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Abstract—It has been generally accepted that not all trace
links in a given requirements traceability matrix are equal - both
human analysts and automated methods are good at spotting
some links, but have blind spots for some other. One way to
choose automated techniques for inclusion in assisted tracing
processes (i.e., the tracing processes that combine the expertise
of a human analyst and special-purpose tracing software) is to
select the techniques that tend to discover more links that are
hard for human analysts to observe and establish on their own.
This paper proposes a new measure of performance of a tracing
method: human recoverability index-based recall. In the presence
of knowledge about the difficulty of link recovery by human
analysts, this measure rewards methods that are able to recover
such links over methods that tend to recover the same links
as the human analysts. We describe a TraceLab experiment we
designed to evaluate automated trace recovery methods based
on this measure and provide a case study of the use of this
experiment to profile and evaluate different automated tracing
techniques.

I. INTRODUCTION

TraceLab [6], [1] is a visual experimental workbench built to
support design, implementation and execution of traceability
experiments. Built at DePaul University for the traceability
research community, TraceLab is designed to become the
standard way by which empirical studies comparing tracing
methods and approaches are conducted.

TraceLab incorporates a large collection of various modules:
software components that can be used in various automated
and semi-automated tracing processes, including components
for importation of textual information, text processing rou-
tines (such as stopword removal and stemming), information
retrieval and text mining techniques, and components that
measure the accuracy of candidate traces. TraceLab is designed
to be extensible: traceability research groups are encouraged
to contribute new modules to the TraceLab library, and several
research groups have already made such contributions [5]. In
addition, TraceLab provides a visual environment allowing
users to create out of existing components, set up, and execute
traceability experiments.

In April of 2012, a group of traceability researchers met in
Chicago to discuss the plans for using TraceLab for traceability
research. Participants of the meeting were asked to design, and,
later, to build a traceability experiment using the TraceLab
framework.
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As part of their participation in the meeting, the authors ex-
pressed interest in designing a TraceLLab experiment in support
of assisted tracing [2]. Some of the prior research by one of
the authors, concentrated on studying what human analysts do
with the results of automated methods and whether they tend to
recognize good advice provided by the automated methods [3],
[2], [4]. This work indicated that not all trace links are equally
easily recognizable by human analysts: some links present in
the experimental studies were almost uniformally recovered
and recognized by humans, while other links were extremely
difficult for them. From this observation, we have came up
with the idea of measuring whether a specific automated
method is capturing the links in a fashion complementary to
the analysts.

This paper presents the TraceLab experiment that evaluates
automated tracing methods based on their ability to recover
trace links that are difficult for humans to recognize and
recover. Methods that capture links that are harder for humans
to discover are rewarded. Methods that tend to recover the
same links as the human analysts are penalized.

The key contributions of this paper are three-fold:

1) We introduce a new weighted coverage measure, HRI
recall (human recoverability-indexed recall), which fa-
vors trace relations that contain links that human analysts
have difficulty recognizing.

2) We describe our implementation of a TraceLab exper-
iment that compares different automated tracing tech-
niques based on the HRI recall and precision measures.
The experiment, in its current form, uses two small
datasets for which data on the difficulty of link discovery
by human analysts has been collected in prior research.

3) We present the results from a pilot run of the experiment
using a number of trace techniques currently available in
TraceLab. The results suggest that the HRI recall mea-
sure can indeed distinguish between techniques based on
their tendency to discover harder-to-find (for humans)
links.

II. MEASURING HUMAN RECOVERABILITY OF TRACE
LINKS

Consider a pair of textual artifacts of the software engi-
neering process, R and D. We refer to document R as the



high-level document, and to D as the low-level document, as
we consider the scenario of tracing R to D. Let R consist of
n individual elements: R = (rq,...,7,), and D consist of m
individual elements: D = (dy,...,dm).

We denote as 7', the true traceability relationship between
R and D:

T = {(r,d)|r € R,d € D,r traces to d}.

Let T = {¢1...,{n}, where {; denotes a true link ¢; =
(rt, d?).

Consider a group of k experts A = {ai,...,a;}. Each
expert a; performs an independent trace of 12 to D. Let

Ta]. = {gjla---angj}

be the traceability relationship (traceability matrix) recovered
by expert a;.

