query. To prove this, we take a DDH instance. For a DDH tuple
(U,V,W) = (gr,gs,g(1−b)t+brs), let us program the random oracle as R := V . Then,
we initialize C(pre) = (U,W,Y ∗) for the i0’th query. Let V ′ = V h

dsid∗
issuer

2 , and
C = (g,V ′,Y) for the very last query, where Y ∗,Y ← G∗. Observe that using Y ∗

and Y instead of gf∗
0 (α)y∗u∗ for some u∗ and gf

′
0(α)y′ is indistinguishable, since both

gf
∗
0 (α)y∗u∗ and gf

′
0(α)y′ are uniformly random in G∗ for y∗,y′← Zp. Hence, if b = 1

for DDH tuple, we are in Game5. Otherwise, we are in Game6.

51

|Pr[S6]−Pr[S5]| ≤ µDDH(λ)

Game7: The repetition of Game4 for u1.

|Pr[S7]−Pr[S6]| ≤ qb,1 ·µtlp(λ)

Game8: The repetition of Game5 for u1.

|Pr[S8]−1/2|= Pr[¬E8] · |Pr[S7]−1/2|

Game9: Game9 is the repetition of Game6 for u1.

|Pr[S9]−Pr[S8]| ≤ µDDH(λ)

In Game9, both u0 and u1 answer the last OBorrow call with freshly created random
credentials, and Game9 is indistinguishable from Game0 under our security assump-
tions.

Theorem 5. Given privacy-preserving borrowing scheme is backward-unlinkable
in the random oracle model, if underlying zero-knowledge proofs of knowledge are
HVZK and sound, DDH assumption holds, the underlying time-lock puzzle scheme
TLP is secure, and the underlying SPS-EQ signature scheme SPS-EQ is a signature
scheme with perfect adaptation property.

The proof of backward unlinkability applies the same steps as the proof of anonymity,
except the following changes. First, in games Game4 and Game7, we change the
behavior only for borrowing oracle queries before ORepayChl call. Secondly, in games
Game5 and Game8, we guess the last borrowing query index before OBorrowChl for u0

(and u1), i0 (i1) in Game5 (in Game7).

Theorem 6. If underlying hash functions are collision-resistant hash functions,
underlying zero-knowledge proofs of knowledge is HVZK and sound, the discrete
logarithm problem is hard in G1, underlying accumulator is a collision-resistant ac-
cumulator, and sunderlying SPS-EQ scheme is EUF-CMA, then the given borrowing
scheme is sound.

Proof. Our construction includes a signature on two commitments which contain
the attributes of a credential. Obviously, any adversary who is able to forge
signatures would be able to create arbitrary credentials. However, we should

52

also consider that any adversary who can provide different openings to signed
commitments would also be able to win the game.
Case 1. In this case, we look at where b1 = 1∧upku ̸∈ U . We would like to point
out that the user secret key usk ∈ Zp is an attribute of credentials in our system,
and there is a one-to-one mapping between user secret keys and user public keys.
Hence, if any adversary wins the game in this case, it means that the adversary
is able to create a valid credential on a user secret key usk′ by following one of
two possible ways. Obviously, the former performs a SPS-EQ signature forgery
so that the adversary can create a signature on a message which is not signed by
an honest issuer oracle OIssueCred. The latter provides a second opening to the
Pedersen commitment in the credential. In this case, there are two cases that an
adversary can follow. The adversary can either find a different opening directly
or the adversary can perform the zero-knowledge proof of knowledge protocols for
a user secret key usk′, which is different from the one in opening that the user knows.

Case 2. Now we investigate the remaining case where b1 = 1 ∧ upk ∈ U .
For this case, the only possible way that an adversary wins the game is the case
that b2 = 1. We can easily conclude that if b1 = 1 and b2 = 1, then the adversary
is able to present a credential on the user secret key usk which corresponds to
upk ∈ U , and set of bid’s BIDSu such that the blacklisted bid ̸∈ BIDS′

u. Again,
this is possible in three ways.

• Adversary performs a SPS-EQ signature forgery.

• Adversary performs a zero-knowledge proof of knowledge for an old creden-
tial that does not contain bid with a fresh dsid′ value. This case is similar
to performing a zero-knowledge proof of knowledge for a usk′. dsid is an-
other member of the signed Pedersen commitment. Hence, if adversary can
perform this zero-knowledge proof, the underlying commitment algorithm is
not binding, or underlying zero-knowledge proof of knowledge protocol is not
sound.

