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Abstract—Software quality is crucial in software development:

if not addressed in early phases of the software development life

cycle, it may even lead to technical bankruptcy, i.e., a situation in

which modifications cost more than redeveloping the application

from scratch. In addition, code security must also be addressed

to reduce software vulnerabilities and to comply with legal

requirements. In this work, we aim to investigate the relationship

between refactoring code quality and software security, with the

purpose of understanding whether and to what extent improving

software quality could have a positive impact on software security

as well. Specifically, we investigate to what extent rule violations

of a software quality tool such as SonarQube overlap with rule

violations of a software vulnerability tool like Fortify Static Code

Analyzer. We first compared the rules encoded in the quality

models of both tools, to discover possible overlapping cases. Later,

we compared the issues raised by both tools on a set of open

source Java projects; we also investigated the cases in which

a quality refactoring process impacts over software security

(thus removing one or more vulnerabilities). We furthermore

validated our results statistically. Our results show that resolving

software quality issues might also resolve security issues but only

in part: many security issues still persist in the source code;

also, some quality aspects are more likely to be improved in

respect to others. In addition, this empirical study uncovers rule

co-occurrences between the two tools. This study confirms the

need for using a security-oriented static analysis tool to enforce

software security instead of relying only on a quality-oriented

one. Results have highlighted important insights for practitioners.

I. INTRODUCTION

In an industrial software engineering context, quality is a
factor that must be considered from different perspectives.
For example, it is often an implicit requirement: stakeholders
with little knowledge about software engineering assume that
software is inherently reliable, secure, modifiable, adaptable,
and so on, and therefore focus their attention on functional
aspects and are surprised, if not unwilling, to pay for quality or
to compromise on features in exchange for quality. In contrast,
software failures, and in particular security vulnerabilities, can
cause damage, lead to legal consequences, or have irreversible
consequences for the reputation of the software producer.

Moreover, as popular project management frameworks sug-
gest, spending time on quality implies spending less time on
implementing features (assuming that the productivity of a

team cannot be increased in the short run), or increasing costs
(e.g., if we hire more engineers), or prolonging the time-to-
market [1].

To mitigate the above-mentioned dilemma, industry has
always been interested in reducing quality assurance costs,
for example, as suggested by the Toyota Production System
[2] and the subsequent Lean Thinking movement [3], through
automated quality assurance mechanisms, in Japanese called
Jidoka, in which “machines are able to detect the production
of a single defective part and immediately stop themselves
while asking for help.” In software production, such automated
quality assurance mechanisms are represented by software
tools that are able to analyze the produced source code and
warn developers of potential issues.

Various software tools to analyze software quality, and in
particular code quality, exist. A popular category of these tools
is represented by static analysis tools that, unlike dynamic
tools, analyze source code without executing it. Executing
source code requires reproducing the hardware context in
which the source code is supposed to run, which can be non-
trivial. For example, dynamically analyzing the software for
an airport baggage handling system, in which custom-made
hardware is also involved, is complex since many physical
parts need to be simulated truthfully. Often, e.g., to determine
performance issues or energy consumption, a dynamic analysis
is necessary (e.g., as in [4], [5], [6]) but if feasible, analyzing
source code statically is often preferred for cost reasons and
sufficient to discover a variety of issues.

Therefore, the overall goal of software quality—regardless
of how the code is analyzed—is to uncover potential quality
problems in the source code. Even if software is developed
using Agile methods, to allow changes that may even be late
in the process [7], the development team has to consider an
exponentially rising cost-of-change curve [8], i.e., it is always
better to solve issues early in the process than later. Also
from a technical debt point of view, it is in the interest of
practitioners to maintain and improve code quality early in
the process to reduce the risk of technical bankruptcy [9],
i.e. that because of low quality, changes to the software take
an unreasonable amount of time or that features cannot be



implemented without major redevelopments of large parts of
the software.

For the above-mentioned reason, practitioners and re-
searchers are aware of the benefits and need for code quality
analysis tools and the adoption is increasing over time [10],
[11]. Moreover, the impact, accuracy, and implications of using
static analysis tools in a software development workflow are
studied [12], [13]. Examples of such studies include compar-
isons of tools in terms of capability [14], detection agreement,
and precision [15]. Other studies compared specific aspects
detected by the tools, such as security [16] or concurrency
defects [17], [18].

Two very popular static analysis tools are SonarQube1 [10]
and Fortify Static Code Analyzer2. SonarQube analyzes code
quality based on a customizable quality model and applies the
concept of technical debt to inform developers not only about
code quality issues but also about the estimated (accumulated)
cost of removing those issues.