Definition 1: Let ¢ = (r,d) € T be a true trace link
between R and D. The discovery set A({) is defined as:

A(l) ={ac Alt € T,}

Informally, the discovery set of a true trace link is the subset
of experts who included the link in their traces.

Definition 2: Let { = (r,d) € T be a true trace link
between R and D. The recovery ratio of ¢ given the set of
experts A is defined as

[A(D)] _ A
RR(() = Ak

The recovery ratio of a trace link is the percentage of experts
who discovered it.

Given a group of experts, the recovery ratio of a trace link
among that group can be viewed as a measure of difficulty of
link discovery. Indeed, we expect that more straightforward,
more obvious trace links are discovered by more experts when
they perform trace recovery. Links with small recovery ratios
are the ones that, for one reason or another, are hard for
humans to observe/detect.

Our goal is to develop a measure of “goodness” of a
candidate trace relationship that rewards candidate traces that
contain harder-to-find links, i.e., links with lower recovery ra-
tios. The next measure, human recoverability score essentially
turns the recoverability ratio into a reward score: the more
difficult it is to discover the link, the higher the reward.

Definition 3: Given a true trace link £ = (r,d) € T, and the
set of experts A, the human recoverability index score (HRI
score) of £ wrt. Ais

HRIScore(f) =1— RR(?).

A link ¢ recovered by all human experts receives the HRI
score of 0, meaning that we are essentially not interested
in the ability of an automated method to discover this link.
Conversely, we give highest priority to the ability of automated
methods to detect links with the HRI score of 1: the links not
found by any human expert.

Rewards for detecting individual links need to be combined
into a single metric of a candidate trace relationship 7.

Definition 4: Let H C T be some subset of the ground
truth. The human recoverability score of H is defined as

w(H) = Z HRIScore(¥).
teH

In particular,

N N
w(T) =Y _ HRIScore(;) = N =  RR((;).
i=1 i=1

Using the definition of the human recoverability score of a
set of true links, we can now define the human recoverability
indexed recall, our measure of the ability of an automated
method to recover hard-to-discover links.

Definition 5: Let T = {¢},...,¢},;} be a cadidate trace
recovered by some automated method M when tracing R to
D. Let " = H' ' US’, where H' C T are the true links
discovered by M, while S’ NT = () are the false positives.

The human recoverability-indexed recall (HRI recall) of T’
is defined as

w(H')
w(T)

The HRI recall is an extension of the regular recall measure,
as shown by the following theorem.

Theorem 1: Let T = {{1,...,{y} be a trace relation
between two artifacts R and D, and let A = {ay,...,ar} be
k human experts who performed a trace recovery task between
R and D, and retrieved traces Ty, , ..., Ty, respectively.

If RR(¢1) = RR({3) = ... = RR({y), then for any
candidate trace relation 7",

HRIRecall(T') =

HRIRecall(T') = Recall(T").

The theorem above states that if all links in the trace relation
have exactly the same recovery ratio, i.e., have been discovered
at exactly the same rate, then the HRI recall of any candidate
trace is equal to its (standard) recall.

III. TRACELAB EXPERIMENT

Tracelab experiments are composed from a set of executable
components and decision nodes, all of which are laid out in the
form of a precedence graph on a canvas. Components can be
primitive or composite. Composite components can be defined
by the user or imported. The TraceLab experiment that we
constructed consists of both existing Tracelab components and
some custom components that we developed.

a) Experiment flow.: The experiment uses a number of
specially prepared and annotated datasets and is run on one
or more automated tracing methods. The experiment structure
is outlined below.

1) Datasets. One or more datasets are used for the ex-
periment. For the experiment, each dataset D consists
for the following components: D = (R, D, T), where
R = {r,...,rn} and D = {dy,...,dy} are the



high-level and the low-level artifact respectively, and
T = {(rt,d', ab),...(rV,dV,aN)} is an annotated
true trace relation between R and D. Each link ¢ =
(r,d) € T is annotated with a parameter & = RR(r, d).
That is, each dataset used in the experiment, must have
prior data from tracing experiments involving human
experts associated with it. Each true link from the trace
relation between the high- and the low-level document
of the dataset is annotated with its recovery ratio based
on the data from the prior tracing experiments. Without
loss of generality we assume that the recovery ratios are
all constructed based on the same set of human analysts
and the candidate trace relations constructed by them
during such a prior experiment.