• Adversary performs zero-knowledge proof of non-membership for a BIDS′
u

such that bid ̸∈ BIDS′
u. This is again possible in two ways. The adver-

sary must be able to find an opening to the commitment for a BIDS′
u such

that bid ̸∈ BIDS′
u or the adversary must perform the zero-knowledge proof

of non-membership for BIDSu even if bid ∈ BIDSu. For the first case we
can easily have the following reduction. Assume that there is an adversary
that can provide openings y0 and y1 for two different sets S0 and S1. Let
f0(X) = ∏

d∈S0(X + d) and f1(X) = ∏
d∈S1(X + d). We know that they are

53

openings for the same commitment value, so gy0f0(α) = gy1f1(α). Subsequently,
we know y0f0(α) mod p = y1f1(α) mod p. Since S0 ̸= S1, we know f0(X)
and f1(X) have different roots. Hence, y0f0(X) ̸= y1f1(X), which means
f ′(X) = y0f0(X)−y1f1(X) is a non-zero polynomial, but f ′(α) = 0. By finding
the roots of f ′(α), one can learn the accumulator trapdoor α. Hence, we can
construct an adversary against underlying accumulator’s collision-resistence,
if the set commitments are not binding. Now the remaining way is perform-
ing a successful zero-knowledge proof of non-membership even if blacklisted
bid ∈ BIDSu. One can straightforwardly design an adversary against the
soundness of the underlying zero-knowledge protocol’s soundness or accumu-
lator’s collision resistance by using any such adversary.

5.3 Practical Applications

In this section, we analyze the suitability of our PPB scheme to the practical appli-
cations.

Peer-to-Peer Lending. There are three main entities in a peer-to-peer lending
system.

• Borrower: Party wishes to borrow some amount of money.

• Lender: Party wishes to lend some amount of money.

• P2PLP: Peer-to-peer lending platform. It gives services to both borrowers and
lenders.

Transfer phase of the money is out of this paper’s interest, and we only care about
the privacy of borrowers in all phases. In this regard, (Xie et al., 2020) only cares
about privacy during the transfer phase (on Bitcoin network), and our work has a
complementary role. While entities borrower and lender have an exact match with
the entities using the same names in our scheme, P2PLP takes the role of credential
issuer to apply our conditional anonymity scheme to peer-to-peer lending schemes.

Car Sharing Services. We focus on car sharing services with service providers,
which is displayed in Fig. 5.8. Recent applications of vehicle sharing utilizes wide

54

Figure 5.8 Car Sharing Architecture

range of vehicles from scooters and bicyles1 to cars2. These applications provide
access to the vehicles through the mobile phone of the user, so the user does not
interact with a representative of the company during a rental. The system entities
for a car-sharing environment we define are as follows:

• Car Rentee: Party wishes to rent a car from CSSP.

• Car-Sharing Service Provider (CSSP): Party provides a car rental service.

• Issuer: The party that registers users upon their real-world identity by issuing
them credentials.

Our system matches with the system above. While car rentees correspond to bor-
rowers, CSSP’s take lender/service provider roles. We emphasize that our system
allows multiple CSSP’s to serve upon a single issuer. For the case that there is a
single CSSP, it is possible that CSSP and Issuer are the same parties. Our PPB
scheme is not vulnerable against the collision of the issuer and CSSP parties. Lastly,
we underline that the proposed system does not have a TA role.

Steps 1, 2, 3, and 4 are identical to the steps in Fig. 5.1. A car renter registers to the
system by running ReceiveCred↔ IssueCred with the issuer, which is displayed with
Step 1 in Fig. 5.8. When a CSSP and a renter agree on the conditions, including
the duration of car rental to perform a car sharing, they start the car rental service
by performing Borrow↔ Lend together with the issuer as shown in Step 2 in Fig.
5.8 for both CSSP 1 and CSSP 2. A car-rental service is successfully completed,

1Bird. https://www.bird.co/

2ZipCar. https://www.zipcar.com/

55

if Repay↔ Collect operations performed without an error. In Fig. 5.8, CSSP 1,
renter, and issuer perform Repay↔ Collect operations as pointed out with Step 3,
since vehicle 1 was returned back without any problem. Finally, if a renter does not
successfully return the rented vehicle in time, CSSP can add the dishonest renter to
his blacklist using the Blacklist algorithm. In Fig. 5.8, CSSP blacklists the renter in
Step 4, since the renter did not successfully return vehicle 2 in time.

56

6. PERFORMANCE EVALUATION OF OUR PPB SCHEME

We evaluate the performance of our scheme for different aspects. First, we present
the benchmark of our PPB construction from Chapter 5. Then, we compare these
benchmarks with another existing construction which has a similar application area
(Huang et al., 2020). Finally, we discuss additional optimizations that could be pos-
sible for specific use cases. To measure the performance of our PPB protocol, we de-
veloped a proof-of-concept implementation. Our implementation is developed using
the MIRACL1 library in C++. We choose this library since we need pairing-based
cryptography, RSA-based cryptography, and polynomial arithmetic algorithms at
the same time. For bilinear pairings, we use BN-256 curve, and for time-lock puz-
zles, we use 2048-bits RSA modulus.

