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Abstract

The dynamics of knowledge transfer is an important topic for engineering managers. In this paper, 

we study knowledge boundaries – barriers to knowledge transfer – in groups of experts, using 

topic modeling, a natural language processing technique, applied to transcript data from the U.S. 

Food and Drug Administration’s Circulatory Systems Advisory Panel. As predicted by prior 

theory, we find that knowledge boundaries emerge as the group faces increasingly challenging 

problems. Beyond this theory, we find that knowledge boundaries cease to structure 

communications between communities of practice when the group’s expert ability is insufficient to 

solve its task, such as in the presence of high novelty. We conjecture that the amount of expert 

knowledge that the group can collectively bring to bear is a determining factor in boundary 

formation. This implies that some of the factors underlying knowledge boundary formation may 

aid – rather than hinder – knowledge aggregation. We briefly explore this conjecture using 

qualitative exploration of several relevant meetings. Finally, we discuss implications of these 

results for organizations attempting to leverage their expertise given the state of their collective 

knowledge.
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I. Introduction

Engineering and technology organizations frequently employ interdisciplinary groups of 

experts to solve complex problems. These group members, representing multiple 

communities of practice (e.g., professional subpecialties or engineering fields in which 

members share common training and experiences), are expected to combine their knowledge 

to reach a solution that no group member could achieve individually [1–4]. However, 

knowledge transfer between group members from different communities of practice may be 

impeded in systematic ways. These impediments, known as “knowledge boundaries", [5] 

stem from differences in perception and interpretation of technical and other information [2, 

6–10].

Previous research has largely focused on the mechanisms by which group members 

overcome knowledge boundaries, such as by using boundary objects and knowledge 

management systems [1, 5, 11–13], dialogue-based approaches [9, 14], or organizational 

solutions [15]. The boundaries themselves – and the state of the underlying expert ability – 

have apparently been presumed fixed.
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This assumption seems especially problematic for the most innovative and interdisciplinary 

frontiers of knowledge. Therefore, we make a novel conjecture: that knowledge boundaries 

“collapse”, or cease to structure patterns of communication, when groups of experts are 

faced with an extremely novel problem to solve.

The ability to adjudicate between theories about knowledge boundaries has been impeded by 

the fact that knowledge boundaries, themselves, have not been directly observed. In this 

paper, we use a new method to observe and compare knowledge boundaries. Specifically, we 

use a natural language processing (NLP) technique to quantify knowledge boundaries, 

enabling us to examine their effect on decision-making in domains of uncertain knowledge. 

This technique draws upon transcript text data to enable an analysis that is guided by the 

specific topics of the discourse (using topic models [16]). We are therefore able to 

incorporate contextual factors while still enabling an analysis that can generalize across 

these contexts. Furthermore, our method is extensible to the analysis of any group for which 

a text transcript exists, enabling results that may generalize beyond a small number of case 

studies. Thus, this research technique can be applied broadly – when texts exist – to 

problems where multiple sources of expertise are required to evaluate a technological artifact 

or situation. Examples include interdisciplinary R&D, multidisciplinary professional service 

firms, accident inquiries, and other instances of decision-making under uncertainty such as 

the FDA approvals studied empirically in this paper.

Beyond the application of these methodological contributions, we conduct qualitative 

explorations of several meetings to provide additional support for the “boundary collapse” 

conjecture. Our findings are especially important considering research showing that 

knowledge integration – the result of successfully overcoming knowledge boundaries – has 

been shown to improve performance on technical projects [17].

II. Literature Review

We examine two competing approaches to the problem of knowledge integration in groups 

of experts. These approaches make different predictions when groups are faced with 

situations that are so novel that their members’ specialized knowledge does not apply. One 

approach argues that group members may use their expertise in inappropriate ways leading 

to a so-called “competency trap” [18]. (By expertise, we mean the use of intuitive but highly 

informed thinking in several fields, e.g., [19–21]). The other approach underlies our 

“boundary collapse” conjecture.

On one hand, Carlile [5] argues that expertise can create barriers to learning due to 

differences in interpretation that arise as novelty increases. These differences arise because 

group members draw upon different sources of knowledge associated with prior training and 

membership in different communities of practice. On the other hand, a considerable body of 

knowledge indicates that experts perceive situations differently than do novices (e.g., [22–

26]). Experts can learn from one another to solve problems in novel situations [27–30], 

especially if group members have well-defined roles, responsibilities, and a strong sense of 

team orientation [20]. Furthermore, groups of experts in a novel situation sometimes arrive 
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at a common metaphor to aid understanding [9, 14, 31, 32]. These competing theories are 

described below.

A. Knowledge Boundaries

Groups of experts must learn from one another if they are to pool knowledge when solving 

complex problems. Despite a desire to do so, group members’ prior knowledge can make 

this learning “laborious, time consuming, and difficult” [33, 34]. Often, the knowledge to be 

communicated is “tacit” [19, 35], meaning that it cannot be explicitly communicated 

through speech. Rather, it must be shown to, and practiced by, the recipient. For example, a 

surgeon may be unable to explain a complex surgical procedure to a biostatistician to 

construct a predictive model of success rates because the specifics of the procedure are 

encoded in muscle memory. The difficulties communicating this “deep knowledge” 

constitute a major barrier to learning [2, 7, 14, 36–38].

Such difficulties depend both on the nature of the knowledge to be communicated and the 

prior expertise of the communicators. Carlile defined three types of “knowledge boundaries” 

that arise as novelty increases, namely syntactic, semantic, and pragmatic boundaries. 

Syntactic boundaries occur in the least complex and novel scenarios, followed by semantic 

boundaries, and then pragmatic boundaries [1].

1) Syntactic Boundaries—Syntactic boundaries arise when two individuals do not share 

a common set of terms, such as a natural language, to describe a problem [39]. For example, 

American English speakers may refer to a device as an “elevator” whereas British English 

speakers may refer to the same device as a “lift”. These boundaries are frequently overcome 

by establishing a common vocabulary when discussing a problem. Since the committees 

studied in this paper consist of members who share a common national culture, observation 

of syntactic boundaries is outside the scope of our analysis; nevertheless, we mention them 

for completeness

2) Semantic Boundaries—Even if group members share a common vocabulary, they 

may encounter semantic boundaries. These are impediments to learning that arise from 

differing interpretations of the same data or situation. These different interpretations are 

associated with assumptions, standards of rigor, or aims that differ between communities of 

practice whose members share common experiences and training [2, 3, 5, 7, 8, 10, 19, 40–

43]. For example, different group member may have different ideas of what constitutes a 

“safe” or “effective” treatment based on their own prior experiences. Although grounded in 

tacit knowledge, semantic differences can be overcome by discussion that refers to the 

meanings of the terms used (e.g., “by safe, I mean that the patient’s risk of death is less than 

2%”) [14, 44].

