
Benchmarks for Traceability?

Alex Dekhtyar
Department of Computer

Science
University of Kentucky

Lexington, KY, USA

dekhtyar@cs.uky.edu

Jane Huffman Hayes
Department of Computer

Science
University of Kentucky

Lexington, KY, USA

hayes@cs.uky.edu

Giuliano Antoniol
Department of Computer

Engineering
École Polytechnique de

Montréal
Montréal, Canada

giuliano.antoniol@polymtl.ca

ABSTRACT
This position paper discusses the need for and the organization of
a traceability benchmark. We establish the basic principles of or-
ganization of such a benchmark. We then observe the nature of
traceability tasks in three areas of Software Engineering:indepen-
dent verification and validation, software maintenance, and reverse
engineering. Based on this, we derive the desiderata for a traceabil-
ity benchmark addressing the needs of all three areas.

1. INTRODUCTION
Tracing and traceability possess demonstrated importancein a

number of disciplines such as software engineering. This isillus-
trated with a few common scenarios. Software maintainers rely on
being able to recover the code components or methods that relate to
a given bug report. A systems engineer needs to know the mapping
between a legacy software system that is being enhanced and the
developer’s contract (doing the enhancing) to determine the impact
of ”mothballing” certain legacy code components. Unfortunately,
the generation of, maintenance of, and/or assessment of traceabil-
ity information (such as requirements traceability information) is
largely manual, time-consuming, and error-prone.

Researchers have made great strides in inventing and validat-
ing methods and tools for addressing the traceability problem. Yet
most researchers address specific traceability problems inthe area
of their expertise and/or of their funding organization. For example,
Antoniol et al. addressed traceability recovery from code and user
documentation to assist the software maintainer [1]. Hayeset al.
sought to assist the independent verification and validation analyst
in recovering traceability between requirements and design specifi-
cations [8]. Besides looking at different problem areas, researchers
also examine different artifacts (code and user’s documentation and
requirements and design specs in the above example), use differ-
ent approaches (semi-automated, fully automated; information re-
trieval methods, rule-based methods; etc.), and calculatedifferent
measures in order to evaluate their approaches. As a result,it is
very difficult to: compare most of the studies performed by differ-
ent research groups; adapt or apply ideas from the work of others;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TEFSE’07’07, March 2007, Lexington, KY
Copyright 2007 ACM ...$5.00.

adapt or apply artifacts from the work of others; and adapt orapply
measures from the work of others.

Other research fields have faced similar challenges and overcome
them through the successful use of a benchmark. It is our position
that a traceability benchmark would go a long way to alleviate the
problems mentioned above. Specifically, a traceability benchmark
is needed for:� Robust comparisons of different techniques for solving the

same problem.While there is an occasional apples-to-apples
comparisons between traceability studies [1, 9], such workis
just beginning to emerge.� View of the behavior of the same methods on different prob-
lems.Standard IR techniques are applied with different suc-
cess to various problems in Software Engineering. These
problems, however, come from very different areas of Soft-
ware Engineering, sprouting different researcher communi-
ties. There is very little communication across the problem
boundaries, and very little analysis of the behavior of dif-
ferent approaches across the entire problem set in Software
Engineering to which IR methods are applicable.� Comparison of emerging traceability methods and techniques
with state-of-the-practice approaches.As one of the stated
goals of traceability research is technology transfer, apples-
to-apples comparisons between new methods/approaches and
techniques used in industry is needed to: (a) certify that new
approaches provide “better” solutions, and (b) persuade in-
dustry to adopt them.

The recently published Grand Challenges in Traceability [4] spec-
ify Measurement and Benchmarksas one of the key challenge ar-
eas. In particular, the following Grand Challenges relatedto this
area, have been outlined:

L-GC1 Define standard processes and related procedures for per-
forming empirical studies during traceability research.

L-GC2 Build benchmarks for evaluating traceability methods
and techniques.

L-GC3 Define measures for assessing the quality of individual and
sets of traceability links.

L-GC4 Develop techniques to assess traceability methods and pro-
cesses.

We believe that a well-designed, robust, feature-rich benchmark
for testing methods, techniques, and processes for achieving trace-
ability in the Software Engineering domain will go a long way

toward addressing both issues above. It will establish the sorely
needed “measuring stick” for testing uses of different traceability
approaches within the same problem set. This paper begins the
process of addressing specifically the challengeL-GC2.