2) Methods tested. The experiment evaluates one or more
“standard” automated tracing method. Each evaluated
method must be implemented as a (possibly compound)
TraceLab component, which takes as input a pair of
textual artifacts (in any format that TraceLab can handle)
and outputs a candidate trace relationship (a candidate
requirements tracing matrix) as the result of its work.

3) Experiment flow. The experiment proceeds as follows.
For each dataset, each test method is run and the
candidate trace is constructed. The candidate trace is
evaluated for precision, recall and HRI recall, and the
computed measures are reported to the TraceLab users.

Figure 1 depicts the actual architecture of the TraceLab
experiment we developed. Below, we discuss the experiment
in more detail.

The experiment design consists of three stages. The first
stage, from the ”Start” meta-component and up to the first
component inside the “Tracing Method” box, represents the
iteration over multiple datasets used in the experiment. The
components for this stage are standard TraceLab modules.
The second stage is the collection of components inside the
”Tracing Method” box. These components jointly represent
the tracing methods used in the experiment. In an experiment
comparing submissions from multiple research groups, each
method would normally be defined as a composite component.
In the case of our pilot study it has been expanded for
illustrative purposes. The tracing and the components forming
it are examples that come with TraceLab.

The third stage of the experiment is the collection and
evaluation of the results. This stage is represented by the
three final components in Figure 1. MetricComputation-
Component (highlighted in Figure 1 is a new component
designed for this experiment. It extended TraceLab’s standard
component for computation of accuracy metrics by adding the
computation of HRI Recall, HRI Recall Number Links Curve,
HRIRecall Percentage Curve, and Precision HRIRecall Curve.

HRIRecall computes the HRI Recall score for the current
dataset. This is analogous to the Recall computation that
already exists in TraceLab. In addition to computing the HRI
Recall scores, there are some metrics computed about the
score, including the mean, and standard deviation.

HRIRecall Number Links Curve graphs the number of links
that have been found against the HRI Recall score. This graph
shows the HRI Recall against the number of links that are
found. In contrast, HRIRecall Percentage Curve has a similar
graph, but instead of the number of correct links found, the
HRI Recall is graphed against the percentage of correct links
found, or in other words, precision.

Precision HRIRecall curve is a graph of the HRI Recall vs
the Precision data. It is the same data as HRIRecall Percentage
Curve, but with the axis flipped. It is presented in the same
format as the Precision Recall Curve, which allows for one
to compare the Precision Recall Curve and the Precision HRI
Recall Curve for the same result set.

IV. EVALUATION

A. Experimental Design

The original intent of community-developed TraceLab ex-
periments was to include them as “competitions”, challenging
traceability research teams to submit their best techniques to
the evaluation by each experiment. The competition aspect of
the experiments was later abandoned. For our part, we con-
ducted a proof-of-concept evaluation study of our experiment
using a number of tracing methods available in TraceLab.

The purpose of the evaluation study was to test the overall
use of the HRI recall measure as the means of evaluating how
well automated tracing methods recover hard-to-detect trace
links. We discuss the design of the study below.

Datasets: We used two datasets in this study. Both
datasets, Cal Poly[3] and WARCIS8] have been used in prior
studies of human analyst behavior in assisted tracing scenarios.
Each dataset is briefly described below.

