
An Exploratory Study on the Occurrence of
Self-Admitted Technical Debt in Android Apps

Gregory Wilder II
University of Hawai‘i at Mānoa

Honolulu, Hawai‘i, USA
gwilder@hawaii.edu

Riley Miyamoto
University of Hawai‘i at Mānoa

Honolulu, Hawai‘i, USA
rkam9@hawaii.edu

Samuel Watson
University of Hawai‘i at Mānoa

Honolulu, Hawai‘i, USA
scwatson@hawaii.edu

Rick Kazman
University of Hawai‘i at Mānoa

Honolulu, Hawai‘i, USA
kazman@hawaii.edu

Anthony Peruma
University of Hawai‘i at Mānoa

Honolulu, Hawai‘i, USA
peruma@hawaii.edu

Abstract—Technical debt describes situations where developers
write less-than-optimal code to meet project milestones. However,
this debt accumulation often results in future developer effort to
live with or fix these quality issues. To better manage this debt,
developers may document their sub-optimal code as comments in
the code (i.e., self-admitted technical debt or SATD). While prior
research has investigated the occurrence and characteristics of
SATD, this research has primarily focused on non-mobile systems.
With millions of mobile applications (apps) in multiple genres
available for end-users, there is a lack of research on sub-optimal
code developers intentionally implement in mobile apps.

In this study, we examine the occurrence and characteristics
of SATD in 15,614 open-source Android apps. Our findings show
that even though such apps contain occurrences of SATD, the
volume per app (a median of 4) is lower than in non-mobile
systems, with most debt categorized as Code Debt. Additionally,
we identify typical elements in an app that are prone to in-
tentional sub-optimal implementations. We envision our findings
supporting researchers and tool vendors with building tools and
techniques to support app developers with app maintenance.

Index Terms—Self-Admitted Technical Debt, Android Apps,
Empirical Study, Mining Software Repository

I. INTRODUCTION

The proliferation of mobile devices, in the form of smart-
phones and tablets, has made it easier and more convenient
for society to find information and access services anytime
and anywhere. As the leading mobile operating system [1],
Android plays a crucial role in enabling users to perform
various tasks previously unachievable in a mobile environment.
Furthermore, Integrated Development Environments, together
with frameworks and libraries, make it easier for developers
to build feature-rich and interactive mobile applications (apps),
as evidenced by the volume and diversity of apps available
on the Google Play Store—over 2 million as of September
2022 [2]. However, like non-mobile systems, mobile apps
are also software systems, and are subject to poor code
quality when app developers deviate from established best
practices and guidelines [3]. For instance, poor code quality of
a mobile app can lead to various issues for end-users, such as
security vulnerabilities [4], poor user experience [5] (including

accessibility concerns [6]), and performance degradation [7].
Further, app developers face maintainability challenges due to
their app’s poor code quality [8].

While tool vendors and researchers have produced tools and
techniques to assist app developers in locating and correcting
bad programming practices (i.e., smells) in their code [9]–[11],
this is not a one-stop solution to address challenges with app
maintainability. Poor code quality is not limited to smells;
lack of documentation, partial or missing functionality, lack of
testing, and even workarounds contribute to poor code quality
and negatively impact the maintainability of the system [12],
[13]. Furthermore, there can even be instances of developers
knowingly deviating from best practices due to project deadlines
or budget constraints [14]. A continuous accumulation of these
sub-optimal implementations can have serious repercussions,
such as increased maintenance costs and an increased risk
of project failure. This phenomenon of developers knowingly
compromising code and design quality in favor of meeting
project deadlines/milestones is known as technical debt [15].
In this context, there are instances of developers consciously
acknowledging the presence of technical debt in their system
through documentation, typically taking the form of code
comments, known as self-admitted technical debt (SATD) [16].

SATD provides a convenient mechanism to study some of
the sub-optimal decisions developers make when implementing
a system. Employing SATD, the research community has con-
ducted several studies on these acknowledged implementation
compromises, their management, and their correction in open-
source and industrial software, various software domains, and
programming languages [17]–[21]. However, even with all these
studies, research examining the occurrence of SATD in mobile
apps, specifically Android apps is lacking. Unlike traditional
(i.e., non-mobile) systems, mobile apps are highly user-centric
and should support various portable devices. Additionally,
they are more constrained in size, functionality, security, and
resource/energy consumption [22]. For example, in Listing 1,
the developer has to include additional code as a workaround
to turn off the camera flash for different mobile devices (i.e.,

ar
X

iv
:2

30
3.

02
25

8v
1

 [
cs

.S
E

]
 3

 M
ar

 2
02

3

Samsung Galaxy and Samsung Behold II). Also, Samsung
Behold II depends on a specific version of the Android
SDK (SDK 3). This complex scenario is something that app
developers face to support their end-users; something seen less
commonly with desktop and web applications.

1p r i v a t e void s e t F l a s h (Camera . P a r a m e t e r s p a r a m e t e r s)
{

2/ * FIXME : Th i s i s a hack t o t u r n t h e f l a s h o f f on
t h e Samsung Galaxy . R e s t r i c t Behold I I check
t o Cupcake , p e r Samsung ’ s a d v i c e * /

3i f (B u i l d .MODEL. c o n t a i n s (” Behold I I ”) &&
CameraManager . SDK INT == 3) {

4p a r a m e t e r s . s e t (” f l a s h − v a l u e ” , 1) ;
5} e l s e {
6p a r a m e t e r s . s e t (” f l a s h − v a l u e ” , 2) ;
7}
8/ * Th i s i s t h e s t a n d a r d s e t t i n g t o t u r n t h e

f l a s h o f f t h a t a l l d e v i c e s s h o u l d honor . * /
9p a r a m e t e r s . s e t (” f l a s h −mode” , ” o f f ”) ;
10}

Listing 1. A code snippet example of a developer performing workarounds
to support specific smartphones [23].

A. Goal & Research Questions

As an exploratory study, the goal of this research is to
discover the extent to which Android apps incur SATD and
form a high-level understanding of the types and causes of these
sub-optimal implementations. Thus, we analyze the instances
of developers documenting sub-optimal implementation in the
code as comments—i.e., the occurrence of SATD comments.
We envision findings from this study helping app developers
better understand and plan for areas in their apps that are
prone to incurring debt. Additionally, our work helps support
the development of tools and techniques to assist developers
in maintaining their apps. Our study aims at answering the
following research questions (RQs):
RQ1: To what extent do open-source Android app develop-
ers document technical debt in the code? This RQ reports
on how common it is for Android apps to contain SATD and the
volume of SATD typically contained within the app. Knowing
the extent to which SATD is present in an app will direct us
to further research in this area.
RQ2: What are the specific types of self-admitted technical
debt occurring in open-source Android apps? Knowing the
volume of SATD present in Android apps, this RQ focuses
on understanding, at a high-level, the types of SATD present
in the app. Hence, we classify SATD comments into one of
seven predefined technical debt categories.
RQ3: What code elements in Android apps are susceptible
to technical debt? In this RQ, we go one step deeper and
examine the SATD comments to understand the typical areas
and components in an Android app that are prone to sub-optimal
implementation decisions by developers.