3) Pragmatic Boundaries—Often, new knowledge must be created in response to a 

novel situation [5]. Carlile theorizes that, instead of creating new knowledge, experts prefer 

to rely upon their existing knowledge leading to a “competency trap” [18]. Since different 

group members have different sources of prior knowledge, this can lead to differences in 

goals between communities of practice as each favors interpretations that are most consistent 
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with their prior experiences to the exclusion of others. For example, even though two group 

members might have the same definition of “safety”, one group member might interpret a 

dataset in a medical setting as indicating that a certain treatment is unsafe whereas another 

might interpret the same data as indicative of a badly designed measurement that should be 

discounted in lieu of other evidence. Thus, Carlile [5] argues that experts may be unable to 

learn from one another because of deep assumptions rooted in their prior experience.

B. Boundary Collapse

Scholars of expertise and intuition are more optimistic regarding the capacity for groups of 

experts to make decisions in unfamiliar conditions. Experts are able to operate successfully 

in novel situations, and recognize when a situation is familiar or atypical. In atypical 

situations, experts spend most of their time assessing their own ability to contribute [46–49]. 

Nevertheless, there are some very novel situations where experts’ abilities may no longer be 

sufficient [50]. Experts can recognize such situations as atypical and will not rely on expert 

knowledge. For example, Chase & Simon [22] found that chess masters were 

indistinguishable from novices when confronted with random (i.e., novel) chessboard 

configurations.

Prior work has found that groups of experts tend to base their decisions on shared common 

(non-expert) knowledge when facing the most novel situations. For example, Faraj and Xiao 

[51] found that in the most difficult cases, members of trauma teams from different 

communities of practice did share knowledge, but only general knowledge. Furthermore, 

Lamont [52] has observed that experts from the same community of practice may make 

decisions that diverge significantly, despite common expertise, in a manner that is not 

consistent with Carlile’s definition of pragmatic knowledge boundaries. Finally, Majchrzak 

et al. [9] found that group members with weak social ties who faced a novel task under time 

pressure did jointly create a solution, but this solution did not make use of inapplicable 

expert knowledge. In each of these cases, experts seemed to be able to diagnose their own 

specialized knowledge as irrelevant to the problem at hand, and decisions were instead based 

upon common knowledge. This bears some similarity to the “hidden profile effect” (e.g., 

[53–55]) – a classical finding in social psychology pertaining to groups of novices – in 

which common knowledge strongly drives decisions whereas even relevant unique 

knowledge remains unshared because it is not socially validated.

C. Representing Knowledge Boundaries

We aim to adjudicate between different predictions regarding the impact of extreme novelty 

on knowledge boundary formation. On one hand, Carlile’s framework predicts that 

pragmatic knowledge boundaries will lead to a “competency trap”. On the other hand, the 

expertise literature suggests that boundaries will “collapse”, leading to the sharing of 

common knowledge, but not expert knowledge. To learn which concept is most applicable, 

we must observe the emergence and collapse of knowledge boundaries.

Our approach emphasizes convergent-divergent validity. By testing the performance of our 

technique where both approaches agree, we establish the construct validity of our approach. 

Once established, we use this technique to adjudicate between these two approaches.
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1) Representing Communities of Practice—Knowledge transfer occur within 

“cohesive” networks in which members share third-party ties or similar mutual connections 

[56–59]. Communities of practice provide this cohesion via common standards of evaluation 

and rigor. These communities are frequently described as overlapping networks of people 

who use the same tools to accomplish similar tasks across several different contexts [60–62]. 

For example, trained electrical engineers can apply their expertise to domains as different as 

biomedical device design and aerospace system design.

Brown and Duguid [61] indicate that social network analysis is an appropriate formalism 

with which to describe communities of practice. Social networks are made up of nodes and 

edges, where a node represents an entity, and an edge is a flow of some quantity between 

nodes [63]. When representing communities of practice, a node represents a group member 

and an edge represents the transfer of knowledge between members [59]. Since common 

standards of evaluation and rigor are associated with common language and jargon, we 

measure the extent to which group members transfer knowledge by determining whether 

they share a common topic of conversation [64]. Specifically, we use the technique described 

in [65] to trace knowledge flow by automatically constructing networks from meeting 

transcript texts. The absence of an edge between conversing group members indicates that 

they do not share a common topic of conversation.

2) Representing Semantic Boundaries—Each edge in a network represents a shared 

topic of conversation. Communities of practice are therefore represented by groups that are 

internally cohesive -- i.e., densely linked within a community. Furthermore, if these groups 

are sparsely linked, or even disconnected, across communities (see Fig. 1), this implies the 

existence of semantic knowledge boundaries.

3) Representing Pragmatic Boundaries—Pragmatic knowledge boundaries are 

defined by differences in practice (i.e., behavior) given access to the same information. 

Pragmatic knowledge is tacit, so an expert may only be able to communicate a preference 

for a particular decision (e.g., a system design option, or voting outcome) rather than an 

explicit rationale. In a network exhibiting pragmatic boundaries, we expect group members 

who do not vote the same way to be disconnected. Pragmatic knowledge boundaries 

therefore imply shared voting behavior, with similar behavior among group members that 

are connected, but different behavior otherwise (see Fig. 2).

D. Research Hypotheses

These representations enable us to test hypotheses in a quantitative, replicable manner. In 

our networks, each node represents a member of a decision-making group. Two nodes are 

linked if they share a topic. Conversely, a knowledge boundary that impedes sharing is 

represented by the absence of a link between two nodes.

By definition, semantic boundaries are present where individuals do not share at least one 

common topic of conversation [64]. Furthermore, semantic boundaries should exist between 

communities of practice. Therefore, in a network where semantic boundaries exist, we 

expect individuals within the same community-of-practice to be connected, with fewer 

connections between such communities. Thus our first hypothesis:
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Hypothesis 1: Communities of practice will be cohesive – i.e., links (indicating 

shared topics of conversation) will be more likely to form between members of the 

same community than between members of different communities.

Similarly, pragmatic boundaries exist imply that individuals who do not share the same goals 

will not communicate with one another. Thus, we expect individuals who do not vote the 

same way to be disconnected. Thus our second hypothesis:

Hypothesis 2: Voting groups will be cohesive – i.e., links (indicating shared topics of 

conversation) will be more likely to occur between group members who vote the 

same way than between members who vote differently.

Furthermore, Carlile’s hierarchical framework implies that pragmatic boundaries should 

only occur when semantic and syntactic boundaries are already present. Meetings with 

cohesive voting groups should therefore have cohesive communities of practice. This leads 

us to formulate two versions of our third hypothesis:

Hypothesis 3a: Cohesive voting implies cohesive communities of practice.