Not intended as a static analysis tool for code quality in
general, but specifically to analyze and test applications for
security vulnerabilities, Fortify Static Code Analyzer (Fortify
SCA), has been named for the 9th time one of the market
leaders by Gartner in their application security testing market
study, also in 2022 [19]. We found the term “Fortify SCA” or
“Fortify Static” 54 times on IEEE Xplore searching within the
full text of articles. We conjecture that this lower popularity
in academic literature is not because security is less important
than code quality but because Fortify SCA is only available
with a commercial license, while SonarQube is available Open
Source and because the topic of “security vulnerabilities” is
more specific than “code quality”.

The two tools discussed here—SonarQube and Fortify
SCA—have been compared in several other papers, e.g., in
[20] where the authors study the challenges in responding
to alerts of static analysis tools, in [21], where the authors
investigate what developers want and need from program
analysis, or in [22] where the authors analyze to identify the
limitations of static analysis security testing tools; we conclude
from this even more that the research community considers
these two products valid tools in the field of static source
code analysis and worthwhile comparing their capabilities.

In many contexts, software security is a crucial aspect to
consider during the software development process [23] in
which developers aim to design the system to be resilient to
external attacks [24]. Software vulnerabilities can cause loss of
data, privilege escalation, race conditions, and other undesired
effects that may affect the source code [25], [26].

The research community has been addressing the problem of
vulnerabilities from different points of view, such as the impact
on source code [27], [28], [29], or developing automated
detection techniques [30].

Most of the approaches defined so far are based on source
code and/or dynamic analysis [31], symbolic execution [32],

1https://www.sonarqube.org
2https://www.microfocus.com/en-us/cyberres/application-security/
static-code-analyzer

and fuzz-testing [33], [34]. Some of them are also imple-
mented within automated tools, such as Coverity Scan3 or
Fortify Static Code Analyzer.

Because of the importance of predicting, identifying, and re-
solving software vulnerabilities, researchers are also interested
in correlating software vulnerabilities with other metrics. For
example, Scandariato et al. [35], in study to which extent it
is possible to use text mining methods to predict the same
vulnerable software components as identified by Fortify SCA.

In order to address the aforementioned issues and to un-
derstand if enhancing the code quality also improves software
security, we designed and conducted a user study investigating
whether and to what extent improving software quality could
have a positive impact on software security as well. To do so
we use as a basis of our investigation two representative tools
from both domains: SonarQube for the code quality domain
and Fortify SCA for the software security domain.

The obtained results reveal findings interesting for re-
searchers as well as practitioners: resolving software quality
issues using SonarQube has an impact over software security
as identified by Fortify SCA, but only to a limited extent.
Many security issues still remain in the source code also
after improvements. Moreover, some quality characteristics are
more likely to be improved with respect to others. Regarding
the tools’ rules mapping we found new unexpected trends. Our
study confirms the need for using a security-oriented Static
Analysis Tool to enforce software security instead of relying
only on a quality-based one.

Paper Structure: The study setting is described in Sec-
tion II. The results are presented in Section III and discussed
in Section IV. Section V identifies the threats to the validity
of our study, while Section VI presents related works on static
analysis tools. Finally, in Section VII we draw conclusions and
provide an outlook on our future research agenda.

II. THE EMPIRICAL STUDY

We designed our empirical study based on the guidelines
defined by Wohlin et al. [36].

A. Goal and Research Questions

The goal of our study is to investigate the relationship
between refactoring code quality and software security, with
the purpose of understanding whether and to what extent
improving software quality could have a positive impact on
software security as well. The perspective is of researchers and
practitioners, both interested in understanding whether these
two aspects are related. The former could work on top of
our research to build additional knowledge on explaining the
reasons behind this relation, while the latter could be interested
in applying such a process in their business to increase the
efficiency of removing code vulnerabilities. To implement this
goal, we define two Research Questions (RQs).

3https://scan.coverity.com.

https://www.sonarqube.org
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
https://scan.coverity.com


RQ1. Do SonarQube rules overlap with Fortify SCA
rules?

RQ2. To what extent does software security improve
by improving code quality?

First, we formulate a preliminary research question aiming
at understanding if issues in the code raised by SonarQube
rules are also considered security issues by Fortify SCA. In
particular, considering that SonarQube classifies rules into
three categories (Bug, Code Smell, and Vulnerability), we
expect to find a perfect match of all the security vulnerability
rules detected by SonarQube with those detected by Fortify
SCA. However, considering that SonarQube rules are often
misclassified [37], we also want to verify if the code affected
by issues related to rules classified as Bug or Code Smell is
also raising security issues from Fortify SCA.