B. Contribution

The main contributions from this work are as follows:
• This study provides preliminary yet promising findings

that expand our awareness of technical debt in Android

apps. Through our findings and discussion, the community
is made aware of the similarities and differences of
technical debt in mobile and non-mobile systems, along
with typical elements in an app prone to incurring debt.

• We make our dataset of SATD comments from a large and
diverse set of open-source Android apps publicly available
for replication and extension purposes [24].

II. RELATED WORK

In this section, we provide insight into prior studies in this
area. We divide the works into two specific areas – studies on
Android apps and studies on non-mobile systems.

A. Android Apps

The studies highlighted in this subsection focus on research
examining Android apps. While there is plenty of research
on the code quality of Android apps (especially smells), we
narrow our studies to only those where the authors explicitly
mention how their work is related to technical debt.

Verdecchia [25] proposes an approach to identifying architec-
tural technical debt that involves the construction of a reference
architecture through a survey of published and grey literature
and checking for compliance in reversed engineered apps.
However, the authors do not conduct an empirical or case study
using their proposed approach. Couto et al. [26] present the
concept of Energy Debt that occurs in mobile apps due to the
existence of energy code smells in its source code. The concepts
presented in the study are incorporated into a SonarQube-based
tool by Maia et al. [27] that calculates the energy debt of
Android apps. An analysis of three apps shows that energy debt
fluctuates throughout releases. Through a quantitative study
of 50 Android apps and developer interviews, Di Gregorio
et al. [28] identify a new type of technical debt, accessibility
technical debt, in apps and recommend that developers plan
for accessibility early in the project than handling it towards
the end of the development phase. Ghari et al. [29] examine
the source code of 10 Android apps and show that, among
other findings, developers add technical debt to their apps
after performing maintenance activities, such as fixing bugs.
Habchi et al. [30] mine the source code version history of
324 Android apps to identify developers responsible for code
smells. The authors show that no single group is responsible for
introducing or removing smelly code. The authors also indicate
that mobile code smells represent inadvertent technical debt
(i.e., debt introduced by oversight than strategically). In [31],
Ramanathan et al. describe how their tool efficiently reduces
technical debt related to state feature flags on mobile apps,
including Android apps, through refactoring.

B. Non-Mobile Systems

In this subsection, we focus only on studies related to SATD
in non-mobile systems; this includes empirical studies, case
studies, and developer surveys.

An examination of four systems by Potdar and Shihab
[16] shows that experienced developers are more likely to
introduce SATD. The authors also indicate that code complexity

does not correlate with the amount of SATD present in the
system and that not all SATD is removed in future updates
to the code. Wehaibi et al. [32] study five systems and show
that there does not appear to be a relationship between files
exhibiting SATD and defects. In a similar study of five systems,
Maldonado and Shihab [33] propose the classification of SATD
comments into five primary categories– design debt, defect
debt, documentation debt, requirement debt, and test debt. The
authors show that most SATD in their dataset is design debt.
An empirical study on 159 systems by Bavota and Russo
[13] shows that systems contain, on average, 51 instances of
SATD, with most SATD classified as code debt, followed by
requirements and design debt. The authors also indicate that
SATD tends to increase during the lifetime of the systems,
and, in most cases, the same developer introduces and removes
the debt. Finally, the authors do not observe a correlation
between the code quality of the source file and the number of
SATD instances it contains. Through an analysis of 333 SATD
comments, Maipradit et al. [34] introduce an additional category
of SATD– on-hold SATD, representing developers waiting
for a specific event/functionality implemented elsewhere. The
authors also implement a model to classify on-hold SATD
comments. An examination of 2,641 machine learning projects
by OBrien et al. [35] shows that these systems exhibit a high
proportion of Requirements debt, followed by Code debt. A
study of R packages by Vidoni [20] shows Code Debt as the
most commonly occurring type of SATD. In their study of how
SATD is managed in industrial projects, Li et al. [36] examine
source code, issue tracker details, and interview developers. The
authors observe that most SATD is classified as code/design,
while test debt occurs the least. The authors note that industrial
projects have more SATD in issues and commit messages
compared to open-source projects. In another industry study,
through a survey of developers, Zampetti et al. [19] show that
industrial developers are less reluctant to document SATD and
that SATD is related to functional and maintenance problems.
Finally, in a survey of 1,831 developers, Ernst et al. [37] report
that architectural decisions are the most important source of
technical debt and are difficult to address.

C. Summary

While there are studies on SATD, these are based on non-
mobile systems. Looking at the mobile studies, the research
community utilizes code smells and other code metrics (e.g.,
using SonarQube) to study technical debt. In short, we lack
the understanding of knowing the common areas in a mobile
app which developers deliberately and consciously document
their sub-optimal implementation decisions.

III. EXPERIMENT DESIGN

In this section, we provide details about the methodology
for our study. Figure 1 shows a high-level overview of our
methodology, which we describe in detail below. The dataset
we generate in this study is available on our project website
for replication and extension purposes [24].

Source Dataset

AndroZooOpen Dataset Clone Projects

RQ Analysis

Manual categorization of a statistically significant
sample of SATD comments

N-Gram generation and manual analysis

Quantitative analysis of SATD comments

Parse & Analyze Source Files

Identify and parse only
Java source files Detect code comments

Determine if
comment is

SATD

Extract SATD
comments

Count lines of
code in SATD

files

Fig. 1. Overview of our experiment design.

A. Source Dataset

In this study, we utilize AndroZooOpen [38], a dataset of
46,522 open-source Android apps spanning multiple categories.
From this source dataset, we attempt to clone each project
repository1. However, not all project repositories in Andro-
ZooOpen are publicly accessible. Hence, we cloned a total of
37,342 Android app project repositories containing Java files.

B. Parse & Analyze Source Files

The next stage of our experiment involves detecting SATD-
related comments. It should be noted that our analysis is limited
to the files contained in the most recent commit of the cloned
repository (i.e., we did not analyze the version history of the
files in the project). Below outlines our analysis approach:

• First, we recursively analyzed all directories of the cloned
projects to identify all Java files by isolating files with a
“.java” extension (case insensitive). In total, we detected
1,386,942 Java files. Furthermore, we calculated that each
project contains a median of 10 Java files.

• Next, for each detected Java file, we used JavaParser2

to construct its corresponding abstract syntax tree (AST).

1The projects were cloned in October 2022.
2https://javaparser.org/

https://javaparser.org/

TABLE I
DEFINITIONS FOR THE DIFFERENT TYPES OF TECHNICAL DEBT.

Debt Type Description

Requirements Debt Missing or partial implementation of the code.

Design Debt Structural issues of the codebase, violations of
design and object-oriented principles.