Hypothesis 3a means that one cannot have a pragmatic boundary without also having a 

semantic boundary.

Hypothesis 3b: Cohesive communities of practice do not imply cohesive voting.

Finally, semantic boundaries can occur even when pragmatic boundaries do not. 

Consequently, meetings without pragmatic boundaries (including meetings where the group 

reached consensus or had only one voter in the voting minority) should still display semantic 

boundaries.

Each of these hypotheses, although derived from Carlile’s framework, are nevertheless also 

consistent with the expertise-driven approach. In the following section, we describe a 

situation where the predictions of these two approaches differ.

E. The Boundary Collapse Conjecture

Carlile’s theory predicts that pragmatic boundaries prevent learning between group members 

in the most novel situations because group members reuse inapplicable knowledge that 

varies between communities of practice. If this is true, we should see cohesive voting groups 

in these situations. In contrast, we conjecture that group members recognize the limits of 

their expertise, leading knowledge boundaries to “collapse” in the most novel situations. 

This means that communities of practice and voting groups will not be cohesive in the 

presence of novelty, because inapplicable knowledge is not deployed; rather, decisions are 

made upon the basis of shared general, rather than specialized, knowledge.

Conjecture: In highly novel situations, neither specialty groups nor voting groups will 

be cohesive.

III. Methodology

In order to measure the emergence and collapse of knowledge boundaries, we used natural 

language processing techniques to analyze transcripts of expert group meetings. We studied 
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37 FDA advisory panel meetings to determine whether common patterns of knowledge 

transfer were found across groups.

A. Case Selection

We analyzed meeting transcripts from the U.S. Food and Drug Administration's (FDA) 

Circulatory Systems Devices Panel. We chose this panel because it had a large number of 

meetings recorded. Our sample is the full set of meetings held between 1997 and 2005 

where panel members voted regarding the Pre-Market Approval (PMA) of a medical device. 

Although our analysis was restricted to this panel, there is no reason why it could not be 

extended to other panels, agencies, or communities of practice in general. Devices brought 

to these committees for review are generally those which the FDA does not have the “in-

house” expertise to evaluate. As such, the devices under evaluation by the committees are 

likely to be the most innovative, and those facing the most uncertainty or novelty. This is 

similar to the conditions faced by many cross-functional expert groups, which are often 

convened to make recommendations on questions with a similar degree of uncertainty.

We extracted the names, communities of practice – i.e., medical specialties (e.g., surgeons, 

cardiologists, radiologists, electro-physiologists, statisticians, etc.), and votes of the panel 

members for each of the 37 meetings studied. The verbatim text of each meeting transcript 

was then divided into “utterances,” where each utterance was a fixed paragraph of text 

spoken by an identified panel member as denoted by the meeting's court recorder. Utterances 

are sequential, and therefore are used to denote the order in which panel members speak. 

Utterances can range in length from one or two words (e.g. “thank you”) to several sentences 

(about 100 words), but most are between 50 and 75 words in length.

1) Why study meeting transcripts?—We rely upon text data because dialogue is one of 

the primary mechanisms by which knowledge is created and transferred [14]. In addition, 

functioning within a community of practice requires the use of specialized language and 

terminology [1, 46, 49]. Dialogue text is therefore ideal data with which to study knowledge 

transfer within expert groups. Since dialogue is neither regular nor fully deterministic in its 

structure, probabilistic analysis is required.

Prior work [16, 64–67] has shown how Bayesian topic models could be used to infer 

probabilistic topics, containing semantic-level representations of a text. Two group members 

who share knowledge are likely to discuss the same topic (although they may not necessarily 

agree). We therefore used probabilistic topic models to infer semantic content from meeting 

transcripts.

B. Bayesian Topic Models

Approaches based on Bayesian inference provide an ideal platform to study semantic 

relationships [64]. Of particular interest are topic-modeling approaches to studying social 

phenomena in various contexts. A topic model seeks to divide a corpus into a small number 

of discrete, but semantically-coherent, topics (see Table I). Quinn et al. [68] argue that social 

scientists should use topic models because they impose a minimal number of transparent 
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assumptions due to their mathematical underpinnings. A full mathematical description of 

our Bayesian topic modeling technique is given in the Appendix.

We extracted semantically-coherent topics from meeting transcripts in order to examine 

semantic cohesion. The approach presented here may be viewed as an extension of “latent 

coding” – one type of formal content analysis prevalent in the social sciences. The most 

important limitations of latent coding, and other hand-coding methods, are the inability to 

scale to large numbers of documents. This limitation stems from a dependence on the 

coder’s knowledge, leading to interrater reliability concerns. Furthermore, hand-coding is 

labor-intensive, often requiring teams of trained coders. One example of a latent coding 

scheme might aim to map specific words or phrases to pre-defined categories. Coders would 

then count the number of word in each category that a particular speaker uses. Variance 

between coders would arise from words or phrases that do not clearly fit in a pre-defined 

category. This is a likely occurrence in analyses of expert teams due to the context-specific 

and highly technical nature of the meetings analyzed: identifying words that might be 

important is difficult a priori. Additionally, such coding schemes are subject to confirmation 

bias by researchers seeking specific theoretical constructs. The motivation behind using a 

computational approach is therefore to create a method that is automatic, repeatable and 

consistent – and therefore replicable by other researchers.

C. Network Construction

Having grouped words into topics, we next generated a network representing the flow of 

knowledge between speakers for each meeting. Because of the probabilistic nature of the 

Bayesian topic models, 200 samples were taken for each transcript to enable averaging. 

Given one such sample, a speaker, Xi, has a probability distribution over each topic, P(Z|Xi), 

for every one of the 200 samples generated above. A pair of speakers is connected by an 

edge within a given sample if their joint probability of discussing the same topic is greater 

than chance

(1)

where T is the total number of topics. Examining all 200 samples, [69] determined that a 

given pair of speakers are considered linked in a given aggregate knowledge network if they 

are connected in at least 125 of the 200 samples. We generated one such aggregate 

knowledge network for each meeting transcript.

1) Measuring Cohesion—Our hypotheses refer to cohesive communities of practice 

(e.g., medical specialties) and cohesive voting groups. We defined metrics for these cohesion 

values as follows: A network has cohesive specialties when its links are mostly between 

members of the same specialty.

We defined raw specialty cohesion (RSC) as the number of links between members of the 

same specialty, ls, divided by the total number of links, lt, in the network:
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(2)

In order to enable comparison across several meetings, the raw specialty cohesion values of 

1000 random graphs were then compared to the raw specialty cohesion value of the 

knowledge network. 1000 random graphs were used because this number was empirically 

determined to generate stable results. We defined specialty cohesion percentile (SCP) as the 

total number of random graphs with a RSC value that is less than the RSC value of the 

network derived from the AT model algorithm.