Should this research question provide a negative answer, it
does not make sense to address RQ2.

Once ensured that a possible relation between the two
investigated aspects exists, we want to evaluate the extent to
which improving software quality leads to improving software
security as well. Thus, we define the above research question.

B. Context

The context of our empirical study consists of projects and
static analysis tools. As already stated in the introduction, for
the selection of automatic static analysis tools, we relied on
two tools, based on their popularity in industry and academia:
SonarQube for code quality assessment and Fortify SCA for
what concerns security assessment. The reasons for this choice
are further discussed in Section V.

We focused our study on a set of 23 projects written in Java,
each of them satisfying the following criteria:

1) the project is hosted on GitHub (and publicly accessible);
2) its size is greater than 2.5KLOC (i.e., it contains more

than 2500 Lines Of Code);
3) it has a SonarQube score worse than “A” for two or

more characteristics (i.e., bugs, vulnerabilities, and code
smells); and

4) it contains regression tests.
The ratio behind criteria (1) and (2) was to consider only

real open-source projects with a non-trivial size. Criterion
(3) aimed to discard projects with a good quality score
in order to force the participants in our study to spend a
significant amount of time to enhance the project’s static code
quality. Finally, the last criterion allowed us to have sufficient
confidence that each applied remediation did not introduce any
error in the project logic while enhancing static code quality.

We focused only on Java projects in order to rely on
one specific SonarQube quality profile, namely the set of
rules checked by the tool. Indeed, by default, SonarQube
provides different quality profiles for different programming
languages. The same consideration stands for Fortify SCA:
there are different sets or rules, each one focused on a different
programming language, and just one group of "general rules"
(language-agnostic), which was considered in this study.

Table I gives an overview of the final set of selected projects,
the details, and URLs of the respective repositories can be
found in the replication package (see Sect. II-D).

C. Data Collection & Analysis

In order to address our research questions, we first collected
data from the subject repositories and tools and then we
analyzed them. To this aim, we followed a two-steps approach.
First, to address RQ1, we performed a manual validation
aiming to find correspondences between quality issues raised
by SonarQube and security issues output by Fortify SCA.
Then, to address RQ2, we conducted a user study in which we
asked participants to perform quality refactoring operations on
the subject repositories and then we evaluated the impacts of
such refactoring operations on security.

1) RQ1 Manual mapping: The objective of RQ1was to find
a correspondence between quality and security issues. To this
aim we relied on the issues raised by the two aforementioned
Static Analysis Tools: SonarQube for quality, and Fortify SCA
for security issues.

As our study only focused on Java projects, we considered
all the rules included in the SonarQube default Java quality
profile, namely SonarWay4. This resulted in 627 SonarQube
rules.

As for Fortify SCA, we selected the set of rules character-
ized by two possible values for "Code Language": "Universal"
and "Java/JSP"5, with a total number of 672; the rule pack used
was version 2021.2.0.0008. Then, we compared SonarQube’s
Java rules and Fortify SCA’s ones through a manual validation
process. Specifically, for each of the 627 SonarQube rules, the
first and the second author of the article separately read its
description and tried to match it with one of the Fortify SCA’s
rule. In case of a disagreement, the third author manually
verified and took the final decision.

Finally, for each match found, we also annotated the sug-
gested CWE both from SonarQube and Fortify SCA in order
to verify the actual existence for a correspondence.

2) RQ2 User Study: To address our second research ques-
tion, we needed to collect data about the impacts of quality
refactoring on software security. Hence, we designed a user
study in which we asked participants to perform refactoring
operations with the aim solving quality issues raised by
SonarQube. Then we compared the issues generated by Fortify
SCA before and after the quality refactoring to understand
whether and to what extent there was an improvement in
terms of security. We ran the study within the Computer
Science program at the University of [Blind for the review].
All participants were third-year undergraduate students who
were attending the “Software Quality” course. This course is
composed by both face-to-face and laboratory lessons, and
covered a wide set of topics: all aspects related to software
quality (i.e., internal, external, and in-use); ISO standards

4https://docs.sonarqube.org/latest/instance-administration/quality-profiles
5https://vulncat.fortify.com/en/weakness?codelang=Java%2fJSP%
3bUniversal&q=
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TABLE I
PROJECTS’ CHARACTERISTICS OVERVIEW