6.1 Computational Cost of Our PPB Scheme

Running time of our PPB implementation for borrowing/lending operations without
non-membership witness update mechanisms is displayed in Figure 6.1 and 6.2. In
the figures, we use debt number to refer to the size of BIDSu in the user credential
at the beginning of the borrowing operation. On the credential issuer side, both
the borrowing/lending and the repayment/collecting operations have constant costs
with averages 122.25 ms and 18.20 ms, respectively. As additional information to
the figure, repayment operations have light computational costs on the user side
such that they require O(d) group exponentiations for the debt number d, which
yields lightweight repayment operations such as 25.71 ms for d = 20. Lastly, the
issuance phase takes 21.43 ms on average including both the user and the issuer
side.

The case in which a user always uses her credential for a single debt at a time in
Fig. 6.1 is noteworthy. In this case, borrowing operations take a constant time for
the user. Moreover, the user does not even have to learn the current accumulator

1https://github.com/miracl/MIRACL

57

1,000 2,000 3,000 4,000
200

400

600

800

Blacklisted bid’s

tim
e(

m
s)

0 Debts 5 Debts 10 Debts

Figure 6.1 Borrow Cost at User for Blacklisted BID’s

0 5 10 15 20 25

200

400

600

800

Debt

tim
e(

m
s)

1000 bids 2500 bids 4000 bids

Figure 6.2 Borrow Cost at User Side for Debt Number

value for any blacklist. Since his credential does not include any bid at that time, it
is enough for the borrower to store a constant witness for BIDSu = ∅.

6.2 Comparative Evaluation with DAPA

In this part, we analyze the performance of our PPB scheme and DAPA, which is
another scheme with privacy concerns on car-sharing, in detail.

58

2,000
4,000

10
200

2,000

Blasklisted BID’s
VS number

tim
e(

m
s)

DAPA ID Hide PPB 0 Borrows PPB 10 Borrows

Figure 6.3 Comparison of borrowing-lending cost on the user
side between PPB and DAPA

10
20

2,000
4,000

0

1,000

2,000

VS number
Blasklisted BID’s

tim
e(

m
s)

DAPA ID Hide VS PPB Lend CredA

Figure 6.4 Comparison of borrowing-lending cost on the
verifiable server and issuer sides between PPB and DAPA

59

0 10 20 300

10

20

30

Debt

tim
e(

s)

DAPA 1 VS with Upd DAPA 5 VS’s with Upd
DAPA 1 VS wout Upd PPB wout Pcomp/Upd
PPB with Pcomp/Upd

Figure 6.5 Comparison of cumulative cost for debt number
at user side between PPB and DAPA

6.2.1 Comparison of Computational Cost

We compare our PPB scheme with DAPA (Huang et al., 2020), which has a similar
application area. For this purpose, we implement DAPA scheme. DAPA applies
an improved version of the traditional identity escrow concept to the car sharing
use case. In summary, DAPA’s purpose is mitigating TA’s vulnerability by dividing
its responsibility. Instead of employing a single TA, DAPA uses a committee of
TA’s, where each member of the committee is called verifiable server. Addition-
ally, this committee transfers its authority to a committee of fresh members over
periods. DAPA uses (Au, Tsang, Susilo & Mu, 2009)’s pairing-based accumulator
for non-membership proofs. However, it is not explicitly declared whether they use
the reference-string based construction or auxiliary information based construction.
At this point, we implemented the reference string-based construction, since the
auxiliary information-based construction has been broken by (Biryukov, Udovenko
& Vitto, 2021). Reference-string based construction suffers from non-membership
witness creation with non-constant time. Although the paper itself does not propose
to use any kind of witness update operation, we would like to declare that witness
update operation could be used for this scheme if a syncronization mechanism for
witness update information can be met by user devices. Fig. 6.3 compares DAPA
and PPB for user side and 6.4 compares verifiable server and issuer sides without
witness update mechanisms. This figure clearly shows that, without employing any
witness update mechanism, PPB is much more efficient than DAPA. DAPA’s main
motivation is to distribute the TA’s responsibility, but PPB is more efficient than
DAPA even when we configure DAPA for a single centralized TA.