(3)

This number was then divided by 1000 so that it lies between 0 and 1 (i.e., it is converted to 

a percentile score).

(4)

For example, the idealized graph depicted in Fig. 1 has a specialty cohesion value of 1.0. 

The graph in Fig. 3 is an example of one of the FDA meetings analyzed for which members 

of the same specialty tend to be linked to one another, whereas members from different 

specialties tend not to be linked. It has a SCP value of 0.97.

Meetings with a SCP that is greater than 0.5 show more intra-specialty links than would be 

expected by chance, whereas meetings with a SCP that is less than 0.5 display more links 

between specialties than would be expected.

We defined raw vote cohesion and vote cohesion percentile the same way: raw vote cohesion 

(RVC) is the number of links between members who voted the same way, divided by the 

total number of links, lt, in the network, whereas vote cohesion percentile (VCP) is the total 

number of random graphs with a RVC value that is less than the RVC value of the network 

derived from the AT model algorithm. VCP was calculated for the 11 meetings in which 

there was a voting minority of at least two members (for the remaining 26 meetings, vote 

cohesion is undefined since no links can exist within a voting minority of size zero or one). 

VCP also lies between 0 and 1. For example, the graph in Fig. 2 has VCP of 1.0 and the 

graph in Fig. 4 has VCP of 0.99.

IV. Results

We calculated SCP values for each of the 37 meetings in our sample. A 1-sided 

Kolmogorov-Smirnov test, p=0.0045, n=37, shows that SCP is significantly higher than 
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expected by chance among these 37 meetings. Consequently, we reject the null hypothesis in 

favor of Hypothesis 1.

We next calculated VCP values for the subset of 11 meetings in our sample in which there 

were at least two voting minority members. A 1-sided Kolmogorov-Smirnov test, p=0.02, 
n=11, shows that VCP is significantly higher than expected by chance among these 11 

meetings. Consequently, we reject the null hypothesis in favor of Hypothesis 2.

Finally, we examined the relationship between VCP and SCP for the 11 meetings in which 

VCP was defined (see Fig. 5).

These two quantities are strongly associated, Spearman rho=0.79, p=0.006. In our sample, 

there are no points in the upper-left or lower-right portions of the graph: the absence of 

points in the upper-left indicates that there are no meetings with high VCP (indicative of 

pragmatic boundaries) that do not also have high SCP (indicative of semantic boundaries). 

Consequently, we accept hypothesis 3a that pragmatic boundaries entail semantic 

boundaries.

For the remaining 26 meetings in which VCP was not defined, SCP is still significantly 

higher than we would expect due to chance p=0.0093, n=26, suggesting that semantic 

boundaries do occur in the absence of pragmatic boundaries. Thus, we accept hypothesis 3b.

A. Examining the Boundary Collapse Conjecture

These hypotheses demonstrate the ability of our method to analyze knowledge boundary 

formation in groups of experts. They also support accepted theory in this area. However, our 

hypotheses do not explain the absence of data points in the lower-right quadrant of Fig. 5. 

Our data show that low VCP is associated with low SCP. In the seven non-boxed meetings in 

Fig. 5, there is a sizable voting minority, yet members of these different voting groups are 

not likely to be linked; nor are members of the same medical specialty linked. These results 

are consistent with the boundary collapse conjecture. We also conjectured that the results 

might be associated with high novelty; nevertheless, these data provide no explicit 

information about the meeting’s relative novelty or the relevance of panel members’ 

knowledge. We therefore explored several meetings in more depth so that we could gain 

insight into the relationship between specialty and vote cohesion percentiles under varying 

conditions of novelty. Meetings were rated as “low”, “moderate”, or “high” novelty by one 

of the authors (DAB). Although these descriptions are not meant to be a formal qualitative 

analysis, we feel that they provide important context for the quantitative analysis presented 

above. We examined meetings with varied vote cohesion and specialty cohesion findings.

1) The Medtronic Model 7250 Jewel® AF Implantable Cardioverter Defibrillator 
System (12/5/2000)—The graph for this device is found in Fig. 3. This device had 

previously been approved for sale by the FDA: the purpose of this meeting was to broaden 

its use to a wider array of illnesses [69]. This was well within the range of the panel 

members' expertise, and sufficient knowledge was apparently easily brought to bear despite 

semantic boundaries. The panel unanimously voted to approve the device subject to 

conditions, including language that limited the device’s use to a slightly more specific range 
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of illnesses. This change in language represents a concrete example of knowledge 

transformation used to overcome pragmatic boundaries between various panel members – a 

panel member who had considered not approving the device did so subject to this condition. 

This low-novelty meeting had a high specialty cohesion percentile value of 0.968, indicating 

strong semantic boundaries and the deployment of expertise. Thus, a potential pragmatic 

boundary was overcome to build consensus.

2) The Eclipse Holmium TMR Laser (10/27/1998)—The Eclipse device was the first 

Holmium (solid state) TMR laser to be approved by the FDA. Furthermore, the safety and 

effectiveness of the associated surgical procedure had only recently been demonstrated. 

Finally, there were concerns regarding the quality of the data resulting from the clinical trial. 

There was one panel member who voted against device approval, citing these data concerns, 

whereas a member of the voting majority summarized his reason for approving the device as 

follows: “I think this is consistent with what has been done with the other similar device and 

I think is it probably appropriate for the FDA to be consistent,” [69] indicating low novelty 

because the panel’s previous experience with similar devices could be brought to bear. The 

SCP value of this meeting was high – 0.975 – indicating strong semantic boundaries and the 

deployment of expertise. Consequently, this case provides an example of a meeting in which 

high SCP is associated with a lower level of novelty than would have been available had the 

procedure itself not been previously examined by the FDA panel.

3) The Eclipse Holmium PMR Laser (7/9/2001)—This device required a new clinical 

procedure whose mechanism was unknown resulting in questions regarding device efficacy. 

Ultimately, every cardiologist, and the panel’s statistician, voted not to approve the device, 

whereas the two non-cardiologists – a surgeon and a specialist on the placebo effect – both 

voted in favor of device approval. Cardiologists’ reasons for not approving the device 

reflected the role of novelty in driving panel members’ decisions. The SCP value of this 

meeting was high – 0.959 – indicating strong semantic boundaries and the deployment of 

expertise. VCP was at its maximum value of 1.00, indicating strong pragmatic boundaries. 

This case thus provides an example of a meeting in which high SCP and high VCP are 

associated with moderately high novelty and several practice-driven perspectives on the 

same device’s data – the pragmatic boundary and semantic boundaries overlap.

