
218 IEEE TRANSACTIONS ON EDUCATION, VOL. 46, NO. 2, MAY 2003

University Methodology for Internetworking
Principles and Design Projects

Randal T. Abler, Member, IEEE, Henry L. Owen, Member, IEEE, and George F. Riley, Member, IEEE

Abstract—An undergraduate engineering internetworking
learning environment that presents both internetworking princi-
ples and laboratory experimentation is described. The learning
environment uses the source code availability of the Linux op-
erating system as a case study of the implementation issues and
ramifications of internet networking infrastructures. Laboratory
use of experimentation with internetworking equipment and
software allows interaction with internetworking principles and
fundamentals as well as implementation and performance issues.
The objectives of this environment include providing a compre-
hensive mechanism whereby students are exposed to fundamentals
and principles that may readily be applied to experimental-based
internetwork research and internetwork product development. A
follow-on capstone design environment is also briefly described.

Index Terms—Capstone design class, design projects, internet in-
frastructure experimentation, internetworking laboratory, under-
graduate networking.

I. INTRODUCTION

DURING a recent industry-sponsored research project, the
authors were required to implement a prototype router

with new nonstandard functionality. Application of internet-
working principles in the new Linux-based router prototype
introduced many interesting design issues. The authors found
it challenging to find students with both a theoretical and an
experimental background in internetworking. It was relatively
easy to find students with theoretical knowledge of networking
protocols and routing functions. It was virtually impossible
to find students with the implementation skills necessary to
experimentally implement new ideas and then test them out.
As a result, the authors discovered that there was a great
need for an educational environment for teaching fundamental
internetworking so that the end result was not only an under-
standing of internetworking theory, but also an ability to be
able to implement new experimental-based internetworking
infrastructures.

This paper presents an approach that may be used to com-
plement students’ theoretical networking knowledge with an
experimental internetworking environment. The approach puts
internetworking fundamental concepts and the application of
this material in the same learning environment. The main en-
abler of this approach is the availability of source code from
the Linux operating system so that it may be understood well
enough to use as a platform for implementing new and different

Manuscript received February 26, 2002; revised June 24, 2002.
The authors are with the School of Electrical and Computer Engineering,

Georgia Institute of Technology, Atlanta, GA 30332-0250 USA (e-mail:
henry.owen@ece.gatech.edu).

Digital Object Identifier 10.1109/TE.2002.808239

Fig. 1. Removable hard drive frame and hard drive case.

internetworking functionality. This methodology has enabled a
follow-on senior capstone design experience where participants
are able to apply their internetworking knowledge in creative in-
ternet-related design projects.

The specific objectives of this class include:

1) to develop further a student’s understanding of computer
communications principles;

2) to develop a student’s ability to propose and evaluate al-
ternative approaches to meeting specific communication
requirements;

3) to give the student knowledge of how internet protocols
are implemented in Internet infrastructure, including
computer-operating systems and dedicated embedded
hardware;

4) to provide the student knowledge of computer communi-
cations standards in terms of the standards current status
and future direction;

5) to develop a student’s ability to formulate a computer
communications problem, analyze it, and then commu-
nicate the results of his/her work in written and graphical
form.

These objectives included the ability to demonstrate through
experimental implementations, internetworking principles, and
practices including sockets programming, networking hardware
and software configuration, protocols and performance issues,
and operating system implementations of internetworking.

II. L ABORATORY ENVIRONMENT

The key component to this approach is an internetworking
laboratory in which each participant is assigned his or her own
computer hard drive. Each of the laboratory computers has a re-
movable hard drive frame as shown in Fig. 1. Participants insert
their assigned hard drive into any available laboratory set up that

0018-9359/03$17.00 © 2003 IEEE

ABLER et al.: INTERNETWORKING PRINCIPLES AND DESIGN PROJECTS 219

brings them back to exactly where they were the last time they
were in the laboratory.

