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Abstract—While computational thinking arises as an essential
skill worldwide, formal primary and secondary education in
Latin America rarely incorporates mechanisms to develop it in
their curricula. The extent to which students in the region acquire
computational thinking skills remains largely unknown. To start
addressing this void, this article presents findings from a cross
sectional study that characterizes the computational thinking
abilities of incoming students at a Chilean university with a
strong emphasis on STEM disciplines. Based on more than 500
responses, this study provides evidence of significant inequalities
in computational thinking across gender, type of school (private
or no), and prior programming knowledge. The discussion offers
insights into how these disparities relate to contextual factors
of the country, such as a highly socio-economically segregated
educational system, public policies focused mainly on technology
access, and heavy reliance on voluntary initiatives, to develop
computational thinking. The findings can enlighten upcoming
research endeavors and formulate strategies to create a more
equitable field for students entering STEM degrees in nations
facing similar circumstances.

Index Terms—Computational thinking, engineering education,
gender, Latin America, public/private schools.

I. INTRODUCTION

OMPUTATIONAL thinking refers to the processes

required to formulate a problem and express its solution
so that an information-processing agent-human or machine—
can carry it out effectively [1]. It relates to the skills used
when generating a computational solution [1]. It includes
strategies, such as logically organizing and analyzing data,
representing data through abstractions, automating solutions
through algorithmic thinking, and constructing iteratively by
debugging previous solutions, among others [2]. Its proponents
argue that computational thinking is an ability that everyone
should acquire to thrive in a society where computer science
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is ubiquitous [3]. Researchers also assert that it is crucial to
develop it in primary and secondary education [1], [2], [4].

Australia, South Korea, Finland, and other countries in
the Asian Pacific and Europe have modified their school
curricula [5], [6], [7], [8] to develop computational thinking
abilities and use programming to boost these skills [9]. Other
initiatives worldwide have fostered the development of com-
putational thinking in schools [6], [10] by allowing students to
earn academic credits and skip introductory computer science
courses at university [11].

However, these trends are still developing in Latin America
and the level to which students in the region acquire com-
putational thinking skills remains largely unknown. There
have yet to be substantial changes in curriculum design to
introduce computational thinking in the region, even though
several efforts are leading in that direction in Argentina, Brazil,
and Uruguay [12]. In Chile, schools can offer computational
thinking as an optional course in secondary education [13].
Up until now, most initiatives in Latin America are iso-
lated attempts by foundations, universities, and schools to
promote computational thinking by offering, for example,
programming workshops [14]. While these actions have
attracted significant interest [15], the effectiveness of this
kind of interventions varies considerably according to a recent
meta-review [16].

This work seeks to provide evidence of the develop-
ment of computational thinking skills among students who
have finished high school in a Latin American country
where computational thinking is not a compulsory subject.
The first goal is to understand if students have otherwise
developed their computational thinking. The second goal is
to assess whether there are inequalities in the achievement
of these skills across gender and type of school (private or
not).

Prior work has reported mixed evidence regarding a gender
gap in computational thinking. There seem to be gender
inequalities in computational thinking that broaden as time
goes by during primary and secondary school [17]; however,
such inequalities are not observed among students who under-
took certain types of training [18], [19] and those enrolled in
first-year engineering courses [20], [21].

Besides, related research hints that not only gender but
also other students’ characteristics may be associated with
inequalities in computational thinking. Studies support that
racial structures and socioeconomic stratification play a role
in the participation and development of related subjects, such
as programming, computing, and sciences. Therefore, there is
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a need to deepen the research on these matters in relationship
to computational thinking.

Evidence has shown that the marginalization of certain
social groups relates to the disparities in other STEM subjects.
Working toward equality in these subjects early on is expected
to result in more people enrolling in STEM degrees, including
various groups, who can contribute diverse cultural assets
to these fields. Their inclusion has multiple benefits. For
example, it can lead to new solutions for problems that
affect marginalized communities [22], [23]. This study seeks
to take initial steps in examining whether such disparities in
computational thinking exist and how they may develop in a
Latin American country where training these skills is optional.

This article delves into an assessment of the computational
thinking exhibited by 549 students who were recently admitted
to undergraduate programs at a Chilean university exclusively
dedicated to STEM disciplines. The study’s findings reveal
high levels of computational thinking among these students,
yet they also unveil substantial disparities based on gender and
type of school.