4) The Cryocath Freezor Cryoablation Catheter (5/6/2003)—The graph for this 

device is found in Fig. 4. The device’s clinical trials failed to reach any of its specified data 

endpoints, precluding statistically valid conclusions regarding safety and efficacy. 

Electrophysiologists and surgeons on the panel drew upon post hoc analysis and expertise to 

infer how the device might perform in clinical practice. In a 6-3 vote, the panel 

recommended device approval. All electrophysiologists and surgeons voted in favor of the 

motion to approve the device; cardiologists and the statistician voted against the motion. 

This voting split reflected a dichotomy between clinical and statistical sources of expertise 

on the panel, and serves as an example of voting in line with pragmatic knowledge. The SCP 

value of this meeting was 0.996 indicating strong semantic boundaries and the deployment 

of expertise. The VCP value of this meeting was 0.987, indicating strong pragmatic 

boundaries. Thus, this case provides an example of a meeting in which high SCP and high 
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VCP are associated with a disagreement regarding which source of knowledge is more 

relevant – a pragmatic boundary associated with a semantic boundary.

5) The Abiocor Fully Implantable Replacement Artificial Heart (7/23/2005)—The 

device was novel – the first self-contained artificial heart system – promising the potential to 

revolutionize the practice of medicine. A device failure would almost certainly mean death 

for the patient. Furthermore, device implantation was a difficult surgical procedure with a 

long recovery time that would only be performed on those patients who would otherwise 

have died due to their illness. Due to the high-stakes nature of this device's approval, the 

FDA opted for a Humanitarian Device Exemption allowing a smaller amount of data to be 

gathered before its release to the market. The clinical trial for the device therefore only 

included 17 patients, and data was inconclusive regarding the device’s safety and efficacy. 

Panel members’ interpretations of clinical trial results differed, but these differences were 

not associated with specialized knowledge. Ultimately, in a 6–7 vote, the panel voted down a 

motion to approve the device. The SCP of this meeting was very low: 0.087 (suggesting that 

group members were explicitly searching for information from outside their professional 

specialties) indicating the collapse of semantic boundaries and that expertise was not 

deployed. The VCP of this meeting was 0.586 – near randomness which is associated with a 

VCP of 0.5 – indicating the collapse of pragmatic boundaries. In this situation of extreme 

novelty, when there is insufficient knowledge, existing communities-of-practice have little 

impact on communication or on voting.

6) The ACORN CorCap Cardiac Support Device (6/22/2005)—This device was 

extremely novel. It represented the first attempt to control heart enlargement by surrounding 

the organ with a mesh support sock during open heart surgery. The clinical trial associated 

with this device encountered several problems including large amounts of missing data, and 

problems with subjects who had become unblinded to their treatment. This led to difficulty 

interpreting device efficacy except in one endpoint – death – for which the device did not 

show a significant improvement when compared to the control group. Due to the novel 

nature of the device, clinical expertise could not be brought to bear. Ultimately, in a 9-4 vote, 

the panel accepted a motion not to approve the device. The SCP of this meeting was 0.494 – 

near randomness – indicating the collapse of semantic boundaries and that expertise was not 

deployed. VCP of this meeting was 0.277 (perhaps suggesting that most conversation 

involved disagreement), indicating pragmatic boundary collapse. As in Meeting 5, this 

meeting indicates that in situations where there is insufficient knowledge present, 

communication within communities-of-practice during the meeting is weak and has little 

impact on the vote, apparently because specialized relevant knowledge cannot be identified.

7) The Cordis CYPHER Sirolimus Drug Eluting Stent (10/22/2002)—This device 

was the first implementation of a very novel technology – drug-eluting stents (DES). The 

arrival of CYPHER was highly anticipated; one cardiologist panel member commented that 

“[t]his is going to revolutionize our profession” [69]. Much of the discussion during the 

panel meeting surrounded conditions of approval rather than whether or not the device 

should be approved, and the panel unanimously recommended device approval. DES 

became popular among physicians, quickly diffused throughout practice, and were often 
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implanted for off-label use. Four years later, in 2006, several studies presented results 

showing that patients with DES had a higher risk of adverse events than patients who had 

received standard (bare metal) stents [70–72]. The SCP for this meeting was 0.362 

indicating the collapse of semantic boundaries, and the non-deployment of expertise, despite 

consensus. Since the device was approved unanimously, VCP was not defined. This case 

provides an example of a meeting in which low SCP is associated with a comparatively high 

level of novelty and a low degree of previous experience. Although all panel members 

agreed that the device should be approved, the low SCP might indicate that no expertise 

related to medical specialty was brought to bear on this decision. This indicates that in 

situations of extreme novelty; when there is insufficient knowledge, communication during 

the meeting is not strongly affected by existing communities-of-practice, and has little 

impact on the vote. In this particular case, widespread pre-existing enthusiasm about DES 

may have played a decisive factor in the device’s approval.

Table II summarizes this discussion and its implications for the boundary collapse 

conjecture. Contrary to expectations, in situations where available knowledge is apparently 

sufficient to solve the problem (i.e., novelty is low), SCP is high. Semantic boundaries exist 

because specialized expertise from multiple perspectives is being brought to bear (recall that 

the FDA Advisory Panels’ charters call for some degree of novelty) as in meetings 1 and 2, 

but major disagreement does not arise. As novelty increases, voting differences and 

pragmatic boundaries may emerge. These are coupled with semantic boundaries as in 

meetings 3 and 4, where VCP and SCP values are both high. Finally, where the existing 

expert ability is insufficient or inapplicable (i.e., when novelty is high), SCP decreases below 

0.5 – below the level of randomness – as in meetings 5, 6, and 7. This is consistent with the 

behavior of a panel that is sharing general information across specialty boundaries – i.e., 

expert knowledge is not mobilized because it is not applicable. Where it is defined, VCP 

also decreases, indicating that voting behavior is unrelated to the topics of discussion. These 

results provide preliminary support for the boundary collapse conjecture.

Alternative explanations for the broad subject of what happens under conditions of high 

novelty include “competency traps” [18] and political processes resulting from knowledge 

that is “at stake” due to investments in obtaining expertise [1]. The transcripts offer no 

support for these alternative hypotheses, although they cannot be fully eliminated since such 

evidence might not be easy to discern.