In the rest of this paper, we describe a set of high-level (non-
functional) requirements for a traceability benchmark (Section 2)
and the desired organization of a traceability benchmark (Section
3). We then discuss the views of the benchmark from three dif-
ferent subfields of Software Engineering: Independent Verification
& Validation, software maintenance, and reverse engineering (Sec-
tion 4). For each area, we outline the origins and the nature of
the tracing tasks, the artifacts used, and the means of determining
“success.” We conclude by merging this information together into
an outline for a simple traceability benchmark.

2. REQUIREMENTS FOR A TRACEABIL-
ITY BENCHMARK

The requirements listed below outline our vision for an eventu-
ally emerging benchmark for traceability tasks. At this stage, we
elected to concentrate on the benchmark for tracing/traceability in
Software Engineering.

R1: Support for traceability in multiple fields of Soft-
ware Engineering.The benchmark shall provide the ability to
test tracing methods and procedures for tasks from different areas
of Software Engineering.

R2: Independence of methodology.The benchmark shall
be independent of a specific tracing methodology. That is, trac-
ing tasks contained within the benchmarks shall be solvableby a
wide range of methods and procedures: manual, semi-automated,
automated.

R3: Ground truth.For each task within the benchmark, the
benchmark shall establish the ground truth (i.e., true answer) against
which to be compared.

R4: Accuracy testing.The benchmark shall provide the op-
portunity to test the accuracy of tracing techniques on its tasks.

R5: Scalability testing.The benchmark shall provide the op-
portunity to assess the scalability of tracing techniques of its tasks1.

Discussion
The majority of the requirements selected follow common sense on
what a benchmark should do and what problems it should address.
As we have observed, tracing tasks are part of different Software
Engineering processes: IV&V, reverse engineering, software main-
tenance, to name just a few. We would like for the traceability
benchmark to be rich enough to contain tasks from (ideally) every
area in Software Engineering where tracing occurs.

Moving on to the second requirement, we observe that we do not
want to build the benchmark toonly score the work of, for exam-
ple, information retrieval methods. It should be possible to “solve”
the tracing tasks contained within the benchmark in any way,in-
cluding purely manual tracing. This makes sense because within
the research community, we would like to have apples-to-apples
comparison of the work of different automated methods. However,
in order for these automated methods to transfer to practice, we
have to demonstrate that they outperform current, often manual and

1At least for the tasks where scalability is an issue.

labor-intensive, procedures. The requirement to have ground truth
available for each tracing task can be viewed as a restriction that
the benchmark creators should take upon themselves: do not add
tasks to the benchmark for which you cannot, or are not willing to,
provide the correct answer (or where correct answers do not exist).
The fourth requirement states the main purpose of the benchmark:
it has to allow for testing the accuracy of the methods. It is in-
cluded in the list of requirements to provide symmetry with the
fifth requirement, which is less obvious: in many circumstances,
tracing techniques and procedures must be not only accuratebut
also expedient and scalable to large tracing tasks. The benchmark,
in our view, must provide the opportunity to test the scalability of
methods for such tasks.

3. ORGANIZATION OF TRACEABILITY
BENCHMARKS

In light of the outlined requirements, we view a traceability bench-
mark as consisting of five main components: (i) data set, (ii)tasks,
(iii) answer sets, (iv) measures, and (v) data representation for-
mats/supplementary software.

We give a brief overview of each component below.

Data Set
The dataset of a traceability benchmark should be a collection of
artifacts from a software project. To satisfy the first requirement,
such a collection must be sufficiently rich and contain artifacts from
different project stages and used in different software engineering
processes. To satisfy the scalability requirement, the data set has
to: (a) contain sufficiently large artifacts, and (b) provide the op-
portunity to scale artifact sizes up or down.

Perhaps the most difficult question is the origin of such a collec-
tion of data. Two possibilities exist: benchmark creators can take
data from an already existing software project, or they can create
the benchmark from scratch. The second option requires signifi-
cant, perhaps, unrealistically so, effort on the part of thebenchmark
creators. The first option requires for there to be a softwareproject
that has a rich artifact collection which can become public.

Tasks
As stated earlier, tracing tasks originate from different underlying
problems, which themselves come from different software engi-
neering processes. To address the first requirement, the benchmark
must complement the rich artifact collection with the rich collec-
tion of tracing tasks to be performed on the data. Individualre-
searchers/research groups may concentrate on specific individual
tasks, but the benchmark itself has to include enough tasks to ad-
dress tracing needs from different areas of software engineering.

