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ABSTRACT

This position paper discusses the need for and the orgamzait
a traceability benchmark. We establish the basic prinsipfeor-

ganization of such a benchmark. We then observe the nature o

traceability tasks in three areas of Software Engineeiimgepen-
dent verification and validation, software maintenance, ranerse
engineering. Based on this, we derive the desiderata facaabil-
ity benchmark addressing the needs of all three areas.

1. INTRODUCTION

Tracing and traceability possess demonstrated importamee
number of disciplines such as software engineering. Thitus
trated with a few common scenarios. Software maintaindysore
being able to recover the code components or methods that tel
a given bug report. A systems engineer needs to know the mgppi
between a legacy software system that is being enhancechand t
developer’s contract (doing the enhancing) to determiaértipact
of "mothballing” certain legacy code components. Unfoetigty,
the generation of, maintenance of, and/or assessmentceitrd-
ity information (such as requirements traceability infatron) is
largely manual, time-consuming, and error-prone.

Researchers have made great strides in inventing and talida
ing methods and tools for addressing the traceability groblYet
most researchers address specific traceability problertheiarea
of their expertise and/or of their funding organizationr Example,
Antoniol et al. addressed traceability recovery from coae aser
documentation to assist the software maintainer [1]. Hayes.
sought to assist the independent verification and validatialyst
in recovering traceability between requirements and desigcifi-
cations [8]. Besides looking at different problem areaseagchers
also examine different artifacts (code and user’s docuatiemt and
requirements and design specs in the above example), dse dif
ent approaches (semi-automated, fully automated; infoomae-
trieval methods, rule-based methods; etc.), and calcdifferent
measures in order to evaluate their approaches. As a rdsilt,
very difficult to: compare most of the studies performed Hfedi
ent research groups; adapt or apply ideas from the work efsth
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adapt or apply artifacts from the work of others; and adaptpmly
measures from the work of others.
Other research fields have faced similar challenges and@ver

fthem through the successful use of a benchmark. It is outiposi

that a traceability benchmark would go a long way to allevihe
problems mentioned above. Specifically, a traceabilitychaerark
is needed for:

¢ Robust comparisons of different techniques for solving the
same problemWhile there is an occasional apples-to-apples
comparisons between traceability studies [1, 9], such vgork
just beginning to emerge.

¢ View of the behavior of the same methods on different prob-
lems.Standard IR techniques are applied with different suc-
cess to various problems in Software Engineering. These
problems, however, come from very different areas of Soft-
ware Engineering, sprouting different researcher communi
ties. There is very little communication across the problem
boundaries, and very little analysis of the behavior of dif-
ferent approaches across the entire problem set in Software
Engineering to which IR methods are applicable.

e Comparison of emerging traceability methods and techrique
with state-of-the-practice approachefs one of the stated
goals of traceability research is technology transfer)espp
to-apples comparisons between new methods/approaches and
techniques used in industry is needed to: (a) certify that ne
approaches provide “better” solutions, and (b) persuade in
dustry to adopt them.

The recently published Grand Challenges in Traceabilitgpéc-
ify Measurement and Benchmar&s one of the key challenge ar-
eas. In particular, the following Grand Challenges reldtethis
area, have been outlined:

L-GC1 Define standard processes and related procedures for per-
forming empirical studies during traceability research.

L-GC2 Build benchmarks for evaluating traceability methods
and techniques.

L-GC3 Define measures for assessing the quality of individual and
sets of traceability links.

L-GC4 Develop techniques to assess traceability methods and pro-
cesses.