A. Laboratory Equipment Required

The laboratory enables experimentation with the principles
covered in the classroom instructional component of this
learning environment. This laboratory equipment consists of
a supply of hard drives and removable hard drive frames,
personal computers (600 MHz Pentium III-based systems with
128 MB of RAM), a numerous supply of various Ethernet
networking interface cards, such as the Intel EEPRO100,
Ethernet hubs, Ethernet switches, and several routers (such as
Cisco1700, Cisco 2600, Cisco 3000, Cisco 4000, Enterasys
SmartSwitch router), a Spirent Smartbits 2000 hardware
network traffic generator, a Domino Plus DA-360 Internetwork
Analyzer from Wandel and Goltermann, and a Corporate
Systems Center Pro Drive workstation hardware-based hard
drive copier. The hardware failure rate associated with issuing
hard drives to each student and having him/her transport them
has been extremely low. Experience proves that the fragility
of the hard drives is not an issue. The drives are issued to the
students at the beginning of a semester and remain with them.
A better system would be to have a securable storage area in the
laboratory accessible only by the individual users of each of the
hard drives. Participants work individually on most laboratory
activities; however, because of equipment limitations, groups
are established for some activities.

The operating system used in the laboratory is Linux. The
reason for this choice is that the source code for Linux, in gen-
eral, and the networking protocol stack, in particular, are readily
available. This system allows detailed examination of one im-
plementation of internetworking. In this case the authors have
chosen the Red Hat distribution [1]. The selection of Linux as
opposed to other operating systems, such as FreeBSD, was a
result of having used both Linux and FreeBSD in various re-
search projects where experimental protocol extensions were
implemented. The Linux community appeared to be moving at
a much faster pace than the FreeBSD community. Additionally,
commercial bookstores have whole shelves full of Linux books,
although those same stores have only a few books on other op-
erating systems such as FreeBSD. Since the large number of
readily available reference sources for Linux is an advantage
for students, Linux remained as the operating system of choice.
There is no reason why a similar class could not use FreeBSD
or, for that matter, other distributions of Linux other than Red
Hat.

The contents of an entire hard drive including the Linux oper-
ating system may be copied from one hard drive to another using
a hardware-based hard-drive copier. Software-based copiers are
not able to copy the later versions of Linux operating systems
because of the Linux file systems.

B. Initial Laboratory Activities

Laboratory activities start with the individual installation of
the operating system and configuration of the networking com-
ponents, including internet protocol (IP) addresses, default net-
working gateway, domain name server, broadcast address, net-
work address, etc. Each participant is assigned a static private

IP address. Static IP addresses are used so that in later net-
working experiments, the IP addresses of the various machines
are readily known.

C. Sockets Programming of Traffic Generators

After installation and configuration of the Linux operating
system, the C programming language is used to write programs
that use the “sockets application programming interface” to im-
plement first a transmission-control protocol (TCP) and then
later a user-datagram protocol (UDP) software traffic generator
and consumer. C is chosen as the programming language be-
cause it is, by far, the most common language used to implement
Internet infrastructure. Additionally, the Linux operating system
is implemented in the C programming language. The software
traffic programs are written with the server as the traffic con-
sumer and the client as the traffic generator. The programs allow
control of the data rate, mean and variance of the packet size, and
control of the interval between packets, destination IP address,
and destination port. The traffic generator and sink keep statis-
tics on both the transmitted and received traffic. These traffic
generators are used throughout later laboratory activities. These
programs are used instead of the similar public domain program
“ttcp” [2] because the student insight obtained from writing the
C programs to accomplish traffic generation and measurement
has been found to be very valuable. The resulting network “pro-
tocol states,” as well as the individual protocol headers and data
generated for each line of C code, is examined. This examina-
tion results in a detailed understanding of exactly what is going
on in the network as the result of the student’s traffic programs.

Packet sniffers are used to examine the traffic between com-
puters. This configuration allows examination of the traffic cre-
ated by the TCP and UDP generators and examination of ad-
dress resolution protocol (ARP) and ping activity. Additionally,
it is instructive to examine the clear text nature of passwords
when using applications such as telnet and file transfer pro-
tocol (FTP). After also using secure shell (ssh) and secure copy
(scp), the encrypted nature of those passwords may be exam-
ined. An example of a Linux-available, software-packet sniffer
is ethereal. An example of a hardware-based packet-sniffer is the
Wandel and Goltermann Domino Plus DA-360 Internetwork an-
alyzer. Doing full packet decodes with sniffers provides a level
of understanding about Internet traffic that is difficult to obtain
without hands-on experimentation [3].