The nature of the tasks needs to be addressed here as well. Most
traceability research now is concentrated on the tracing oftextual
artifacts (we consider code to be a textual artifact). However, trac-
ing is needed for non-textual artifacts as well. At some stage of the
benchmark development, non-textual artifacts must becomepart of
the data set, and, consequently, the tracing tasks for non-textual
requirements and tracing tasks between textual and non-textual re-
quirements will have to enter the benchmark as well.

Another aspect of traceability tasks concerns the nature ofrecov-
ered links. In some tracing tasks, there is only one type of link to
be recovered, whereas for other tasks, it is important not just to re-
cover the link, but to recover the type of the link correctly.Tracing
tasks included in the benchmark must reflect these needs.

Answer Sets
Following the third requirement, the benchmark must include the
answer set, i.e., the ground truth for each task. The reasonsfor this
are straightforward and follow from our fourth requirement: there
is a need to assess the accuracy of each method/technique/process
used to solve a tracing task. This can only be achieved reliably if
ground truth, i.e., the correct answers for each task, are known and
can be compared against the answers returned by different methods.

As such, this becomes one of the most serious restrictions on
building the benchmark. Only the tasks for which answer setscan
be built (by benchmark creators) can be included. There are two
aspects of this: (i) the task must actually have a correct answer set,
and (ii) benchmark creators must be able to establish it and arrive
at a consensus.

Measures
RequirementsR4 andR5 demand inclusion of measures for assess-
ing the accuracy and scalability of methods. Standard IR measures
for accuracy,precision, recall (both macro- and micro- variants),
average expected precision, f-measure, etc., certainly can, and will,
be used as part of the benchmark. A standard measure for scalabil-
ity is time.

In addition to accuracy and scalability, enshrined in our require-
ments are other quantities that can be measured. In particular, to
facilitate technology transfer, it is important to developa set of
measures for effort.

Software/Data Formats
This, perhaps, is the only optional part of the benchmark. Yet, we
observe that development of convenient data formats and inclusion
of software that understands these formats in the benchmarkcan go
a long way in both making the benchmark popular and in establish-
ing standard means of encoding “real” artifacts.

4. THREE VIEWS OF A BENCHMARK
In this section, we provide brief accounts of three subdisciplines

of Software Engineering in which traceability figures as a major
factor: Independent Verification & Validation (IV&V), software
maintenance, and reverse engineering. For each subdiscipline, we
outline the data used, the tracing tasks performed, the measures
used to determine the accuracy of the results, and other aspects that
can influence formation of the benchmark.

4.1 Independent Verification & Validation
Independent Verification & Validation is a process that is per-

formed in parallel with the development process when risk reduc-
tion is of the utmost importance. IV&V is often applied by inde-
pendent, third party analysts when the software system being built
is safety- or mission-critical. The IV&V analysts concentrate on
ensuring that the right system is built (validation) and that it is
built according to the specifications of each lifecycle phase (ver-
ification).

Toward that end, the IV&V analyst has a number of responsibili-
ties, such as: ensuring that all requirements have been addressed by
the software design, ensuring that the source code has correctly im-
plemented the software design, ensuring that test cases have been
developed to validate that the requirements have been implemented,
and executing those test cases to ensure passing. As one can imag-
ine, it is thus important to know the mapping of the requirements to
the design, of the design to the code, and so on. This mapping is re-
ferred to as the requirements traceability matrix (RTM) andshould
be delivered by the system developer. However, the RTM is often

not delivered, or is not developed to the proper level of detail, or is
not kept up to date. Thus, it often falls on the IV&V agent to build
such an RTM. Even if an RTM is delivered by the developer, the
IV&V agent has the job of assessing the correctness of the RTM.
So it is clear that traceability is an important activity in IV&V.

Let us look closer at the typical data/artifacts that an IV&Van-
alyst will utilize in performing traceability or traceability assess-
ment. It is common for requirements specifications to be delivered
as textual artifacts with some embedded graphics. The require-
ments are often expressed in free form narrative text. The design
specifications are also often textual, but may have more graphical
information, such as in UML diagrams. Source code will be avail-
able in digital form. Test cases will often be free text, but may
contain embedded ”pointers” to requirements, design elements, or
source code methods. The size and number of specifications varies
greatly based on the project. Some projects may have one system
level specification, a half dozen software requirements specifica-
tions, a dozen design documents, and millions of lines of source
code. Smaller projects may have only one software requirements
specification, one or two design specifications, and merely thou-
sands of lines of code.

