
The Need for Holistic Technical Debt Management across the
Value Stream: Lessons Learnt and Open Challenges

Somayeh Malakuti, Jens Heuschkel
{somayeh.malakuti,jens.heuschkel}@de.abb.com
ABB AG Corporate Research Center, Germany

ABSTRACT
The long lifetime and the evolving nature of industrial products
make them subject to technical debt at different levels. Despite
multiple years of research on technical debt management, our in-
dustrial experience shows that introducing systematic technical
debt management in a large-scale company is very challenging. To
identify the challenges, we provide a conceptual framework for
holistic debt management across the product development value
stream, which takes multiple categories of debt and their interplays
into account. We use this framework to identify multiple challenges
that are still open to be explored by the research community. Due
to the practical nature of technical debt management, we believe
this paper can guide the research community on the needs of in-
dustry for the effective application of technical debt management
in practice.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement; Software development process management.

KEYWORDS
technical debt management, agile process, process maturity, multi-
objective improvement
ACM Reference Format:
Somayeh Malakuti, Jens Heuschkel. 2021. The Need for Holistic Techni-
cal Debt Management across the Value Stream: Lessons Learnt and Open
Challenges. In TechDebt ’21: 4th International Conference on Technical Debt,
May 19–21, 2021, Madrid, Spain. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Technical debt can easily be observed in industrial products and
systems (e.g., controllers, smart sensors, robots), which have a very
long lifetime and their features evolve over time. These products
have an interdisciplinary nature, as they consist of mechanical, elec-
trical and software components. Introducing systematic technical
debt management in a company is ultimately about increasing the
maturity level of the company processes to include technical debt
management. However, our experience shows that this cannot be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
TechDebt ’21, May 19–21, 2021, Madrid, Spain
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

done in isolation, without considering the overall maturity level of
the company in its product development value stream.

In the literature, there are several studies [3, 13, 17] that focus
on certain technical debt management techniques at code level, soft-
ware architecture level and/or across software/electrical/mechanical
components; these studies assume certain level of infrastructure,
methods, and competence maturity in companies to apply these
techniques in practice. There are studies [7, 15, 21] assessing the
maturity level of companies in this regard, without providing de-
tails on challenges and guidelines on moving from one maturity
level to another one in practice. There are studies [8] confirming
the positive impacts of the agile processes and practices (e.g., back-
logs, retrospective) in better technical debt management, without
considering the negative impacts of agile processes if not properly
implemented across the value stream of product development.

Based on our industrial experience in a large-scale multi-national
company [14], we observe that the above-mentioned gap in the
technical debt literature leaves practitioners with multiple open
challenges to increase the maturity level of companies in their tech-
nical debt management. Although the need for looking at technical
debt at a more holistic level beyond software code and architecture
has been observed in the literature [7, 18, 20, 21], no conceptual
framework for holistic debt management as the base for identifying
open challenges has been proposed in the literature.

The BAPO model [4] conceptualizes different levels of alignment
among Business, Architecture, Process and Organization. We take
this model as the reference to further detail the need for taking
a holistic perspective on the topic of technical debt management
across the value stream of the product development. Such holistic
debt management takes various kinds of debt such as technical,
process, people, infrastructure, and portfolio debt into account. In
addition to individual kinds of debt, it is mandatory to consider the
relations among these kinds of debt as well. This leads to a complex
graph of interrelated debts, which cannot be effectively managed
if one only focuses on one category of debt. Managing multiple
categories of debt and their relations require suitable methods to
formally model and reason about them; such methods have not
been studied sufficiently in the literature.

Based on our experience, the lack of a holistic approach for debt
management leads to reactive management of debt by shifting the
focus from one category to another, causing evenmore debt through
further sub-optimal decisions.

As for the contirbutions, we explain our industrial case study,
and the challenges that we observed in applying technical debt
management in practice. Then, we sketch a conceptual model to
depict various aspects and elements of a holistic debt management
method. Finally, we outline multiple open challenges that could be
taken by the research community in future.

ar
X

iv
:2

10
4.

08
07

5v
1

 [
cs

.S
E

]
 1

6
A

pr
 2

02
1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

TechDebt ’21, May 19–21, 2021, Madrid, Spain Malakuti, et al.