60

6.2.2 Precomputation for PPB

PPB’s accumulator does not have a previously known efficient update mechanism
for our case. We prove the exclusion of two sets (set of user’s bid’s, BIDSu, and
set of blacklisted bid’s) and both sets are dynamic. Thus, we need to have witness
update mechanisms for both sets. Previously known mechanisms have O(n) com-
putation complexity for BIDSu update case and O(d) computation complexity for
blacklist update case where d is the size of BIDSu, and n is the size of blacklist.
We implement a restricted witness update mechanism for PPB to improve the per-
formance for BIDSu updates. Namely, this mechanism makes precomputation for
a set of bid’ s, and the user can perform efficient witness updates until he uses all
bid’s from this set. Since bid’s are uniformly random values, there is no difference
between sampling them one by one in borrowing/lending operations and sampling k
of them all together. In detail, the precomputation for k bid’s can be performed as
follows. Let bidi for i= 1, ...,k denote bid’s to perform the precomputation on. Then,
we compute polynomials h(X) and h0(X) such that f(X)h(X)− f ′(X)h0(X) = 1
for f ′(X) = ∏k

i=1(X+ bidi) and f(X) is the polynomial represents the accumulator
value. On top of these polynomials, we define hi(X) = h0(X) ·Xi for i= 1, ...,k−1.
The user computes and stores all ĝhi(α) values. Using these group members, the
user can compute ŵ1 which forms a valid witness together with w2 = gh(α) for any
f0(X) value which consists of arbitrary subset of {bid1, ..., bidk} with at most k
exponentiations.

Figure 6.5 compares several configurations of PPB and DAPA for the cumulative
time on the user side when the user borrows an asset with the blacklist size, 4000.
However, we would like to point out that the measurements for PPB with precompu-
tation and witness updates and DAPA with witness updates does not perform any
witness updates and just assume that witness for the current accumulator value was
ready before starting the operation. We disregarded witness update costs, since the
number of necessary updates is highly dependent to the use case. Figure 6.5 shows
that PPB without witness update mechanisms may provide performance compara-
ble to DAPA for 5 verifiable servers with witness update mechanisms. Furthermore,
it shows that our precomputation method significantly reduces total computation
cost.

6.2.3 Comparison of Communication Costs

The last metric that we compare DAPA and our PPB scheme is communication cost.
For issuance operation, both DAPA and PPB have constant communication costs

61

Table 6.1 Communication Cost Comparison

Protocol Communication Cost (kB)
IDHide/Borrowing Repayment

DAPA (Huang et al., 2020) with 1 VS 16.6 -
DAPA (Huang et al., 2020) with 5 VS’s 33.1 -

Our PPB Construction 16.0 3.9

0.06 kB’s and 3.8 kB’s, respectively. While obviously DAPA is more efficient for
issuance operation, it is not a significant disadvantage to use PPB, since issuance is
a one-time process for each user for her lifetime. Table 6.1 shows the communication
cost comparison between DAPA and PPB. These cost measurements disregard the
communication cost needed to update the accumulator witness. In this case, when
we disregard the communication cost of the accumulator / blacklist update, PPB has
a constant communication cost for issuance, borrowing, and repayment operations.
DAPA’s communication cost increases according to the number of verifiable servers
and creates a bottleneck on the system for a high number of verifiable servers.
Hence, PPB has better communication complexity and better communication cost
than DAPA.

6.3 Discussion on Further Optimizations

Our goal was to come up with a scheme that covers as many use cases of sharing
economy as possible. For that reason, further optimizations could be possible if
the use cases to be supported are explicitly determined. To be clear, our scheme
could be optimized considering the borrowing frequencies of users and the duration
of borrowings. One point that is open to optimization is the utilization of time-lock
puzzles. Since service providers are required to perform computation on a time-
lock puzzle for each lended resource, they may need high computation power for
some use cases. The methods proposed in (Abadi & Kiayias, 2021; Malavolta &
Thyagarajan, 2019) can be used to perform the evaluation of time-lock puzzles for
multiple bid’ s with the cost of a single time-lock puzzle for some scenarios. Another
possible optimization is related to using updatable anonymous credential concept.
Independent of our usage, in case of frequent updates on credentials, updatable
anonymous credentials may lead to used dsid lists with high storage costs. Together
with the dsid checks, applying limited lifetimes for determined epochs to credentials
may reduce the size of the used dsid list, as only storing used dsid’s for the current

62

Table 6.2 Specifications for experiment environments

User Issuer Lender
Sony Xperia XZ Pre-
mium

Cloud Run Container Cloud Run Container

Android 9.0 Ubuntu 18.04 in a Con-
tainer

Dart Lang. in a Con-
tainer

4GB Memory 512 MiB Memory 512 MiB Memory
Qualcomm Kryo 1900
MHz (4-Core)

1 vCPU for each Con-
tainer Instance

1 vCPU for each Con-
tainer Instance

epoch would be sufficient. We note that a similar approach is also recommended in
(Camenisch et al., 2010).