Before enrolling in this STEM-focused university, male-
identifying students exhibited higher-computational thinking
scores than their female counterparts. Furthermore, incoming
students who had received their high school education in pri-
vate institutions outperformed those who had attended public
or subsidized schools. Moreover, possessing prior program-
ming knowledge was positively associated with elevated levels
of computational thinking. Importantly, these observed effects
remained statistically significant even after accounting for
other relevant variables. The authors discuss how the results
can inform future research and help shape strategies aimed
at fostering fairer conditions for students entering STEM
programs in countries with similar contextual factors.

The remainder of this article is organized as follows.
Section II summarizes related work and states the research
questions. The next sections present a cross sectional study
of the computational thinking skills of students recently
accepted into an STEM-focused university in Chile. Section III
describes the research method. Section IV explains the results.
Section V discusses the findings. Finally, Section VI provide
conclusions.

II. RELATED WORK AND RESEARCH QUESTIONS

This section outlines the current state of the art and
practice regarding computational thinking in Latin America
and Chile, aiming to establish the contextual background
for this work. Subsequently, the researchers undertake a
comprehensive review of various inequalities that could impact
the development of computational thinking, both in general
and specifically within the region where they conducted their
study. At the end of each section, the authors articulate the
research question that will be explored in this study.

A. Computational Thinking in Latin America and Chile

Experts widely recognize the growing significance of com-
putational thinking skills in effectively navigating the digital
landscape. Research has found a strong correlation between
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these skills and academic performance [24]. Efforts aimed at
nurturing computational thinking have proven advantageous
not only for students in STEM fields but also for those
pursuing studies in the humanities and social sciences [25]. As
a result, the development of computational thinking has gained
substantial importance within educational systems across the
globe [5], [6], [7], [8].

The rising demand for developing computational thinking
has not gone unnoticed in Latin America, which has seen
an increase in actions designed to foster these skills in
various student populations. A systematic literature review
reveals that academic research and computational thinking
efforts have grown in Latin America since 2013 compared
to little to no activity earlier [26]. Over the last ten years,
the number of initiatives has rapidly increased. Brazil is the
leader in the region regarding policies and nongovernmental
programs, while Chile and Uruguay are the most active in
research [26].

Most computational thinking initiatives in Latin America
are workshops and extracurricular activities [12], [27]. Even
though Argentina, Brazil, and Uruguay are heading toward
curricula reforms in this regard [12], they still need to imple-
ment them. Meanwhile, students have had access to numerous
voluntary experiences related to computational thinking [12].
This scenario of multiple independent initiatives has brought
new challenges to the region. There need to be more teachers
who are proficient with digital tools, and, like the rest of
the world, there need to be better conceptualizations of what
computational thinking entails in public policy. So far, current
autonomous efforts are inconsistent with one another [26].

Similarly, in Chile, the initiatives primarily consist of
extracurricular activities or workshops offered by upper-level
educational institutions and nongovernmental programs. For
example, several universities offer volunteer programming
workshops to primary or secondary school students,"? and
nongovernmental organizations run similar programs, such as
“Code your ideas” (“Programa Tus Ideas” in Spanish).

The Chilean Digital Agenda 2020 declares the population’s
need for digital education [28]. Nevertheless, government
initiatives primarily focus on supplying students with com-
puters to address this concern [29]. The only survey related
to the use of technology by students in the country, which
last took place in 2013, showed that only 1.8% of students
were at an advanced level when using information and
communication technologies to carry out tasks related to
learning and knowledge [30]. Few programs are related to
computational thinking, programming, or computing science.
The most recent one, the National Plan of Digital Languages,*
focuses on teachers rather than students. It aims to promote the
integration of computational thinking in schools by training

lProgramming workshops at Universidad Técnica Federico Santa Maria.
Retrieved on July 10, 2023 from: https://ocilabs.cl/.

2Programming workshop at Universidad de Chile. Retrieved on
July 10, 2023 from: https://comunicaciones.dcc.uchile.cl/news/691-taller-de-
programacion-para-escolares-aprendamos-a-programar-de-manera-ludica/.

3Website of the “Code your ideas” program. Retrieved on July 10, 2023
from https://programatusideas.cl/.

4Description of the National Plan of Digital Languages. Retrieved on July
10, 2023 from https://sitios.mineduc.cl/lenguajesdigitales/que-es-el-plan.html.
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teachers, enabling them to introduce concepts and skills related
to computational thinking. Additionally, schools can offer
computational thinking as an optional course in secondary
education [13].

Therefore, the predominant volunteer-driven nature of most
initiatives directed at school students in Chile and Latin
America prompts the question of whether students who have
not undergone compulsory computational thinking training
have developed these skills. To the best of the authors’ knowl-
edge, computational thinking levels among school students in
Chile and other countries in Latin America have yet to be
uncovered. Thus, the first research question is as follows.