Code Debt Comments that indicate low code quality that makes
it challenging to maintain the source code. This
includes poor readability, workarounds, dead/redun-
dant code, etc.

Defect Debt Known defects in the code that are not fixed by
the developer.

Documentation Debt Missing or incomplete documentation associated
with the code.

Test Debt Issues related to the implementation or improve-
ment of existing unit tests.

Unclassifiable Comments that reflect technical debt but are vague
or incomplete.

JavaParser has been utilized in prior research studies to
analyze source code, such as test smell detection [39].
Through this AST, we can access (i.e., visit) each code
comment in the Java file. Furthermore, by using the AST,
we ignore the analysis of Java files having compilation
issues. In this activity, we capture line, block, and JavaDoc
comments. In total, we detected 14,383,880 comments.
From the 37,342 projects that we cloned, only 35,982
projects contained comments in the source code.

• Next, we utilized SATD Detector Core [40] to detect
SATD-related comments. This tool takes a comment string
as input and then utilizes natural language processing
techniques and a machine learning-based binary classifier
to classify whether the comment is SATD. We selected
this tool as it has been utilized in prior studies [35], [41],
[42]. We report the results of this activity in Section IV.

• Finally, to obtain size-related metrics of the files with
SATD comments, we utilize cloc [43] to count blank
lines, comment lines, and physical lines of source code.

C. RQ Analysis

In this stage of the experiment, we answer our research
questions by analyzing the SATD comments. We follow
a mixed-methods approach consisting of quantitative and
qualitative data analysis. Our quantitative approach includes
utilizing well-established statistical measures. Our qualitative
activities include manually reviewing a sample set of comments
to further understand the technical debt in Android apps.

To this extent, we manually reviewed a statistically signifi-
cant sample of SATD comments and group related comments
into categories. We utilize the six high-level categories proposed
by Bavota and Russo [13]—Requirements Debt, Design Debt,
Code Debt, Defect Debt, Documentation Debt, and Test Debt.
Additionally, similar to Azuma et al. [21], we also have an
Unclassifiable category. Table I describes the seven categories.

Further, as this study is on Android apps, we are interested in
knowing the common elements in the codebase associated with

technical debt. We are especially interested in sub-optimal code
related to mobile and Android-specific elements. To achieve this
task, we extracted and manually analyzed the top 50 frequently
occurring unigrams, bigrams, and trigrams in SATD comments
and grouped them into categories. Additionally, we manually
searched and reviewed comments containing these terms to
provide us with context around their occurrence.

IV. RESULTS

In this section, we report on the findings of our experiments
by answering our RQs. The first RQ examines the volume of
SATD present in Android apps. The second RQ explores the
types of SATD in the code base of these apps. Finally, the third
RQ examines the types of code elements in Android apps most
frequently associated with SATD. Due to space constraints, we
only show the most frequently occurring types; the complete
dataset is available at: [24].

A. RQ1: To what extent do open-source Android app developers
document technical debt in the code?

Motivation: This RQ aims to understand the extent to which
Android app developers knowingly deviate from best practices
in building their apps. To this extent, we examine the presence
of SATD in the app’s source code. From this RQ, we aim to
understand the extent to which technical debt occurs in mobile
apps compared to non-mobile software systems.

Running SATD Detector Core [40] on our dataset of 35,982
Android apps that contain comments, we obtain 15,614 (or ap-
proximately 43.39%) apps with SATD comments. Furthermore,
as shown in Table II, we observe each app having a median of
4 SATD comments. Furthermore, compared to the total number
of comments in an app, SATD comments contribute to, on
average, 5.97% of the comments.

Next, our dataset contains 451,499 SATD-related comments.
Looking at the files in the dataset, we observe that a file contains
a median of 1 SATD comment and each app contains a median
of 2 SATD files. Additionally, Table III shows that most apps
(approximately 67%) contain between 1 to 5 SATD-related
comments. Furthermore, we conducted a Spearman correlation
test [44] to measure the relationship between the number of
Java source files and SATD comments in an app. We utilized
this nonparametric test as our data does not follow a normal
distribution, which we confirmed via a Shapiro-Wilk normality
test [44]. The Spearman correlation test yielded a statistically
significant (i.e., p− value < 0.05) correlation of 0.6, equating
to a moderate positive correlation.

Moving on, examining the lines of code in files with and
without SATD, we observe that files with SATD have a median
of 122 lines of code, while files without SATD have a median
of 46 lines of code. To test the statistical significance of
this observance, we perform a nonparametric Mann-Whitney-
Wilcoxon test on the lines of code for these two groups of
files. Our null hypothesis is that there is no difference in
the lines of code between files with and without SATD. The
results of this calculation yield a statistically significant p-
value (i.e., p− value < 0.05), causing a rejection of the null

TABLE II
STATISTICAL SUMMARY OF THE OCCURRENCE OF SATD IN OUR DATASET.

Min. 1st Qu. Median Mean 3rd Qu. Max
Count of SATD comments in apps

1 2 4 28.92 12 17483
Count of SATD comments in files

1 1 1 2.34 2 1140
Count of SATD files in apps

1 1 2 12.05 6 3860

TABLE III
DISTRIBUTION OF SATD COMMENTS IN APPS.

SATD Comments Per App Frequency Percent

1 3,808 27.83%
2 2,287 16.71%
3 1,375 10.05%
4 1,008 7.37%
5 746 5.45%

others 6,390 46.69%
Total 15,614 100%

hypothesis, meaning that files with and without SATD have
different distributions of lines of code.

Finally, as shown in Figure 2, looking at the types of SATD
comments, we observe that developers frequently utilize Line
comments (246,709 instances or 54.64%) to document technical
debt, followed by JavaDoc (182,180 instances), and Block
comments (22,610 instances).

Summary for RQ1. Similar to non-mobile system devel-
opers, Android app developers make sub-optimal decisions
when building their apps. However, the absolute number
of SATD comments is lower than in traditional non-mobile
systems; a median of four comments. This comparatively
low occurrence of SATD is likely due to the fact that apps
contain fewer source files.

54.64 %

Line

40.35 %

JavaDoc

5.01 %
Block

Fig. 2. Proportion of comment types containing SATD.