6.4 Performance Evaluation for Real-World Suitability

In this chapter, we further evaluate the performance of our protocol to see its
suitability for real-world applications. We deploy a proof-of-concept application for
each party in the system to a device that is suitable for their real-world matches.
While we deploy the issuer and lender parties to a cloud system, we deploy the user
application to a mobile phone. Figure 6.6 displays the architecture of this system.
Detailed specifications for deployment environments are available in Table 6.2. We
used Google Cloud Platform’s Cloud Run2 service to run issuer and lender sides.
Cloud Run is a serverless, managed compute platform which allows users to run
containerized applications.

On the user side, we used the same implementation code we have in Chapter 6
which uses C++ language. We wrapped our previously existing code to a library
which takes inputs as C strings and returns all outputs as C strings. Finally, we
used this library with Dart Language’s foreign function interface (Dart:FFI library)
to make our native C++ code easily accessible from Dart code. To run this code
in an Android application, we used Flutter Framework which is a multi-platform
application development framework for Dart language.

On the issuer side, we followed the same steps as on the user side to make our C++
library accessible from Dart using Dart:FFI library. Subsequently, we implemented

2https://cloud.google.com/run

63

Figure 6.6 Architecture of the experiment environment for
mobile benchmarks

a basic web server on Dart. Lastly, we created a Docker image based on the official
Docker image for Ubuntu 18.04 3.

On the lender side, we implemented a basic Dart web server, and created our image
on the official Docker image for Dart 4.

We run each operation 50 times in the environment we explained above. The average
and standard deviation of these operations’ time costs are available in Tables 6.3,
6.4, and 6.5. "AgreeWithLender" procedure corresponds to the time that the user
contacts the lender for the service, the lender contacts the issuer for the service and
the lender returns to the user. Procedures starting with "Init" correspond to the
time that the user performs the initial computation for each operation. Similarly,
the procedures starts with "Finish" correspond to the time that the user performs the
final computation for that operation after receiving necessary values from the issuer.
The procedure "User2IssuerComm" is the total communication duration between
the user and the issuer. The procedures "IssueCred", "GetBlacklist", "Lend", and
"Collect" are self-explanatory.

The main result of these experiments is that our algorithms for user-side can run
in reasonable time even on mobile devices. We did not test the performance of the

3https://hub.docker.com/_/ubuntu

4https://hub.docker.com/_/dart

64

Table 6.3 Issuance Time-Cost

IssueCred-ReceiveCred Cost (ms)
Mean Std.

InitReceiveCred 56.36 0.89
IssueCred 84.22 4.08

FinishReceiveCred 156.30 7.16
User2IssuerComm 606.68 226.76

Overall 903.56 227.78

Table 6.4 Borrowing Time-Cost for blacklist size, 3900.

Borrow-Lend |BIDSu|= 0 |BIDSu|= 3
Mean (ms) Std. (ms) Mean (ms) Std. (ms)

AgreeWithLender 1643.64 457.83 1455.04 362.34
GetBlacklist 1313.58 562.86 1106.26 487.71
InitBorrow 877.76 15.25 2218.94 16.01

Lend 876.90 7.20 867.72 7.06
FinishBorrow 105.34 13.42 101.92 8.09

User2IssuerComm 384.94 200.05 252.88 119.60
Overall 5202.16 725.36 6002.76 669.67

issuer against the number of users. However, considering the resource of the issuer-
side implementation, we can say that our issuer-side algorithms can be deployed as
a cloud service.

65

Table 6.5 Repayment Time-Cost for blacklist size 3900 and
|BIDSu|= 4.

Repay-Collect Cost (ms)
Mean Std.

AgreeWithLender 1511.92 305.13
InitRepay 138.74 7.94

Collect 129.06 2.88
FinishRepay 148.96 10.77

User2IssuerComm 591.18 116.80
Overall 2519.86 340.72

66

7. CONCLUSION

With the rapid adaptation of digital channels to the real world, various business
models are adapted to computer systems through these channels. These applica-
tions bring the private user data they access through the provided service with them
to the digital systems. Hence, the value of user privacy in these systems is increas-
ing. In this thesis, we first proposed a blacklistable anonymous credential scheme,
BLACW, that has an additional property, whitelisting property, to unlink the honest
user credentials from the corresponding authentication sessions. Subsequently, we
provide our construction for BLACW scheme and analyzed its performance by com-
paring with a rival scheme. Our experiments showed that BLACW has a comparable
performance to previous schemes together with its stronger security requirements.
While our BLACW scheme has a general application area, we extended this scheme
further for a more specific business model, sharing economy. We defined a novel
conditional anonymity scheme, namely, the privacy-preserving borrowing (PPB)
scheme. Our PPB scheme provides anonymity to a user during an asset sharing,
and the user becomes blacklistable if the shared asset is not returned in time. Our
PPB scheme also assures backward unlinkability, so previous services that the user
returned the shared asset honestly in time can not be linked to the further services
even if the user misbehaved in further services. Our scheme is suitable to serve as
a privacy-preserving mechanism for multiple sharing economy applications such as
car-sharing or peer-to-peer lending. We provided the basic definition and construc-
tion of our PPB scheme using structure-preserving signatures on equivalence classes,
accumulators, and time-lock puzzles. Finally, we analyzed the performance of our
PPB scheme and compared it with a rival one. Our analyzes show that our PPB
scheme outperforms it in both computational and communication cost metrics. The
main drawback of this scheme is that the service provider must solve a time-lock
puzzle for each sharing service. We can show a PPB scheme which is based on more
efficient time-delayed cryptographic primitives as a further work. The possibility
of conditionally anonymous schemes with more complex policies also stands as an
interesting open problem.