RQ-1: To what extent have computational thinking skills

developed among students within an educational
system that does not mandate training in these
skills?

B. Inequalities in Computational Thinking and STEM

In addition to the issues of implementing computational
thinking in the educational systems, there is also the challenge
of inequality. In this section, the authors revise prior work
related to disparities in the development of computational
thinking skills and other STEM-related subjects.

Previous studies have identified gaps across gender and
school grade (or age). [17] investigated 1251 Spanish stu-
dents attending public and private schools, ranging from
grades 5 to 10. They observed noteworthy disparities between
genders solely in grades 7 to 10, where male students out-
performed their female counterparts in the assessment. This
divergence became more pronounced in the higher grades,
indicating an escalation of the gender gap as educational levels
advanced [17].

Other studies have confirmed this pattern. A research project
in the U.K. with 119 upper-secondary students observed that
women achieved lower-computational thinking performance
than men [31]. Another research study identified a gender
disparity within a sample of 153 high school students in
Singapore (124 males and 29 females). The majority (60%)
of male students were assessed as possessing high or very
high levels of computational thinking skills, whereas only 7%
of female students exhibited similar proficiency [32]. Besides,
a study in Hong Kong with 13.600 primary school children
showed that the students’ computational thinking abilities
increased with age and that boys performed slightly better
than girls [33]. In the USA, a project found a gender gap
even at much younger ages. In an eight-week robotics and
programming intervention with 45 children (from kindergarten
to second grade), boys performed better than girls on complex
programming tasks but not simpler ones [34].

Some authors examined the relationship between gender,
training, and computational thinking skills. A study in the U.K.
showed that the association between programming background
and computational thinking performance is significant for
men but not women [31]. In Greece, a study that involved
164 students from 15 to 18 years old in educational robotics
observed that students, regardless of age or gender, could
achieve the same level of computational thinking after training.

Nevertheless, female students needed more training to achieve
the same skill level as their male peers [19].

However, not all evidence supports the existence of a gender
gap in computational thinking skills. A study with 40 high
school students conducting a Scratch project in the USA
found no significant difference in the grades achieved by
women and men but a significant gender gap in confidence
levels [18]. In the same country, researchers reported no
significant effect of gender in computational thinking across
62 first-year engineering students [20]. Similarly, a study with
112 first-year engineering students in Turkey observed the
absence of a gender gap in the same subject [21]. Thus,
more research is needed to understand better under what
circumstances gender inequalities in computational thinking
arise and fade.

Overall, the evidence shows a complex picture of gender
differences in computational thinking. There seems to be a
gender gap in both primary [33], [34] and secondary edu-
cation [17], [31], broadening as time goes by [17]. On the
other hand, there is no discernible gender gap among high
school students who have received training in conducting
computational thinking projects [18], [19]. Previous research
also suggests that gender disparities are absent among students
who are enrolled in first-year engineering courses [20], [21].

A few hypotheses could explain these results. First, the
gender disparities may disappear after reaching a turning
point at some moment in the last years of high school.
Alternatively, engineering undergraduates are somewhat dif-
ferent than broader student populations because women who
can enroll in engineering careers have developed their com-
putational thinking skills similarly to their male counterparts.
This study seeks to shed light on this gap in the literature
by examining the computational thinking of students admitted
to enrolling in STEM degrees right before they start taking
courses. Therefore, the second research question is as follows.

RQ-2: Do gender disparities exist in computational think-

ing among students eligible for admission to an
STEM-focused university?

In the challenge of inequality, some authors have raised
the question for other marginalized groups in STEM subjects
related to computational thinking. Related research indicates
that race and socio-economic status are influential factors in
the participation and progress within related topics, such as
programming, computing, and the sciences.

Regarding race, [23] analyzed participation in computa-
tional physics classrooms in the USA using an intersectional
approach. They found that the white male teens usually took
the lead in the different assignments, while the girls and the
black teens tended to keep a secondary or nonexistent role
in the classes’ activities. This tendency differed when the
groups were primarily composed by women and people of
color [23]. Another study evaluated black students’ partici-
pation and involvement in upstate New York programming
and 3-D printing workshops. Utilizing a participant ethno-
graphic approach, Lachney [35] concluded that the inclusion
of elements of African culture—in this case, cornrow braids—
in programming classes could provide new opportunities
for development in programming and artificial intelligence,
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empowering segregated communities and addressing problems
and challenges that are specific to these groups with low
representation in the field.