We believe that a well-designed, robust, feature-rich berark
for testing methods, techniques, and processes for anbi¢sdce-
ability in the Software Engineering domain will go a long way



toward addressing both issues above. It will establish tnelyg
needed “measuring stick” for testing uses of different eedility

labor-intensive, procedures. The requirement to havergtouwth
available for each tracing task can be viewed as a resmittiat

approaches within the same problem set. This paper begins th the benchmark creators should take upon themselves: daddot a

process of addressing specifically the challebgeC2.

tasks to the benchmark for which you cannot, or are not wiltm

In the rest of this paper, we describe a set of high-level {non provide the correct answer (or where correct answers doxigt).e

functional) requirements for a traceability benchmarkctioa 2)
and the desired organization of a traceability benchmaekct{&n

The fourth requirement states the main purpose of the beadtim
it has to allow for testing the accuracy of the methods. Inis i

3). We then discuss the views of the benchmark from three dif- cluded in the list of requirements to provide symmetry witle t

ferent subfields of Software Engineering: Independentfi¢ation
& Validation, software maintenance, and reverse engingéf$ec-

fifth requirement, which is less obvious: in many circumsem
tracing techniques and procedures must be not only acchuate

tion 4). For each area, we outline the origins and the natfire o also expedient and scalable to large tracing tasks. Thehbeak,

the tracing tasks, the artifacts used, and the means ofndieiag
“success.” We conclude by merging this information togethto
an outline for a simple traceability benchmark.

2. REQUIREMENTS FOR A TRACEABIL-
ITY BENCHMARK

The requirements listed below outline our vision for an éwen
ally emerging benchmark for traceability tasks. At thisgstawe
elected to concentrate on the benchmark for tracing/thalitgan
Software Engineering.

R1: Support for traceability in multiple fields of Soft-
ware EngineeringThe benchmark shall provide the ability to
test tracing methods and procedures for tasks from diffexeras
of Software Engineering.

R2: Independence of methodologyie benchmark shall
be independent of a specific tracing methodology. That &-tr
ing tasks contained within the benchmarks shall be solvapla
wide range of methods and procedures: manual, semi-autdmat
automated.

R3: Ground truth.For each task within the benchmark, the
benchmark shall establish the ground truth (i.e., true ansagainst
which to be compared.

R4: Accuracy testingThe benchmark shall provide the op-
portunity to test the accuracy of tracing techniques orai&s.

R5: Scalability testingThe benchmark shall provide the op-
portunity to assess the scalability of tracing techniquéss tasks.

Discussion
The majority of the requirements selected follow commorseam

what a benchmark should do and what problems it should asldres

As we have observed, tracing tasks are part of differentwoé&
Engineering processes: IV&YV, reverse engineering, sofwaain-
tenance, to name just a few. We would like for the traceabilit
benchmark to be rich enough to contain tasks from (ideaifg)ye
area in Software Engineering where tracing occurs.

in our view, must provide the opportunity to test the scaiighof
methods for such tasks.

3. ORGANIZATION OF TRACEABILITY
BENCHMARKS

In light of the outlined requirements, we view a traceapliench-
mark as consisting of five main components: (i) data settggks,
(iii) answer sets, (iv) measures, and (v) data representdtr-
mats/supplementary software.

We give a brief overview of each component below.

Data Set

The dataset of a traceability benchmark should be a catleaf

artifacts from a software project. To satisfy the first regment,
such a collection must be sufficiently rich and contain acti§ from
different project stages and used in different softwardresaging

processes. To satisfy the scalability requirement, tha det has
to: (a) contain sufficiently large artifacts, and (b) pravithe op-
portunity to scale artifact sizes up or down.

Perhaps the most difficult question is the origin of such &cel
tion of data. Two possibilities exist: benchmark creatas take
data from an already existing software project, or they caate
the benchmark from scratch. The second option requiresfisign
cant, perhaps, unrealistically so, effort on the part olechmark
creators. The first option requires for there to be a softweogct
that has a rich artifact collection which can become public.

Tasks

As stated earlier, tracing tasks originate from differemderlying
problems, which themselves come from different softwargi-en
neering processes. To address the first requirement, tioéieank
must complement the rich artifact collection with the riailec-
tion of tracing tasks to be performed on the data. Indivicheal
searchers/research groups may concentrate on specifiedineli
tasks, but the benchmark itself has to include enough tasks-t
dress tracing needs from different areas of software engjimg
The nature of the tasks needs to be addressed here as well.
traceability research now is concentrated on the tracirg>dtial