Name Description Size (KLOC)

nbvcxz Password strength estimator 3.5
CalendarFX Framework for creating sophisticated calendar user interfaces 33
openwayback Engine to play back archived websites in the user’s browser of the Internet archive Wayback Machine 45
jpmml-sklearn Library and command-line application for converting Scikit-Learn pipelines to PMML 13
cache2k In-memory high performance Caching library 24
Fling Application to beam video files from computers to ChromeCast devices 3.6
scalable-coffee-shop Demo implementation using event sourcing with an event-driven architecture, Apache Kafka and Java EE. 2.6
jnosql Framework to create Jakarta EE applications with NoSQL 22
PDFrenderer Library for rendering PDF documents to the screen using Java2D 20
mybatis-3 Framework making it easier to use a relational database with object-oriented applications 23
json-schema-validator JSON schema validator 8.1
esapi-java-legacy Web application security control library 19
db-scheduler Persistent cluster-friendly scheduler 3.5
jackson-databind General-purpose data-binding functionality and tree-model for the Jackson Data Processor 69
arquillian-core Component model for integration tests, with dependency injection and container life cycle management 24
javaewah A compressed alternative to the Java BitSet class 8.2
JSCover JavaScript Code Coverage Tool that measures line, branch and function coverage 4.1
chromecast-java-api-v2 Java implementation of ChromeCast V2 protocol client 4.6
gchisto A garbage collection log visualisation tool 8.4
Wikidata-Toolkit Library to interact with Wikibase 21
initializr Quickstart generator for Spring projects 16
DroidQuest A Java recreation of the classic game Robot Odyssey 31
NFE Electronic Invoice handler written in Java 88

related to software quality; software quality assessment, mon-
itoring, and improvement processes and strategies [38]; and
suggested tools for quality management (e.g., SonarQube),
security management (e.g., Fortify SCA) and process control
[39].

We initially recruited 128 participants, grouped in 58 groups
of 2 or 3 people. At the time of our analysis, only 27 of these
groups had completed all their tasks, hence our study discusses
only the results of these first 27 groups.

Students were asked to perform their tasks by working in
teams. Specifically, each student group performed the follow-
ing steps on one of the projects reported in Table I:

1) Clone the project repository from GitHub to their local
machine;

2) Run the code quality analysis by means of the Sonar-
Qube’s cloud version (i.e., SonarCloud);

3) Run the code security analysis via Fortify SCA;
4) Annotate the list of issues presented by each tool, com-

prising, for each issue, file name and line;
5) Incrementally solve the issues output by SonarCloud,

following the SCRUM methodology: in each “action
plan” (equivalent to a SPRINT), a subgroup of issues was
selected and solved. The quality refactoring operations
were performed manually by the students, according to
the issue and the correspondent solution provided by
SonarCloud. At the end of each “action plan”, another
SonarCloud scan was run in order to check that each
issue was actually removed; and

6) Run the code security analysis again via Fortify SCA
once a quality target was reached.

The quality target varied according to the number of team
components and the project’s complexity which in most cases
was: 0 bugs, 0 vulnerabilities, 0 code smells and a technical

debt of 0 days. The exact numbers for all the projects are
reported in the online appendix, see 6.

One observation needs to be made: in this study we needed
to run Fortify SCA both before and after the refactoring oper-
ations. This was necessary because we needed a quantitative
yardstick to compare how the project’s security was affected
by the quality refactoring.
We analyzed the resulting data by comparing the total number
of occurring Fortify SCA issues before and after the quality
refactoring was performed, both in absolute terms and per-
centages.
In case the number of Fortify SCA issues changed after
the refactoring operations, a manual validation process was
performed: one of the authors manually compared the affected
source code with its own version before the refactoring;
if the vulnerability was effectively removed (according to
SonarQube suggestions) and Fortify SCA did not signal the
issue anymore in the refactored source code, the refactoring
was considered as valid and taken into consideration in the
metrics count. This way, we did our best to exclude the
presence of false negatives (i.e. genuine vulnerabilities not
detected due to a random Fortify SCA check failure).
In order to mitigate false positive occurrences (i.e. pieces of
code flagged as vulnerable but effectively not vulnerable), ad-
ditional measures were taken: before and after the refactoring,
an average of 45% of the total remaining issues - chosen by
random sampling - was manually inspected for each project;
if a false positive issue was discovered, it was suppressed
(removed from the issues count on Fortify SCA).