2 INDUSTRIAL EXPERIENCE OVERVIEW
Our experience is based on a project in the form of external consul-
tancy that we have been offering to an industrial company as our
client since 2018 in multiple phases. The industrial products manu-
factured by the company have mechanical, electrical and software
components. The company historically has stronger background in
the mechanical and electrical components, but software has been
gaining strong importance over the time as well.

Throughout the project, eight engineers, one process manager
and one technology manager closely participated in the case study.
The participants have strong background in hardware design, while
software engineering competence differed among them. We have
adopted different approaches such as frequent teleconferences, face
to face workshops, field observation, and architecture co-design.We
have performed multiple interviews with managers and engineers
on their perception on technical debt, as well as a survey with 100
participants to acquire their perspective on this topic. More details
can be found in [14].

Before the start of the project in 2018, there were several internal
workshops in the company with the aim of achieving bug-free
software. Those workshops concluded that insufficient modularity
of the software is the main reason for the increasing number of bugs
as well as high maintenance effort. As a result, the project started
in 2018 with the aim of validating this hypothesis. Our activities
throughout the project are summarized as follows:

Phase 1: Assessing the modularity status of the software: The phase
1 of the project was about getting to know the software better and
validating the hypothesis of our client regarding the lowmodularity
of their software. We identified various kinds of modularity-related
technical debt that exist at the architectural and code levels.

Phase 2: Prioritizing and repaying technical debt at the code level:
Refactoring large-scale legacy software as a whole requires signif-
icant amount of time and resources, which could not be offered
by our client. In the phase 2, a high-level architecture sketch was
defined by our client, and we were requested to accompany de-
velopers with the refactoring of two pilot modules based on the
sketched high-level architecture.

Although certain refactoring was applied, we still did not man-
age to fully reach the goals of this phase. Inadequate specification
of architecturally-significant requirements and concerns, and ac-
cordingly inadequate architectural technical debt repayment by
our client engineers were among the reasons that we could not
reach our refactoring goals. Moreover, we observed that in addition
to architecture and code debt, there is debt in test cases and build
scripts. The lack of clear specification of relations among different
kinds of debt prevented us to manage them systematically.

Phase 3: Adopting a systematic technical debt management ap-
proach: As it is studied, architectural debt can be the major source
of technical debt [7]. Based on our learnings from the phase 2, in
the phase 3 we aimed at iteratively improving the architecture and
repay debt by adopting the state-of-the-art methods for identifying
and prioritizing architectural technical debt [5, 11]. In addition, we
integrated architectural metrics offered by the tools Lattix [10] and
SonarQube [19] (beside other) into a common dashboard so that
engineers can monitor the quality trend of software. The phase 3
led to the following learnings and results:

a) Lack of common understanding of various fundamental con-
cepts such as architecture-centric software development, quality
attributes, quality scenarios, and trade-off analysis significantly
impeded the progress of the work. Therefore, our focus was shifted
from repaying architecture debt to repaying people debt by sup-
porting the engineers in gaining deeper insight on these topics by
offering some trainings, and planning for more trainings.

b) Agile principles require software teams to be empowered to
perform different tasks. Naturally, in a large-scale company with
several hundred developers, time and budget constraints would
not allow harmonizing competences of everyone at once. As part
of defining the strategies for repaying the people debt, there were
different opinions on whether it is feasible for everyone to receive
training or whether the (temporary) role of ’software architect’
should be defined in teams. Due to its organizational impacts, this
discussion is still open.

c) In addition to the people debt, we observed the need for repay-
ing some process debt to mandate the engineers to perform quality
attribute workshops, architecture trade-off analysis, etc.

d) The introduction of Lattix [10] and its quality metrics laid the
foundation for objective assessment of the architecture. Although
more source code analysis tools could also be used to enrich the set
of calculated metrics, this idea did not get traction in the company.
The main reason was that the introduction of each new tool had be
accompanied by supporting the engineers to adopt the tool in their
daily work. Otherwise, a new tool could eventually contribute to
the infrastructure debt by making the infrastructure more complex
while not being actively and consistently used.

e) We observed that if the activities to repay various kinds of debt
(people debt, technology debt, architecture debt, etc.) were not well
coordinated, they could put extra burden on the engineers to deal
with the imposed deficiencies. For example, if parallel activities to
establish a common understanding of software architecture topics,
to introduce Lattix in the infrastructure, and to introduce the soft-
ware product line technology in some parts of the system were not
well coordinated and prioritized, they could prevent the engineers
to master these topics and apply them in practice effectively.

