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Predicting Student Performance in an Educational

Game Using a Hidden Markov Model
Manie Tadayon Greg Pottie

Abstract—Contributions: Prior studies on education have
mostly followed the model of the cross sectional study, namely,
examining the pretest and the posttest scores. This paper shows
that students’ knowledge throughout the intervention can be
estimated by time series analysis using a hidden Markov model.

Background: Analyzing time series and the interaction between
the students and the game data can result in valuable information
that cannot be gained by only cross sectional studies of the exams.

Research Questions: Can a hidden Markov model be used to
analyze the educational games? Can a hidden Markov model be
used to make a prediction of the students’ performance?

Methodology: The study was conducted on (N=854) students
who played the Save Patch game. Students were divided into
class 1 and class 2. Class 1 students are those who scored lower
in the test than class 2 students. The analysis is done by choosing
various features of the game as the observations.

Findings: The state trajectories can predict the students’
performance accurately for both class 1 and class 2.

Index Terms—education, game, hidden Markov model, predic-
tion, time series.

I. INTRODUCTION

EDUCATIONAL video games have received much atten-

tion in recent years due to their positive impacts on

students’ learning and their cognitive skills [1]. However, just

because a game has educational content and is engaging does

not mean it will be effective [2]. To prove its effectiveness,

it needs to be further tested and analyzed. Fortunately every

action, time click, and interaction in the game can be recorded.

This provides a good opportunity for researchers to design a

more sophisticated model and build more intelligent platforms.

Time series prediction has a rich history in domains such as

speech processing, the stock market, and weather forecasting.

Methods have been developed to perform robust and reliable

forecasting using various machine learning and optimization

algorithms [3], [4].

The hidden Markov model (HMM) is a popular method to

model the time series data because of its rich mathematical

structure and the availability of many practical algorithms for

computing model components [5]. Numerous papers such as

[5], [6], [7], [8], [9] about the HMM applications in speech, the

stock market, and biology have been published; however there

is a limited amount of work done in predicting the player’s

strategies or actions in a game using the HMM. For example,

in [10] the authors incorporated a two state HMM along with
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dynamic programming to classify and segment a soccer video

game. In [11] the authors used a five state HMM to analyze the

individual differences in game behavior and used the logistic

regression for the prediction. They showed that the HMM

based prediction using sequential data gives better accuracy

than a prediction using the aggregated data. Some work has

been done on modeling video games using dynamic Bayesian

networks (DBN), such as [12] and [13]. They focus on

semantic analysis of sport video games. Considerable research,

e.g. [14], [15], [16], [17], [18], and [19] has been conducted

on student modeling and designing intelligent tutoring systems

(ITS) using Bayesian and belief networks. In [18] and [19]

the authors used the Bayesian knowledge tracing (BKT) to

model and evaluate student performance. BKT is a two state

HMM where the probability of forgetting a skill is set to zero.

However, to the best of our knowledge this is the first work

that analyzes student performance in educational video games

using an HMM.

The contribution of this paper is to present a novel approach

to predict student performance using a video game as opposed

to the exam.

The rest of this paper is organized as follows. Section II

reviews the HMM algorithm. Section III describes the game

dataset used in this paper. Section IV describes the problem

formulation as well as the prediction methods. Section V

presents and discusses the results. Section VI concludes the

paper and suggests a future work.

II. HMM ALGORITHM

In this section, HMM algorithms are briefly reviewed. Both

the discrete hidden Markov model (DHMM) as well as the

continuous hidden Markov model (CHMM) are discussed. The

HMM is the extension of the Markov process in which the

observations are a probabilistic function of the states. In an

HMM, states are considered as hidden and should be inferred

by the sequence of observations.

The HMM is characterized by the following:

N: Number of the hidden states. Although this is unknown

since the states are hidden, it usually can be initialized to a

reasonable number depending on the problem and the dataset

and later can be learned using various statistical analysis tools

which will be discussed later.

M: Number of the observation symbols per state.
−→
S : State sequence where

−→
S = (s1, s2, ...sT ), T is the

length of the sequence, and each si ∈ {1, 2, ..., N}.
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−→
O : sequence of the observation symbols where

−→
O =

(o1, o2, ...oT ) and each oi ∈ {1, 2, ...,M}.