After this filtering, we then computed three additional
metrics, based on the rules mapping performed in RQ1. In
particular, we computed the “match count” as the number
of issues identified by both SonarQube and Fortify SCA in



the initial snapshot; only rules with a match in the mapping
performed in the context of RQ1 were taken into consideration.
Moreover, we measured the “solved count” as the number
of matching issues that were spotted by Fortify SCA in the
initial snapshot but were removed in the final snapshot, i.e., the
number of Fortify SCA issues solved following to the quality
refactoring operations. Again, only rules with a match in the
mapping performed in the context of RQ1 were taken into
consideration. We calculated the “solved ratio” as the ratio
between “solved count” and “match count”.

Finally, we used statistical tests to confirm the variations
in performance amongst the Fortify SCA issues distribution
before and after the refactoring. To this aim, we relied on
the paired Wilcoxon test [40]. At alpha=0.05, the results
were supposed to be statistically significant. We also exploited
Cliff’s Delta (or d), a non-parametric effect size measure [41]
for ordinal data, to assess the magnitude of the measured
differences. To interpret the effect size values, we used well-
established guidelines: negligible for |d| < 0.10, small for
|d| < 0.33, medium for 0.33  |d| < 0.474, and large for
|d| � 0.474 [41].

D. Replicability
To allow other researchers to replicate our study, we have

published the complete raw data in the replication package 6

III. RESULTS

A. RQ1: Do SonarQube rules overlap with Fortify SCA rules?
Table II reports the overall results regarding rule matches.

As we can see, most of the SonarQube rules are related
to design (i.e., code smells) or potential bugs. However, as
one could expect, just a few portions of these rules find a
match with Fortify SCA ones whose main focus is on security.
Differently, for those rules aiming to identify vulnerabilities or
security hotspots, we found a strong overlap between the two
considered tools, namely 81% for vulnerabilities and 72% for
security hotspots.

TABLE II
AGGREGATED ANALYSIS REGARDING THE RULES MAPPING. FOR EACH

SONARQUBE CATEGORY, THE TABLE REPORTS THE NUMBER OF
SONARQUBE RULES (#RULES), THE NUMBER OF RULES MATCHING WITH

FORTIFY SCA RULES (#MATCHES), AND THE PERCENTAGE OF RULES
MATCHING WITH FORTIFY SCA RULES (%MATCHES).

SQ categories # rules
Fortify SCA

# matches % matches

Bug 149 26 17%
Vulnerability 53 43 81%
Security Hotspot 36 26 72%
Code Smell 389 12 3%
Total 627 107 17%

The results suggest that SonarQube can contribute to a con-
siderable extent (17%) in identifying and managing security-
related issues. If we look at the other side of the coin, the
results suggest that around 16% of Fortify SCA issues have a

6https://figshare.com/s/f229f6590c38032ebea3

correspondence in SonarQube (i.e., 107 out of 672). Therefore,
even if the results suggest that it is not possible to have
significant coverage of Fortify SCA’s rules, it seems that
SonarQube could contribute by discovering a good percentage
of issues of certain types. In the next research question, we
analyze the magnitude of such a contribution.

TABLE III
NUMBER OF FORTIFY SCA ISSUES BEFORE AND AFTER THE

REFACTORING, GROUPED BY SEVERITY.

Severities initial snaphot final snaphot % solved

Critical 410 368 10%
High 3089 2651 14%
Medium 114 108 5%
Low 12052 9487 21%
Total 15665 12614 19%

0

1000

2000

Initial Final
Snapshot

# 
is

su
es

Fig. 1. Boxplots reporting the distribution of Fortify SCA issues over project
in the initial (before refactoring) and the final (after refactoring) snapshots.

B. RQ2: To what extent does software security improve by
improving code quality?

Table III reports the number of Fortify SCA issues, grouped
by severity levels, before and after the refactoring. Overall, by
applying refactoring only relying on the output of SonarQube,
leads to an improvement of 19% in terms of Fortify SCA
solved issues. Inspecting the results by severities, the results
report that SonarQube can help identify, and then solve, 10%
of critical issues, 14% of high-severity issues, 5% of medium-
severity issues, and 21% of low-severity issues.

Table IV reports the overall results regarding how projects’
security was affected by implementing SonarQube’s sugges-
tions. Observing the table, in 18 out of the 27 cases projects



TABLE IV
OVERALL RESULTS REGARDING HOW PROJECTS’ SECURITY IS IMPACTED BY REFACTORING BASED ON SONARQUBE’S SUGGESTIONS.