The tracing tasks that the IV&V analyst must perform are largely
driven by the artifacts that are delivered by the developer.For ex-
ample, if the developer delivers an RTM, the agent’s task is to as-
sess that RTM rather than build it. If no RTM is delivered, theagent
must build an RTM for the various artifacts delivered. If a devel-
oper delivers a full host of artifacts (requirements specifications,
design specifications, source code, test plan, test cases, user’s man-
ual, administrator’s manual, etc.), the IV&V agent has a host of
tasks to perform, such as:� trace requirements specification to the design specification;� trace design specification to source code (files, methods, classes);� trace source code to test cases;� trace requirements to test plan;� trace requirements to user’s manual; and� trace design specification to test plan and/or test cases (de-

pends on level of detail in the test plan).

In IV&V, it is of utmost importance to construct the correct RTM.
To ensure that this has happened, the agent may manually validate
that certain links in the RTM are correct, and will manually ensure
that all high level elements have been satisfied by their children (so
they may ensure that all requirements have been satisfied by what
is listed as their children in the RTM). Since we want to automate
as much of the tracing tasks as possible, we need measures to help
us evaluate the quality of such automated methods (whether we are
using them to help build RTMs and/or assess RTMs). Specifically,
we need to make sure that the automated methods are accurate.We
want to make sure that they find all the links that exist (recall) and
do not retrieve things that are not links (precision). We want to en-
sure that the techniques do not require as much time on the part of
the analyst as manual techniques (effort). We want to ensurethat
the techniques work well on large projects as well as small ones
(scalability). It is also important to allow the IV&V analyst to have
the ”final say” on what is a link or on whether or not a parent ele-
ment has been satisfied by its children. So the techniques need to
incorporate the input of the human analyst (feedback).

With this in mind, let us next examine how a software maintainer
might use traceability in her everyday work.

4.2 Software Maintenance
Software Maintenance is the set of activities and processescar-

ried out on deployed software to correct defects and deficiencies,
to add new functionality, to improve or enhance existing features,
or to prevent defects and, in general, quality degradation.Software
maintenance is highly human-intensive and risky, since changes in
any software system of a realistic size risk degrading software qual-
ity and may produce unwanted or unexpected side effects. Suc-
cessful software systems operate for decades, and often outlive the
hardware and operational environments for which they were origi-
nally conceived, designed, and developed. As a software system is
enhanced, modified, and adapted to new user needs, the code be-
comes increasingly complex, often drifting away from its original
design. Furthermore, very often source code evolves, but docu-
mentation is not updated; maintaining consistency and traceabil-
ity information between software artifacts is a costly and time-
consuming activity, frequently neglected due to the pressure to re-
duce costs, to reduce time to market, or to move on to the next
software change. Thus, the system itself is often the only reliable
source of information and source code browsing is the most com-
monly performed activity during maintenance because obsolete or
missing documentation forces maintainers to rely on sourcecode
only. Unfortunately, source code browsing becomes very time-
and resource-consuming as the size and complexity of programs
increase. An alternative to source code browsing is automatic or
semi-automatic design recovery. Central to this is the recovery of
“higher-level abstractions beyond those obtained by examining a
program itself” [3].

For example, corrective maintenance tasks are activated bydis-
covered defects; maintainers receive short, informal descriptions
of problems and are asked to change the software thus producing a
new, hopefully, defect-free, release. They have to build mappings
between defect descriptions, domain and application concepts and,
ultimately, associate domain and application concepts with code
fragments and vice-versa. It is worth noting that the process of
concept location and abstraction building is preliminary to any soft-
ware change and, thus, it is not limited to corrective maintenance.
Adding new features or enhancing existing ones must be done in
such a way as to avoid unwanted side effects. This, in turn, requires
the building of a mental model of features and feature interactions.
In performing this mapping process, maintainers rely on available
documentation; typical tasks include:� trace the problem description to domain and application con-

cepts;� trace domain and application concepts to requirements and/or
features; and� trace requirements and/or features to design and/or code re-
gions.

Here the term feature is defined as a requirement, documented
or not, of a program that a user can exercise and which produces
an observable behavior. With this in mind, it is clear that toac-
complish any maintenance task, traceability links betweencode and
other sources of information are crucial and preliminary toany ac-
tual software change.