V. Discussion

A. Methodological Implications

By inferring topics from meeting transcripts, we are able to observe patterns that are 

consistent with empirical and theoretical findings in the literature on organizations (e.g., [5, 

6, 11, 12, 13–15]. Our technique therefore partially confirms existing theories of how 

knowledge boundaries arise [1, 9]. These results simultaneously indicate the validity of our 

method for studying knowledge boundaries in groups of experts. Finally, our technique is 

broadly applicable to any text transcript data source.
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B. Theoretical Implications

Our results support the notion of boundary collapse. Consistent with Carlile’s theory, we 

detected communication patterns consistent with the existence of semantic boundaries for 

most of the meetings in our sample. Additionally, we detected communication patterns 

consistent with the existence of pragmatic boundaries for those meetings in which the panel 

had voting minorities with at least two members. Furthermore, we found evidence that 

pragmatic boundaries entail pragmatic boundaries, but not vice versa. All of these findings 

are consistent with Carlile’s framework.

Beyond Carlile’s framework, we found evidence supporting our boundary collapse 

conjecture. In particular, the existence of a class of meetings that had low SCP and VCP 

values indicates that neither type of knowledge boundary is structuring interaction between 

group members. Our qualitative analysis provides additional insight into the underlying 

mechanisms. It appears that knowledge boundaries are not present when experts are able to 

recognize that their specialized knowledge does not apply. Under these circumstances, 

members’ expertise plays a key role in helping them to recognize the limits of their 

knowledge. Values of SCP that are less than 0.5 are consistent with more communication 

between communities of practice than within communities of practice. In other words, group 

members may be engaging in search behaviors – looking for information from external 

sources. Similarly, low values of VCP indicate that group members did not vote in blocs 

reflecting their communities of practice.

This study is the first, to our knowledge, to empirically explore how knowledge boundaries 

emerge and collapse in a large number of groups of expert decision-makers outside of a 

laboratory setting. It is also the first to use a computational method to explore the emergence 

and collapse of knowledge boundaries wherever transcripts of decision-making groups are 

available.

Previous literature has presumed that knowledge boundaries remain fixed after they have 

arisen (e.g., [1, 15]), requiring that they be either traversed or transcended [9]. Our 

conjecture extends these theories with our finding that, when novelty is high, expertise 

effects (i.e., specialty- and vote-cohesion) decrease. Our results suggest that semantic 

boundaries are indicative of the deployment of specialized knowledge within a community 

of practice. Furthermore, pragmatic boundaries emerge at the cusp of expertise, where there 

is enough knowledge such that communities of practice can reach internal consensus, but 

there is little agreement between communities regarding how best to combine or deploy 

available knowledge. These findings are therefore especially relevant for the most innovative 

and interdisciplinary frontiers of knowledge.

C. Implications for Engineering Management

Engineering managers have long recognized the existence of a large class of problems, 

known as “wicked” [73], “messy” [74], or “swamps” [32], that resist solution because of 

conflicting goals, values, and sources of knowledge and expertise. Similarly, decision-

makers may be influenced by “group think” [75], dominated by a small number of strong 

personalities, or subject to other social dynamics that can lead to an ill-informed outcome. 
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Sometimes, a group may not have the knowledge required to make a well-informed decision 

and should instead devote more time to researching the particulars of the problem. In other 

situations, stakeholders with valuable expertise to contribute may not be present because the 

need for their expertise may not have been recognized.

Franco [76] recently argued that “Soft OR” methods (or Problem Structuring Methods; 

PSMs, e.g., [77]). might be used to address these problems because they can generate 

“boundary objects” [13] –artifacts that help decision-makers to share information across 

knowledge boundaries. According to Franco’s framework, these methods and the models 

they generate, are successful to the extent that they aid decision-makers to recognize, and 

ultimately overcome, these boundaries.

Our technique may be used to evaluate such interventions. Specifically, it can help analysts 

to determine whether knowledge boundaries are present and, if so, what kind.

By enabling the measurement of knowledge boundaries, our technique could feasibly be 

used to determine the efficacy of these techniques in helping a decision-making group 

effectively traverse these boundaries.

Our study contributes to a growing knowledge base (e.g., [76]) that suggests how 

engineering managers might use models and data to overcome knowledge boundaries. In 

situations with relatively low novelty, pragmatic boundaries might be overcome if the 

boundary object focuses group members on the specific areas of their disagreement. Under 

these circumstances, solutions are possible if group members share common values (e.g., 

prioritizing a device’s safety over its efficacy). Practitioners can then guide the group 

towards a solution designed to address this specific area, e.g., when panel members limited 

device indications to specific, less-problematic, sub-populations in Meeting 1, and when 

stricter follow-up protocols were imposed in Meeting 2. For moderately novel situations, 

group members may draw analogies with their prior experience, such as when panel 

members compared PMR to TMR in Meeting 3, and cryoablation to heat ablation in 

Meeting 4, leading them to focus on the elements of the statistical data and model output 

that they believe are most representative. When different group members draw different 

conclusions because their expertise leads them to focus on different results within the 

dataset, pragmatic boundaries are present, and will usually prevent the emergence of 

consensus. Techniques designed to overcome these knowledge boundaries that are able to 

lead decision makers to agreement regarding values may be able to overcome these 

pragmatic boundaries.

Our technique has an especially important role to play in the most novel situations. If group 

members can recognize that their expertise does not apply in such cases, they are more likely 

to avoid a “competency trap,” and inappropriately apply inapplicable expert knowledge. A 

technique that makes the uncertainty in these situations explicit may help experts to 

recognize the limits of their abilities, such as in Meetings 5 and 6 when panel members 

recognized that data and methodological limitations in the clinical trials precluded drawing 

clear conclusions. In these scenarios, our technique could help engineering managers 
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recognize the presence of deep uncertainty, motivating the need to seek new sources of 

expertise, or redefine the problem to something more tractable.

D. Limitations and Future Directions

Our study is limited to a sample of 37 FDA Circulatory Systems Advisory Panel Meetings, 

and therefore may not generalize to all expert groups. Nevertheless, our findings are based 

upon theory developed from across a wide range of domains. Thus our analysis serves to 

extend this theory into a novel context. In our study, we relied on meeting transcripts in 

order to examine the emergence and collapse of knowledge boundaries in expert groups. Our 

data do not account for several rich sources of information, e.g., body language, which 

might be available in a traditional field study. Furthermore, the nature of our data set is 

inherently observational and so we cannot control for panel membership, pre-existing 

relationships among panel members, etc. In addition, our analysis focused on one panel in 

one agency. Thus, an immediate extension would explore the extent to which our technique 

and results would apply in other group settings across government, industry, and academia 

including studies of real-world, but less expertise-based, groups. Finally, our technique is 

limited to those situations where transcript data are available. However, similar public 

transcripts exist for other decision-making bodies such as the Federal Open Market 

Committee (FOMC), political committees, deliberations of the board of directors for some 

publicly-traded companies, etc. Furthermore, several such transcripts may be found across a 

variety of contexts due, in part, to reporting requirements imposed by the Federal Advisory 

Committee Act (FACA) of 1972, which guarantees that transcripts of several committees 

may frequently be obtained as a matter of public record. In addition, transcript data of the 

sort required by our method has been collected for design teams in a straightforward manner 

by scholars of engineering design (e.g., [78]). Finally, the costs of transcribing such 

meetings continue to fall with the advent of crowdsourcing and other techniques that allow 

easy recruitment of online workers. Thus, we believe our technique to be applicable across a 

wide range of contexts. Thus, situations where there is no possibility to transcribe the 

dialogue between the experts, such as first responder teams, construction crews, etc., are 

unlikely to fall within the scope of what our technique can address – nevertheless, the 

underlying theory applies generally to cross-disciplinary teams. For example, Majchrzak et 

al. [9] built on Carlile’s framework when examining cross-functional teams in high-stakes 

surgical settings. No technique is universally applicable, and data limitations are always 

present in empirical studies; however, the strength of our approach is that it extends the 

empirical possibilities for quantitative analysis of cross-functional teams.