B. RQ2: What are the specific types of self-admitted technical
debt occurring in open-source Android apps?

Motivation: The prior RQ shows that mobile systems,
specifically Android apps, are also prone to technical debt in
similar amounts as in non-mobile systems. In this RQ, we go
deeper into our detected SATD comments by grouping these
comments into seven predefined categories. The categories
represent the types of documented technical debt commonly
occurring in software systems (as defined in Section III-C).
Through this RQ, we gain an understanding of the types of
documented technical debt frequently occurring in Android
apps. We manually reviewed and annotated a random, sta-
tistically significant sample of 386 SATD comments. This
sample represents a 95% confidence level and a 5% confidence
interval. All authors reviewed and annotated each comment, and
conflicts were resolved through discussion. Table IV, shows the
distribution of these categories—Code Debt occurs the most
(35.23%), followed by Design Debt (23.58%) and Requirement
Debt (19.69%). We discuss our findings below.
Code Debt: Code Debt contributes to the highest amount

of SATD instances in our sample. In this category, similar to
[13], we include comments noting workarounds developers
implement. Workarounds represent compromises developers
make to the code’s quality to achieve a specific goal which
negatively impact maintenance. These workarounds are usually
in response to fixing a bug (e.g., “work around nested unclipped
SaveLayer bug”), which can include issues related to APIs the
app uses, including Android SDK APIs (e.g., “This is to work
around a bug in DatePickerDialog where it doesn’t display a
title showing”), and specific devices (e.g., “Also workaround
for bug on Nexus 6...”). Other observations include:

• the need to check the value of an identifier (e.g., “TODO:
check ret val!”)

• needing to rename an identifier name to something more
appropriate (e.g., ‘‘TODO: Rename parameter arguments,
choose names that match”)

• the need to change an identifiers datatype (e.g., “TODO:
Use strings for id’s too”)

• creating placeholders for missing code (e.g., “TODO add
your handling code here”)

• determining if a method should be called in a particular
location (e.g., “FIXME: do we need release() here?”)

Design Debt: The comments within this category relate
to shortcomings or workarounds in the structure or design
of the app’s codebase. This includes the need to move (i.e.,
extract) code to more appropriate locations (e.g., “TODO:
Factor out this Glide.get() call”), which can even include
the creation of new classes (e.g., “TODO move this out to
its own class”). We also see developers explicitly mention
that their code should be refactored (e.g., “That’s a larger
refactoring we’ll save for another day”) and object-oriented
principles, such as encapsulation and abstraction (e.g., “TODO:
CentralSurfaces should be encapsulated behind a Controller”
and “NOTE: Ideally, we would abstract away the details of
what identifies a network of a specific”).

Requirement Debt: This is the third-highest category
that contains comments in which developers document function-
ality that is not implemented or incomplete. These requirements
associated with the comments are related to presentation layer
elements (e.g., “TODO Hide the loading indicator”), business
logic (e.g., ‘‘TODO Add more comparision later”), and the data
access layer (e.g., “TODO delete table data”). Additionally,
developers also document the need to handle future releases of
the Android operating systems, or backward compatibility for
older versions of the operating systems (e.g. “TODO: We’ll
have that on Android 2.2”).

Defect Debt: This category includes comments in which
developer document known defects or deficiencies with their
apps. Our analysis shows three types of defect debt comments:

• functional defects - these defects are usually associated
with elements in the presentation layer, such as the screen
(e.g., “too high, fix height”) and hardware related (e.g.,
““XXX: Disables take picture button”)

• non-functional defects - these defects usually deal with
the app’s performance and missing error handling (e.g.,
“XXX: This might potentially cause stalls in the main” and
“TODO: handle exception”)

• generic defects - these are defects that lack a description
of the problem (e.g., “FIXME, this is wrong”)

Documentation Debt: Our sample only shows 11 in-
stances of Documentation Debt. While most of these comments
are JavaDoc, we also see a few line comments. Examining the
comments, we observe that developers do not document the
purpose/behavior of code and use comments as reminders
to explain the behavior in the future. For example, the
comment “TODO: document” represents missing details. We
also encounter incomplete code documentation instances, such
as “We aren’t going to go into detail about how this method
works, but feel free to explore!”. Finally, we also see redundant
comments, such as “Now upgrade should work fine”.
Test Debt: Prior work on mobile app testing by Pecorelli

et al. [45] shows that Android apps are poorly tested, with
most app developers not writing tests for their apps, and
even for those apps having tests, they have a median of
just two tests. This is consistent with the low occurrence of
Test Debt in our dataset. Analyzing the five comments in our
sample shows developers documenting the need to create/run
tests for the implemented functionality (e.g., “TODO Test
SharedPreferences”). Additionally, Android Studio includes
example unit tests when a project is created. These files, named
‘ExampleInstrumentedTest.java’ and ‘ExampleUnitTest.java’,
contain simplistic examples and should be removed [46].
Unfortunately, Android Studio does not include comments
in the file informing the developer about removing them from
the project. Looking at these files in our dataset, we observed
instances where developers included actual test cases in these
files, including SATD-related comments (e.g., “TODO: Work
on the test tmr”). This pattern of sub-optimal testing negatively
impacts correctness and maintainability.

Unclassifiable: Comments in this category are consid-
ered SATD since they contain known SATD keywords (i.e.,

TABLE IV
DISTRIBUTION OF THE DIFFERENT TYPES OF TECHNICAL DEBT IN A

STATISTICALLY SIGNIFICANT SAMPLE OF SATD COMMENTS.

Technical Debt Type Frequency Percentage

Code Debt 136 35.23%
Design Debt 91 23.58%
Requirement Debt 77 19.95%
Defect Debt 40 10.36%
Unclassifiable 26 6.74%
Documentation Debt 11 2.85%
Test Debt 5 1.30%
Total 386 100%

‘TODO’, ‘FIXME’, and ‘XXX’). However, these comments
are incomplete or vague; examples include: “XXX ???” and
“TODO it’s bad”. Developers include these comments for a
reason, but since they are not descriptive, we cannot classify
them. Furthermore, these ambiguous comments will almost
surely hamper maintenance activities, especially on projects
staffed by multiple developers.

Summary for RQ2. Code debt contributes the greatest num-
ber of SATD instances that Android developers injected into
their apps, implying that developers frequently compromise
their code quality via workarounds to achieve a desired
result. Developers also make sub-optimal design decisions
when building their apps and build apps with missing or
incomplete requirements.

C. RQ3: What code elements in Android apps are susceptible
to technical debt?

Motivation: While RQ1 and RQ2 focus on the volume
and types of SATD occurring in Android apps, this RQ
investigates the code elements (especially mobile and Android-
specific features) most commonly associated with technical debt.
This RQ provides insight into areas of concern that Android
app developers and project teams can focus on during the
implementation and maintenance of apps. To understand this we
extracted common n-grams—unigrams, bigrams, and trigrams—
from the collected SATD comments. Unigrams are single words;
bigrams are pairs of consecutive words occurring in a sentence;
trigrams are three consecutive words. Bigrams and trigrams
provide more context around the words but can lead to more
project-specific terminology and noise. We manually examined
the top 50 n-grams from each set (paying special attention to
mobile or Android-specific terminology) and grouped related
terms into categories that the authors agreed upon. We also
examined the comments containing these terms to gain more
insight into the actual technical debt issues.

Our analysis of these terms yielded four high-level
categories—Android SDK API, General UI, General Pro-
gramming, and Hardware. Some of these categories contain
subcategories. Below we elaborate on each category and include
illustrative examples.
Android SDK API: Within this category, we encounter

comments involving developers documenting sub-optimal code

related to using Android-specific features, such as UI-related
APIs/components and non-UI-specific APIs the app utilizes.