Moving on to the second requirement, we observe that we do not grtifacts (we consider code to be a textual artifact). Hametrac-

want to build the benchmark tonly score the work of, for exam-
ple, information retrieval methods. It should be possiblésblve”
the tracing tasks contained within the benchmark in any way,
cluding purely manual tracing. This makes sense becaus$énwit
the research community, we would like to have apples-tdeapp
comparison of the work of different automated methods. Hene
in order for these automated methods to transfer to practiee
have to demonstrate that they outperform current, ofterualaand

LAt least for the tasks where scalability is an issue.

ing is needed for non-textual artifacts as well. At someestaighe
benchmark development, non-textual artifacts must bequarteof
the data set, and, consequently, the tracing tasks for exdanal
requirements and tracing tasks between textual and noualese-
quirements will have to enter the benchmark as well.

Another aspect of traceability tasks concerns the naturecafv-
ered links. In some tracing tasks, there is only one typent(f o
be recovered, whereas for other tasks, it is important rsbttqure-
cover the link, but to recover the type of the link correcilyacing
tasks included in the benchmark must reflect these needs.

Mos



Answer Sets

Following the third requirement, the benchmark must ineltice
answer set, i.e., the ground truth for each task. The redeolttss
are straightforward and follow from our fourth requiremetfitere
is a need to assess the accuracy of each method/technopespr
used to solve a tracing task. This can only be achieved tglifib
ground truth, i.e., the correct answers for each task, asevkrand
can be compared against the answers returned by differehbdse

As such, this becomes one of the most serious restrictions on

building the benchmark. Only the tasks for which answer sats
be built (by benchmark creators) can be included. Thereveme t
aspects of this: (i) the task must actually have a correstanset,
and (ii) benchmark creators must be able to establish it ameba
at a consensus.

Measures

Requirement®4 andR5 demand inclusion of measures for assess-
ing the accuracy and scalability of methods. Standard |IRsovea

for accuracy,precision recall (both macro- and micro- variants),
average expected precisidameasureetc., certainly can, and will,
be used as part of the benchmark. A standard measure fobécala
ity is time.

In addition to accuracy and scalability, enshrined in oguiee-
ments are other quantities that can be measured. In partidal
facilitate technology transfer, it is important to develapset of
measures for effort.

Software/Data Formats

This, perhaps, is the only optional part of the benchmark, We
observe that development of convenient data formats athakioa
of software that understands these formats in the benchoaargo
a long way in both making the benchmark popular and in establi
ing standard means of encoding “real” artifacts.

4. THREE VIEWS OF A BENCHMARK

In this section, we provide brief accounts of three subglstés
of Software Engineering in which traceability figures as gana
factor: Independent Verification & Validation (IV&V), saffare
maintenance, and reverse engineering. For each subdfisciple
outline the data used, the tracing tasks performed, the uness
used to determine the accuracy of the results, and othectagpat
can influence formation of the benchmark.

4.1 Independent Verification & Validation

Independent Verification & Validation is a process that is-pe
formed in parallel with the development process when riskice
tion is of the utmost importance. V&YV is often applied by &d
pendent, third party analysts when the software systenghmiiit
is safety- or mission-critical. The IV&V analysts concext& on
ensuring that the right system is built (validation) andt tihds
built according to the specifications of each lifecycle ghaser-
ification).

Toward that end, the IV&V analyst has a number of resporisibil
ties, such as: ensuring that all requirements have beepsait by
the software design, ensuring that the source code hastgiire-
plemented the software design, ensuring that test caseshemn
developed to validate that the requirements have been ingpited,
and executing those test cases to ensure passing. As ormaagm i
ine, it is thus important to know the mapping of the requirataeo
the design, of the design to the code, and so on. This mappheg i
ferred to as the requirements traceability matrix (RTM) ahduld
be delivered by the system developer. However, the RTM &noft

not delivered, or is not developed to the proper level ofijainis

not kept up to date. Thus, it often falls on the IV&V agent taldbu
such an RTM. Even if an RTM is delivered by the developer, the
IV&V agent has the job of assessing the correctness of the RTM
So it is clear that traceability is an important activity WIV.