Considering another aspect, prior research did not find
differences in computational thinking between private and
public school students in Spain [17]. However, in Chile,
there is a strong relationship between the type of school,
socioeconomic status, and academic performance [36]. The
Chilean educational system is known to be highly segregated
by socioeconomic status [37], where low-income families tend
to enroll their children in public schools, middle-income fam-
ilies send their kids to subsidized (private voucher) schools,
and high-income families heavily prefer private schools [38].
Public school students tend to score lower in standard math
and language tests than those enrolled in subsidized schools.
In turn, the latter achieve lower scores than students from
private schools. The schools’ average math and language
test scores correlate with their average student income [39].
Thus, revealing a pattern of systematic inequality regarding
socioeconomic status and academic performance. Researchers
argue that this pattern results from an education guided by
supply and demand principles, leading to high-income and
low-income schools [37].

This segregation has consequences for students’ aca-
demic life in Chile, especially in the distribution of
access to higher education. Focusing on science, Diaz and
Rocconi [40] conducted a multilevel analysis of the PISA
test scores of 15-year-old students and observed significant
gaps. Socioeconomic status correlates to science achievement,
expectations, and self-efficacy. This relationship means that
lower-income students have worse results in science tests,
lower expectations, and lower self-efficacy. Other researchers
have analyzed the results of the University Selection Test, a
national test taken by senior high school students to apply
for college. They found a consistent socioeconomic gap in
the test results across the years, with lower-income students
having worse results than higher-income students [41], [42].
Thus, lower-income students have fewer alternatives to choose
a graduate degree, having limited access to the most selective
universities and degrees [43], including STEM-related careers.
Considering this context of inequality in education, especially
in STEM-related subjects, it is necessary to analyze the role of
the type of school in the development of computational think-
ing in a socioeconomically segregated educational system,
such as the Chilean one. Therefore, the last research question
is as follows.

RQ-3: Do inequalities exist in computational thinking skills

across types of school (private or not) within a
socioeconomically segregated educational system?

III. RESEARCH METHODS
A. Study Design

To investigate the research questions, the authors designed
a cross sectional study aimed at assessing the computational
thinking skills of students who had recently been admitted
to a Chilean STEM-focused university. In Chile, students
seeking higher education opportunities must go through
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a centralized admissions system, where they select their
preferred universities and programs. They are also required to
take the national University Selection Test, which comprises
two mandatory sections: 1) Language and Communication
and 2) Mathematics. Furthermore, students have the option
to take elective exams in subjects, such as Science, History,
and Social Sciences. The admission process takes into account
students’ preferences, their test scores, and their high school
grade averages. Admission decisions are based on a weighted
combination of these factors and the available vacancies in
each program.

Historically, the university where the study was conducted
has admitted students who score above the 80th percentile in
the University Selection Test. Like many STEM programs in
the country, the majority of enrolled students identify as males.

Given that this study was carried out in Chile, it is well-
suited to address both RQ1 and RQ3. The Chilean educational
system does not currently incorporate mandatory training in
computational thinking [12], [27] (RQ1) and is characterized
by socioeconomic disparities [37] (RQ3). The decision to
examine the computational thinking skills of students eligible
for STEM-focused university programs makes the study’s
sample appropriate for addressing RQ2.

To address the research questions, the study considered two
primary independent variables: 1) self-reported gender and
2) type of school. Additionally, the researchers decided to
incorporate prior programming knowledge as a variable of
interest due to previous studies that have indicated a relation-
ship between this type of training, gender, and computational
thinking [19], [31].

The researchers extended invitations to 1,200 students who
had recently enrolled in the university. The invitation entailed
completing a computational thinking assessment and had a
requisite of being done before the first day of classes. This
aspect was significant for addressing RQ2, which seeks to
determine whether a gender gap exists among students of
STEM-related programs right before they start their first-year.
Participation in the test was voluntary, and it was conducted
during the 2019 admission cycle, prior to the disruptions
caused by the COVID-19 pandemic.

B. Measurement of Computational Thinking and Independent
Variables

In conducting their study in Chile, the researchers con-
sidered two aspects when selecting a computational thinking
assessment instrument.

1) Spanish is the country’s official language, and all incom-
ing college students must pass a language test in Spanish
for admission. Consequently, the researchers had confi-
dence that all participants would be proficient Spanish
speakers, but they needed to refrain from assuming any
knowledge of other languages.

2) The Chilean educational curricula do not include manda-
tory programming or computational thinking courses.
Thus, the authors prioritized instruments that do not
require participants to comprehend pseudo-code or a
specific programming tool.
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After considering these aspects, the researchers decided
to utilize the computational thinking test (CTt). Through
visual-spatial questions, the CTt evaluates basic directions
and sequences, loops, conditionals, and functions [44]. The
CTt is an online test that works independently from any
programming tool and does not require prior programming
knowledge. Experts have previously validated this instru-
ment in Spanish [44]. In Spain, CTt has been previously
employed to diagnose computational thinking skills among
students.