Under the Android UI API subcategory, we encounter terms
such as ‘Activity’, ‘View’, ‘Fragment’, ‘Listener’, ‘ActionBar’,
and ‘BoundingBox’. Examining the Activity-related comments,
we notice developers documenting bugs/issues related to the
activity (e.g., “TODO: We need to fix this case...”) and
updating/implementing an activity (“TODO Change to activity
to be able to search” and “TODO (1) Use Android Studio’s
Activity wizard to create a new Activity...”). Examining the
Fragment comments, we observe developers indicating the
need to replace/use specific Fragment types (e.g., “TODO:
use dialog fragment”) or optimize existing Fragments (e.g.,
“TODO beautify the fragment” and “TODO: Make the create
fragment layout scrollable”). Looking at the View comments,
we encounter comments about implementing or updating
specific Views (e.g., “TODO Add a View to the layout with a
width of match parent and a height of 1dp”).

In the Android non-UI API subcategory, some frequent
terms we encounter include ‘Context’, ‘Loader’, ‘Content-
Provider’, and ‘AndroidManifest’. These terms are known
components in the Android SDK, which developers utilize when
building apps. We observe developers documenting the need
for using a ContentProvider for existing features (e.g., “TODO
Set up a content provider interface to abstract contacts from
phone!”). Looking at AndroidManifest comments, we observe
developers documenting the need to add or remove entries
from this file due to functional and quality attribute changes
(e.g., “TODO: 01. Add Fingerprint Feature + Permission in
AndroidManifest.xml”). Additionally, we encounter the terms
‘deprecated api’ and ‘api level’, which developers utilize to
indicate if their code is compatible/incompatible with a specific
Android API version (e.g., “TODO: use API level 24 or above
to correct this” and “TODO: delete these deprecated method
calls once we support only API 23 and higher”).

General UI: This category contains general user inter-
face terms such as ‘button’, ‘button clicked’, ‘pixels’, ‘margin’,
‘form’, ‘color’, and ‘position’. When we examine the comments,
we observe that most of the comments associated with these
terms are related to implementing new or missing functionality
related to the apps’ user interface. For instance, the following
comments were added by developers relating to a button and
color in their apps respectively, “TODO: Log the button press
as an analytics event” and “TODO: Add support for border
color and types”.

General Programming: In this category, we encounter
terms related to general programming concepts or activities.
We grouped these terms into the following subcategories:
Refactoring, Date/Time, Storage, External Resources, Error
Handling, and Security.

Within the Refactoring subcategory, we encounter terms
such as ‘update argument type’ and ‘rename change’, showing
that app developers document the need to improve the quality
of their code from simple identifier renaming to more complex
design changes. For example: “TODO: Rename and change
types and number of parameters”.

Under the Date/Time subcategory are terms like ‘time zone’
and ‘utc date’. Since most mobile apps cater to users world-
wide, apps must consider a user’s location and timezone
when performing date/time-related functionality. Looking at the
comments, we encounter instances of developers documenting
the need to handle timezones (e.g., “TODO take care of
time zone?”) or optimizing existing timezone conversions
(e.g., “TODO: clumsy: implicit conversion from UTC to
YYYYMMDDHHMMSS in begin.setTimestamp”).

The Storage subcategory represents technical debt related to
data storage by the app and includes terms such as ‘data’, ‘json’,
‘distinct rows’, and ‘database contains tables’. The comments
show the need to implement functionality to convert data to a
specific format and also parse data in specific formats like JSON
(e.g., “TODO: Send the queue in JSON format” and “TODO:
parse json and populate the user data”). Database-related
problems include improving the design of the data access layer
code (e.g., “Refactor into Database interface”), which can also
lead to performance improvements (e.g., “TODO: database
operations should be done on separate thread”) and better error
handling (e.g., “TODO: Handle database error”). Additionally,
we observe comments about updating existing functionality to
utilize a database to store app data (e.g., “TODO: get from a
json/csv files/ database etc. But for now hard coded”).

Within the External Resources subcategory, we encounter
terms like ‘url’, ‘link’, ‘server’, ‘ connection available’, and
‘data request server’. The technical debt in this category is
related to the app communicating/connecting with external
resources, which is usually a server. This includes retrieving
data from a server (e.g., “TODO get image from server if
exists”), checking the availability of external resources, and
taking necessary action on connection failures or resource
unavailability (e.g., “TODO When Internet Connection un-
available”). We also encounter instances where developers
utilize placeholder/test URLs and document the need to replace
them (e.g., “TODO: switch to PROD URL on release”).

The Error Handling subcategory involves developers doc-
umenting known issues and the need for better error handling.
Terms in this subcategory include ‘bug start’, ‘bug end’,
‘throws ioexception’, and ‘data throws jsonexception’. Look-
ing at the comments, we observe developers either acknowl-
edging that some code statements are susceptible to runtime
exceptions (e.g., “TODO: stop() throws an exception if you
haven’t fed it any data. Keep track”) or the need for further
testing to check how the app handles unforeseen errors (e.g.,
“TODO: what if this throws an exception?”). Additionally,
developers also document known bugs in the app (e.g., “TODO
there are bug in rotation mainly...”).

Under the Security subcategory, we observe comments about
improving the security of the app (e.g., ‘‘TODO should apply
better security policy!”), potential vulnerabilities (“TODO:
FIXME: This is a potential security problem!”), and non-
optimal workarounds that address security concerns (e.g.,
“Hacky solution as part of fixing a security bug; ignore”). We
also observe comments around permissions, such as checking
if permissions have been denied (e.g., “TODO Add Permission

check”) and informing users about the status of permissions
(e.g., “Todo ask for SEND Message permission”).

Hardware: This category includes terms like ‘camera’
and ‘device’ and corresponds to code that integrates with
specific mobile device components. For example, developers
implementing workarounds to support specific devices (e.g.,
“the front-facing camera, its just a hack not all device camera
apps support these extras”), or the need to incorporate or
update features related to specific hardware components (e.g.,
“TODO : add usb device attached intent” and “TODO: For
now, assume the device supports LTE”).

Summary for RQ3. As evident from the comments in
the codebase, Android app developers introduce technical
debt associated with four categories: Android API/Features,
General UI, General Programming, and Hardware. Further-
more, some of these categories are composed of multiple
subcategories that provide a more granular view of potential
sub-optimal code in Android apps.

V. DISCUSSION

As an exploratory study, our research aims to understand
the reasons for SATD in Android apps. Our analysis of code
comments shows that developers take shortcuts or make sub-
optimal decisions in building apps, the common types of
debt the project accumulates, and the specific components
and features associated with technical debt. While this study
expands the body of knowledge in mobile app development
and maintenance, our findings also suggest further research. In
this section, we discuss how our work complements and aligns
with existing research on Android apps and its implications as
a series of takeaways.