Let us look closer at the typical data/artifacts that an IV&N-
alyst will utilize in performing traceability or tracealj assess-
ment. It is common for requirements specifications to bevdedd
as textual artifacts with some embedded graphics. The nequi
ments are often expressed in free form narrative text. Theyde
specifications are also often textual, but may have morehgrabp
information, such as in UML diagrams. Source code will belava
able in digital form. Test cases will often be free text, buiym
contain embedded "pointers” to requirements, design alsner
source code methods. The size and number of specificatioies va
greatly based on the project. Some projects may have onensyst
level specification, a half dozen software requirementgifipa-
tions, a dozen design documents, and millions of lines ofceou
code. Smaller projects may have only one software requinésne
specification, one or two design specifications, and metey-t
sands of lines of code.

The tracing tasks that the IV&V analyst must perform aredfrg
driven by the artifacts that are delivered by the developer. ex-
ample, if the developer delivers an RTM, the agent’s task &st
sess that RTM rather than build it. If no RTM is delivered, digent
must build an RTM for the various artifacts delivered. If aele
oper delivers a full host of artifacts (requirements speaifons,
design specifications, source code, test plan, test casas man-
ual, administrator’s manual, etc.), the IV&V agent has atlafs
tasks to perform, such as:

e trace requirements specification to the design specifitatio

trace design specification to source code (files, methoalsses);

trace source code to test cases;

trace requirements to test plan;

trace requirements to user’s manual; and

trace design specification to test plan and/or test cases (de
pends on level of detail in the test plan).

In V&YV, itis of utmost importance to construct the correciR.
To ensure that this has happened, the agent may manuatiateli
that certain links in the RTM are correct, and will manualhsere
that all high level elements have been satisfied by theidodril (so
they may ensure that all requirements have been satisfiechay w
is listed as their children in the RTM). Since we want to audten
as much of the tracing tasks as possible, we need measurekpto h
us evaluate the quality of such automated methods (whetherev
using them to help build RTMs and/or assess RTMs). Spedifjcal
we need to make sure that the automated methods are acaeate.
want to make sure that they find all the links that exist (lgeald
do not retrieve things that are not links (precision). We ttaren-
sure that the techniques do not require as much time on thefpar
the analyst as manual techniques (effort). We want to ertbate
the techniques work well on large projects as well as smadkon
(scalability). It is also important to allow the V&V anally have
the "final say” on what is a link or on whether or not a parent ele
ment has been satisfied by its children. So the techniquabstoee
incorporate the input of the human analyst (feedback).

With this in mind, let us next examine how a software mairgain
might use traceability in her everyday work.



4.2 Software Maintenance

Software Maintenance is the set of activities and procesaes
ried out on deployed software to correct defects and defitden
to add new functionality, to improve or enhance existingudess,
or to prevent defects and, in general, quality degradaaftware
maintenance is highly human-intensive and risky, sinceges in
any software system of a realistic size risk degrading softvgual-

high in the recovered traceability links. Precision andateal-
though relevant, do not fully characterize the maintam@oint-
of-view. Browsing hundreds or thousands of traceabilitkdi will
just not help and will make traceability recovery not vergfus.
This is especially true when maintenance has to be perfoimed
large software systems, applications of millions of liné<ade.
Reducing code browsing to a few percent of the entire systéim w

ity and may produce unwanted or unexpected side effects: Suc Pe considered a success from a researcher’s point-of-tietit

cessful software systems operate for decades, and oftivedte
hardware and operational environments for which they wagg-o
nally conceived, designed, and developed. As a softwatersyis

will be considered a failure from the maintainer’s perspectin
conclusion, we believe that maintenance tasks requiremstive
for a balance between precision and recall in order to peodig

enhanced, modified, and adapted to new user needs, the code be/elopers with as fewer traceability links as possible whitsuring

comes increasingly complex, often drifting away from itgyoral
design. Furthermore, very often source code evolves, boi-do
mentation is not updated; maintaining consistency ance#ait
ity information between software artifacts is a costly amdet
consuming activity, frequently neglected due to the presture-

duce costs, to reduce time to market, or to move on to the next

software change. Thus, the system itself is often the odighie
source of information and source code browsing is the mast co
monly performed activity during maintenance because etsalr
missing documentation forces maintainers to rely on sooocke
only. Unfortunately, source code browsing becomes veretim
and resource-consuming as the size and complexity of pragra
increase. An alternative to source code browsing is auicnoat
semi-automatic design recovery. Central to this is thevegoof
“higher-level abstractions beyond those obtained by eramgia
program itself” [3].