Our technique might be useful in identifying and exploring the qualities of individuals who 

seem to be most adept at translating and transforming knowledge across semantic and 

pragmatic boundaries. One exciting area of future work would address how knowledge 

boundaries might serve a broader role than simply impeding the flow of knowledge between 

experts. For example, one might conjecture that semantic boundaries serve to provide a 

structure through which expertise can be aggregated. As such, they might aid, rather than 

hinder, group decision-making. Our results suggest that knowledge must be sufficient both 

to appropriately catalyze the formation of expert sub-groups while preventing the emergence 

of pragmatic boundaries that might cause a group to fracture.
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VI. Conclusions

Our analysis of knowledge boundaries suggests that their behavior is not as simple as has 

previously been conceived. In particular, knowledge boundaries may cease to structure 

information flow in very novel situations. Group members therefore cease to rely upon their 

expert knowledge and, in their search for a solution, rely exchange only general information. 

In this way, they become indistinguishable from novices. The tools and techniques presented 

in this article provide a means to study these knowledge boundaries, and their behavior, 

directly, enabling a deeper understanding of the dynamics of knowledge transfer in decision-

making groups than was possible before.
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Appendix

Topic Models

Bayesian topic models [67] assume that each word is assigned to a discrete topic with a 

given probability. Each topic is assumed to be exchangeable, i.e., conditionally independent 

of each other topic [80]. This assumption allows the same word to occur in two different 

topics. A word is therefore modeled as having been drawn from a discrete probability 

distribution over topics.

Latent Dirichlet Allocation (LDA; [66]) is the most widely-applied, Bayesian topic model. 

In LDA, each word (w) is assigned to a topic (z) with a given probability that is inferred by 

the topic modeling algorithm. Each topic is therefore defined by a probabilistic distribution 

(ϕ) over all the words in the corpus (i.e., in one meeting). This distribution is multinomial – 

each word is modeled as if chosen at random from a specific topic by rolling a weighted w-

sided die, where w is the total number of words in the meeting. Similarly, each utterance is 

represented as a multinomial distribution (θ) over topics. The parameters (i.e., the die-

weights) for each multinomial distribution are themselves drawn from a uniform Dirichlet 
distribution with hyperparameters α, for topics, and β for words. The Dirichlet distribution 

is a multivariate probability distribution that is the conjugate prior to the multinomial 

distribution. Its hyperparameters control how broad or specific topics are as discussed below.

A. Implementing Bayesian Topic Models

Several implementations of LDA and related algorithms have been made available for public 

use (e.g., [81–83]). We have implemented one such algorithm in Python which is freely 

available online at http://code.google.com/p/knowledge-boundaries/. Such implementations 

fit the model to a specific corpus using Bayesian inference algorithms. In particular, we are 

interested in finding the most probable hypothesis, h, (i.e., the most appropriate model), 
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given the observed data, d (i.e., the meeting transcript). Model fitting may be explained 

using Bayes’ theorem:

(A1-1)

or using the notation specific to the LDA model [66]:

(A1-2)

This Bayesian formulation assures that the topics that are inferred by LDA are appropriate to 

the corpus being analyzed and that the model is not over-fit to the corpus data.

Explicit computation of LDA’s posterior distribution (i.e., the distribution that we would like 

to determine in order to be able to fit topics to the data) is intractable. To see why this is, we 

must expand the expression above into its constituent parts. The numerator is easily 

expanded using the canonical expressions for the multinomial and Dirichlet distributions.

(A1-3)

Here, V is the total number of words in the corpus and T is the total number of topics. C1 is 

a constant term that depends only on the hyperparameters, and serves to normalize the 

distribution. We may interpret C1 as presumed data that has already been seen and added to 

the observed data. The hyperparameters controlling the behavior of the Dirichlet distribution 

may therefore be said to reflect one’s prior beliefs regarding the propensity of a particular 

topic or word in the data. As will be discussed below, these hyperparameters are set to 

standard, empirically-tested values. The denominator is not analytically tractable [66]:

(A1-4)

Consequently, the posterior distribution must be estimated, as will be described below.

B. The Author-Topic Model

The LDA model as outlined above is still sensitive to the arbitrary document boundaries 

imposed by the court recorder. Furthermore, documents (i.e., utterances) vary significantly 

in length – some might only be two words (e.g., “Thank you”) whereas others might be 
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significant monologues. A variant of LDA, the Author-Topic (AT) model, can been used to 

generate a distribution over topics for each participant in a meeting [84] that is insensitive to 

document boundaries. Since the speaker’s identity guides topic formation, shared topics are 

more likely to represent common jargon. The Author-Topic model provides an analysis that 

is guided by the authorship data of the documents in the corpus, in addition to the word co-

occurrence data used by LDA. Each author (in this case, a speaker in the discourse), rather 

than each utterance, is modeled as a multinomial distribution over a fixed number of topics 

that is pre-set by the modeler. Each topic is modeled as a multinomial distribution over 

words.

C. Estimating the posterior distribution

Most popular implementations of LDA estimate the posterior distribution for its test data 

using Gibbs sampling – a Markov Chain Monte Carlo (MCMC) technique adopted from 

statistical physics (e.g., [16]).

Details of the MCMC algorithm derivation for the AT Model are given in [84]. The AT 

model was implemented in Python and MATLAB by the authors, based on [16]:

Initialize topic assignments randomly for all word instances

repeat

  for d=1 to D do

    for i=1 to Nd do

      draw zdi & xdi from P(xdi,zdi|z−di, x−di w,α,β)

      assign zdi & xdi and update count vectors

    end for

  end for

until Markov chain reaches equilibrium

Here, D is the total number of documents, Nd is the number of word tokens in each 

document, zdi is the topic of word token i in document d, and xdi is the author assigned to 

word token i in document d. The form of P(xdi,zdi|z−di, x−di w,α,β) is derived in [84] as 

follows:

(A1-5)

Each word’s probability of assignment to a given topic is proportional to the number of 

times that that word appears in that same topic, and to the number of times a word from that 

author is assigned to that topic. This defines a Markov chain, whose probability of being in 

given state is guaranteed to converge to the posterior distribution of the AT model given the 

corpus data, after a sufficiently large number of iterations.
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D. How many topics?