D. Laboratory Experimentation With Router Performance

Placing multiple Ethernet network interface cards into a
Linux-based machine allows one to configure the machine to
act as a router. This addition allows student experimentation
with routing concepts. Static configuration of the routing table
as a part of a laboratory exercise allows insight into the routing
process. When IP forwarding concepts have been examined,
the performance of this PC-based router may be examined
by using a traffic generation and measurement scenario. With
the availability of a hardware traffic generator, such as a
Spirent Smart Bits 2000, one may, in an automated fashion,
generate known traffic volumes at various rates and measure
the performance of the PC’s routing and forwarding capability.
An example laboratory configuration that may be used for this

220 IEEE TRANSACTIONS ON EDUCATION, VOL. 46, NO. 2, MAY 2003

Fig. 2. PC-based linux router performance evaluations.

purpose is shown in Fig. 2. Varying packet size to demonstrate
that the limiting factor is the interrupt rate and not the data rate
is very instructional. Motivating how much work in terms of
how many software instructions that must be executed prior
to the arrival of the next packet leads into the examination of
how many CPU cycles are involved in the implementation
of a real Internet protocol stack. Examination of PC router
performance may be done initially by using Ethernet network
interface cards that are ISA bus-based so as to show the limiting
factor of the slow ISA bus to around 8 Mb/s (using for example
NE2000-based, 10 Mb/s network interface cards). Recognition
that it is not possible to obtain the rated speed of the network
interface card because of PC bus architecture is enlightening to
some students. Network Interface cards in a PCI-based machine
demonstrate the higher bus speed capabilities. Experiments
with 100 Mb/s (using for example Intel EEPRO100 network
interface cards) and gigabit network interface cards (such as
the Intel Pro/1000F optical network interface cards) are used to
show gigabit performance limitations. The concept of reducing
interrupts through interrupt mitigation may be examined by
using Linux gigabit network-interface card drivers, such as the
one that may be found as a part of the click modular router
project [4].

E. Laboratory Examination of Routing Protocols

Examination of how routers exchange routing table informa-
tion is carried out by experimenting with routing information
protocol (RIP) and then the routing protocol open shortest path
first (OSPF) in the network topologies shown in Figs. 3 and 4.1

By administratively bringing down a link and then later bringing
it back up, one may examine the verbose output from the routing
protocols (or use a packet sniffer) to watch these protocols in
action as they distribute the routing information throughout the
network. Observation and analysis of the routing protocols in
action yield a level of understanding that is difficult to obtain
through theoretical examination alone. The routing protocol in-
formation and packet formats may be observed and correlated
to the theory of how the routing protocol works.

It is not necessary to use a diverse set of routers in terms of
model numbers and manufacturers. In fact, there exist Linux
implementations of RIP and OSPF routing protocols so that in

1The routers used in these experiments are Cisco 1700, Cisco 3000, Cisco
4000, Cisco7000, and Enterasys SmartSwitch routers.

Fig. 3. RIP network configuration.

Fig. 4. OSPF network configuration.

theory one does not even need a real router. The use of this di-
verse group of routers is motivated by two main reasons. First,
since this is a “hands-on” oriented class, the instructors feel it
is beneficial to expose students to more, as opposed to fewer,
types of actual internet, infrastructure equipment. Since the in-
structors provide the instructions to students on what commands
to use on which routers and since this is not a command-oriented
class but instead a principles and practices class, the instructors
find no problems with using several different makes and models
of routers simultaneously. The second reason for using this di-
verse set of routers is that this equipment is what was available.
Recently, the class has been taught using ten routers of iden-
tical make and model (Cisco 1700). However, the instructors do

ABLER et al.: INTERNETWORKING PRINCIPLES AND DESIGN PROJECTS 221

Fig. 5. Modified protocol stack performance measurement configuration.

not believe there is an advantage except from the maintenance
and teaching-assistant “training overhead” reduction. In sum-
mary, the actual make and model of the routing equipment is not
significant except from the standpoint of students feeling more
confident from having worked with several different makes and
models of routers and having seen multiple vendor equipment
internetworking correctly. The key characteristic of the routers
is that they have an operating system (for example, Cisco IOS)
that allows configuration and troubleshooting. A pure Linux
machine environment running RIP and then OSPF routing pro-
tocols would be sufficient if actual routers were not available.