For example, corrective maintenance tasks are activatetisby
covered defects; maintainers receive short, informal rijgsmns
of problems and are asked to change the software thus pragaci
new, hopefully, defect-free, release. They have to builppiags
between defect descriptions, domain and application guaend,
ultimately, associate domain and application concepth witde
fragments and vice-versa. It is worth noting that the preasfs
concept location and abstraction building is preliminargy soft-
ware change and, thus, it is not limited to corrective maiatee.
Adding new features or enhancing existing ones must be done i
such a way as to avoid unwanted side effects. This, in tuquires
the building of a mental model of features and feature ictéas.

In performing this mapping process, maintainers rely orilavie
documentation; typical tasks include:

e trace the problem description to domain and application con
cepts;

e trace domain and application concepts to requirementeand/
features; and

e trace requirements and/or features to design and/or cede re

gions.

Here the term feature is defined as a requirement, documented
or not, of a program that a user can exercise and which preduce

an observable behavior. With this in mind, it is clear thatts
complish any maintenance task, traceability links betweete and
other sources of information are crucial and preliminargng ac-
tual software change.

When recovering traceability information, for examplegdting
features or tracing requirements to low level artifactis @f utmost
importance that maintainers are not overloaded by infdonait
the same time, some of the methods, functions, classesnayeh-
eral, code regions relevant to the problem under study naunt r

that important links are not forgotten (and thus to ease ldpve
ers’ understanding). Indeed, when maintenance is comsidéne
success of tracing tasks is not determined solely by pretiand
recall, but also by the relative position of correct tradkigtinfor-
mation in the retrieved set.

4.3 Reverse Engineering

As underlined in the previous subsection, very often, cbamyl
evolution activities focus only on fixing defects. While thaurce
code is evolving, the architecture, design, and documientaire
not updated. Reverse engineering and maintenance agidte
tightly related; in the absence of reliable documentatiewerse
engineering practices aim at recovery of high level abstras
supporting program understanding, concept location, aatufe
location. Reverse engineering dates back to the late 1980tha
seminal work of Chikofsky and Cross who, in 1990, introdueed
taxonomy for reverse engineering and design recovery [8leyT
defined reverse engineering to be “analyzing a subject rsyste
identify its current components and their dependencied tauex-
tract and create system abstractions and design informiatio

Several successful technologies such as program slicidg, [1
feature location [5, 2], concept location [12], and arcttitiee re-
verse engineering [6, 10] have been developed. These, apd ot
techniques, recover different abstractions. We note treatual
work is required to establish traceability links betweed arithin
extracted representations for most every technique. Gerdihgs
can be obtained if automatic or semi-automatic approaaieassad
to assist in the recovering and assessing of those traitgdibiks.

A second challenging issue is related to traceability ofvédral
information. Traceability links must be established nolydme-
tween artifacts describing the software structure, b bitween
artifacts detailing the interaction of components and tbemo-
nent semantics. We hold that traceability must be extenoleédd-
uments such as UML sequence, activity, and state diagrahis, T
in turn, requires that as-is information be recovered adeatd on
an existing system.

Traceability links can be subsequently exploited in soferdhange
and evolution to evaluate the impact of changes, to definpribe
ity and schedule the order of changes, to ensure that chaidjes
affect expected behavior, and to support automatic teatgkater-
ation.

In performing these reverse engineering tasks, prograsrer
on static and dynamic information. Static information israxted
form source code while dynamic data are collected by exeguti
the software under different scenarios. Typical taskaitel

e extract abstractions and logical views and build tracésbil
links to domain and application concepts;

e trace outdated representations to as-is abstractions@ans;v

e establish and validate traceability links between and iwith
extracted views;



e establish and validate traceability links semantics; and

e establish and validate traceability links between exéawtews
and requirements.

