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Measuring the Importance of Decision-Making
Criteria in Biofuel Production Technology Selection

Siamak Kheybari

Abstract—Environmental problems, combined with a finite sup-
ply of fossil fuels, have made the use of renewable energy sources
necessary. Biomass is a renewable source of energy that has played a
very important role in energy production in recent years. Because
there are a number of technologies that can be used to convert
biomass into energy, it is important to select the best option. The
fact that multiple options are available that need to be evaluated
based on a set of decision-making criteria makes this a multicriteria
decision-making problem. This paper takes the first step in propos-
ing an evaluation framework and identifying the importance of the
relevant decision-making criteria in biofuel production technology
selection. To determine the importance of the selection criteria, ex-
perts were asked to respond to an online questionnaire based on the
best-worst method. The results indicate that air pollution, land use
change, and human expertise are the three most important crite-
ria for selecting the best biofuel production technology in our case
country, Iran.

Index Terms—Best-worst method (BWM), biofuel production
technology, biomass, renewable energy, sustainability assessment
framework.

1. INTRODUCTION

OPULATION growth, lifestyle changes, and increased life
P expectancy and living standard have led to an increase in
global energy demand [1], which, in turn, has put a strain on the
use of fossil fuels [2], for one thing because of issues related
to global warming as a result of increased concentrations of
greenhouse gases, e.g., carbon dioxide (CO5) and methane [3],
as aresult of using fossil fuels, creating, among other things, acid
rain, and causing climate change, environmental degradation,
and reduced crop yields [4].

In response to these conditions, renewable energy was intro-
duced as a future source of energy, which not only reduces our
dependence on fossil fuels, but also has a positive impact on
the economy, the environment, and society [5]. Among the re-
newable sources of energy, biomass has received considerable
attention in recent years, for reasons including its availability,
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its ability to help reduce greenhouse gas emissions, and its
flexibility in the production of a wide range of products
(2], [6].

In the last decade, biomass has become the fourth largest
source of energy in the world, accounting for 10-14% of overall
energy consumption [7]. It is a renewable source of energy that
uses degradable agricultural waste (including plants and animal
materials), forests, and industrial and urban waste. Biomass is
used to produce electricity, heat, liquid fuels, gas fuels, and a
variety of useful chemicals [4], [8]. The production of biofuel
from biomass also reduces the production of carbon dioxide [9],
while preserving nonrenewable resources, generating regional
progress and employment, and bringing revenues to underde-
veloped areas [8], [10]. On the other hand, there are some disad-
vantages associated with energy production from biomass. The
high cost in its production and supply [11], including labor cost
and transportation cost, the need for large spaces for cultivation
and storage [12], and the high amounts of water used in biomass
cultivation [13] are among the most important disadvantages.

There are various technologies available for converting
biomass into energy, and selecting the best option depends on a
number of factors, while choosing the wrong one can lead to a
number of unwanted direct problems, for people as well as the
environment [14]. The literature review reveals that, although
there are different criteria that can be used in selecting the right
technology, there is no sustainable comprehensive framework
that includes them all. Such a framework is needed, because the
number of criteria involved in selecting the right technology,
which will affect society as well as the environment, could be
overlooked in the absence of a proper framework. This research
presented the first time comprehensive sustainable framework,
which is the main contribution of this paper. The framework
makes it possible to assess technologies in different areas, like
energy and production, based on criteria that are divided into
economic, social, and environmental categories.

In this paper, the proposed framework is used to determine
the importance of effective criteria regarding the biofuel pro-
duction technologies in Iran, a country with extreme levels of
air pollution. There are considerable biofuel resources in Iran,
for instance, with a potential for bioethanol production of about
4.91 GL [15], while the country’s food industry can produce
81.5-279.4 million m> of biogas [16]. Moreover, 0.84 million
tons of sugarcane, the raw material for gasification, is produced
in Iran each year [17], and about 3700 m? of oil is consumed each
year, 721000 m?> of which can be produced as biodiesel [15],
[18]. The biomass of Iran’s forests is 133000000 m>, which is
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a suitable amount when talking about biomass combustion [15].
To evaluate the criteria presented in the framework, a recently de-
veloped multicriteria decision-making (MCDM) method, called
the best—-worst method (BWM) [19], was used to examine data
from an online questionnaire among experts working and study-
ing in the area of biofuel in Iran. The main factors affecting
the selection of biofuel production technologies in Iran were
identified by analyzing the survey results.