While the CTt was initially designed for students in fifth
to tenth grades [45], the researchers used a CTt version
tailored to older teens. This version was facilitated directly
by the instrument designers. Previous research has validated
and applied it to similar populations. Chan et al. [32] offered
evidence to substantiate the instrument validity by employing
the Rasch scalability, utilizing a cohort of 153 upper-secondary
students from Singapore. Additionally, Guggemos et al. [46]
distributed it among 202 upper-secondary students in German-
speaking Switzerland, whose mean age was 17.23 years.

The CTt measures the construct of “ability to formulate
and solve problems based on the fundamental concepts of
computing and using the logic and syntax of programming
languages: basic sequences, loops, iterations, conditionals,
functions, and variables.” Gonzdlez [44] The test comprises
32 multiple-choice questions, each presenting four alternatives,
of which only one is correct. The CTt aims to evaluate
achievement levels across four areas: 1) basic directions and
sequences (four questions); 2) conditionals (12 questions);
3) loops (eight questions); and 4) functions (eight questions).
Basic directions and sequences refer to the understanding
of constructing simple sequences of commands (e.g., move
forward and turn left) to solve problems. Conditionals are used
for decision-making (e.g., if, else, and else if); loops refer
to the understanding of repeating instructions multiple times.
Finally, functions refer to utilizing reusable tools or procedures
to perform specific tasks and operations.

Moreover, the researchers incorporated 18 additional ques-
tions in relation to students’ demographics and educational
circumstances, encompassing factors, such as gender, school
type, and prior programming knowledge.

C. Study Execution and Analysis

A total of 622 individuals responded to the CTt within
the timeframe, out of which 593 consented to allow their
answers to be used in this research. The dropout rate was
4.21%, resulting in the completion of 568 tests. During
the data analysis phase, participants who failed to provide
information regarding their school type were excluded (15
cases). Additionally, individuals who did not identify as either
male or female (4 individuals) were excluded due to the small
sample size, which would have hindered the ability to conduct
a robust statistical analysis. Consequently, the researchers
analyzed the responses of 549 individuals who identified as
male or female.

The adapted CTt version used in this study had a strong
level of reliability, as evidenced by a Cronbach’s alpha value

of a = 0.87, slightly surpassing the reliability score attained
in previous investigations (o = 0.79) [47].

The study examined the level of computational thinking,
as measured by the score obtained in the CTt, considering
three independent variables: 1) self-reported gender (male or
female); 2) type of school (private versus nonprivate); and 3)
prior programming knowledge (yes or no). The CTt score did
not exhibit a normal distribution (skewness = —1.04, kurtosis
= 3.59), and its values are positive integers within the range
of 6 to 32. Therefore, the researchers used a linear regression
of the log-transformed CTt score to model its association with
the three independent variables.’

To further delve into the analysis, separate regressions were
conducted for each component of the CTt (basic directions and
sequences, conditionals, loops, and functions), utilizing the
same independent variables. Considering the score distribution
for each component, a linear regression was employed to
model the log-transformed score of the functions component.
In contrast, logistic regressions were employed for the scores
of basic directions and sequences, conditionals, and loops. In
the latter three cases, the dependent variable was binary, taking
a value of 1 if the score attained in the component was above
the median and O otherwise.

The level of difficulty for each question was assessed
through expert evaluation. Two computer science professors
individually rated each item based on their experience with
novice programming learners. Among the 32 questions, 68%
received identical ratings from both professors. Questions that
received disparate ratings were subject to discussion until a
consensus was reached. After this process, 13 questions were
categorized as “easy,” 15 as “moderate difficulty,” and 4 as
“hard,” considering the study’s target population.

IV. RESULTS OF THE CROSS-SECTIONAL STUDY

The students achieved an average score of M = 25.5
(SD = 5.45). The distribution of correct answers by question
difficulty was as follows: 85% of the students answered the
easy questions correctly, 77% for the medium-level questions,
and 72% for the difficult questions.

These results suggest that the students demonstrated strong
computational thinking skills, as they achieved a high-overall
score on the test (25 out of 32), indicating that their success
was not solely due to correct answers on easy questions.

The majority of the student sample identified as male
(65.9%). This proportion is very similar to the gender distri-
bution (66.6% male) in the university where the study was
conducted. A minority of students attended public schools
(16.6%), while the majority graduated from subsidized schools
(55.4%), and the remaining students received education from
private schools (28.0%) (see Table I). About one-third of the
sample (34.1%) reported having prior programming knowl-
edge acquired through formal or informal training facilitated
by instructors or self-guided learning.