Group Fortify SCA Total Fortify SCA Total % Fortify SCA issues Post-Refactoring Match Solved

vulnerabilities vulnerabilities removed situation count count

(initial snapshot) (final snapshot)

G1 125 125 0 Equal 0 0
G2 317 296 7 Improved 64 64
G3 2651 2521 5 Improved 21 16
G4 37 24 35 Improved 2 2
G5 421 431 -2 Worsened 30 5
G6 251 272 -8 Worsened 6 6
G7 44 84 -91 Worsened 2 0
G8 149 154 -3 Worsened 0 0
G9 390 330 15 Improved 29 29
G10 613 661 0 Improved 10 5
G11 66 56 15 Improved 1 1
G12 1116 805 28 Improved 47 47
G13 1116 815 27 Improved 47 47
G14 119 69 42 Improved 0 0
G15 1047 802 23 Improved 69 57
G16 251 220 12 Improved 7 7
G17 610 575 6 Improved 43 13
G18 1508 276 82 Improved 19 19
G19 11 33 -200 Worsened 0 0
G20 227 170 25 Improved 0 0
G21 31 17 45 Improved 0 0
G22 87 115 -32 Worsened 0 0
G23 269 266 1 Improved 7 6
G24 215 218 -1 Worsened 0 0
G25 1921 1491 22 Improved 85 85
G26 149 150 -1 Worsened 0 0
G27 1494 1451 3 Improved 66 36

TABLE V
RESULTS FOR THE PAIRED WILCOXON’S SIGNED RANK TEST FOR
STATISTICAL SIGNIFICANCE AND THE COHEN’S “D” EFFECT SIZE.

W p-value significance d Magnitude

283.5 0.006 *** 0.416 Medium

got enhanced in security terms, 1 remained stable while 8 got
a deterioration.

Columns “match count” and “solved count” of the table,
report the number of matching Fortify SCA issues and solved
matching Fortify SCA issues for each project, respectively.

As we can see, the maximum obtained enhancement is equal
to 82% (for group G18) which corresponds to the solving of
1232 issues. Anyway, this happened just one time: in most of
the cases, the obtained enhancement is between 0 and 45%,
leaving a significant amount of issues in the source code.

On the other hand, when the number of Fortify SCA issues
increases after refactoring (i.e., there is a decrease in security),
there are a couple of concerning examples reporting a decrease
of 91% (G7) or even 200% (G19). This could be related to
more delicate refactoring operations that lead to introducing
new security issues.

Overall, in most of cases, the vast majority of matching
Fortify SCA issues are solved after applying the refactoring
on top of SonarQube warnings. Moreover, we can observe
that in 6 out of the 9 cases (i.e., 67%) in which there are no
matching issues between Sonar and Fortify SCA, performing

refactoring operations based on SonarQube warnings does not
bring improvements in terms of security.

Figure 1 reports boxplots comparing the distributions of For-
tify SCA issues over projects before and after the refactoring
is performed. While the median values are almost identical,
we can observe that the distribution in the final snapshot
concentrates more towards lower values, thus indicating an
overall improvement. To better investigate the significance
of such a result, Table V reports the results of the paired
Wilcoxon’s signed rank test, as well as the Cohen’s “d”
effect size statistics. Results indicate that there is a significant
improvement with respect to the number of security issues
spotted by Fortify SCA, with a “medium” effect size.

Therefore, we can state that adopting SonarQube and refac-
toring the source code according to the warnings it generates,
most likely leads to a significant improvement in terms of
security aspects. However, it is still not possible to completely
replace security-specific automatic static analysis tools (i.e.,
Fortify SCA in our case) since they can provide a more
comprehensive overview of security aspects, identifying issues
that cannot be identified in other ways.

IV. DISCUSSION

The achieved results revealed a number of insights that lead
to implications for the software engineering community.

On the correspondence between SonarQube and Fortify

SCA rules. We identified co-occurring rules that were trig-
gered by both SonarQube and Fortify SCA on the same source
code file line. Please note that these co-occurrences were not



TABLE VI
CO-OCCURRING RULES BETWEEN SONARQUBE AND FORTIFY SCA

SonarQube rule Fortify SCA rule # occurences

Delivering code in production with debug features activated is security-sensitive System Information Leak 223
Unused method parameters should be removed Dead Code: Unused Method 22
Null pointers should not be dereferenced Redundant Null Check 14
Unused method parameters should be removed Poor Error Handling: Overly Broad Throws 10
Standard outputs should not be used directly to log anything Privacy Violation 9
Mutable fields should not be "public static" Password Management: Hardcoded Password 8
Null pointers should not be dereferenced Insecure Randomness 3
Null pointers should not be dereferenced J2EE Bad Practices: Threads 1
Null pointers should not be dereferenced Denial of Service: Parse Double 1
Silly equality checks should not be made Code Correctness: Class Does Not Implement equals 1
Return values should not be ignored if they contain the operation status code System Information Leak: Internal 1

expected since we did not include them in our initial mapping
(RQ1). This was due to the fact that corresponding rules
descriptions seem not to be similar enough. The co-occurring
rules are presented in Table VI. As we can see, some of these
trends are very rare to occur (just one occurrence for some of
them), thus not necessarily indicating a real mapping between
the two involved rules. However, in other cases, especially for
the first row, it seems that there is a real association between
the rules of the two tools.