While RQ1 shows that Android apps, like traditional, non-
mobile systems, are not exempt from technical debt, we also
see some differences with existing literature. At the time of
conducting this research, ours is the only study examining
SATD in Android apps; hence, our comparison is against
studies on non-mobile systems. For instance, prior studies on
non-mobile systems show that SATD comments contribute
to, on average, between 15.01% to 22.51% of comments per
system [32], [33]. In contrast, our data shows SATD comments
contribute, on average, to 5.97% of the comments in an Android
app. This difference can be attributed to the size of the mobile
and non-mobile systems; Android apps are smaller and are
often developed by small teams [47]. Non-mobile systems may
have hundreds or thousands of classes, while the number of
classes in mobile apps is typically in the double digits. The
apps in our dataset have a median of 10 files/classes (similar
to what has been reported elsewhere [48]).

Our RQ2 findings also show some similarities and contrasts
with non-mobile systems. Similar to Bavota et al. [13],
Code debt occurs most often in our dataset. However, we
have contrasting rankings for the other categories. The low
occurrence of requirement and defect debt might be attributed to
mobile apps being small in size and having limited functionality.
But this observation invites future research.

The findings from RQ3 align with prior work on mobile
systems. For instance, work by Carvalho et al. [11] on the
presentation layer identifies code smells involving components
such as Activities, Fragments, and Listeners, which developers
also mention in SATD comments. Furthermore, Content
Providers, which are associated with leakage vulnerabilities [4],
are also present in our findings. This opens up an interesting
avenue of research for the community to examine the extent
to which such debt items can lead to app vulnerabilities.
Research also shows that Android permissions are a cause
for concern [49], which is highlighted in our findings. Our
findings about app developers documenting the need to refactor
their code, such as renaming identifiers, are reflected in the
existing literature that shows app developers refactor their code
to improve code comprehension, among other reasons [50].
Additionally, our identification of sub-optimal Error Handling
in Android apps aligns with research showing that exception
handling is a problematic area in non-mobile systems [51].

Below, we discuss how the findings from our RQs support
the community through a series of takeaways.
à Takeaway 1 - Integration of technical debt detection tools
into the developer workflow. There are a number of tools and
techniques to detect the presence of SATD in code [18]. IDE
vendors and developers should utilize these mechanisms in the
development workflow. For instance, developers can integrate
these tools into the build process to receive notifications
of the presence of technical debt when code is committed.
Additionally, IDE vendors integrating these tools into their
products can provide developers with real-time notifications of
sub-optimal code. Note, however, that a recent study has cast
doubt on the efficacy of several existing tools [52].
à Takeaway 2 - Expand research into mobile technical debt.
While the research community has made strides in mobile
quality research, such as code and test smells [46], [53],
our work provides an opportunity for further research into
implementing and maintaining mobile apps. For instance, our
findings from RQ3 highlight specific Android APIs usually
associated with debt. These findings provide the community
with an avenue to build or enhance code quality tools to support
app developers, such as expanding the catalog of Android code
smells. Additionally, similar studies on iOS apps can provide
insight into unique iOS features associated with debt.
à Takeaway 3 - Expand techniques and tools to refactor
mobile app technical debt. Past studies show the co-occurrence
of refactoring actions with SATD removal [54], with developers
performing the refactoring to remove specific debt items [55].
With Android app developers making sub-optimal mobile-
specific decisions when building their apps, there exists an
opportunity to develop refactoring operations geared toward
mobile app code, specifically UI/presentation layer code. This
also includes improving the accuracy of existing refactoring
recommendation tools by considering the text of the comments
and their related code statements.
à Takeaway 4 - Complement tool use with code reviews.
Developers should not treat code quality tools as a one-

stop solution. For instance, while tools exist to detect smells,
including Android-specific smells, it should be noted that not
all technical debt is due to the presence of smells. To this
extent, project teams should complement their use of tools
by conducting frequent code reviews. Furthermore, while it
might not be feasible to repay the debt in all situations, the
review process can catch instances of poorly composed SATD
comments, such as vague or incomplete comments.

VI. THREATS TO VALIDITY

Even though our dataset is restricted to open-source Android
apps, the large volume of apps (15k+) contained in the dataset
provides a diverse and representative sample. Additionally,
since the apps we analyzed are implemented in Java, it helps
us to compare results reported in prior literature that analyzed
non-mobile Java systems. Further, some apps in this dataset are
available in app stores for end-users to install on their device.
However there is a threat to external validity in that we can
not assume these results apply to languages other than Java.

Another threat to external validity comes from the fact
that we are only examining self-admitted technical debt. This
means that developers are conscious of the debt that they have
introduced or are saddled with. But other forms of debt may be
less obvious to them, such as architectural debt [56] or energy
debt [26]. For this reason, we may not be able to generalize
these results to all forms of technical debt.

The tool we utilized to detect SATD comments has been
utilized in similar studies. However, there is a threat of
false positives in the dataset; other tools like Pilot [57] and
DebtHunter [58] might provide different results. That said, our
RQ2 and RQ3 approaches involved the manual analysis of
comments, ensuring that we analyzed only SATD comments.
Additionally, our RQ2 and RQ3 approaches also involve peer-
reviews of author annotations as means to avoid bias. Further,
even though we utilized seven predefined categories in RQ2,
these categories are common to other SATD studies.

VII. CONCLUSION & FUTURE WORK

The ease of Android app development has resulted in
the proliferation of apps that provide end-users access to
information and services on multiple mobile devices. However,
like traditional systems, mobile apps are also subject to poor
coding practices that hamper maintenance. In this exploratory
empirical study on over 15k open-source Android apps, we
examined how developers documenting sub-optimal implemen-
tation decisions—SATD comments. Our findings show that
even though Android apps are not exempt from technical debt,
the volume of SADT they exhibit is lower than non-mobile
systems. Our findings also show that most debt falls under
the Code debt category, of which most are implementation
of workarounds. We also show that technical debt is not only
related to general programming or design concepts but also
due to shortcomings developers take when implementing code
that utilizes Android APIs. Additionally, we see developers
making sub-optimal decisions in implementing their app’s UI.

Our future work in this area includes examining the repay-
ment and survival of SADT in Android apps, by analyzing the
version history of source files. These findings will help us better
understand the similarities and differences in how developers
implement and maintain apps compared to non-mobile systems
and give researchers and vendors more insight into how to
better support app developers.

REFERENCES

[1] https://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/
#monthly-200901-202209-bar.

[2] https://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/.

[3] https://developer.android.com/quality.
[4] H. Shahriar and H. M. Haddad, “Content provider leakage vulnerability

detection in android applications,” in Proceedings of the 7th Interna-
tional Conference on Security of Information and Networks, SIN ’14,
p. 359–366, Association for Computing Machinery, 2014.

[5] S. Caro-Alvaro, E. Garcia-Lopez, A. Garcia-Cabot, L. De-Marcos, and
J.-J. Martinez-Herraiz, “Identifying usability issues in instant messaging
apps on ios and android platforms,” Mobile Information Systems, 2018.