5The researchers also conducted Poisson regression to model the relation-
ship between the raw CTt score and the same independent variables. The
results were qualitatively similar.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE I
STUDENTS BY TYPE OF SCHOOL AND GENDER

Female Male Total (%)
Public school 25 66 91 (16.6)
Private subsidized school 103 201 304 (55.4)
Private school 59 95 154 (28.0)
Total 187 362 549
(%) (34.1)  (65.9)

In the analyses, the researchers grouped students from pub-
lic and subsidized schools into a nonprivate school category
since there were no significant differences in the level of
computational thinking achieved by these two groups. With
this categorization, the results show that 33% of students
from public and subsidized schools had prior programming
knowledge, whereas this proportion rose to 38% among
students from private schools.

Additionally, women were under-represented among those
who possess prior programming knowledge. While women
account for approximately one-third of individuals from
both private and nonprivate schools [see Table II (2)], their
proportion is lower by 8% to 11% points among individu-
als who declare having prior programming knowledge [see
Table II(3b)]. Specifically, while 32% of students from public
and subsidized schools who took the test are women, only 21%
of those with prior programming knowledge are women. This
percentage decreases from 36% to 28% among private school
students. Conversely, women are over-represented among
those without prior programming knowledge. Their proportion
is between 6% and 9% points higher among those who report
that taking the CTt is their first exposure to programming than
their prevalence in the whole sample [Table II(3a)].

The researchers employed a linear regression to estimate
the relationship between the log-transformed level of compu-
tational thinking and the independent variables. Controlling
for other variables, the results indicate [see Table III(1)] that
as follows.

1) Males attained CTt scores that were 1.13 times higher

than those obtained by females (p < 0.001),

2) Those who studied in private schools achieved scores
that were 1.08 times higher than those obtained by
students from nonprivate schools (p = 0.01), and

3) Students with some prior programming knowledge
reached scores that are 1.08 times higher than those
obtained by students for whom the application of the
CTt was their first approach to programming (p = 0.01).

To illustrate these statistically significant differences, Fig. 1
shows the distribution of the results obtained by students
regarding the three independent variables.

To further examine the effects of gender, type of school,
and prior programming knowledge, four additional regressions
were conducted to assess the significance of these differences
concerning the four CTt components: 1) basic directions and
sequences; 2) conditionals; 3) loops; and 4) functions [see
Table III(2)—(5)]. The results indicate that the variables of
gender, type of school, and prior programming knowledge
do not predict achievement levels in the basic directions
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No prior programming knowledge
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Female Male
Gender

With prior programming knowledge
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Gender

Test Score

School type E3 Non-private B8 Private

Fig. 1.  CTt score by gender, type of school, and prior programming
knowledge in the cross sectional study.

and sequences component (p = 0.06). However, significant
inequalities appeared in the other components. Gender and
prior programming knowledge play a role in the conditionals,
loops, and functions score. Inequalities related to the type of
school are evident in only two components: 1) loops and 2)
functions, which can be considered the more complex aspects
of computational thinking measured by the CTt [48], [49].

V. DISCUSSION

This work examined a sample of incoming students at an
STEM university in Chile, and identified a robust development
of computational thinking skills as evidenced by their ability to
answer the majority of questions in a CTt, including those clas-
sified as highly challenging. This result indicates that despite
the current Chilean school curriculum’s limited emphasis on
computational thinking, those pursuing STEM degrees demon-
strate significant proficiency in these skills. Thus, this research
contributes valuable evidence about computational thinking
development within a particular population in Latin America,
which still needs to be studied more, given the historical
U.S.-centric focus [50] of computational thinking research.
Further work could extend this research to encompass a
broader geographical scope within Latin America, comparing
the computational thinking abilities of students from different
countries to uncover potential variations and common trends.

However, it is essential to consider that this finding pertains
specifically to the context of STEM students and may not
be indicative of the broader population enrolled in Chilean
universities or secondary education graduates. A plausible
hypothesis could be that the high level of computational
thinking results from the sample’s composition, primarily
comprising individuals with a keen interest in STEM and
outstanding performance in the Chilean university admission
test (above the 80th percentile). Future research could evaluate
CTt among incoming students at other universities or those
completing secondary education (regardless of their college
acceptance status) to further investigate this possibility.