In many reverse engineering tasks, completeness and agcura

of extracted representations have been considered a kegssuc
factor. Being that the activity is rarely performed, thetonisdis-
carding a few false positives is not considered a major isGunee
views and abstractions have been validated, traceahiligyma-
tion has to be recovered and validated. Reverse enginesrirag

a stand-alone activity. Rather, it aims at supporting otasks,
mainly software change and evolution. In other words, casts
accuracy must be compatible with the actual subsequeritein-t
field use of extracted information. For example, if the gsata
support IV&YV, correctness will be of utmost importancehétgoal
is to help in program understanding and feature locatioa,eth
fort required to locate a correct chunk of information ingtrieved
traceability links is more important than correctness anplete-
ness. So, the success criteria inherently depends on tBegusnt
tasks. Furthermore, any benchmark will be required to bébllex
and extensible to ease the task of incorporating new vieaw, n
abstractions, or add new link semantics.

5. TOWARD THE BENCHMARK

In Section 3, we have described the five components of an,ideal

universal, traceability benchmark. In Section 4, we briefbr
scribed the specific needs of three subareas of Softwarsésgrgi
ing w.r.t. traceability. We recognize that the list of trabdity

needs and tasks presented above is far from complete — for-exa

ple, problems and tasks associated with traceability betviéfer-
ent versions of the same artifact have not been raised, Wiele
too comprise an important collection of traceability tasks

At the same time, we observe that any attempt to begin the con-

struction of a traceability benchmark must start somewhAtso,
the attempt must have as its immediate goal the construcfitive
components that address specific concerns of a well-defuled s
set of areas. In this section, we attempt to establish theifgpe
organization of such a benchmark We follow the guidelinesge
tablished in Sections 2 and 3 for the three areas discus&=tiion
4.

Artifact Categories
We consider the following simple taxonomy of software adts

which may be represented in a benchmark. At the top layereof th

hierarchy, we identify two major categories of artifacexttial and
non-textual. Within each of the major categories, we eithtd
number of distinct subcategories and briefly describe thelowb

Artifact/Non-Textual/Unparsedrhis category includes a wide
range of traditional non-textual artifacts created duthgsoftware
project lifecycle. Their key distinction is the need to imdé& pars-
ing/recognition/interpretation as part of the solutiorttoé tracing
task. Examples include UML diagrams, state-transitiomyidims,
entity-relationship diagrams, and more.

Artifact/Non-Textual/Parsedrhis category includes non-textual

artifacts that are already parsed, or which do not requiezpneta-
tion. The most important representative of this categoaniRTM.

Task Categories

Two major task categories related to traceability were nlegkin
the fields described in Section fecovery of traceability informa-
tion andassessment of traceability information

Recovery of traceability information.e., building traceability
information from scratch, is a common task category forlaiee
fields under consideration. A typical structure of such & ias
volves two artifacts broken into individual elements. Tasktitself
is to build a mapping between elements of one artifact anelthe
ements of the other artifact. In all three fields, tracegbit to be
established betweddifferent artifactgnot different versions of the
same artifact).

Assessment of traceability informatioar evaluation of given
traceability mappings, plays a major role in IV&YV, less sattie
other two areas, although establishing semantics of toéagdinks
(a task from reverse engineering) is an assessment taskilag\we
typical structure of an assessment task involves a pairtifets
and a mapping between their elements. For each link in the map
ping, the task is to classify it, either using a binary clfisafion
scheme (link vs. not a link) or using a more complex clasgifica
scheme, which establishes specific link semantics (ergcés to”,
“depends on”, “part of”, “not a link”). The task may also irive
recovery of links missing in the original mapping.

A third task categoryconcept extractioris featured prominently
in reverse engineering. Here, a single (usually textudifaat is
provided as input, and the task consists of building an abstr
view/concept model of the artifact. Such tasks can be vieased
pre-cursors to subsequemnhce recovery taskswhich involve the
extracted higher-level artifacts. Therefore, we incluus task cat-
egory in our view of the benchmark.