The rest of this paper is organized as follows. The literature
review is presented in Section II, after which the methodology
is described in Section III. The data collection process and the
situation in Iran in terms of biomass resources are discussed in
Section IV. In Section V, the effective criteria for the selection
of biofuel production technology in Iran are analyzed. Section
VI concludes this paper.

II. LITERATURE REVIEW

MCDM papers in different areas of technology selection were
reviewed to determine the criteria that influence energy pro-
duction technologies involving biomass. To identify the papers,
different databases were searched. The papers were initially
screened on the basis of their title, abstract, and keywords. We
used the text and tables of the studies to extract the criteria and
divide them into the three dimensions of sustainability: eco-
nomic; environmental; and social. The findings of the studies
are summarized in Table I. The framework and MCDM meth-
ods can be used to determine the effect of each criterion in the
technology selection. Because the studies on energy production
technology were closely related to this paper, they are discussed
below.

Searcy and Flynn [20] examined the use of four biomass pro-
cessing technologies in Canada in terms of field costs, trans-
portation, and processing cost, calculating the overall processing
costs for each biomass resource and the production costs, which
is a function of the size of the power plant in question, for each
technology. Ultimately, the most suitable technology, biomass-
integrated air gasification and combined cycle production of
electricity, was identified as being the least costly alternative.
Oberschmidt et al. [21] examined energy supply technologies in
Germany, using the preference ranking organization method for
enrichment evaluations to rank the alternatives, and identifying
profitability, electric efficiency, availability, electricity cost, and
maturity as the main criteria, and concluding that a combination
of wind, photovoltaic, and gas-condensing boiler provides the
best alternative. Amer and Daim [22] conducted a study in Pak-
istan to select the best electricity generation technology based on
renewable resources, using 20 criteria, divided into economic,
technical, social, environmental, and political categories and ap-
plying the analytical hierarchy process (AHP) to select the best
technology, concluding that biomass and wind are the best al-
ternatives. Capital cost, operation and maintenance cost, elec-
tricity cost, greenhouse gasses emissions, and land requirement
are among the most important criteria in this research. Dap-
kus and Stremikiene [23] evaluated electricity generation tech-
nologies in Lithuania using multiobjective optimization by ratio
analysis (MULTIMOORA). They ranked 33 alternatives based
on 13 criteria divided into economic, environmental, and social
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categories, identifying hydro and solar power systems as the
most sustainable technologies. Grid costs, availability factor,
human health, food safety risks, greenhouse gasses emissions,
and job opportunities are some of the main criteria the authors
identified. Streimikiene et al. [24] developed an MCDM support
framework for selecting the best electricity production technolo-
gies in Lithuania, using a combination of MULTIMOORA and
the technique for order of preference by similarity to ideal solu-
tion (TOPSIS). They identified investment and operation cost,
security of supply, costs of grid connection, human health im-
pact, job creation, and food safety risk as the main factors in
the selection of electricity generation technology, concluding
that hydro and solar power systems are the best alternatives.
Kempegowda et al. [25] examined different technologies for
converting biomass into energy in Norway using a technoeco-
nomic approach, based on five criteria divided into technical and
economic categories. The results indicated that the efficiency of
technologies involved depends on factors like resource availabil-
ity, reliability, investment cost, and type of fuel, concluding that,
in Norway, municipal solid waste combustion, biogas engine,
and industrial backpressure turbines were the most profitable
technologies.