F. Experimentation With Changing the Networking
Implementation

One portion of the laboratory component of this learning en-
vironment involves modifying and recompiling the network pro-
tocol stack so as to change the behavior of the Internet im-
plementation. One good experimental application of internet-
working principles is to change the priority of TCP data with
respect to UDP data. With TCP flow control, the Internet char-
acteristically reduces the amount of TCP data injected into the
network when there is congestion. UDP on the other hand, con-
tinues transmission at its data rate oblivious to congestion in the
Internet. It is instructive to characterize the effects of TCP and
UDP in the same network by using the TCP and UDP traffic
generators written earlier. Fig. 5 shows an example configura-
tion where routing and the interaction of these protocols may
be observed. After running TCP and UDP traffic at various si-
multaneous injection rates, it is possible to observe that UDP
can in effect choke off TCP traffic at a bottleneck, such as a
Linux PC-based router. To attempt to solve this problem, one
can go into the Linux network protocol software and change
its operation so that TCP data is given first priority. Then any
time there is UDP data, the UDP data will be forwarded only
if there is no TCP data desiring output bandwidth. The per-
formance of the network is completely changed. After making
this modification, one can use the software traffic generators
written earlier in this learning environment to characterize this
new behavior. One can observe that TCP flows now have the
ability to completely choke off UDP flows. This situation is, of
course, equally undesirable. As a final experimental examina-
tion, one can again modify the Linux network protocol source
code to include a class-based queuing methodology to demon-
strate how “fairness” may finally be achieved in an internet-
working environment that has more than the basic function-
ality typically found in the present Internet infrastructure. Class-
based queuing capability is included in the distribution of the

TABLE I
EXAMPLE LABORATORY ACTIVITIES

Linux kernel. Table I shows example laboratory activities for a
typical semester long environment. Examples of laboratory as-
signments may be found in [5].

III. CLASSROOMINSTRUCTIONAL ENVIRONMENT

The prerequisites for this class are a C programming class
and sometimes a previous networking survey class at the level
of, for example [6]. However, students who have had no pre-
vious exposure to an introductory network survey class do just
as well. This fact may be the result of the high level of self-
taught networking competency found in highly motivated, net-
working-oriented students.

The classroom instructional aspect of this environment re-
quires several different instructional themes. The first theme
is C programming using the sockets application-programming
interface. Allocation of three weeks to sockets-level program-
ming has proven sufficient to yield sufficient “sockets program-
ming” sophistication for students with some previous C pro-
gramming experience. The course lecture topics in this compo-
nent of the class include clients and servers, example “sockets
programs,” elementary TCP sockets, client server examples, el-
ementary UDP sockets, and discussions on how to generate both
TCP and UDP traffic for evaluation of network performance.

The second theme required in the classroom instructional
component is that of the details of internetworking and TCP/IP.
These topics are typically covered in traditional university
networking classes, thus the level of detail required here is
dependent upon other classes that are used as prerequisites to
this environment. The subject areas and the order in which
they are presented are totally driven by the laboratory activities
listed in Table I. There are numerous excellent traditional
university-oriented networking textbooks available that cover
these fundamentals and principles. One classic example is [6].
A typical set of lecture topics for this component would include
TCP/IP protocol architecture, file transfer protocol details, TCP
bulk-data flow, bandwidth-delay product, slow start, timeout
and retransmission, congestion avoidance, fast retransmission,
examination of tcpdump traces, address classes, physical ad-
dresses, IP routing, ethernet, subnet addressing, subnet masks,

222 IEEE TRANSACTIONS ON EDUCATION, VOL. 46, NO. 2, MAY 2003

subnets with variable length masks, supernetting, classless
interdomain routing, IP forwarding, routing versus switching,
routing protocols routing information protocol, open shortest
path first, and border gateway protocol.

The third theme in the classroom instruction is how internet
functionality is implemented in an operating system. Using
Linux as an example implementation, tracing an internet pro-
tocol datagram through the machine allows one to see exactly
what is involved in the implementation of an internetwork. The
goal of this theme includes the ability to understand how to
change the C code implementation for the last two laboratory
exercises, shown in Table I. This component of the class in-
volves the case study of tracing the life of a packet through the
Linux operating system. The lectures provide both an overview
of this process and a detailed study of the data structures and
line-by-line examination of the source code involved.

There is no single textbook that can be used for this entire en-
vironment. For the firstclassroom, instructional component [7]
is used; for the second, component [8] is used; and then for the
third, component class notes are used. There are several books
appearing that are beginning to address the third instructional
component [9], [10], but none of them yield sufficient detail into
the networking aspects of the Linux kernel. Thus, this material
has to be derived from a detailed study of the source code.