The study also reveals significant gender disparities in
computational thinking among students recently admitted into
STEM undergraduate programs in Chile. In this context,
female students demonstrate lower-CTt scores than male peers.
Interestingly, this discrepancy was absent among Spanish
students in grades 5 and 6 but manifested in the higher grades
(7 to 10) [51]. Prior work had also observed gender gaps in
high-school students in Singapore [32] and the U.K. [31]. The
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TABLE II
STUDENTS BY TYPE OF SCHOOL, GENDER, AND PRIOR PROGRAMMING KNOWLEDGE

@ @) (3a) (3b)
Type of school Gender (%) No prior knowledge (%) With prior knowledge (%)
F M F M F M
Non-private school 395 128 (32) 267 (68) 100 (38) 165 (62) 28 (21) 102 (79)
Private school 154 59 (36) 95 (64) 43 (45) 53 (55) 16 (28) 42 (72)
TABLE III
RESULTS OF REGRESSIONS FOR CTT SCORES AND ITS COMPONENTS
€] (@) 3 “ )
CTt Directions and sequences  Conditionals Loops Functions
Intercept 21.81%** 257 0.49%** 1.15 5.57***
Gender (male) 1.13%** 1.46 3.06*** 1.65* 1.17%**
Type of school (private) 1.08** 1.46 1.48 1.59* 1.12*
With prior programming knowledge  1.08** 1.34 2.18%** 1.95%* 1.10*
Type of regression Linear Logistic Logistic Logistic Linear
p 3.91e-11 0.06187 4.089%¢-13 1.967e-05  1.303e-05

*p<0.05, ** p<0.0L, ** p< 0.001

current finding implies that gender-based inequities in compu-
tational thinking persist throughout secondary education, even
among those who meet the qualifications for acceptance into
STEM undergraduate degrees. This observation supports the
hypothesis that the gender gap becomes apparent and endures
as individuals age [17], particularly until the conclusion of
high school, in contexts where computational thinking training
is not compulsory. Future work could conduct longitudinal
studies to track the development of computational thinking
skills over time. This approach could provide deeper insights
into how these skills evolve and how gender gaps emerge.

The gender gap observed in computational thinking aligns
with previous findings regarding gender disparities in mathe-
matics within Chile’s education system, adding a new layer of
complexity to the issue of gender imbalances in education. For
instance, using the PISA test, Bharadwaj et al. [52] identified
a significant correlation between gender and mathematics test
results, with 15-year-old females achieving lower scores than
their male counterparts. Another study, utilizing the national
system of learning outcomes assessment tests, revealed dispar-
ities in mathematics performance among tenth-grade students,
where males outperformed females [53]. Similar to computa-
tional thinking, the gender gap in mathematics persists until
college admission when students take the University Selection
Test [41]. These trends are consistent with arguments proposed
by other researchers, who suggest that gender disparities
stem from gender stereotypes, differential expectations for
males and females, and societal constructs that contribute to
a perceived gap between women, mathematics, and technol-
ogy [19], [54]. Future studies should aim to identify the
factors contributing to gender disparities in computational
thinking and determine whether they are akin to or distinct
from those affecting gaps in mathematics, in order to develop
effective strategies for addressing both disparities.

The data also indicates a positive correlation between
higher-computational thinking levels and prior programming
knowledge. However, a more intriguing observation emerges

when examining the data in Table II: female students are
under-represented among those who report having prior pro-
gramming knowledge. This finding suggests that female
students have had fewer opportunities to acquire programming
knowledge before entering college, whether due to personal
choice or other factors. This observation underscores the
importance of factoring in prior programming knowledge
when conducting gender-related analyses in computational
thinking, both in the present study and future research.
Furthermore, this result strengthens the case for implementing
initiatives to provide more programming and technological
training opportunities specifically targeted to girls and young
women. New studies could explore the potential long-term
effects of these initiatives in narrowing the gender gap in
computational thinking.

The combined results reveal a gender gap in a coun-
try where computational thinking training is voluntary, and
female students are under-represented among those who
possess prior programming knowledge before enrolling in
STEM-related universities. Thus, relying on voluntary and
isolated workshops, instead of mandatory training, appears
to have contributed to generating gender inequalities. Prior
work [18], [19] shows that after certain types of training (e.g.,
Scratch, educational robotics), there are no gender disparities
in computational thinking. Thus, hinting that training (even if it
is not targeted to women only) has an equalizing effect on gen-
der inequalities. Future work should continue seeking evidence
of the impact of one-fits-all interventions to mitigate gender
gaps. If these interventions prove effective, policymakers
could further advocate for integrating computational thinking
into national education frameworks, highlighting the potential
benefits for students’ future careers and their potential to
address gender imbalances in the subject.