Overall, our experience showed that increasing the maturity
level of a company in its technical debt management approach is a
gradual process; however, the steps of this process are not studied in
the literature to guide us through. Moreover, one cannot introduce
a systematic technical debt management approach in a company
without taking a holisitic approach that takes various categories of
debt and their relations into account.

3 TOWARDS HOLISTIC DEBT MANAGEMENT
Among others, one reason that technical debt occurs in systems
is the strong demand for business agility, which creates time and
cost pressure during the development of the systems. This may
lead to the assumption that companies are doing well in terms of
their agile processes, and need to dedicate more focus on technical
debt management to make sure these two aspects remain balanced.
However, this may not be a correct assumption always. To clarify
this, let us look at an example value stream of system development,
illustrated in Figure 1.

The value stream starts by defining the business strategies of the
company for its products. Portfolio management is an important

The Need for Holistic Technical Debt Management across the Value Stream: Lessons Learnt and Open Challenges TechDebt ’21, May 19–21, 2021, Madrid, Spain

Figure 1: An example value stream of system development.

step, which contains preparing the idea pool, portfolio planning
and balancing, and defining the products roadmap. The products
roadmap is input to the requirements management phase, which
focuses on soliciting and clarifying customer requirements. This
phase is followed by other development phases such as architecture
design, implementation, test and release.

There are various organizational processes that define workflows
and methods to perform tasks in each phase. Different phases of
the value stream require different people competences; The phases
make use of some IT tools and infrastructure, which are for example
software development tools, build tools, databases and file systems
to store the artifacts.

As shown by Leopold et.al. [12], companies may not get the
desired throughput even though in their estimate they adopt agile
processes. Three reasons have been identified for this: a) no agile
interactions among teams that work on the same products, leading
to unmanaged dependencies among product features and teams,
b) no end-to-end management of the value stream, for example,
by emphasizing more on the agility in development phases while
ignoring the delays in earlier phases of the value stream, and c) no
agile strategic portfolio management, causing a large number of
initiatives overloading teams.

These aspects in the proper adoption of agile practices (i.e. pro-
cess debt) cause time pressure, which can eventually cause various
technical debt in the systems. Besides the time pressure, our expe-
rience shows that these problems can cause technical debt in other
ways too. Consider Figure 2 for example. At the team level, we
have autonomous scrum teams that make various design decisions
for individual products or sub-products, which may also introduce
architectural, code, test and/or build debt.

At the inter-team level, we require systematic coordination
among these teams to make coarse-grained architectural decisions

Figure 2: Agile processes and technical debt

for managing the inter- and intra-product dependencies. Insuffi-
cient means and guidelines for such systematic coordination (i.e.
process debt) will lead to unmanaged architectural decisions (i.e.
architectural debt). At the portfolio level, we require agile port-
folio management that takes the products interdependencies into
account, so that more coarse-grained and futuristic architectural
decisions can be taken in a systematic way. Lack of such portfo-
lio management approaches (i.e., portfolio debt) will also lead to
ad-hoc architectural decisions (i.e. architectural debt).

This example shows that sub-optimal decisions in one part of the
value stream may propagate within or across other parts causing
debts at those parts. Therefore, to effectively manage technical
debt in large-scale companies, we need to proactively identify debt
at each part, identify the cause-effect relations among them and
manage them accordingly. This indicates the need for a holistic debt
management approach, which enables us to move from reactive
decision making to proactive and conscious decision making for
debt management across the value stream. Figure 3 depicts various
aspects of such a holistic approach.

For each kind of debt, the systematic debt management actions
that include ’identifying/detecting debt’, ’assessing the debt im-
pacts’, ’prioritizing the debt’, ’resolving the debt’, ’preventing fur-
ther debt’, ’documenting debt’, ’monitoring debt’ should be applied.