67

BIBLIOGRAPHY

Abadi, A. & Kiayias, A. (2021). Multi-instance Publicly Verifiable Time-Lock Puzzle
and Its Applications. In Borisov, N. & Diaz, C. (Eds.), Financial Cryptography
and Data Security, Lecture Notes in Computer Science, (pp. 541–559)., Berlin,
Heidelberg. Springer.

Aikou, Y., Sadiah, S., & Nakanishi, T. (2017). An Efficient Blacklistable Anony-
mous Credentials without TTPs Using Pairing-Based Accumulator. In 2017
IEEE 31st International Conference on Advanced Information Networking and
Applications (AINA), (pp. 780–786). ISSN: 1550-445X.

Au, M. H., Tsang, P. P., Susilo, W., & Mu, Y. (2009). Dynamic Universal Accumu-
lators for DDH Groups and Their Application to Attribute-Based Anonymous
Credential Systems. In M. Fischlin (Ed.), Topics in Cryptology – CT-RSA
2009, volume 5473 (pp. 295–308). Berlin, Heidelberg: Springer Berlin Heidel-
berg. Series Title: Lecture Notes in Computer Science.

Badimtsi, F., Canetti, R., & Yakoubov, S. (2020). Universally Composable Accu-
mulators. In Jarecki, S. (Ed.), Topics in Cryptology – CT-RSA 2020, (pp.
638–666)., Cham. Springer International Publishing.

Biryukov, A., Udovenko, A., & Vitto, G. (2021). Cryptanalysis of a dynamic uni-
versal accumulator over bilinear groups. In Paterson, K. G. (Ed.), Topics in
Cryptology - CT-RSA 2021 - Cryptographers’ Track at the RSA Conference
2021, Virtual Event, May 17-20, 2021, Proceedings, volume 12704 of Lecture
Notes in Computer Science, (pp. 276–298). Springer.

Blömer, J., Bobolz, J., Diemert, D., & Eidens, F. (2019). Updatable Anonymous
Credentials and Applications to Incentive Systems. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, (pp.
1671–1685)., London United Kingdom. ACM.

Bobolz, J., Eidens, F., Krenn, S., Slamanig, D., & Striecks, C. (2020). Privacy-
Preserving Incentive Systems with Highly Efficient Point-Collection. In Pro-
ceedings of the 15th ACM Asia Conference on Computer and Communications
Security, ASIA CCS ’20, (pp. 319–333)., New York, NY, USA. Association for
Computing Machinery.

Boneh, D. & Naor, M. (2000). Timed Commitments. In G. Goos, J. Hartmanis,
J. van Leeuwen, & M. Bellare (Eds.), Advances in Cryptology — CRYPTO
2000, volume 1880 (pp. 236–254). Berlin, Heidelberg: Springer Berlin Heidel-
berg. Series Title: Lecture Notes in Computer Science.

Boneh, D. & Shoup, V. (2020). A Graduate Course in Applied Cryptography.
Bowe, S., Gabizon, A., & Miers, I. (2017). Scalable multi-party computation for zk-

snark parameters in the random beacon model. Cryptology ePrint Archive,
Report 2017/1050. https://ia.cr/2017/1050.

Bringer, J. & Patey, A. (2012). VLR group signatures - how to achieve both back-
ward unlinkability and efficient revocation checks. In Samarati, P., Lou, W.,
& Zhou, J. (Eds.), SECRYPT 2012 - Proceedings of the International Confer-
ence on Security and Cryptography, Rome, Italy, 24-27 July, 2012, SECRYPT
is part of ICETE - The International Joint Conference on e-Business and
Telecommunications, (pp. 215–220). SciTePress.

68

https://ia.cr/2017/1050

Camenisch, J., Kohlweiss, M., & Soriente, C. (2010). Solving Revocation with
Efficient Update of Anonymous Credentials. In Garay, J. A. & De Prisco, R.
(Eds.), Security and Cryptography for Networks, Lecture Notes in Computer
Science, (pp. 454–471)., Berlin, Heidelberg. Springer.