By focusing on the descriptions of the two rules having
223 matching occurrences (i.e., row 1 of Table VI), even if
both rules are abstract and do not address a specific problem
(rather a general condition), we can see both have the word
“debug” and one code example in common: the calling to
printStackTrace() method over an Exception object; this seems
to be fair and makes sense: so, this may be the case in
which both the authors did not notice a valid association while
carrying out the mapping.

In the remaining cases, the rules’ descriptions do not show
anything in common and, as such, may be random (or noisy)
findings.

� Even if some SonarQube and Fortify SCA rules are
not directly associated, a high number of co-occurrences
between them exist, thus indicating that further and larger
investigations are needed to determine the actual set of
corresponding rules.

Better together: One tool is not enough. According to
the results obtained in our study, and specifically for RQ1,
SonarQube is able to cover a small percentage (i.e., 16%)
of the rules included in Fortify SCA. However, the most
interesting finding has been obtained by looking at the severity
of the overlapping rules. SonarQube allows to solve security
issues classified with higher severity (High and Critical). Even
if the improvement is not so significant, SonarQube can be
adopted as an initial screening for security healthiness.

In light of these considerations, our results represent a call
for further investigation regarding the role of static analysis
tools for security issues detection. SonarQube and Fortify
SCA classify similar rules differently or provide different
classifications. It should be interesting to evaluate if the same

observed trend can be recoverable with other static analysis
tools, such as Coverity Scan.

� SonarQube alone is not enough to provide signifi-
cant support in discovering and removing security issues.
However, it could be exploited to have a first preliminary
overview of such issues.

V. THREATS TO VALIDITY

Construct Validity. First, in our study, a possible threat
might be represented by the dataset used for the empirical
investigation. We selected only Java projects to allow the rule
set being consistent and we looked for repositories matching
specific characteristics, as reported in Section II-B.

One could also argue about the selection of the quality-
oriented and security-oriented Static Analysis Tools could have
been used in this study, since many exist for both aspects. We
chose to rely on SonarQube for quality assessment because it
is one of the most used open-source quality-oriented Static
Analysis Tools, as various studies demonstrate [42], [43].
Similarly, we selected Fortify SCA to assess projects’ security
since it is one of the “leaders” in application security testing
according to the Gartner 2022 magic quadrants7. Additionally,
we are aware that changing the group-repository assignments
could have led to a different number of issues in the Fortify
SCA final snapshots. Needless to say, also enterprise projects
are prone to this risk: quality may depend on the developers’
seniority, therefore, this may be considered an acceptable
threat. Finally, it is well known that all static analysis tools
are affected by false positive and negative identifications, an
alert going away may simply mean that the refactoring has
made the code too complicated for the tool to follow—which
is why it is not reporting an alert anymore—or, conversely,
the original alert may have been a false positive which is
then hidden. In order to mitigate this problem, as described in
section "Data Collection & Analysis", a manual inspection has
been conducted before and after the refactoring operations.

Internal Validity. As for potential confounding factors that
may have influenced our results, we are aware that some issues
detected by SonarQube could be duplicated. Unfortunately, the

7https://www.gartner.com/en/documents/4001946

https://www.gartner.com/en/documents/4001946


tool reports single issues violated in the same class multiple
times. We mitigate this threat by manually searching for these
cases and removing them.

External Validity.We are aware that different programming
languages, and projects at different maturity levels could
provide different results. This is why more experiments are
needed on different projects, changing development technolo-
gies and sizes.

Conclusion Validity. In order to verify the significance of
our results, in the context of RQ2, we exploited appropriate
statistical tests (i.e., Wilcoxon and Cliff’s delta). Needless to
say, although the security metrics are calculated with absolute
care and attention, there is always a threat posed by manual
computation.

VI. RELATED WORK

The popularity of Static analysis tools adoption is increasing
over the years creating a humus layer for the research. In this
section, we report the relevant work on static analysis tools
focusing on their usage [44], [45], [12], [18], rules and the
detected problems [46].