Stein [26] developed a model for ranking renewable and
nonrenewable electricity production in the United States
technologies using AHP, ranking alternatives on the basis of ten
criteria divided into four categories (financial, technical, envi-
ronmental, and socioeconomic/political), concluding that wind
and solar technologies were the preferred options. Sliogeriene
et al. [27] selected the best renewable energy production tech-
nology (REGT) in Lithuania using AHP and additive ratio as-
sessment methods, examining a set of economic, environment
protection, technological, social, ethical, and institutional cri-
teria (such as economic efficiency, effect on climate change,
production costs, and energy prices), concluding that biomass
was the best alternative of the four renewable energy generation
technologies they evaluated.

Demirtas [28] used AHP to identify the best renewable energy
technology for sustainable energy planning in Turkey, assessing
the technologies on the basis of 12 criteria divided into tech-
nical (technology maturity, reliability energy production, and
safety), economic (investment cost, operation and maintenance
cost, payback period, and service life), environmental (impact
on ecosystem and CO5 emission), and social (social benefits and
social acceptability) categories, the results indicating that wind
energy is the most appropriate renewable energy alternative.
Ren et al. [29] examined four biomass-based technologies based
on technical, economic, environmental, and social—political cri-
teria, using the fuzzy multiactor MCDM method, the results
showing that biomass gasification is the best alternative. Capital
cost, production cost, energy efficiency, land use, maturity, reli-
ability, social acceptability, and job creation are among the main
criteria used in the assessment. Tang et al. [30] conducted a study
to select key technologies related to silicon solar cells in China,
after reviewing relevant literature and examining the available
technologies and the criteria used to select them, after which they
used the Delphi and AHP methods to determine the importance
of the various attributes and rank the technologies. Operational
cost, energy consumption cost, required floor space, and energy
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TABLE I

SUSTAINABLE FRAMEWORK FOR BIOFUEL PRODUCTION TECHNOLOGY SELECTION

Dimension

Criteria Sub-criteria

References

Environmental

Water pollution
Water use
Energy losses

Air pollution

Noise pollution

Need of waste
disposal

Soil quality
degradation

Land use change

Biological diversity
loss

[38, 42, 43]
[38, 44]
[30, 44, 45]

[8,22-24, 27,
28, 34-38,
40-42, 44-
55]

[40, 52, 55]

[37, 42, 44,
47]

(38]

[38, 46]
(38]

Social

Social impacts

Social benefits

Effect on food security
Ease of conforming with
health and safety
Engineering companies

Job creation

Cooperation capability
Contribution to economy

Social acceptability

Human resource
impact

Expert human resource
Workers involvement
Training employees

Technology complexity
and amount of utilization
convenience of materials
Policy and legal
support
Political acceptance

Contribution to the
energy sufficiency

[43]

[22,28, 38,
44,50, 53,
56]

[23, 24, 38,
41, 46]

[28, 40-42,
52,57]

(37]

[22-24, 26,
27,29, 36,
38,41, 44,
46,50, 52,
53, 55]

(32]
[49, 53]

8,22, 28, 29,
34, 36, 40,
16-49, 52,
55]

[23, 24, 34,
37,47, 58,
59]

[22, 54, 60]
[60]
[60]

[24, 27,37,
54,56]

8,22, 27, 29,
38,39, 47,
48, 53]

[50, 53]
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TABLE I
CONTINUED

Dimension Criteria Sub-criteria

References

Investment cost

Economic

Technology cost

Land requirement

Incentives and subsides

Infrastructure availability

Risk

Durability
Costs of grid connection

Operation and
production cost

Maintenance cost

Market stability
for equipment
support

Number of
machine tools

Warranty issues

Electricity cost

Raw material cost

Labor cost

Climate condition
Productivity

Product Flexibility

Flexibility (Versatility)

Production time (Timing
of entry)

Set-up time

[22, 24, 25,
28-30,32,
34-37, 40-42,
44,45, 47,
52,53, 55,
56, 58-62]