In addition to systematically managing each category of debt,
the relations among debts within and across each category should
be identified and managed. For example in our case study, the
process debt due to insufficient cross-team coordination, also the
portfolio debt due to unmanaged inter-product relations have led
to some architectural debt; for example, product-specific features
were not well modularized from cross-product features. This debt
was reflected in the software code, leading to some large classes
with excessive amount of ’#if defined’ statements to select the
right product feature based on some build parameters. Insufficient
modularity of the code has led to insufficient unit tests as well as
not well-modularized build scripts. There is also infrastructure debt
due to scattered build scripts across repositories, which makes the
update of build scripts even more difficult.

In addition to the above-mentioned debt in software compo-
nents, some debts in electrical components have forced software
developers to provide extra checks in the code to deal with the con-
sequences of the debts in the electrical components. Those checks
do not belong to the core functionality of the software components.

TechDebt ’21, May 19–21, 2021, Madrid, Spain Malakuti, et al.

Mechanical
Debt

Software
Debt

Electrical
Debt

Technical
Debt

...

...

causes

Code
Debt

Build
Debt

Test
Debt

Requirements
Debt

causes

Architecture
Debt

People
Debt

Portfolio
Debt

Process
Debt

Infrastructure
Debt

Debt
Itemapplies to

Debt
Management

Action

MonitoringPreventingIdentifying /
Detecting Documenting Assessing Prioritizing Resolving

Inexperienced Teams

Unclear Roles

Unclear Responsibilities

...

causes

...

Insufficient
Processes

Misalignment
of Processes

...

Misalignment
of Business

Goals

...

causes

causes

causes

causes

Figure 3: Scope of holistic debt, observed relations, and holistic debt management.

The impacts of such cause-effect relations must be assessed, and
be taken into account while prioritizing debts andwhile defining the
order in which the debts must be repaid. Otherwise, as experienced
in the phases 2 and 3 of our project, we may need to reactively
shift the focus from one category of debt to another category, while
losing the allocated time for debt management or even introducing
more debt due to sub-optimal decisions made along the way.

4 OPEN CHALLENGES
The extent of work depicted in Figure 3 is rather large, and naturally
it cannot be applied at once. Here, the major challenge that we
observe is to define a roadmap that specifies the right combination
and the right order of activities to effectively manage and repay
various kinds of debt over time. For this we face several challenges
and open questions.

A taxonomy of debt categories and their relations: The starting
point for holistic debt management is to have clear definition of dif-
ferent debt categories and possible relations among them. Although
various taxonomies and conceptual models of technical debt exist
[18, 20], our observation is that they are not consistent and more
importantly do not consider various relations of debt categories
with each other. We have sketched an example cause-effect rela-
tion in Figure 3 based on our case studies . However, we need more
extensive studies across industries to reach a comprehensive model.

Systematic management of each debt category: Informally, one
may consider (technical) debt as the delta between the current state
and the desired target state in terms of various quality attributes.
Hence, to manage debt we need to define the desired target state
and its desired qualities, measure the delta, and define strategies to
move from the current state to the target state. For each category
of debt it should also be studied how the steps of systematic dept
management depicted in Figure 3 can be applied in practice.

Due to the longevity of research work on code and architecture
smells, concrete examples of code and architecture debt exist in the
literature, and to some extent there is tool support to identify and
assess them [3, 13, 17].

For process improvement, CMMI [16] lays the foundation for
assessing the capability and maturity of processes. We opt to adopt
this for identifying and resolving process debt. Here, we may con-
sider process debt as the difference between the capability/maturity
level of current processes and the desired target level. CMMI pro-
vides some guidelines and best practices to repay the process debt
by increasing the capability/maturity level of the current processes.
We believe that practitioners can benefit from similar guidelines
and best practices for systematically managing other types of debt.

Systematic management of debt relations: Although the need for
managing debt beyond code and architecture has been observed in
the literature, for example in [6, 9, 18], there is still noticeable need
for systematic studies addressing different categories of debt and
their relations.

For example, the current studies on principle and interest of tech-
nical debt such as [1, 2] assume that some architectural technical
debt has already be identified, and demand architects to provide an
estimation of interest if the payment of debt is postponed. How-
ever, as we have discussed earlier, the identification of technical
debt itself requires enough competence and tools whose absence
is presented as people debt and infrastructure debt. In addition, as
depicted in Figure 3, process debt and/or portfolio debt may be the
root cause of some architectural debt. Therefore, the cost to identify,
assess, prioritize and repay such debt as the cause of architectural
debt must be considered as well; otherwise, the decision to repay
architectural debt will remain a sub-optimal decision.