The majority of thetrace recoverytasks described in Section
4 involve tracing textual artifacts: tracing between ffeen doc-
uments (e.g., between requirements and user’'s manualsgpor
ing between a free-form/semistructured and a structuredrdent
(e.g., between design and code, or between bug reports dejl. co
Some tasks do involve tracing between textual free-formisteuctured
and non-textual artifacts (e.g., between use case diagaathtest
cases documented as texf)ssessmeriasks found in IV&V typi-

Artifact/Textual/Free-formThis category includes textual projecgally involve two textual artifacts and an RTM, which we cléip

artifacts written in free-form, unstructured text. Exaepinclude
requirements documents and design documents.

Artifact/Textual/StructuredThe key representative of this cat-

egory is code.

Artifact/Textual/Semistructuredhis category includes tex-
tual artifacts in which individual elements contain botrustured
and unstructured parts. A typical representative is a ciidle of
bug reports entered through a bug tracking system. Ofterthéo
purposes of the tracing tasks, these artifacts are treatbe isame
way as free-form textual artifacts.

as a parsed non-textual artifact.

Dataset

There is significant overlap in the data used by IV&V analysudt-
ware maintainers, and reverse engineers. The core textifatts
of requirements, design, and code are present in tasks thra#
fields, albeit, their importance is different. All threeitatts are
crucial to IV&YV tasks, but code becomes the key artifact ift-so
ware maintenance and reverse engineering. The datasesuopist
port tasks from all three fields, and it must support taskslirrg
artifacts of different types. As such, we derive the follogiist of
artifacts to be included in the benchmark:



. Requirements document. (Artifact/Textual/Free-Form
. Design document. (Artifact/Textual/Free-Form

. Code. (Artifact/Textual/Structured

A WD

. Test Cases. (Artifact/Textual/Semistructurgd

. Bug Reports. (Artifact/Textual/Semistructurgd

. Abstractions/Logical views.? (Artifact/Textual/Structured

. RTMs.? (Artifact/Non-Textual/Parséd
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. Use Cases. (Artifact/Non-Textual/Unparsgd

10. System state-transition diagrams.

(Artifact/Non-Textual/Unparsgd
Additionally, the benchmark can contain the following fatts:

e Test Plan. (Artifact/Textual/Semistructurgd
e User Manual. (Artifact/Textual/Free-form

e UML Diagrams for different system aspectsAitifact/Non-
Textual/Unparsep

Each artifact in the dataset must come with at least one fede
mined way of separating it into individual elements. For earti-
facts, such as bug reports and use cases, such separatraigists
forward. Other artifacts, e.g., requirements and desigqguire
some explicit separation into individual elements. Finalet other
artifacts, such as code, may come with more than one notian of
element. It is possible that some tasks in the benchmark may a
tually involve determination or correct/convenient sgypian of an
artifact into elements. However, we also want to ensure ttet
most basic tracing tasks are well-defined for the artifdus they
involve. In the remainder of the benchmark description, vk w
assume that each artifact is indeed broken into individigghents.

To address thacalability requirements, the benchmark has to
have the following:

e Some artifacts must be large. As a minimum, at least two
artifacts traceable to each other should contain over 1800 e
ements.

Some artifacts must be broken into “subsets,” from very smal
to the entire artifact. This is done to allow for artifactsiof
creasing size. For example, a small requirements document
artifact can be a single section of the entire requirements d
ument. A somewhat larger requirements document would in-
corporate the small document and add a few more sections to
it.

Because at this stage we are primarily interested in sdiyadfi
the traceability of textual artifacts, the best artifactsise for these
purposes areequirements, design, code, andbug reports.

2These can be viewed as incoming data for traceability regove
tasks, and as answer sets for extraction tasks.

3We note that, generally speaking, RTMs prepared for assggsm
tasks have to contain errors in them, and therefore, sheudtifter-
ent from the RTMs that represent proper answer sets to tbiaga
tasks in the benchmark.

. Domain and application concepts. (Artifact/Textual/Structured

Tasks

The benchmark must include tasks from each of the categdises
cussed above.