The students are assessed throughout the class by three
written exams, a final written exam, and ten laboratory assign-
ments. Written reports are required for some of the laboratory
assignments, particularly in labs where interpretation of col-
lected performance results or trouble shooting of the routing
protocol is required as a part of the lab assignment. An example
weighting of the student assessment components is 20% for
each of the written exams, and the remaining 20% for the
laboratory assignments and written reports.

IV. CAPSTONEDESIGN EXPERIENCE

When the previous semester-long class has been completed,
an additional semester-long senior capstone design experi-
ence is available. This follow-on course is one option that
satisfies the major design project requirement for electrical
engineering (EE) and computer engineering (CmpE) majors.
“Working in teams, students complete a semester-long project
requiring specification, design, implementation, and testing.
Formal written project proposals and final reports are required
and all students participate in oral presentations. Projects
incorporate engineering standards and realistic constraints
that include most of the following considerations: economic,
environmental, sustainability, manufacturability, ethical, health
and safety, social, and political. Projects for this course are
based upon student’s prior coursework in electrical and com-
puter engineering” [12]. There is no lecture component in
this capstone design experience. “The EE and CmpE design
experiences are intended to provide a ‘capstone’ or major
design experience that culminates the students’ undergraduate
engineering program, integrating their accumulated technical
knowledge with practice-oriented aspects of design” [12].
The experience consists of a required preparatory course,
project engineering and professional practice [13], plus a

capstone design environment. This experience is the primary
mechanism for satisfying the following portion of ABET
general engineering criterion 4, professional component [14]:
“Students must be prepared for engineering practice through
the curriculum culminating in a major design experience based
on the knowledge and skills acquired in earlier coursework and
incorporating engineering standards and realistic constraints
that include most of the following considerations: economic;
environmental; sustainability; manufacturability; ethical; health
and safety; social; and political. Additionally, this experience
is one of the elements for demonstrating that graduates possess
the attributes required by ABET general engineering criterion
3, program outcomes and assessment” [14]. “Assessment of
the effectiveness of the design experiences in achieving these
objectives must be documented, primarily through appropriate
written project reports. Use of additional methods, such as
project reviews by industry partners, is also appropriate and
desirable” [14].

Typical examples of resulting projects are an internetwork
packet sniffer with a graphical interface to control and display
the collection of Internet packets with decoding of the packet
contents; a mobile internet telephone implemented with a bat-
tery-powered, single-board computer using voice over IP; a net-
work security monitor that alerts a network manager automati-
cally by email when access violations or unusual activity occurs;
a wireless Linux protocol sniffer using wireless ethernet; an
internet vulnerability scanner; a network performance monitor
that shows bottlenecks and throughput; a “Bluetooth” wireless
file transfer utility; and a personal digital-assistant-controlled
X10 remote electronic equipment controller.

Performance measurement metrics of the students include a
written and oral presentation for project proposal, critical design
review, and final project review as shown in Figs. 6–8. Figs. 6–8
are included only to give an example of the types of evalua-
tion criterion that have been applied to evaluate the project re-
sults. Weekly email status reports are required and a peer re-
view process involving all participants assigning other partici-
pants grades at each of the three course milestones is also con-
sidered in the final grade assignments. Group meetings with the
instructor each week are required.

The laboratory equipment required in the follow-on class in-
cludes the equipment available for the previous class, as de-
scribed in detail previously, and additional equipment such as
single-board, battery-capable computers, wireless 802.11 cards,
Bluetooth cards, etc. The single-board computers are available
for those networking implementations that are required to be
mobile. The single-board computers run the Linux operating
system and are capable of using wireless 802.11 cards, for ex-
ample. Projects that require mobility and global positioning ca-
pability may use this type of platform.

V. CONCLUSION

The learning environment presented in this paper was
created out of a need to prepare undergraduate students for
both industrial and research orientations. A common interview
technique for industrial positions involves asking technical
networking questions. Asking technical questions is a typical

ABLER et al.: INTERNETWORKING PRINCIPLES AND DESIGN PROJECTS 223

Fig. 6. Example proposal evaluation criteria.

interview technique to determine if the individual is more fo-
cused on the creating of network diagrams and the configuring
routers process of networking or on the foundations of how
it really works. With the plethora of commercial networking
certificates available, it is common to find two-week wonders
who know how to configure a router but have no idea how
routing protocols really work. Individuals that have partic-
ipated in the environment described in this paper are also
prepared for a research environment, particularly when that
environment involves experimentation and prototyping of new
network techniques. This environment was created to provide
a complement to pure theoretical networking classes, enabling
networking-oriented students to gain enough experimental and
implementation skills to be able to succeed in the near term in
an internetworking design, capstone design class.