Related to gender, not all prior evidence supports the
presence of a gap in computational thinking skills. The
current research offers an explanation for previous contrast-
ing outcomes. While some prior studies have found gender
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inequalities in primary and secondary schools [17], [31], [32],
[33], others have found no significant such disparities among
first-year undergraduate engineering students [20], [21]. The
present findings indicate that the gender gap may persist until
the final year of high school and before students are admitted
to STEM-related degrees. It is possible that the gap narrows
during the initial courses of engineering degrees, which would
explain the results in [20], and [21]. Early engineering courses
might have a similar impact as training [18], [19], leading to
improvements in women’s computational thinking skills to the
extent that they are no longer significantly different from men’s
skills.

The researchers also observed significant disparities con-
cerning the type of school attended by students. Those from
private schools demonstrated higher-performance levels in the
CTt compared to students from public and subsidized schools.
While administering a similar test to Spanish students did
not provide evidence of gaps across types of schools [17],
the observed gaps are not unexpected in Chile. The coun-
try already exhibits notable performance gaps in math and
language tests among students from different school types,
with private school students achieving the highest scores [39].
The data from this study shed light on a new dimension
of systematic inequalities. Computational thinking emerges
as another axis where students from private schools are
better equipped than their peers from public and subsidized
schools.

Given the strong correlation between average scores in
math and language and students’ socioeconomic status [39],
as well as the considerable segregation within the Chilean
educational system based on this variable [36], it is essential
for future research to explore the link between socioeconomic
status and computational thinking. Such investigations can
clarify the observed disparities among different types of
schools. As socioeconomic status is associated with other
forms of digital divide [55], it is plausible that computational
thinking may also be associated with socioeconomic status,
with the type of school serving as a proxy indicator within
the context of Chile. More studies are needed to understand
this connection at the individual and collective levels (e.g.,
school or country comparisons). This thread of research should
delve deeper into the influence of socioeconomic factors
on computational thinking skills, analyzing how broad (or
limited) access to technology, Internet connectivity, and other
resources might contribute to inequalities in computational
thinking.

Together, the findings reveal a complex picture of the devel-
opment of computational thinking in Chile. While the Chilean
Ministry of Education has taken measures to provide computer
labs, Internet access, and an introductory computer class in
all schools’ curricula [29], inequalities persist in advancing
computational thinking within this context. Consequently, the
results support that guaranteeing access to technology alone is
not a determining factor in students’ computational thinking
performance. As previously suggested in the literature, there
is no direct correlation between the skills required to operate
computers and the cognitive traits associated with computa-
tional thinking [56]. Thus, further efforts are necessary to
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ensure equitable training in computational thinking, encom-
passing considerations of gender and school type.

Like any research, this work has limitations that war-
rant consideration. The CTt has certain constraints. Notably,
it primarily emphasizes the conceptual aspect of computa-
tional thinking while only partially addressing computational
practices and perspectives, which are also components of com-
putational thinking. Furthermore, it is essential to acknowledge
that the study participants were not randomly selected. Thus,
our analyses do not account for all preexisting factors that
could have influenced the results. Factors related to self-
selection could also explain some observed patterns.

Despite the acknowledged limitations, the researchers antic-
ipate their findings will have significant implications for
future studies and potential policy changes in Chile, Latin
America, and beyond. Specific relevant characteristics of
the Chilean context are not unique to the country, such as
high-socioeconomic segregation within the educational system
and a policy focus on technology access, leaving computa-
tional thinking development primarily to voluntary initiatives.
Countries sharing similar characteristics could benefit from
conducting analogous studies. The results concerning gender
and school-type inequalities offer valuable insights to inspire
such studies and inform discussions surrounding national plans
to promote equitable access to programming. By seeking to
democratize the efforts made by isolated and voluntary initia-
tives in computational thinking development, these countries
can explore avenues to foster equal opportunities to choose and
succeed in STEM-related degrees. For instance, implementing
mandatory training may play a pivotal role in leveling the
playing field for students of different genders and attending
different types of schools within socioeconomically segregated
educational systems.

VI. CONCLUSION

This article presents the findings of a cross sectional study
involving over 500 students admitted to STEM undergraduate
programs at a Chilean university. The study highlights two
significant gaps in the development of computational thinking
skills: one related to gender and the other one associated with
the type of school (private or not).

The results underscore the distinct characteristics in the
development of computational thinking skills, particularly in
regions like Latin America, where formal training in this topic
is not mandatory and educational disparities are prevalent.
These findings should be considered when expanding compu-
tational thinking training to address inequalities, as they offer
valuable insights for countries aiming to promote equal access
to programming, especially in socioeconomically segregated
educational systems.
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