When recovering traceability information, for example, locating
features or tracing requirements to low level artifacts, itis of utmost
importance that maintainers are not overloaded by information. At
the same time, some of the methods, functions, classes, and,in gen-
eral, code regions relevant to the problem under study must rank

high in the recovered traceability links. Precision and recall, al-
though relevant, do not fully characterize the maintainer’s point-
of-view. Browsing hundreds or thousands of traceability links will
just not help and will make traceability recovery not very useful.
This is especially true when maintenance has to be performedin
large software systems, applications of millions of lines of code.
Reducing code browsing to a few percent of the entire system will
be considered a success from a researcher’s point-of-view,but it
will be considered a failure from the maintainer’s perspective. In
conclusion, we believe that maintenance tasks require one to strive
for a balance between precision and recall in order to provide de-
velopers with as fewer traceability links as possible whileensuring
that important links are not forgotten (and thus to ease develop-
ers’ understanding). Indeed, when maintenance is considered, the
success of tracing tasks is not determined solely by precision and
recall, but also by the relative position of correct traceability infor-
mation in the retrieved set.

4.3 Reverse Engineering
As underlined in the previous subsection, very often, change and

evolution activities focus only on fixing defects. While thesource
code is evolving, the architecture, design, and documentation are
not updated. Reverse engineering and maintenance activities are
tightly related; in the absence of reliable documentation,reverse
engineering practices aim at recovery of high level abstractions
supporting program understanding, concept location, and feature
location. Reverse engineering dates back to the late 1980s and the
seminal work of Chikofsky and Cross who, in 1990, introduceda
taxonomy for reverse engineering and design recovery [3]. They
defined reverse engineering to be “analyzing a subject system to
identify its current components and their dependencies, and to ex-
tract and create system abstractions and design information.”

Several successful technologies such as program slicing [11],
feature location [5, 2], concept location [12], and architecture re-
verse engineering [6, 10] have been developed. These, and other
techniques, recover different abstractions. We note that manual
work is required to establish traceability links between and within
extracted representations for most every technique. Greatsavings
can be obtained if automatic or semi-automatic approaches are used
to assist in the recovering and assessing of those traceability links.

A second challenging issue is related to traceability of behavioral
information. Traceability links must be established not only be-
tween artifacts describing the software structure, but also between
artifacts detailing the interaction of components and the compo-
nent semantics. We hold that traceability must be extended to doc-
uments such as UML sequence, activity, and state diagrams. This,
in turn, requires that as-is information be recovered or validated on
an existing system.

Traceability links can be subsequently exploited in software change
and evolution to evaluate the impact of changes, to define theprior-
ity and schedule the order of changes, to ensure that changesdidn’t
affect expected behavior, and to support automatic test data gener-
ation.

In performing these reverse engineering tasks, programmers rely
on static and dynamic information. Static information is extracted
form source code while dynamic data are collected by executing
the software under different scenarios. Typical tasks include:� extract abstractions and logical views and build traceability

links to domain and application concepts;� trace outdated representations to as-is abstractions and views;� establish and validate traceability links between and within
extracted views;

� establish and validate traceability links semantics; and� establish and validate traceability links between extracted views
and requirements.

In many reverse engineering tasks, completeness and accuracy
of extracted representations have been considered a key success
factor. Being that the activity is rarely performed, the cost of dis-
carding a few false positives is not considered a major issue. Once
views and abstractions have been validated, traceability informa-
tion has to be recovered and validated. Reverse engineeringis not
a stand-alone activity. Rather, it aims at supporting othertasks,
mainly software change and evolution. In other words, costsand
accuracy must be compatible with the actual subsequent in-the-
field use of extracted information. For example, if the goal is to
support IV&V, correctness will be of utmost importance; if the goal
is to help in program understanding and feature location, the ef-
fort required to locate a correct chunk of information into retrieved
traceability links is more important than correctness or complete-
ness. So, the success criteria inherently depends on the subsequent
tasks. Furthermore, any benchmark will be required to be flexible
and extensible to ease the task of incorporating new views, new
abstractions, or add new link semantics.

5. TOWARD THE BENCHMARK
In Section 3, we have described the five components of an ideal,

universal, traceability benchmark. In Section 4, we brieflyde-
scribed the specific needs of three subareas of Software Engineer-
ing w.r.t. traceability. We recognize that the list of traceability
needs and tasks presented above is far from complete – for exam-
ple, problems and tasks associated with traceability between differ-
ent versions of the same artifact have not been raised, whilethey
too comprise an important collection of traceability tasks.

At the same time, we observe that any attempt to begin the con-
struction of a traceability benchmark must start somewhere. Also,
the attempt must have as its immediate goal the constructionof the
components that address specific concerns of a well-defined sub-
set of areas. In this section, we attempt to establish the specific
organization of such a benchmark We follow the guidelines wees-
tablished in Sections 2 and 3 for the three areas discussed inSection
4.