One of the major challenges encountered with this environ-
ment is the difficulty associated with the ever-changing net-
working environment. Revisions to the Red Hat Linux distri-
bution are released at a rate greater than or equal to the number
of times this class is offered. Consequently, changes and revi-
sions are required to both the laboratory exercises themselves
(that often do not work with the new operating system versions
because of networking and library revisions in the source code)
and to the source code instructional materials. As an example,
the migration from the Red Hat 6.x releases to the Red Hat 7.x
release had a major impact on this class. It is challenging to keep
up with the changes and optimizations made by the Linux net-
working community. An additional challenge is acquisition and

Fig. 7. Example critical design review criteria.

maintenance of the networking equipment used in the laboratory
component. Having obtained a single piece of certain types of
equipment (for example, the hardware traffic generator used to
perform router throughput performance measurements), the au-
thors find that bottlenecks with those pieces of equipment limit
participants throughput. Although the energy and effort associ-
ated with this learning environment is significantly larger than
with more traditional classroom instruction, the additional ben-
efit in terms of resulting networking competence is well worth
the additional costs.

One could argue that when the laboratory is functioning, it is
not necessary to upgrade Linux versions any faster than once per
year. Certainly this is a valid argument since this laboratory net-
work is separated from the remainder of the campus network.
The authors have found that there are at least two reasons for
staying “somewhat” current in the laboratory. The first reason
is that many retailers sell Red Hat distributions but only keep
the latest distribution in stock. Although it is possible to down-
load the distribution, many students prefer to purchase their own
copies for home use and related projects. When the laboratory
software version is not up-to-date, it is not possible for students
to purchase these older distributions from these retailers. The
second reason to stay somewhat current is that newer kernel ver-
sions often have new functionality that was not available in the
older kernel versions. While possible to find patches and mod-
ules that add these types of functionality, it is much better from
a logistics standpoint to have these functionalities already in-
tegrated. For example, the ethereal tool capability was manu-
ally added to older distributions. In the later ones, it is already
present.

Laboratory equipment upgrades do not all have to be all
encompassing. It is possible to upgrade individual computers.
However, when upgrading individual computers, throughput
performance tests will not work consistently over all equipment.
Running a TCP traffic generator and sink over a 600-MHz

224 IEEE TRANSACTIONS ON EDUCATION, VOL. 46, NO. 2, MAY 2003

Fig. 8. Example final project review criteria.

Linux router versus a 1.1-GHz router will yield different results.
Having hardware that is as consistent as possible throughout
the lab makes it it possible to use diverse equipment types and
still be able to implement this laboratory. Equipment upgrades
are equally important as software upgrades. However, in this
environment, the authors have upgraded software releases
four times and have upgraded the hardware only once. This
difference is mostly a result of the difficulty in finding funding

to upgrade and enhance the hardware, while software upgrades
are easier to obtain.

The instructors of the class believe that the hands-on labora-
tory-oriented environment produces an enhanced educational
result as opposed to the previous method of only theoretically
presenting the material. Student feedback indicates that the
hands-on-laboratory environment allows a level of under-
standing that is difficult to obtain from only a theoretical

ABLER et al.: INTERNETWORKING PRINCIPLES AND DESIGN PROJECTS 225

TABLE II
STUDENT EVALUATION OF CLASS AVERAGE VALUES OF: 5 = STRONGLY

AGREE, 4 = AGREE, 3 = PARTLY AGREE ANDDISAGREE, 2 = DISAGREE, AND

1 = STRONGLY DISAGREE. * = INSTITUTE SURVEY CHANGED AND NO LONGER

ASKED THESEQUESTIONS

examination of the principles. Additional student feedback on
the class is shown in Table II. The goal of graduating students
who are ready for experimental internetworking environments
has been met. Graduates of this class are ready and able to make
changes to the networking protocol stack and thus change the
behavior of existing internet implementations. There are many
situations where simulation and analytical analysis provide all
of the required results. However, when prototyping is required
to verify predicted results or enable experimental results,
students from this class are able to accomplish those tasks.
Feedback from student participants indicate that the greater
effort required to set up and maintain this type of class is well
worth the extra effort compared to a traditional networking
class, where networking equipment and a hands-on networking
environment are not involved.