[6] C. Vendome, D. Solano, S. Liñán, and M. Linares-Vásquez, “Can
everyone use my app? an empirical study on accessibility in android
apps,” in 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 41–52, 2019.

[7] M. Linares-Vásquez, C. Vendome, Q. Luo, and D. Poshyvanyk, “How
developers detect and fix performance bottlenecks in android apps,”
in 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 352–361, 2015.

[8] I. Malavolta, R. Verdecchia, B. Filipovic, M. Bruntink, and P. Lago, “How
maintainability issues of android apps evolve,” in 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2018.

[9] https://developer.android.com/studio/write/lint.
[10] S. Habchi, N. Moha, and R. Rouvoy, “Android code smells: From

introduction to refactoring,” Journal of Systems and Software, vol. 177,
p. 110964, Jul 2021.

[11] S. G. Carvalho, M. Aniche, J. Verı́ssimo, R. S. Durelli, and M. A. Gerosa,
“An empirical catalog of code smells for the presentation layer of android
apps,” Empirical Software Engineering, Dec 2019.

[12] N. S. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Spı́nola,
“Towards an ontology of terms on technical debt,” in 2014 Sixth
International Workshop on Managing Technical Debt, pp. 1–7, 2014.

[13] G. Bavota and B. Russo, “A large-scale empirical study on self-admitted
technical debt,” in Proceedings of the 13th International Conference
on Mining Software Repositories, MSR ’16, (New York, NY, USA),
p. 315–326, Association for Computing Machinery, 2016.

[14] J. Yli-Huumo, A. Maglyas, and K. Smolander, “The sources and
approaches to management of technical debt: a case study of two product
lines in a middle-size finnish software company,” in Product-Focused
Software Process Improvement: 15th International Conference, PROFES
2014, Helsinki, Finland, December 10-12, 2014. Proceedings 15, pp. 93–
107, Springer, 2014.

[15] N. Ernst, R. Kazman, and J. Delange, Technical Debt in Practice: How
to Find It and Fix It. MIT Press, 2021.

[16] A. Potdar and E. Shihab, “An exploratory study on self-admitted technical
debt,” in 2014 IEEE International Conference on Software Maintenance
and Evolution, pp. 91–100, 2014.

[17] V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, and F. A. Fontana, “A
systematic literature review on technical debt prioritization: Strategies,
processes, factors, and tools,” Journal of Systems and Software, vol. 171,
p. 110827, 2021.

[18] G. Sierra, E. Shihab, and Y. Kamei, “A survey of self-admitted technical
debt,” Journal of Systems and Software, vol. 152, pp. 70–82, 2019.

[19] F. Zampetti, G. Fucci, A. Serebrenik, and M. Di Penta, “Self-admitted
technical debt practices: a comparison between industry and open-source,”
Empirical Software Engineering, vol. 26, p. 131, Sep 2021.

[20] M. Vidoni, “Self-admitted technical debt in r packages: An exploratory
study,” in 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR), pp. 179–189, IEEE, 2021.

[21] H. Azuma, S. Matsumoto, Y. Kamei, and S. Kusumoto, “An empirical
study on self-admitted technical debt in dockerfiles,” Empirical Software
Engineering, vol. 27, p. 49, Jan 2022.

https://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-200901-202209-bar
https://gs.statcounter.com/os-market-share/mobile-tablet/worldwide/#monthly-200901-202209-bar
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://developer.android.com/quality
https://developer.android.com/studio/write/lint

[22] H. K. Flora, X. Wang, and S. V. Chande, “An investigation on the
characteristics of mobile applications: A survey study,” International
Journal of Modern Education and Computer Science, vol. 6, no. 11,
pp. 21–27, 2014.

[23] https://github.com/ahkkfh/MyFrame/blob/
f20b4dea833c3468fb6e9bcdb78c2653d6a0d510/utils/src/main/java/
cn/mark/utils/zxing/camera/CameraConfigurationManager.java#L184.

[24] https://sites.google.com/view/techdebt2023-satd/.
[25] R. Verdecchia, “Identifying architectural technical debt in android appli-

cations through automated compliance checking,” in 2018 IEEE/ACM 5th
International Conference on Mobile Software Engineering and Systems
(MOBILESoft), pp. 35–36, 2018.

[26] M. Couto, D. Maia, J. a. Saraiva, and R. Pereira, “On energy debt:
Managing consumption on evolving software,” in Proceedings of the 3rd
International Conference on Technical Debt, TechDebt ’20, (New York,
NY, USA), p. 62–66, Association for Computing Machinery, 2020.

[27] D. Maia, M. Couto, J. Saraiva, and R. Pereira, “E-debitum: Managing
software energy debt,” in 2020 35th IEEE/ACM International Conference
on Automated Software Engineering Workshops (ASEW), pp. 170–177,
2020.

[28] M. Di Gregorio, D. Di Nucci, F. Palomba, and G. Vitiello, “The making
of accessible android applications: an empirical study on the state of the
practice,” Empirical Software Engineering, vol. 27, p. 145, Aug 2022.

[29] S. Ghari, M. Hadian, M. Rasolroveicy, and M. Fokaefs, “A multi-
dimensional quality analysis of android applications,” in Proceedings
of the 29th Annual International Conference on Computer Science and
Software Engineering, CASCON ’19, (USA), p. 34–43, IBM Corp., 2019.

[30] S. Habchi, N. Moha, and R. Rouvoy, “The rise of android code smells:
Who is to blame?,” in 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), pp. 445–456, 2019.

[31] M. K. Ramanathan, L. Clapp, R. Barik, and M. Sridharan, “Piranha:
Reducing feature flag debt at uber,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software Engineering
in Practice, ICSE-SEIP ’20, (New York, NY, USA), p. 221–230,
Association for Computing Machinery, 2020.

[32] S. Wehaibi, E. Shihab, and L. Guerrouj, “Examining the impact
of self-admitted technical debt on software quality,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1, pp. 179–188, 2016.

[33] E. d. S. Maldonado and E. Shihab, “Detecting and quantifying different
types of self-admitted technical debt,” in 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD), pp. 9–15, 2015.

[34] R. Maipradit, C. Treude, H. Hata, and K. Matsumoto, “Wait for it:
identifying “on-hold” self-admitted technical debt,” Empirical Software
Engineering, vol. 25, pp. 3770–3798, Sep 2020.

[35] D. OBrien, S. Biswas, S. Imtiaz, R. Abdalkareem, E. Shihab, and
H. Rajan, “23 shades of self-admitted technical debt: An empirical
study on machine learning software,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2022, (New York, NY,
USA), p. 734–746, Association for Computing Machinery, 2022.

[36] Y. Li, M. Soliman, P. Avgeriou, and L. Somers, “Self-admitted technical
debt in the embedded systems industry: An exploratory case study,” IEEE
Transactions on Software Engineering, pp. 1–22, 2022.