Artifact Categories
We consider the following simple taxonomy of software artifacts
which may be represented in a benchmark. At the top layer of the
hierarchy, we identify two major categories of artifacts: textual and
non-textual. Within each of the major categories, we establish a
number of distinct subcategories and briefly describe them below.

Artifact/Textual/Free-form.This category includes textual project
artifacts written in free-form, unstructured text. Examples include
requirements documents and design documents.

Artifact/Textual/Structured.The key representative of this cat-
egory is code.

Artifact/Textual/Semistructured.This category includes tex-
tual artifacts in which individual elements contain both structured
and unstructured parts. A typical representative is a collection of
bug reports entered through a bug tracking system. Often, for the
purposes of the tracing tasks, these artifacts are treated in the same
way as free-form textual artifacts.

Artifact/Non-Textual/Unparsed.This category includes a wide
range of traditional non-textual artifacts created duringthe software
project lifecycle. Their key distinction is the need to include pars-
ing/recognition/interpretation as part of the solution ofthe tracing
task. Examples include UML diagrams, state-transition diagrams,
entity-relationship diagrams, and more.

Artifact/Non-Textual/Parsed.This category includes non-textual
artifacts that are already parsed, or which do not require interpreta-
tion. The most important representative of this category isan RTM.

Task Categories
Two major task categories related to traceability were observed in
the fields described in Section 4:recovery of traceability informa-
tion andassessment of traceability information.

Recovery of traceability information, i.e., building traceability
information from scratch, is a common task category for all three
fields under consideration. A typical structure of such a task in-
volves two artifacts broken into individual elements. The task itself
is to build a mapping between elements of one artifact and theel-
ements of the other artifact. In all three fields, traceability is to be
established betweendifferent artifacts(not different versions of the
same artifact).

Assessment of traceability information, or evaluation of given
traceability mappings, plays a major role in IV&V, less so inthe
other two areas, although establishing semantics of traceability links
(a task from reverse engineering) is an assessment task as well. A
typical structure of an assessment task involves a pair of artifacts
and a mapping between their elements. For each link in the map-
ping, the task is to classify it, either using a binary classification
scheme (link vs. not a link) or using a more complex classification
scheme, which establishes specific link semantics (e.g., “traces to”,
“depends on”, “part of”, “not a link”). The task may also involve
recovery of links missing in the original mapping.

A third task category,concept extraction, is featured prominently
in reverse engineering. Here, a single (usually textual) artifact is
provided as input, and the task consists of building an abstract
view/concept model of the artifact. Such tasks can be viewedas
pre-cursors to subsequenttrace recovery tasks, which involve the
extracted higher-level artifacts. Therefore, we include this task cat-
egory in our view of the benchmark.

The majority of thetrace recoverytasks described in Section
4 involve tracing textual artifacts: tracing between free-form doc-
uments (e.g., between requirements and user’s manuals), ortrac-
ing between a free-form/semistructured and a structured document
(e.g., between design and code, or between bug reports and code).
Some tasks do involve tracing between textual free-form/semistructured
and non-textual artifacts (e.g., between use case diagramsand test
cases documented as text).Assessmenttasks found in IV&V typi-
cally involve two textual artifacts and an RTM, which we classify
as a parsed non-textual artifact.

Dataset
There is significant overlap in the data used by IV&V analysts, soft-
ware maintainers, and reverse engineers. The core textual artifacts
of requirements, design, and code are present in tasks in allthree
fields, albeit, their importance is different. All three artifacts are
crucial to IV&V tasks, but code becomes the key artifact in soft-
ware maintenance and reverse engineering. The dataset mustsup-
port tasks from all three fields, and it must support tasks involving
artifacts of different types. As such, we derive the following list of
artifacts to be included in the benchmark:

1. Requirements document. (Artifact/Textual/Free-Form)

2. Design document. (Artifact/Textual/Free-Form)

3. Code. (Artifact/Textual/Structured)

4. Test Cases. (Artifact/Textual/Semistructured)

5. Bug Reports. (Artifact/Textual/Semistructured)

6. Domain and application concepts. (Artifact/Textual/Structured)

7. Abstractions/Logical views.2 (Artifact/Textual/Structured)

8. RTMs.3 (Artifact/Non-Textual/Parsed)

9. Use Cases. (Artifact/Non-Textual/Unparsed)

10. System state-transition diagrams.
(Artifact/Non-Textual/Unparsed)

Additionally, the benchmark can contain the following artifacts:� Test Plan. (Artifact/Textual/Semistructured)� User Manual. (Artifact/Textual/Free-form)� UML Diagrams for different system aspects. (Artifact/Non-
Textual/Unparsed)

Each artifact in the dataset must come with at least one predeter-
mined way of separating it into individual elements. For some arti-
facts, such as bug reports and use cases, such separation is straight-
forward. Other artifacts, e.g., requirements and design, require
some explicit separation into individual elements. Finally, yet other
artifacts, such as code, may come with more than one notion ofan
element. It is possible that some tasks in the benchmark may ac-
tually involve determination or correct/convenient separation of an
artifact into elements. However, we also want to ensure thatthe
most basic tracing tasks are well-defined for the artifacts that they
involve. In the remainder of the benchmark description, we will
assume that each artifact is indeed broken into individual elements.