A: State transition probability. It defines the probability of

going from state i to the state j and is denoted by

aij = p(st+1 = j|st = i) (1)

B: Observation distribution per each state, which is denoted

as follows:

bi(k) = p(ot = k|st = i) (2)

−→π : Initial state distribution that is defined as follows:

−→πi = p(s1 = i) (3)

λ: HMM parameters together are usually denoted by the

following:

λ = (A,B,−→π ) (4)

The above equations together can be used to fully define any

HMM with discrete observations.

Forward and backward algorithms [5] are used to calculate

P (
−→
O |λ), the probability of observing a sequence given λ.

If the time series is not labeled and the mapping between

the observations and the states is not available, then HMM

parameters should be estimated using the Baum-Welch or EM

algorithm [20]. If the observations are continuous (CHMM)

as opposed to discrete, the emission probability distribution

should be adjusted to account for this change. Continuous

observations are modeled by fitting the probability density

functions (pdf) to the data. A Gaussian distribution or mixture

of Gaussian distributions are typically used for modeling the

data.

If the observations for each state can be modeled using a

single Gaussian distribution, then equation (2) will be changed

to the following:

bi(x) = p(x|st = i) = N(x;µi,Σi) (5)

In equation (5), µi and Σi are the mean and the covariance

matrix of the Gaussian distribution for state i respectively.

If a single distribution is not a reasonable fit to the data, then

a mixture of Gaussian distributions can be used to model the

observations. In this case, equation (6) can be used to model

the observations for each state.

bi(x) = p(x|st = i) =
M∑

m=1

cimN(x;µim,Σim) (6)

cim is the mixture coefficient and determines the weight each

component has in modeling the data. µim and Σim are the

mean and covariance matrices of each mixture component

corresponding to the state i.

Decoding the optimal state sequence given the observation

can be done using the Viterbi algorithm [21]. It finds the

sequence of the states that best explains the observed data:

S∗ = argmaxSP (S|O, λ) (7)

III. DATASET

The dataset used in this paper belongs to the Save Patch

(SP) game designed by the National Center for Research on

Evaluation, Standards, and Student Testing (CRESST). This

game is one out of four fraction games designed to teach the

concept of a unit in rational numbers. It is intended to teach

the following two concepts: 1- Rational numbers are defined

relative to a whole unit; 2- Rational numbers can be added

only if they have a common denominator [22].

Along with the four games, a pretest and a posttest were

designed to test the students’ understanding of the concepts

before and after each game. A set of the questions targeted by

each game in the posttest and pretest is carefully identified.

This is very beneficial since it permits each game to be

analyzed and verified independently of all the other games.

IV. PROBLEM FORMULATION

In this section, the problem formulation and the prediction

algorithm using the HMM are discussed. Prediction begins

by dividing the students according to their score in the SP

game into two classes: Class 1 are those who score low in the

questions targeted by the SP game and Class 2 are those who

score high in those questions. Each class is trained separately

using the HMM, and the optimal parameters are determined

by the model selection algorithms, which will be discussed

later in the section. Testing or decoding is done by running

the Viterbi algorithm on the observation sequences.

Akaike Information Criterion (AIC) and Bayesian Informa-

tion Criterion (BIC) are the model selection algorithms that are

used to combat overfitting by introducing the penalty terms.

AIC is defined by the following formula:

AIC = −2 lnL+ 2k (8)

where lnL is the log likelihood function and k is the number

of parameters in the model; therefore 2k is the penalty term.

BIC is another well known model selection algorithm that

measures the trade off between the model fit and the complex-

ity. The formula for the BIC is given below:

BIC = −2 lnL+ k lnN (9)

lnL and k are the same parameters as AIC, and N is the

number of observations. By comparing equations (8) and (9)

it appears that BIC has a larger penalizing term. Therefore it

penalizes the complex model more than AIC.

The prediction problem using the HMM is solved as fol-

lows: Hidden states are defined to be the students’ mastery

levels, and the goal is to predict their final mastery level as

they go through different levels of the game. This can be

formulated as predicting the final mastery level Ŝ given all

the past mastery levels (s1, s2, ...sn).
The following techniques can be used to perform the

prediction.

1) Naive: This is the most basic method in which the

predicted value is simply equal to the last observed value

of the time series.