[37] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure
it? manage it? ignore it? software practitioners and technical debt,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, (New York, NY, USA), p. 50–60,
Association for Computing Machinery, 2015.

[38] P. Liu, L. Li, Y. Zhao, X. Sun, and J. Grundy, “Androzooopen: Collecting
large-scale open source android apps for the research community,” in
Proceedings of the 17th International Conference on Mining Software
Repositories, MSR ’20, 2020.

[39] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni,
and F. Palomba, “Tsdetect: An open source test smells detection tool,”
in Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020, (New York, NY, USA), p. 1650–1654,
Association for Computing Machinery, 2020.

[40] Z. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “Satd
detector: A text-mining-based self-admitted technical debt detection
tool,” in Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, ICSE ’18, (New York, NY, USA),
p. 9–12, Association for Computing Machinery, 2018.

[41] L. Xavier, F. Ferreira, R. Brito, and M. T. Valente, “Beyond the code: Min-
ing self-admitted technical debt in issue tracker systems,” in Proceedings
of the 17th International Conference on Mining Software Repositories,
MSR ’20, (New York, NY, USA), Association for Computing Machinery,
2020.

[42] E. A. AlOmar, B. Christians, M. Busho, A. H. AlKhalid, A. Ouni,
C. Newman, and M. W. Mkaouer, “Satdbailiff-mining and tracking self-
admitted technical debt,” Science of Computer Programming, Jan 2022.

[43] AlDanial, S. Snel, S. Boos, jolkdarr, C. Beckmann, MichaelDimmitt,
J. Wilk, G. Chaves, boB Rudis, asrmchq, A. Gough, J. Tang, J. Dursi,
RyanMcC, achary, A. Ali, Brando!, C. Dahlheimer, D. Losantos,
D. Ulrich, erkmos, L. Brinkhoff, LoganDark, T. Irländer, W. Rösler,
fei long, b1f6c1c4, V. Solanki, S. HOUZÉ, and A. Ryan, “Aldanial/cloc:
v1.96,” Dec. 2022.

[44] D. Taeger, Statistical hypothesis testing with SAS and R. Hoboken, New
Jersey: John Wiley & Sons, Incorporation, 2014 - 2014.

[45] F. Pecorelli, G. Catolino, F. Ferrucci, A. De Lucia, and F. Palomba,
“Testing of mobile applications in the wild: A large-scale empirical study
on android apps,” in Proceedings of the 28th International Conference
on Program Comprehension, ICPC ’20, 2020.

[46] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni, and
F. Palomba, “On the distribution of test smells in open source android
applications: An exploratory study,” in Proceedings of the 29th Annual
International Conference on Computer Science and Software Engineering,
CASCON ’19, (USA), p. 193–202, IBM Corp., 2019.

[47] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1, pp. 403–414, IEEE, 2015.

[48] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A. E.
Hassan, “A large-scale empirical study on software reuse in mobile apps,”
IEEE Software, vol. 31, no. 2, pp. 78–86, 2014.

[49] G. L. Scoccia, A. Peruma, V. Pujols, I. Malavolta, and D. E. Krutz,
“Permission issues in open-source android apps: An exploratory study,”
in 2019 19th International Working Conference on Source Code Analysis
and Manipulation (SCAM), pp. 238–249, 2019.

[50] A. Peruma, “A preliminary study of android refactorings,” in 2019
IEEE/ACM 6th International Conference on Mobile Software Engineering
and Systems (MOBILESoft), pp. 148–149, 2019.

[51] G. Digkas, M. Lungu, A. Chatzigeorgiou, and P. Avgeriou, “The evolution
of technical debt in the apache ecosystem,” in Software Architecture,
Springer International Publishing, 2017.

[52] J. Lefever, Y. Cai, H. Cervantes, R. Kazman, and H. Fang, “On the lack
of consensus among technical debt detection tools,” in Proceedings of
the 43rd International Conference on Software Engineering, 2011.

[53] O. Hamdi, A. Ouni, M. Ó. Cinnéide, and M. W. Mkaouer, “A longitudinal
study of the impact of refactoring in android applications,” Information
and Software Technology, vol. 140, p. 106699, Dec 2021.

[54] M. Iammarino, F. Zampetti, L. Aversano, and M. Di Penta, “An empirical
study on the co-occurrence between refactoring actions and self-admitted
technical debt removal,” Journal of Systems and Software, 2021.

[55] A. Peruma, E. A. AlOmar, C. D. Newman, M. W. Mkaouer, and
A. Ouni, “Refactoring debt: Myth or reality? an exploratory study on the
relationship between technical debt and refactoring,” in 2022 IEEE/ACM
19th International Conference on Mining Software Repositories (MSR),
2022.

[56] L. Xiao, R. Kazman, Y. Cai, R. Mo, and Q. Feng, “Detecting the
locations and predicting the costs of compound architectural debts,”
IEEE Transactions on Software Engineering, vol. 48, Sept. 2022.

[57] A. Di Salle, A. Rota, P. T. Nguyen, D. Di Ruscio, F. A. Fontana, and
I. Sala, “Pilot: Synergy between text processing and neural networks to
detect self-admitted technical debt,” in Proceedings of the International
Conference on Technical Debt, TechDebt ’22, (New York, NY, USA),
p. 41–45, Association for Computing Machinery, 2022.

[58] I. Sala, A. Tommasel, and F. Arcelli Fontana, “Debthunter: A machine
learning-based approach for detecting self-admitted technical debt,” in
Evaluation and Assessment in Software Engineering, EASE 2021, (New
York, NY, USA), p. 278–283, Association for Computing Machinery,
2021.

https://github.com/ahkkfh/MyFrame/blob/f20b4dea833c3468fb6e9bcdb78c2653d6a0d510/utils/src/main/java/cn/mark/utils/zxing/camera/CameraConfigurationManager.java#L184
https://github.com/ahkkfh/MyFrame/blob/f20b4dea833c3468fb6e9bcdb78c2653d6a0d510/utils/src/main/java/cn/mark/utils/zxing/camera/CameraConfigurationManager.java#L184
https://github.com/ahkkfh/MyFrame/blob/f20b4dea833c3468fb6e9bcdb78c2653d6a0d510/utils/src/main/java/cn/mark/utils/zxing/camera/CameraConfigurationManager.java#L184
https://sites.google.com/view/techdebt2023-satd/

	I Introduction
	I-A Goal & Research Questions
	I-B Contribution

	II Related Work
	II-A Android Apps
	II-B Non-Mobile Systems
	II-C Summary

	III Experiment Design
	III-A Source Dataset
	III-B Parse & Analyze Source Files
	III-C RQ Analysis

	IV Results
	IV-A RQ1: To what extent do open-source Android app developers document technical debt in the code?
	IV-B RQ2: What are the specific types of self-admitted technical debt occurring in open-source Android apps?
	IV-C RQ3: What code elements in Android apps are susceptible to technical debt?

	V Discussion
	VI Threats To Validity
	VII Conclusion & Future Work
	References