Camenisch, J. & Shoup, V. (2003). Practical Verifiable Encryption and Decryption of
Discrete Logarithms. In Boneh, D. (Ed.), Advances in Cryptology - CRYPTO
2003, (pp. 126–144)., Berlin, Heidelberg. Springer Berlin Heidelberg.

Camenisch, J. & Van Herreweghen, E. (2002). Design and implementation of the
idemix anonymous credential system. In Proceedings of the 9th ACM confer-
ence on Computer and communications security, CCS ’02, (pp. 21–30)., New
York, NY, USA. Association for Computing Machinery.

Chen, M., Cohen, R., Doerner, J., Kondi, Y., Lee, E., Rosefield, S., & Shelat, A.
(2020). Multiparty Generation of an RSA Modulus. In Micciancio, D. &
Ristenpart, T. (Eds.), Advances in Cryptology – CRYPTO 2020, (pp. 64–93).,
Cham. Springer International Publishing.

Chvojka, P., Jager, T., Slamanig, D., & Striecks, C. (2021). Versatile and Sustain-
able Timed-Release Encryption and Sequential Time-Lock Puzzles (Extended
Abstract). In Bertino, E., Shulman, H., & Waidner, M. (Eds.), Computer
Security – ESORICS 2021, (pp. 64–85)., Cham. Springer International Pub-
lishing.

Damgård, I. & Fujisaki, E. (2002). A Statistically-Hiding Integer Commitment
Scheme Based on Groups with Hidden Order. In G. Goos, J. Hartmanis, J. van
Leeuwen, & Y. Zheng (Eds.), Advances in Cryptology — ASIACRYPT 2002,
volume 2501 (pp. 125–142). Berlin, Heidelberg: Springer Berlin Heidelberg.
Series Title: Lecture Notes in Computer Science.

Fiat, A. & Shamir, A. (1987). How To Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Odlyzko, A. M. (Ed.), Advances in
Cryptology — CRYPTO’ 86, Lecture Notes in Computer Science, (pp. 186–
194)., Berlin, Heidelberg. Springer.

Freitag, C., Komargodski, I., Pass, R., & Sirkin, N. (2021). Non-malleable Time-
Lock Puzzles and Applications. In K. Nissim & B. Waters (Eds.), Theory
of Cryptography, volume 13044 (pp. 447–479). Cham: Springer International
Publishing. Series Title: Lecture Notes in Computer Science.

Fuchsbauer, G., Hanser, C., & Slamanig, D. (2019). Structure-Preserving Signatures
on Equivalence Classes and Constant-Size Anonymous Credentials. Journal
of Cryptology, 32 (2), 498–546.

Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., & Triandopoulos, N.
(2016). Zero-Knowledge Accumulators and Set Algebra. In Advances in Cryp-
tology – ASIACRYPT 2016, (pp. 67–100). Springer, Berlin, Heidelberg.

Hu, X., Zhao, H., Zheng, S., & Wang, L. (2020). CBOL: Cross-Bank Over-Loan
Prevention, Revisited. Entropy, 22 (6), 619. Number: 6 Publisher: Multidis-
ciplinary Digital Publishing Institute.

Huang, C., Lu, R., Ni, J., & Shen, X. (2020). DAPA: A Decentralized, Accountable,
and Privacy-Preserving Architecture for Car Sharing Services. IEEE Trans-
actions on Vehicular Technology, 69 (5), 4869–4882. Conference Name: IEEE
Transactions on Vehicular Technology.

Katz, J., Loss, J., & Xu, J. (2020). On the Security of Time-Lock Puzzles and
Timed Commitments. Technical Report 730.

69

Kilian, J. & Petrank, E. (1998). Identity escrow. In Krawczyk, H. (Ed.), Advances
in Cryptology — CRYPTO ’98, Lecture Notes in Computer Science, (pp. 169–
185)., Berlin, Heidelberg. Springer.

Liu, Y., Xue, K., He, P., Wei, D. S. L., & Guizani, M. (2020). An Efficient, Account-
able, and Privacy-Preserving Access Control Scheme for Internet of Things in
a Sharing Economy Environment. IEEE Internet of Things Journal, 7 (7),
6634–6646. Conference Name: IEEE Internet of Things Journal.

Malavolta, G. & Thyagarajan, S. A. K. (2019). Homomorphic Time-Lock Puzzles
and Applications. In Boldyreva, A. & Micciancio, D. (Eds.), Advances in
Cryptology – CRYPTO 2019, (pp. 620–649)., Cham. Springer International
Publishing.