ACKNOWLEDGMENT

The authors would like to thank J. Grimminger and J. Sokol,
Siemens ZT IK2 Corporate Technology Division, Munich, Ger-
many, who suggested some of the laboratory assignments. They
would also like to thank the numerous graduate teaching assis-
tants who have made excellent improvements to the laboratory
assignments. Finally, they would like to thank equipment dona-
tions and academic purchase programs from Cisco, Enterasys,
Intel, Spirent, and Wandel and Goltermann.

REFERENCES

[1] Red Hat Home Page, http://www.redhat.com,, Mar. 25, 2002.
[2] M. Muss and Army Research Lab, Baltimore, MD, “The story of the

TTCP program,”, http://ftp.arl.mil/~mike/ttcp.html, Mar. 26, 2002.
[3] E. Hall, Internet Core Protocols: The Definitive Guide. Sebastopol,

CA: O’Reilly, 2000, pp. 1–449.
[4] The Click Modular Router Project Home Page, http://www.pdos.

lcs.mit.edu/click/, Mar. 25, 2002.
[5] ECE4110 Internetwork Programming Home Page, http://users.ece.

gatech.edu/owen/academic.htm, March 26, 2002.
[6] W. Stallings, Data and Computer Communications. Upper Saddle

River, NJ: Prentice–Hall, 2000, pp. 1–810.
[7] R. Stevens,Unix Network Programming, 2d ed. Upper Saddle River,

NJ: Prentice–Hall, 1998, vol. 1, pp. 1–1009.
[8] , TCP/IP Illustrated. Reading, MA: Addison–Wesley, 1994, vol.

1, pp. 1–576.
[9] J. Crowcroft and I. Phillips,TCP/IP & Linux Protocol Implementation:

Systems Code for the Linux Internet. New York: Wiley, 2001, pp.
1–925.

[10] S. Maxwell, Linux IP Stacks Commentary. Scottsdale, AZ: Coriolis
Open Press, 2000, pp. 1–591.

[11] M. Beck, H. Bohme, M. Dziadzka, U. Kunitz, R. Magnus, and
D. Verworner, Linux Kernel Internals, 2d ed. Reading, MA: Ad-
dison–Wesley, 1996, pp. 1–438.

[12] Georgia Inst. Technol. School of Elect. Comp. Eng. Undergraduate
Programs home page, http://www.ece.gatech.edu/academics/under-
grad/index.htm, Mar. 25, 2002.

[13] J. L. A. Hughes, “Incorporating project engineering and professional
practice into the major design experience,”Proc. 31st ASEE/IEEE Fron-
tiers in Education Conf., pp. 16–21, 2001.

[14] J. L. A. Hughes, “2000–2001 criteria for accrediting engineering pro-
grams,” Accreditation Board Eng. Technol., Inc., Eng. Accreditation
Comm., Baltimore, MD.

Randal T. Abler (M’00) received the B.E.E., M.E.E., and Ph.D. degrees from
the Georgia Institute of Technology, Atlanta, in 1986, 1992, and 2000, respec-
tively.

He is currently an Assistant Professor with the Georgia Tech Regional Engi-
neering Program, Savannah. His research interests include the session initiation
protocol, quality of service implementations, and internet technology in support
of distributed education.

Henry L. Owen (M’79) received the B.S.E.E., M.S.E.E., and Ph.D. degrees
from the Georgia Institute of Technology, Atlanta, in 1979, 1983, and 1989,
respectively.

He is currently an Associate Professor with the School of Electrical and
Computer Engineering, Georgia Institute of Technology. His research interests
include network security, network protocol stack implementations, traffic
engineering in multiprotocol label switching-enabled wireless IP networks,
and internetworking.

George F. Riley(M’00) received the B.S.E.E. degree from the University of
Alabama, Birmingham, in 1972, the M.S.C.S. degree from the Florida Institute
of Techology, Melbourne, in 1996, and the Ph.D. degree in computer science in
from the Georgia Institute of Technology, Atlanta, in 2001.

He is currently an Assistant Professor with the School of Electrical and Com-
puter Engineering, Georgia Institute of Technology. His research interests in-
clude large-scale simulation methods, in particular, as they apply to computer
networks.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