To address thescalability requirements, the benchmark has to
have the following:� Some artifacts must be large. As a minimum, at least two

artifacts traceable to each other should contain over 1000 el-
ements.� Some artifacts must be broken into “subsets,” from very small
to the entire artifact. This is done to allow for artifacts ofin-
creasing size. For example, a small requirements document
artifact can be a single section of the entire requirements doc-
ument. A somewhat larger requirements document would in-
corporate the small document and add a few more sections to
it.

Because at this stage we are primarily interested in scalability of
the traceability of textual artifacts, the best artifacts to use for these
purposes arerequirements, design, code, andbug reports.

2These can be viewed as incoming data for traceability recovery
tasks, and as answer sets for extraction tasks.
3We note that, generally speaking, RTMs prepared for assessment
tasks have to contain errors in them, and therefore, should be differ-
ent from the RTMs that represent proper answer sets to the tracing
tasks in the benchmark.

Tasks
The benchmark must include tasks from each of the categoriesdis-
cussed above.

Recovery tasks.Generally speaking, a traceability recovery task
between any pair of artifacts described above is feasible. However,
since 72 traceability recovery tasks yield the need for 36 answer
sets (each pair of artifacts can be traced in two directions,but a
single answer set suffices for both directions), we elect to include
only the most important and frequent traceability tasks. Table 1
illustrates the tracing tasks we consider for inclusion.

Assessment Tasks.Typical assessment tasks in IV&V include as-
sessment ofRequirements-to-DesignandDesign-to-Code trace-
ability matrices.

Concept Extraction Tasks.These tasks typically involve extrac-
tion from Code.

Measures
As specified above, the same task performed from different per-
spectives yields different measures of success. The following prop-
erties of the tasks and their results need to be evaluated:

Accuracy.Accuracy, generally, measures the amount of the re-
trieved links that are correct. Traditional IR measures foraccuracy
areprecision(micro precision, operating on an element-by-element
level, macro precision, measuring the ratio of correct links in the
entire RTM), and measures derived from it, such asexpected preci-
sionandaverage expected precision.

Coverage.Coverage measures the amount of correct links that
were retrieved. The traditional IR measure for this isrecall (mi-
cro recall assesses recall for individual high-level elements, macro
recall measures the total percentage of correct links that was re-
trieved).

Precision and recall are often combined in a single measure,f-
measure, a harmonic mean of precision and recall. Depending on
the perceived importance of precision and recall to a specific task,
f-measure can be modified with a parameter�, which indicates how
the computation of the harmonic mean can be skewed.

Scalability.Two approaches to measuring scalability can be con-
sidered. In the first approach, thetime it takes to complete the trac-
ing task is measured, and the increase in time is compared to the
increase in the size of the task. In the second approach, together
with the time it takes to complete the task, we monitor the changes
in the accuracy and coverage of the solutions, as the problemsize
increases.

Effort. Because the benchmark can be used with automated,
semi-automated, and manual tracing processes, there is nota unique,
coherent way to compare effort, without developing models of ef-
fort in advance. In general, we would like to measure the effort of
a human analyst throughout the process. There are two basic mea-
sures that can be used: absolute number of links the analyst (or a
simulated analyst) had to examine, andselectivity, i.e., the percent-
age of all possible links that the analyst (simulated analyst) had to
examine.

Answer Sets
We use this section to comment on the amount of effort that we
anticipate in order to create even this scaled-down benchmark. As
seen from Table 1, we have elected to include 23 different (46, if
counted both ways) trace recovery tasks between nine different ar-
tifacts in the benchmark. This mandates 23 full mappings between
the artifacts. Our experience with creating ground truth for even
moderate-size datasets indicates that a very significant effort (per-
haps unachievable by a single research group) is required.