Ŝ = sn (10)
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TABLE I
SMOOTHING COEFFICIENTS FOR VARIOUS α

α = 0.05 α = 0.1 α = 0.5 α = 0.9

sn 0.05 0.1 0.5 0.9

sn−1 0.0475 0.09 0.25 0.09

sn−2 0.0451 0. 0.081 0.125 0.009

sn−3 0.0429 0.0729 0.0625 0.0009

sn−4 0.0407 0.06561 0.03125 0.00009

2) Linear averaging: This means that the final predicted

value is the average of all the other mastery levels.

Ŝ =

∑i=n

i=1
si

n
(11)

One extension to this method is to perform averaging

over a window of time length p, which means to consider

only the most recent p values.

Ŝ =

∑i=n

i=n−p+1
si

p
(12)

Another extension of this method is the exponential

smoothing. The idea is to perform the linear averaging

by choosing larger weights for the most recent values

and smaller weights for the distant values. This is

described by the following formula:

Ŝ = αsn + α(1− α)sn−1 + α(1− α)2sn−2 + ...

0 ≤ α ≤ 1 (13)

Equation(13) can also be written recursively as follows:

Ŝn = αsn + (1− α)Ŝn−1

0 ≤ α ≤ 1 (14)

3) Mode: This means that the final mastery level is the

mastery level that appears most in the sequence. Math-

ematically this can be represented as follows:

Ŝ = argmax
j

i=n∑

i=1

1(Si = j) (15)

α in the equation (13) and (14) is referred to as the smoothing

constant. It is a parameter and is selected based on how

important are the past values compared to the more recent

values in a given time series. For example Table I shows

the single exponential smoothing coefficients for the five most

recent values in a time series.

As Table I shows, a smaller value of α puts more weight

on the more distant values and larger α put more weight on

the more recent values of a time series.

V. RESULTS AND DISCUSSIONS

In this section, the results for the prediction task described

in the last section are presented and discussed. The prediction

is done by the DHMM by discretizing the observations to a

certain number of bins using the domain knowledge or the

kmean algorithm [23]. Since the HMM training is done using

expectation maximization (EM), and EM might converge to

the local optimum instead of the global optimum, multiple

initial conditions are used to test the algorithms and the best

model is selected using the AIC or BIC. The prediction is

performed under the following cases:

1) The total number of attempts per level is used as the

observations.

2) The total number of moves per level is used as the

observations.

Case 1: Total number of attempts per level is used as the

observation.

The observations are discretized (DHMM) to four levels

according to the following rules: 1 or 2 attempts per level is

label 1; 3 or 4 attempts is label 2; 5,6 or 7 attempts is label

3; and anything above is label 4. According to the Tables II

and III that provide the results for the model selections using

the BIC algorithm, training is done by assigning the number

of states (Q) to be 3 with the initial condition to be 35 for the

class 1 and Q=2 with initial condition=26 for the class 2. The

goal is to train two separate HMMs with the above parameters

for the class 1 and the class 2 and make the prediction of the

final mastery level and compare it to the class label.

For instance consider the following examples in Tables IV,

V and VI.

Class 1: Table IV shows an example of a game trajectory for

a student who finishes four levels of the game and obtained 1.5

out of 8 in the posttest. For class 1 students, 1 in the “State

Sequence” column indicates the lowest mastery level and 3

indicates the highest mastery level. Since there are 3 states,

score in the [2,3] is mapped to label 2 and scores in the [1,2)

is mapped to label 1. The following cases illustrate how final

mastery level is calculated using the methods discussed in the

last section.

1) Naive: Ŝ = s4 = 1. This method ignores all the past

states and makes the predicted value to be the most

recent state.

2) Average: Ŝ = 1+1+1+1

4
= 1. This method assigns equal

weight to each state and could be the best prediction

method for the game since levels of the game are inde-

pendent of each other and should be treated separately.

3) Mode: Ŝ = 1. This method predicts the final value to

be the state that is repeated the most.

Table V shows another example of comparison between the

posttest and the state trajectories for the class 1 students. The

final prediction for this student is done as follows:

1) Naive: Ŝ = s42 = 1. This method predicts the class

label correctly but it ignores all the past states and does

not take any past performance into the account.