Cal Poly dataset: Cal Poly dataset, otherwise known
as ChangeStyle consists of 32 requirements and 17 system
tests for a BlueJ plugin Java code formatting tool named
ChangeStyle. This software was a project for one of Cal
Poly’s junior Software Engineering two-quarter course se-
quences. It has been used in a number of prior human analyst
studies [3], [2], [4], [7]. The true traceability matrix for
this dataset contains 23 links. While different studies were
conducted in different ways, a total of 84 candidate traceability
matrices produced by human analysts in the experiments
described in [3], [2], [4], [7] were available to us. All were
used to compute the recovery ratios for individual trace links.
Figure 2 shows the diagram of the HRI scores for the dataset.
Each bar depicts the HRI score of a single true link, the links
are presented in ascending order of the HRI scores. As seen
from the figure, the human recoverability index ranges from
almost O for a pair of links that were discovered by almost all
human analysts, to one link with an HRI score of 0.946, which
was discovered by almost noone. Overall, there is a significant
difference in recoverability scores of individual links in this
dataset. Table I shows some of the statistics (smallest, largest,
average, standard deviation and median) for the HRI scores
for this dataset and the WARC dataset discussed below.
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WARC dataset: The WARC dataset consists of 42
functional requirements and 89 software requirements for an
open source suite of web archive file manipulation tools![8].
The true trace for this dataset consists of 55 links. In [8],
a tracing experiement using this dataset involved 24 human
experts. As a result, we had access to 24 candidate traceability
matrices submitted by human analysts in [8]. The distribution
of the HRI scores for this dataset is shown in Figure 3. Two
links have HRI scores of O (found by everyone), while on
the other end of the spectrum, one link has a score of 0.958
(almost never found). This distribution shows that there are
some relatively easy to recognize links in the WARC dataset,
along with a few links that were very hard for most people to
detect.

TABLE I
HRI SCORE STATISTICS FOR THE DATASETS USED IN THE PILOT STUDY.
WARC CP
MAX 0.958 | 0.946
Min 0 0.027
Avg 0.335 | 0.573
Std Dev | 0.260 | 0.252
Median 0292 | 0.622

Tracing Methods used: We used the default tracing com-
ponent supplied by TraceLab as the collection of tracing meth-
ods for the experiment. The default component implements
Vector Space Retrieval and uses four different techniques
for computing the similarity between two textual elements.
The four computation methods use simple matching, Jaccard,
Dice and cosine similarity scores. Each of the four similarity
computations was treated as a separate tracing method for the
purpose of this study.

Ihttp:/code.google.com/p/warc-tools
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Fig. 2. HRIScore Distribution for all true links in Cal Poly Dataset

Measures collected.: Each method was run on each of
the datasets. The result was a list of candidate links, with
a similarity score associated with each candidate link. We
collected three measures: precision, recall and HRI recall.
Each list of candidate links is ordered in descending order
by the similarity score of the links. We then use recall as
an indepdent variable, and compute the other two measures:
precision and HRI recall starting at the recall level closest to
10%, proceeding in about 10% increments until we reach the
last true link reported by each method. The results are plotted
in three ways:
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(a) precision vs. recall to provide the baseline for observa-
tions;

(b) precision vs. HRI recall to compare to the precision vs.
recall graphs, and:

(¢) HRI recall vs. recall to look at the impact of using HRI
scores as weights of recovered links.

We report results in both graphical and tabular form.

B. Results

The results of the pilot study are presented in Figures 4, 5,
6, 7, 8 and 9 and in Tables II, III, IV and V.

For CalPoly dataset, all trace recovery methods reached
just under 80% recall. However, as seen from the HRI recall
plots, all methods except for (surprisingly!) simple match have
mostly been recovering the easy-to-find trace links. As Figure
9 shows, simple match method captures more difficult-to-find
links, especially, at the beginning of the candidate link list for
this method.

For the WARC dataset all methods were roughly equally
unsuccessful in capturing a significant number of true links
- reaching only recall of around 30%. Most of the recovered
links, as evidenced from Figures 7 and 8 and Table V were
with high recovery ratios (easy to find). Simple matching
method, again recovered links that were somewhat different
and had higher HRI scores.

The pilot study shows that even when in the case of
relatively straightforward tracing methods, it is possible to
evaluate different methods on the basis of their ability to
retrieve harder-to-find links. The overall HRI recall, and HRI
recall vs. recall plot can be used to determine how different
methods behave.

V. DISCUSSION

There are different ways in which one could evaluate
automated methods for appropriateness of their use in assisted
tracing tasks. The ability of an automated method to detect

Cal Poly
08

0.6

Recall
o
.