Manevich, Y. & Akavia, A. (2022). Cross Chain Atomic Swaps in the Absence
of Time via Attribute Verifiable Timed Commitments. In 2022 IEEE 7th
European Symposium on Security and Privacy (EuroS&P), (pp. 606–625).

Nakanishi, T. & Funabiki, N. (2005). Verifier-Local Revocation Group Signature
Schemes with Backward Unlinkability from Bilinear Maps. In Roy, B. (Ed.),
Advances in Cryptology - ASIACRYPT 2005, Lecture Notes in Computer Sci-
ence, (pp. 533–548)., Berlin, Heidelberg. Springer.

Nakanishi, T. & Kanatani, T. (2018). An efficient blacklistable anonymous credential
system with reputation using pairing-based accumulator. In 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing And
Communications/ 12th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE), (pp. 1140–1148).

Symeonidis, I., Aly, A., Mustafa, M. A., Mennink, B., Dhooghe, S., & Preneel, B.
(2017). SePCAR: A Secure and Privacy-Enhancing Protocol for Car Access
Provision. In S. N. Foley, D. Gollmann, & E. Snekkenes (Eds.), Computer
Security – ESORICS 2017, volume 10493 (pp. 475–493). Cham: Springer In-
ternational Publishing. Series Title: Lecture Notes in Computer Science.

Symeonidis, I., Rotaru, D., Mustafa, M. A., Mennink, B., Preneel, B., & Papadim-
itratos, P. (2022). Hermes: Scalable, secure, and privacy-enhancing vehicular
sharing-access system. IEEE Internet of Things Journal, 9 (1), 129–151.

Thakur, S. (2019). Batching non-membership proofs with bilinear accumulators.
Cryptology ePrint Archive, Report 2019/1147. https://ia.cr/2019/1147.

Tsang, P. P., Au, M. H., & Kapadia, A. (2008). Perea: Towards practical ttp-free
revocation in anonymous authentication. In Proceedings of the 15th ACM Con-
ference on Computer and Communications Security, CCS ’08, (pp. 333–344).,
New York, NY, USA. Association for Computing Machinery.

Tsang, P. P., Au, M. H., Kapadia, A., & Smith, S. W. (2007). Blacklistable anony-
mous credentials: Blocking misbehaving users without ttps. In Proceedings of
the 14th ACM Conference on Computer and Communications Security, CCS
’07, (pp. 72–81)., New York, NY, USA. Association for Computing Machinery.

Verheul, E. R. (2016). Practical backward unlinkable revocation in fido, german
e-id, idemix and u-prove.

Xie, Y., Holmes, J., & Dagher, G. G. (2020). ZeroLender: Trustless Peer-to-Peer
Bitcoin Lending Platform. In Proceedings of the Tenth ACM Conference on
Data and Application Security and Privacy, (pp. 247–258)., New Orleans LA
USA. ACM.

Yang, R., Au, M. H., Xu, Q., & Yu, Z. (2019). Decentralized blacklistable anonymous

70

https://ia.cr/2019/1147

credentials with reputation. Computers & Security, 85, 353–371. Publisher:
Elsevier BV.

71

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Contribution
	Outline

	BACKGROUND AND RELATED WORK
	Background
	Assumptions
	Structure-Preserving Signatures on Equivalence Classes
	Accumulators
	Time-Lock Puzzles
	Zero-Knowledge Proofs

	Related Work

	BLACKLISTABLE ANONYMOUS CREDENTIALS WITH WHITELISTING PROPERTY
	Definition of Our Blacklistable Anonymous Credential with Whitelisting Property Scheme
	Formal Definition of Algorithms
	Security Definitions
	Anonymity Experiment
	Experiment of Soundness

	Construction and Security Analysis of Our BLACW Scheme
	Construction
	Security Proofs

	PERFORMANCE ANALYSIS OF OUR BLACW SCHEME
	PRIVACY PRESERVING BORROWING SCHEME
	Definition of Our Privacy Preserving Borrowing Scheme
	Formal Definition of Algorithms
	Security Definitions
	Anonymity Experiment
	Backward-Unlinkability Experiment
	Experiment of Soundness

	Construction and Security Analysis of Our PPB Scheme
	Construction
	Time-Lock Puzzle Construction
	Efficient Proof of Equality to Prime Order Discrete-Logarithm

	Security Proofs

	Practical Applications

	PERFORMANCE EVALUATION OF OUR PPB SCHEME
	Computational Cost of Our PPB Scheme
	Comparative Evaluation with DAPA
	Comparison of Computational Cost
	Precomputation for PPB
	Comparison of Communication Costs

	Discussion on Further Optimizations
	Performance Evaluation for Real-World Suitability

	CONCLUSION
	BIBLIOGRAPHY