2) Average:

∑
i=42

i=1
si

42
= 1.81. Since 1.81 is less than 2

therefore the predicted label would be 1.

3) Mode: Ŝ = 1. The predicted label using this method is

also 1, since 1 is repeated more than any other states.

Class 2: Table VI shows an example of a student with ID

1627 in class 2 who scored 6.17 out of 8 in the posttest and

completed 49 levels of the SP game. Scores in the [1.5,2] are

mapped to label 2 and scores in [1,1.5) are mapped to label

1. The final prediction for this student is as follows:
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TABLE II
BIC FOR CLASS 1 IN CASE I

Row Number Initial Condition BIC Number of States

1 1 21885 2

2 26 21720 3

3 35 21636 3

4 55 21709 3

5 64 21779 4

6 100 21880 2

TABLE III
BIC FOR CLASS 2 IN CASE I

Row Number Initial Condition BIC Number of States

1 1 17716 2

2 26 17538 2

3 35 17541 4

4 55 17557 3

5 64 17631 4

6 100 17726 2

TABLE IV
HMM TRAJECTORY FOR CLASS 1 STUDENT IN CASE I

ID Posttest State Sequence

1994 1.5 1111

TABLE V
HMM TRAJECTORY FOR CLASS 1 STUDENT IN CASE I

ID Posttest State Sequence

1764 2.5 1111111111111111233333

33333333333211111111

TABLE VI
HMM TRAJECTORY FOR CLASS 2 STUDENT IN CASE I

ID Posttest State Sequence

1564 6.5 2222122222222221222222222222

222222222122222121221

1) Naive: Ŝ = s49 = 1. Since 1 < 1.5 the predicted label

is 1. This is an example of forecasting error since only

the last state is used for the prediction.

2) Average:

∑
i=49

i=1
si

49
= 1.88. Since 1.88 is greater than

1.5 the predicted label would be 2.

3) Mode: Ŝ = 2. Since 2 > 1.5 the predicted label is 2.

Table VII summarizes the accuracy for the various methods

discussed in the last section by comparing the class label to the

predicted value from the state trajectory. According to Table

VII the best prediction accuracy for class 1 is for the naive

method and the best prediction accuracy for class 2 is for

the average and the mode methods. Among all the prediction

methods described in the last section the average method is

the most reliable one; this is because the naive method only

accounts for the most recent mastery level and ignores all

the past values. This cannot be a reliable method for the

prediction using a game since different levels of the game

have different game mechanics and difficulties. Therefore,

TABLE VII
PREDICTION ACCURACIES FOR VARIOUS METHODS IN CASE I

Method Class I Accuracy Class II Accuracy

Naive 97.48% 86.09%

Average 86.55% 100%

Mode 86.55% 100%

every level should make a contribution to the final prediction.

The average method is also more informative and provides

more detail than the mode method. To better understand this

consider the following cases for two different students who

each finish five levels of the game:

• Student A trajectory is 11222.

• Student B trajectory is 22222

For both students A and B the predicted label is 2 using both

the mode and the average methods. However for the student

A the score using the average method is 1.6 while for student

B the score using the average method is 2. This shows that

student B has a better performance that student A in the game.

This information cannot be gained using the mode method

since in both cases the state 2 is repeated the most.

Case II: Total number of moves per level is used as the

observations.

The observations are discretized to four levels according to

the following rule: An expert plays all the levels of the game

and the total number of moves to finish each level is recorded,

then there is an α = 1.5 which can be called as a compensation

factor which compensates for the game mechanics and the

game difficulties. The compensation factor is multiplied by

total moves per level for the expert and the observations are

discretized according to this rule per level since different levels

might have different difficulties. According to the Tables VIII

and IX the training is done by letting the number of states to

be 3 for both class 1 and 2 and the initial conditions to be 35

for the class 1 and 26 for the class 2. Similar analysis to case

I is done here to predict the final mastery level.

For instance consider the following examples in Tables X

and XI.

Class 1: Table X shows an example of a class 1 student with

ID 1768 who scored 3.88 out 8 in the posttest. The predicted

mastery level using all three methods is 1. This is because 1 is

repeated more than other states, the most recent state is 1 and

the average value of the state trajectory is 1.85 which is less

than 2. Although all three methods predict the final mastery

level correctly, the average method is more informative since

it provides more detail that the given student has done well on

some levels since his score is close to the boundary between

the class 1 and the class 2.