02 X( - g o\

— ——q
T T
0
0 0.25 0.5 0.75 1
Precision
+ Cosine O Dice Jaccard % Simple Matching
Fig. 4. Cal Poly Dataset: precision vs. recall
TABLE 11
CAL POLY DATASET: PRECISION VS. RECALL.
Recall Precision
SimpleMatching | Jaccard | Cosine | Dice
10% 0.5 0.6 0.6 0.6
20% 0.263 0.5 0.714 0.5
30% 0.233 0.269 0.35 0.269
40% 0.232 0.227 0.243 0.227
50% 0.077 0.088 0.2 0.088
60% 0.076 0.082 0.131 0.082
70% 0.071 0.071 0.080 0.071
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Fig. 5. Cal Poly Dataset: precision vs. HRI recall

links that human analysts tend to miss is one possible measure
of how useful the method can be.

In this paper we presented the notion of measuring the
quality of a candidate trace in a way that rewards the presence
of hard-to-detect links and discounts the presence of links that
are easily recoverable by humans. We formally defined the
human recoverability index score of a link and the human
recoverability-indexed recall of a candidate trace relation.
Using two datasets from prior studies of assisted tracing we



TABLE III
CAL POLY DATASET: PRECISION VS. HRI RECALL

SimpleMatching Jaccard Cosine Dice
HRI Recall | Precision | HRI Recall | Precision | HRI Recall | Precision | HRI Recall | Precision
0.17 0.5 0.002 0.6 0.01 0.6 0.004 0.6
0.211 0.263 0.002 0.5 0.015 0.714 0.005 0.5
0.241 0.233 0.003 0.269 0.018 0.35 0.006 0.269
0.278 0.233 0.003 0.227 0.022 0.244 0.006 0.227
0.283 0.077 0.003 0.088 0.024 0.2 0.007 0.088
0.286 0.076 0.003 0.082 0.025 0.131 0.007 0.082
0.288 0.071 0.003 0.071 0.025 0.08 0.007 0.071
TABLE IV
WARC DATASET: PRECISION VS. RECALL
SimpleMatching Jaccard Cosine Dice
HRI Recall | Precision | HRI Recall | Precision | HRI Recall | Precision | HRI Recall | Precision
0.161 0.071 0.008 0.073 0.025 0.1 0.015 0.073
0.236 0.0710 0.0104 0.081 0.036 0.097 0.020 0.081
0.263 0.049 0.011 0.057 0.040 0.048 0.022 0.057
TABLE V
WARC WARC DATASET: PRECISION VS. HRI RECALL
0.4
HRI recall Precision
SimpleMatching | Jaccard | Cosine Dice
03 10% 0.054 0.0597 | 0.0905 | 0.0605
20% 0.058 0.064 0.081 0.065
= 30% 0.057 0.062 0.072 0.062
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o py P 0225 o The proposed measure . and experiment are not without
Precision some weak spots. In particular, the HRI recall measure as
* Cosine O Dice [ Jaccard 3¢ Simple Matching presented and used in this paper completely discounts the
ability of an automated method to recover trace links that have
Fig. 7. WARC Dataset: precision vs. HRI Recall a 100% recoverability ratio. This means that on datasets with

constructed a TraceLab experiment that measures HRI recall
of candidate traces returned by various automated tracing
methods and conducted a small pilot study. The new and
modified TraceLab components and the experiment description

significant numbers of such links, methods that ignore those
links (and thus have lower overall recall) receive the same
HRI recall scores as methods that recover the same links with
recoverability ratios below 100%, but in addition also recover
the trace links with 100% RR (and thus have higher overall
recall). This is a bit counterintuitive, so, a version of HRI recall
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that establishes an ambient minimal contribution for each link
may be in order.

Another challenge in using the proposed framework comes
from the relative scarsity of datasets usable for the experi-
ments. Unlike traditional traceability experiments, just having
a true traceability matrix for the dataset is not sufficient. We
need to know the recoverability ratios for each link in the true
trace, which means that the dataset had to have been traced by
multiple human analysts. In this paper, we used two datasets
that have been traced by multiple human analysts in a series of
prior experiments [3], [2], [4], [7], [8]. As assisted tracing is
studied in more and more detail, we hope to see other datasets
used in multiple human-centered experiments.

Nevertheless, we believe that the use of HRI recall and
similar measures can help us determine automated tracing
methods that can be used in asssisted tracing scenarios to
complement the expertise of human experts.
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