Reqts. Design Code Test Cases Bugs Concepts Views Use Cases Diagrams
Requirements document - X o X X o o X X
Design document X - X X X o o X X
Code o X - X X X X X X
Test Cases X X X - X o o X o
Bug Reports X X X X - X X X o
Domain and application concepts o o X o X - X o o
Abstractions/Logical views o o X o X X - o o
Use Cases X X X X X o o - X
System state-transition diagrams X X X o o o o X -

Table 1: Traceability recovery tasks. “X”: mandatory task, “o”: optional task.

Conclusion
Traceability is an important activity that permeates many disci-
plines, notably software engineering. Advances have been made
in the automation of traceability, but progress is hinderedby the
lack of standard artifacts, measures, data formats, etc. Benchmarks
have proven useful in other research fields, and it is our position
that traceability can also benefit from a benchmark.

This paper does not describe an existing benchmark. Rather,
it establishes the properties and the structure for a yet-to-be-built
benchmark. We have made an effort to describe a benchmark which
would address traceability challenges in more than one areaof soft-
ware engineering. Our approach was to balance the complexity of
the benchmark and its applicability. As a result, we arrivedat the
description, which, as we have observed, requires substantial effort
to implement. It is our hope that this paper will spark interest and
lead to a community-wide initiative to build such a benchmark.

Acknowledgments
The work of the first two authors is funded, in part, by NASA
under grants NNG05GQ58G8G and NNX06AD02G and by NSF
under grant CCF-0647443. Giuliano Antoniol was partially sup-
ported by the Natural Sciences and Engineering Research Council
of Canada (Canada Research Chair in Software Change and Evolu-
tion #950-202658). We thank Marcus Fisher, Stephanie Ferguson,
Jane Cleland-Huang, and all the participants of the workshop on
Grand Challenges in Traceability, which took place on August 4-5
in Fairmont, WV. We also thank Andrian Marcus for an impas-
sioned discussion on why this cannot be done.

6. REFERENCES
[1] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and

Merlo, E. Recovering Traceability Links between Code and
Documentation.IEEE Transactions on Software
Engineering, Volume 28, No. 10, October 2002, 970-983.

[2] G. Antoniol, Y. Gueheneuc An Epidemiological Metaphor
for Feature Identification.IEEE Trans. Software Eng, 32(9)
pp 627-641 (2006)

[3] E. Chikofsky and J. C. II, “Reverse engineering and design
recovery: A taxonomy,”IEEE Software, vol. 7, no. 1, pp.
13–17, Jan 1990.

[4] J. Cleland-Huang, A. Dekhtyar, J. Huffman Hayes (Eds.).
Grand Challenges in Traceability,draft, Center of
Excellence for Traceability tech. report
COET-GCT-06-01-0.9,
http://www.traceabilitycenter.org/downloads/
documents/GrandChallenges/, September 10, 2006.

[5] D. Edwards, S. Simmons, and N. Wilde, “An approach to
feature location in distributed systems,” Software

Engineering Research Center, Tech. Rep., 2004,
SERC-TR-270.

[6] R. Fiutem and G. Antoniol and P. Tonella and E. Merlo
ART: An Architectural Reverse Engineering Environment
Journal of Software Maintenance Research and Practice,
Num. 11, 1999, pages:1-25

[7] J. Huffman Hayes and A. Dekhtyar. Humans in the
Traceability Loop: Can’t Live with ’Em, Can’t Live
Without ’Em, (2005), inProceedings, 3d International
Workshop on Traceability in Emerging Forms of Software
Engineering, pp. 20-23, Long Beach, CA, November 7,
2005.

[8] J. Huffman Hayes, A. Dekhtyar, S. Sundaram. Advancing
Candidate Link Generation for Requirements Tracing: The
Study of Methods.IEEE Trans. Software Eng. 32(1): 4-19
(2006)

[9] Marcus, A., Maletic, J. Recovering
Documentation-to-Source Code Traceability Links using
Latent Semantic Indexing, inProceedings of the
Twenty-Fifth International Conference on Software
Engineering, 2003, Portland, Oregon, 3 - 10 May 2003, pp.
125 - 135.

[10] S. R. Tilley, K. Wong, M.-A. D. Storey, and H. A. Müller.
”Programmable reverse engineering.”International Journal
of Software Engineering and Knowledge Engineering,
pages 501-520, December 1994

[11] M. Weiser Program slicingIEEE Transactions on Software
Engineering, 10(4):352–357, July 1984.

[12] Xie, X., Poshyvanyk, D., and Marcus, A. ”3D Visualization
for Concept Location in Source Code” inProceedings of
28th IEEE/ACM International Conference on Software
Engineering(ICSE’06)May 20-28, Shanghai, China, pp.
839-842