Where we cannot focus on one category of debt, we cannot fully
repay multiple categories of debt at once. Hence, we need to define
strategies to gradually repay some debt from some categories, and
accept some debt to be paid later. Figure 3 is rather abstract and does
not detail specific examples of each debt category and their relations.
If all these details are identified, then prioritization of debt can no
longer be effective without suitable means for formally modelling
the causal relations of different debt, and without adopting suitable
multi-objective optimization approaches. We believe industry can
significantly benefit from studies on effective ways of defining
iterations to gradually repay various categories of debt.

The Need for Holistic Technical Debt Management across the Value Stream: Lessons Learnt and Open Challenges TechDebt ’21, May 19–21, 2021, Madrid, Spain

Integrated debt management processes: Technical debt manage-
ment and more generally holistic debt management are ultimately
processes, which should be incorporated into the existing processes
of companies. There are studies [15, 21] that define maturity lev-
els of technical debt management in companies, however, without
providing specific guidelines on how to increase the maturity level,
and without studying the interplays of technical debt management
process with other product development processes. There are stud-
ies [8] assessing the impacts of agile processes and practices on
technical debt management, concluding the positive impacts of
agile practices such as code reviews. However, we identified that
to assess the impacts of agile processes on technical debt manage-
ment, one needs to assess the adequate realization of agile processes
across the entire value stream.

We believe that the above-mentioned gaps in existing studies
must be filled to be able to effectively increase the maturity level of
companies in their holistic debt management.

Insufficient objective measures to fill the communication gap. The
management of debt across the value stream requires communica-
tion among different stakeholders, which should be supported by
objective metrics. It has been claimed that the notion of ’technical
debt management’ can fill the communication gap between the tech-
nical teams and the management teams because of its emphasize
on both technical and financial aspects. However, our observation
is that although extensive work has been performed on code and
architectural metrics, the existing metrics and measures may not
suffice even for the communication among the technical team, for
example to predict the impacts and growth rate of technical debt.

Although the need for more objective measures has been ob-
served in the literature [7, 8], we miss systematic studies on cat-
alogue of suitable metrics for different stakeholders within and
across debt categories, as well as means to calculate and validate
them. From the process perspective, CMMI levels 4 and 5 expect
that an organization reaches the level of data-driven decision mak-
ing and self-optimization. This requires the identification of the
stakeholders and their desired metrics, the identification of relevant
data for measuring each category of debt, means to collect and
cleanse the data, means to identify and model correlations among
data, and suitable algorithms to analyze and reason about trends of
debt. Our experience shows that companies usually have to develop
their in-house solutions for this matter. Here, we see noticeable po-
tential for research on metrics and tools for assessing the impacts
and growth rate of different debt categories individually and at
holistic level, for different kinds of stakeholders. In this context, an
interesting follow up question might be in how far one can weave
the debt types into the CMMI model were CMMI potentially falls
short (e.g. people debt).

5 CONCLUSIONS
Based on our experience in introducing systematic technical debt
management in an industrial company, we explained that technical
debt management boils down to increasing the maturity level of
a company across the value stream of its products development.
Although the need for holistic approach for technical debt manage-
ment has been observed in the literature, there was no proposal to
concretize this topic. We took a step towards this by outlining a

conceptual model for holistic debt management, which depicts var-
ious categories of debt and their relations. Based on this model, we
discussed that some areas have been receiving stronger focus from
research community than others. Consequently, insufficient focus
on the holistic aspects of debt management eventually becomes a
barrier to apply existing technical debt management approaches in
practice. We believe that this paper can help the research commu-
nity in defining further research topics in the area of technical debt
management.

REFERENCES
[1] A. Ampatzoglou, A. Ampatzoglou, P. Avgeriou, and A. Chatzigeorgiou. 2016. A

Financial Approach for Managing Interest in Technical Debt. In Business Modeling
and Software Design. 117–133.