Recovery tasksenerally speaking, a traceability recovery task
between any pair of artifacts described above is feasibbsvender,
since 72 traceability recovery tasks yield the need for 38nen
sets (each pair of artifacts can be traced in two directibos,a
single answer set suffices for both directions), we elechttude
only the most important and frequent traceability tasksbldd
illustrates the tracing tasks we consider for inclusion.

Assessment TaskBypical assessment tasks in IV&V include as-
sessment dRequirements-to-Design andDesign-to-Code trace-
ability matrices.

Concept Extraction Task§.hese tasks typically involve extrac-
tion from Code.

Measures

As specified above, the same task performed from different pe
spectives yields different measures of success. The fitpprop-
erties of the tasks and their results need to be evaluated:

Accuracy. Accuracy, generally, measures the amount of the re-
trieved links that are correct. Traditional IR measuresaftguracy
areprecision(micro precision, operating on an element-by-element
level, macro precision, measuring the ratio of correctdiimkthe
entire RTM), and measures derived from it, suclexsected preci-
sionandaverage expected precision

Coverage.Coverage measures the amount of correct links that
were retrieved. The traditional IR measure for thigésall (mi-
cro recall assesses recall for individual high-level elsteemacro
recall measures the total percentage of correct links tlaet ne-
trieved).

Precision and recall are often combined in a single measéure,
measure a harmonic mean of precision and recall. Depending on
the perceived importance of precision and recall to a spe@ifk,
f-measure can be modified with a paramétewhich indicates how
the computation of the harmonic mean can be skewed.

Scalability. Two approaches to measuring scalability can be con-
sidered. In the first approach, thimeit takes to complete the trac-
ing task is measured, and the increase in time is compardteto t
increase in the size of the task. In the second approachthierge
with the time it takes to complete the task, we monitor thenges
in the accuracy and coverage of the solutions, as the prosisen
increases.

Effort. Because the benchmark can be used with automated,
semi-automated, and manual tracing processes, theredsinajue,
coherent way to compare effort, without developing modélsfo
fort in advance. In general, we would like to measure thereéfb
a human analyst throughout the process. There are two basic m
sures that can be used: absolute number of links the analyat (
simulated analyst) had to examine, aadectivity i.e., the percent-
age of all possible links that the analyst (simulated arplyad to
examine.

Answer Sets

We use this section to comment on the amount of effort that we
anticipate in order to create even this scaled-down bendhnies
seen from Table 1, we have elected to include 23 differentif46
counted both ways) trace recovery tasks between nine eliffer-
tifacts in the benchmark. This mandates 23 full mappingeéet

the artifacts. Our experience with creating ground truthefeen
moderate-size datasets indicates that a very significkort gber-
haps unachievable by a single research group) is required.



| || Reqts. | Design [ Code | Test Cases | Bugs | Concepts | Views | Use Cases | Diagrams ||
Requirements document - X 0 X X o 0 X X
Design document X - X X X o] o] X X
Code 0 X - X X X X X X
Test Cases X X X - X o] o] X o]
Bug Reports X X X X - X X X o]
Domain and application concepts || o o] X o] X - X o o]
Abstractions/Logical views o] o] X o] X X - o] o]
Use Cases X X X X X o] o] - X
System state-transition diagrams || X X X o] o] o] o] X -

Table 1: Traceability recovery tasks. “X”: mandatory task, “0”:

Conclusion
Traceability is an important activity that permeates maiscied

plines, notably software engineering. Advances have besem

in the automation of traceability, but progress is hinddmgdhe
lack of standard artifacts, measures, data formats, etuwctBearks

have proven useful in other research fields, and it is ourtiposi

that traceability can also benefit from a benchmark.

This paper does not describe an existing benchmark. Rather,

it establishes the properties and the structure for a ybetbuilt

benchmark. We have made an effort to describe a benchmackwhi

would address traceability challenges in more than oneairsaft-

ware engineering. Our approach was to balance the complekit

the benchmark and its applicability. As a result, we arrigéthe
description, which, as we have observed, requires sulstaffort
to implement. It is our hope that this paper will spark ing¢r@nd
lead to a community-wide initiative to build such a benchknar
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