Class 2: Table XI shows another example where the naive

method can make an incorrect prediction. The mode or average

methods predict the final mastery level to be 2 while the naive

method predicts the final value to be 1 since the most recent

state is 1.

Table XII presents the prediction accuracies for various

algorithms for the class 1 and the class 2 students. According

to Table XII the highest prediction accuracy for class 1 is for
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TABLE VIII
BIC FOR CLASS 1 IN CASE II

Row Number Initial Condition BIC Number of State

1 1 25895 2

2 26 25850 7

3 35 25596 3

4 55 25613 3

5 64 25682 4

6 100 25872 2

TABLE IX
BIC FOR CLASS 2 IN CASE II

Row Number Initial Condition BIC Number of State

1 1 24462 2

2 26 24206 3

3 35 24239 4

4 55 24231 3

5 64 24315 4

6 100 24456 5

TABLE X
HMM TRAJECTORY FOR CLASS 1 STUDENT IN CASE II

ID Posttest State Sequence

1768 3.88 211111111111111123333333333

333333333211111111111

TABLE XI
HMM TRAJECTORY FOR CLASS 2 STUDENT IN CASE II

ID Posttest State Sequence

1573 7.5 222333333333333123333333123333

33123333122233123331

TABLE XII
PREDICTION ACCURACIES FOR VARIOUS METHODS IN CASE II

Method Class I Accuracy Class II Accuracy

Naive 89.92% 92.17%

Average 75.63% 100%

Mode 76.47% 100%

TABLE XIII
STATISTICAL RESULTS FOR AVERAGE METHOD

Case I Case II

Accuracy 93.16% 87.61%

Recall Class 1: 86.55% Class 1: 75.63%
Class 2: 100.0% Class 2: 100.0%

Precision Class 1: 100.0% Class 1: 100.0%
Class 2: 87.79% Class 2: 79.86%

F1Score Class 1: 92.79% Class 1: 86.12%
Class 2: 93.50% Class 2: 88.80%

AUCScore 0.8644 0.8818

the naive method and for class 2 is for the average and mode

methods. Similar to case I, it can be argued that the average

method is better than naive and is more informative than the

mode method.

Other metrics that are widely used in evaluating a model

are recall, precision, accuracy, F1 and AUC scores. Table XIII

summarizes the results for the average method for both class 1

and class 2 students under both case I and case II. High values

of accuracy, recall, precision, F1 and AUC scores under both

case I and II suggest that the proposed method can perform

strong prediction of student mastery levels.

One important topic that needs more attention is the con-

founding variables. They are defined as the variables that

affect both the independent and dependent variables and if

not controlled properly they might change the results of

experiments. For example, transfer of knowledge between the

game and the posttest is a confounding variable. Transfer

of knowledge is the application of the previously learned

skills in a new domain. This can be the main reason why

accuracy for class 1 is lower than class 2 students since class

1 students could have a harder time connecting the game

concepts to the posttest. Game mechanics and the difficulty

of the different levels are other confounding variables in the

SP game. However there might be other confounding variables

which are hard to control and might cause the change in the

exam score such as students’ interest, family situation, health

and many more. Since in this study a retrospective analysis

of the data was conducted, it was not possible to query such

factors.

VI. CONCLUSION

In this paper, the HMM algorithm is used to predict the

students’ final mastery level given their performance in var-

ious levels of the game. It was shown that despite various

confounding variables affecting the students the HMM can be

used as a promising solution in educational environments to

model students’ actions and make the prediction throughout

the game.

The results indicate that examining time series data from

the game can lead to dynamic evaluation of student mastery

levels throughout the time which cannot be obtained by exam-

ining only the posttest. This can be useful to make a timely

intervention and provide efficient feedback. In particular, such

dynamic analysis can enable students to be guided through a

sequence of concepts that build on each other, thus enabling

learning at their own pace. It can also be used to target human

intervention for students who are struggling.

While for this study there was no ground truth to quantify

student attainment throughout the game, the strong prediction

of final mastery level shows that there is considerable promise

in applying the HMM to this purpose. A focus of the future

research will be on how to design the interactive game

experience to enable such inferences to be of high quality.
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