We calculated the cross entropy of topic models with 1–35 topics for each transcript with the 

smallest number of topics that minimized cross-entropy chosen as the final number of topics 

for each transcript (full details are provided in [65]). This approach yielded a number of 

topics between 10 and 28, depending on the specific meeting being analyzed.

E. Hyperparameter selection

Like LDA, the AT model requires the selection of two parameters. Ideally, we would like to 

determine which parameters used for the AT model best fit the corpus data. We must be 

wary of over-constraining the analysis with the assumptions underlying the AT model. A 

popular metric for goodness-of-fit used within the machine learning literature is cross-
entropy [85]. Cross-entropy is a metric of the average number of bits required to describe the 

position of each word in the corpus and is closely related to log-likelihood, a measure of 

how well a given model predicts a given corpus. Therefore, lower cross-entropy indicates a 

more parsimonious model fit and that the assumptions underlying the model are descriptive 

of the data. For the AT model, cross-entropy may be calculated as follows:

(A1-6)

In this expression, N is the total number of word tokens. The expression in the numerator is 

the empirical log-likelihood. Thus, a natural interpretation of cross-entropy is the average 

log-likelihood across all observed word instances in the corpus. The lower a given model’s 

cross-entropy, or the higher its log-likelihood, the more parsimonious is the model’s fit to 

the data.

Each author’s topic distribution is modeled as having been drawn from a symmetric 

Dirichlet distribution, with parameter α. Values of α that are smaller than one will tend to 

more closely fit the author-specific topic distribution to observed data – if α is too small, one 

runs the risk of overfitting the data. Similarly, values of α greater than one tend to bring 

author-specific topic distributions closer to uniformity. This can be advantageous if we do 

not the identity of the author to strongly influence topic assignment. A value of α=50/(# 

topics) was used for the results presented in this paper, based upon the values suggested by 

[16]. For the numbers of topics considered in these analyses, this corresponds to a mild 

smoothing across authors. Similar to α is the second Dirichlet parameter, β, from which the 

topic-specific word distributions are drawn. β values that are large tend to induce very broad 

topics with much overlap, whereas smaller values of β induce topics which are specific to 

small numbers of words. Following the empirical guidelines set forth by [16], and empirical 

testing performed by the authors, we set the value of β = 200/(# words). Given that the 

average corpus generally consists of ~25,000 word tokens, representing about 2500 unique 

words in about 1200 utterances, the value of β is generally on the order of 0.1, a value close 

to that used by [84]. Thus, topics tend to be defined by a small number of words. As will be 
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shown below, values of α tend to be on the order of 1 – 5 suggesting that the identity of a 

given speaker does not overly constrain a topic.

F. Committee filtering

Our analysis primarily focuses on the voting members on an advisory panel. This decision 

was made because it is precisely these members whose evaluations will determine the panel 

recommendations. Other, non-voting, panel members are not included as part of the 

committee in the following analyses because they play a relatively small role in panel 

discussion in the meetings examined. Inclusion of these members is straightforward, and 

examination of their roles is left to future research.

Panel members share certain language in common including procedural words and domain-

specific words that are sufficiently frequent as to prevent good topic identification. As a 

result, a large proportion of the words spoken by each committee member may be assigned 

to the same topic, preventing the AT model from identifying important differences between 

speakers. In a variant of a technique suggested by [86], [65] solved this problem using the 

AT model by creating a “false author” named “committee”. Prior to running the AT model’s 

algorithm, all committee voting members’ statements are labeled with two possible authors 

– the actual speaker and “committee”. Since the AT model’s algorithm randomizes over all 

possible authors, words that are held in common to all committee members are assigned to 

“committee”, whereas words that are unique to each speaker are assigned to that speaker. In 

practice, this allows individual committee members’ unique topic profiles to be identified, as 

demonstrated below. In the unlikely case where all committee members’ language is 

common, half of all words will be assigned to “committee” and the other half will be 

assigned at random to the individual speakers in such a way as to preserve the initial 

distribution of that author’s words over topics. This filtering technique greatly improves the 

accuracy of the method and is uniquely feasible with a Bayesian approach.
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Fig. 1. 
An idealization of a semantically cohesive network, reflecting the existence of a semantic 

boundary. Members of the same community of practice (sharing the same shape) are linked, 

but there are no connections between communities of practice.
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Fig. 2. 
An idealization of a network reflecting the existence of a pragmatic boundary. Members who 

vote the same way (sharing the same color) are linked. Again, different shapes represent 

different communities of practice.
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Fig. 3. 
Graph of the FDA Circulatory Systems Advisory Panel meeting held on December 5, 2000. 

Node shape represents medical specialty (squares are cardiologists; diamonds are 

electrophysiologists; circles are surgeons). Node size is proportional to the number of words 

spoken by that group member during this meeting. All participants voted for device 

approval. The committee chair is in grey.
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Fig. 4. 
Graph of the FDA Circulatory Systems Advisory Panel meeting held on March 6, 2003. 

Node shape represents medical specialty (squares are cardiologists; diamonds are 

electrophysiologists; circles are surgeons; the triangle is a statistician). White nodes voted in 

favor of device approval; black nodes voted against device approval; grey nodes did not vote. 

Node size is proportional to the number of words spoken by that group member during this 

meeting. The committee chair is in grey.
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Fig. 5. 
Scatter plot of Vote Cohesion percentile vs. Specialty Cohesion percentile for 11 meetings in 

which there was a minority of two or more. Vote and specialty cohesion percentiles are 

positively associated (Spearman Rho =0.79; p=0.006). Note especially the four points 

clustered in the upper-right of the graph (boxed) which demonstrate that high vote cohesion 

occurred only when specialty cohesion is high.
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TABLE II

Summary of qualitative analysis for seven meetings. These meetings were chosen as representative of the 

range of novelty encountered by the Circulatory Systems Devices Advisory Panel

Meeting
Number

SCP VCP Novelty

1 0.968 N/A Low

2 0.975 N/A Low

3 0.959 1.00 Moderate

4 0.996 0.987 Moderate

5 0.087 0.586 High

6 0.494 0.277 High

7 0.362 N/A High

SCP = Specialty Cohesion Percentile; VCP = Vote Cohesion Percentile; N/A = Not Applicable because of voting minority less than 2.
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