[2] A. Ampatzoglou, N. Mittas, A. Tsintzira, A. Ampatzoglou, E. Arvanitou, A. Chatzi-
georgiou, P. Avgeriou, and L. Angelis. 2020. Exploring the Relation between
Technical Debt Principal and Interest: An Empirical Approach. Information and
Software Technology 128 (2020).

[3] T. Besker, A. Martini, and J. Bosch. 2018. Managing architectural technical debt:
A unified model and systematic literature review. Journal of Systems and Software
135 (2018), 1 – 16.

[4] S. Betz and C. Wohlin. 2012. Alignment of Business, Architecture, Process,
and Organisation in a software development context. In Proceedings of the 2012
ACM-IEEE International Symposium on Empirical Software Engineering and Mea-
surement.

[5] R. Rebouas de Almeida, U. Kulesza, C. Treude, D’angellys Cavalcanti Feitosa,
and A. Higino Guedes Lima. 2018. Aligning Technical Debt Prioritization with
Business Objectives: A Multiple-Case Study. arXiv:1807.05582 [cs.SE]

[6] Q. Huan Dong, F. Ocker, and B. Vogel-Heuser. 2019. Technical Debt as Indicator
for Weaknesses in Engineering of Automated Production Systems. Prod. Eng.
Res. Devel 13 (2019), 273–282.

[7] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton. 2015. Measure It?
Manage It? Ignore It? Software Practitioners and Technical Debt. In Proceedings
of ESEC/FSE.

[8] J. Holvitie, S. A. Licorish, R. O. Spínola, S. Hyrynsalmi, S. G. MacDonell, T. S.
Mendes, J. Buchan, and V. Leppänen. 2018. Technical debt and agile software de-
velopment practices and processes: An industry practitioner survey. Information
and Software Technology 96 (2018).

[9] T. Klinger, P. Tarr, P. Wagstrom, and C. Williams. 2011. An Enterprise Perspective
on Technical Debt (MTD ’11).

[10] Lattix. [n.d.]. https://www.lattix.com/.
[11] V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, and F. A. Fontana. 2019. Technical

Debt Prioritization: State of the Art. A Systematic Literature Review. ArXiv
abs/1904.12538 (2019).

[12] K. Leopold. 2018. Rethinking Agile: Why Agile Teams Have Nothing To Do With
Business Agility. LEANability PRESS.

[13] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study
on technical debt and its management. Journal of Systems and Software 101 (2015),
193 – 220.

[14] S. Malakuti and S. Ostroumov. 2020. The Quest for Introducing Technical Debt
Management in a Large-Scale Industrial Company. In ECSA.

[15] A. Martini, T. Besker, and J. Bosch. 2018. Technical Debt tracking: Current state
of practice: A survey and multiple case study in 15 large organizations. Science
of Computer Programming 163 (2018), 42 – 61.

[16] M. C. Paulk, C. V. Weber, B. Curtis, and M. B. Chrissis. 1994. The Capability
Maturity Model: Guidelines for Improving the Software Process. Addison-Wesley
Professional.

[17] A. Potdar and E. Shihab. 2014. An Exploratory Study on Self-Admitted Technical
Debt. In 2014 IEEE International Conference on Software Maintenance and Evolution.
91–100. https://doi.org/10.1109/ICSME.2014.31

[18] N. Rios, M. Gomes de Mendonça Neto, and R. O. Spínola. 2018. A tertiary
study on technical debt: Types, management strategies, research trends, and base
information for practitioners. Information and Software Technology (2018), 117 –
145.

[19] SonarQube. [n.d.]. SonarQube. https://www.sonarqube.org/.
[20] E. Tom, A. Aurum, and R. Vidgen. 2013. An exploration of technical debt. Journal

of Systems and Software (2013), 1498 – 1516.
[21] J. Yli-Huumo, A. Maglyas, and K. Smolander. 2016. How do software development

teams manage technical debt? – An empirical study. Journal of Systems and
Software 120 (2016), 195 – 218.

https://arxiv.org/abs/1807.05582
https://doi.org/10.1109/ICSME.2014.31

	Abstract
	1 Introduction
	2 Industrial Experience Overview
	3 Towards Holistic Debt Management
	4 Open Challenges
	5 Conclusions
	References