The vast majority of the works investigated the detection
capability of the available Static analysis tools [15] or their
effective solving time [47] in different context [48]. A recent
study [11] compared features and popularity of nine tools
investigating also the empirical evidence on their validity.
Results can help practitioners and developers to select the
suitable tool against the other ones according to the measured
information that satisfied better their needs. However, they did
not evaluate their agreement and precision in the detection.

Other works focused on the performance Static analysis
tools in term of accuracy in the issues detected and their
effective [15] or if they are actually detecting issues related
to some quality attributes [47], [45], [12] such as class fault-
or change-proneness [18], [15]. Another important emerging
usage is anomalies detection at different code level [49],

Even if some study demonstrated the effective in detecting
some quality issues in the code [50], [12], others highlighted
some critical issues regarding the detection models in term
of rules classification and the rule severity assigned by the
tool that can negative affect the detection accuracy [15] and
the fixing estimated time [51], [52]. However, evaluating the
performance results, they are discordant comparing different
tools [15]. Several studies focused on the different rules pro-
vided by several tools (e.g. SonarQube, PMD, Jlint), and their
results demonstrate some overlaps among the types of errors
detected and no correlation among the rules [53], [15]. Each
tool adopts different trade-offs to generate false positives and
false negatives. Only one study [15] investigated the detection
agreement and precision discovering little to no agreement
among the tools and a low degree of precision. The issues
related to the tool precision has been raised up also in another
studies that highlighted the need to better clarify the precision
of the tools. [54].

Looking at the developers’ perception on the Static Analysis
Tools usage, the average evaluation assessed the capability to

find bugs [55]. However, developers are not sure about the
usefulness of the rules [56], [57]. Commonly developers do
pay attention to different rules categories, while they priority
and remove violations only if they are related to rules with
high severity [57] to avoid faults in their code [56]. An urgent
need emerged from developers is the the need to reduce the
number of detectable rules [58] or summarize them based on
similarities [57]. Moreover, developers discovered that some
tools do not capture all the possible defect even if they could
be detected by the tools [59].

From a security perspective, code reviews with static anal-
ysis tools are recommended by several development processes
to detect the security threats in software code [60]. It is
necessary for software companies to integrate security within
development processes by reducing code vulnerabilities and
verify that legacy code is secure. Vulnerability is intended as
one or more weaknesses that can be accidentally triggered or
intentionally exploited and result in a violation of desired sys-
tem properties [61]. Common Weakness Enumeration (CWE)
is the most prominent effort in defining and classifying the
security weakness in software. The CWE helps developers
to describe and discuss software weaknesses in a common
language and to evaluate coverage of tools targeting these
weaknesses. Instead, NIST (National Institute of Standards and
Technology) shifted its focus to determining what weaknesses
existed in real software and could be found by tools [62].
Nine tools were run on the test suite and found that statistic
analysis tools differed significantly with respect to precision
and recall for different weakness. In addition, results showed
that the sophisticated use of multiple tools would increase
the rate of weakness detection and decrease the rate of false
positives. Free and open source tools detected a minority of
weaknesses only and using a security rule set could improve
performance of the tools [63]. There is a little overlap among
warnings from different tools and a meta-tool combining and
cross-referencing output from multiple tools could be used to
prioritize warnings [53].

VII. CONCLUSION

In this paper, we present an empirical study investigating
the relation of quality refactoring on software security, with
the purpose of understanding whether and to what extent
improving software quality, based on the suggestions provided
by quality-based SonarQube, could have a positive impact on
software security, measured by means of Fortify SCA, as well.
The main results of our investigation report that: (i) SonarQube
allows to cover 17% of the rules checked by Fortify SCA; and
(ii) the refactoring performed on top of SonarQube suggestions
leads to a statistically significant improvement of 19% in terms
of security issues raised by Fortify SCA.

To sum up, our article provides the following contributions:
1) A manual mapping of corresponding rules between

SonarQube and Fortify SCA;
2) A user study that allows measuring the impacts of quality-

based refactoring on security;



3) A series of implications for Industry, based on the results
achieved;

4) A complete replication package 6 to allow other re-
searchers reuse and replicate our analyses.

As future work, we plan to replicate our study on a larger
dataset and in a different context. In particular, our idea
is to rely on real usage data, and developers’ refactoring,
instead of basing our findings on a user study. To this aim,
we plan to exploit the dataset by Nguyen et al. [64] which
already provides such type of information. Additionally, we
aim at investigating which SonarQube rules lead to specific
refactoring operations that are likely to improve/worsen the
security status of software systems.
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