[25,27, 39,
42,47,52,
63, 64]

[22, 29, 34,
36,38, 47,
49,52, 55,
58, 60]

[27,37,52,
55,57]

(48]

[39, 47, 52,
55, 62-67)

[27,54]
[27]

[22, 24, 26,
28,32, 36,
40-45, 52,
54-57, 61]

[37, 39, 64,
65]

[37, 60]

[32,37]

[21, 22, 25,
26,35, 40,
42,45, 68]

[45]
[60]
[27,37, 46]
[44, 59, 60]

[37, 42, 44,
47,57-59,
61, 67]

(37]

[60] [39, 47,
56]

[22,27,37,
40, 44,47,
55, 60, 66,
69]
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TABLE I
CONTINUED
Dimension Criteria Sub-criteria References
Capacity factor, Scale of [32,37, 48,
operation, Production 55]
volume
Reliability [22,27-29,
32,43, 44,
46,47, 49,
52,53,57,
59, 63]
Lower defect rates [28, 42, 63]
Process efficiency [23, 27, 30,
34-37, 40,
42,52,53,
55, 62]
Operational supremacy [39]
Technological superiority [39]
Compatibility [39]
Complementary goods [39]
Operability of the [56]
emergency disposition
Value of waste quality [54]

R&D cost [22, 63]
Technology development [39,57]
potential
Potential for innovation [8,27, 60,
to lead to more 64-66]
competitive and secure
bioenergy chains

Distribution and [39]

sales
Distribution strategy [39]
Marketing . [39]
communications
Pricing strategy [39]

Logistic
Distribution grid [22,23]
availability
Lead time reduction [57,58, 60]
Resource availability [8,22-24, 29,

32,34,37,
39, 54-56,
60, 65]
Security and stability of [8, 21, 23,37,
bioenergy supply chains 41, 66]
Profitability [60, 65]
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TABLE I
CONTINUED
Dimension Criteria Sub-criteria References

Payback period (PP) [34, 44,52,
55,61, 65,
67]

Economic viability in [8,28, 53]

the market

Net Present Value [25, 34, 52]

(NPV)

Technology maturity [22, 28, 29,
34,37, 38,
49,53, 55,
63]

Internal rate of [25,47,52,

return (IRR) 63, 64]

efficiency were among the criteria they applied. The results gave
solar-grade silicon production the highest score among 43 tech-
nologies.

Lanjewara et al. [31] used an integrated diagraph method and
AHP to select and rank solar energy technologies in India, eval-
uating alternatives on the basis of seven criteria, divided into
technological, economic, social, and political categories, with
the Box Carrier (batch) process emerging as the best alternative.
Onar et al. [32] determined the best technology for producing
wind energy in Turkey, based on eight indicators—reliability,
technical characteristics, performance, cost factors, availability,
maintenance, cooperation, and domesticity—using a multiex-
pert MCDM model and the interval-valued intuitionistic fuzzy
set approach to prioritize four technologies, with WTES?2 prov-
ing to be the best alternative.

Buyukozkan and Guleryuz [33] used a combination of fuzzy
AHP and fuzzy TOPSIS to identify the best REPT in Turkey,
based on 12 criteria, divided into technical, economic, social,
and environmental categories, identifying investment cost, re-
turn on investment, job creation, efficiency of technology, and
reliability as the main criteria. The results showed that nuclear
energy was the best alternative. Canovas-Rodriguez et al. [34]
selected the optimal renewable energy technology for electricity
generation in Spain, using fuzzy AHP. Land requirement, social
acceptance, labor impact, efficiency, resource availability, eco-
nomic value, and noise proved to be the most important criteria
in their study, identifying wind energy as the best alternative
for electricity generation. Lanjewar ef al. [35] used the inte-
grated graph theory AHP method to choose between renewable
energy technologies in India. Their study identified efficiency,
electricity costs, investment costs, and COs emission as the
main criteria for ranking the alternatives, with nuclear power
plants emerging as the best alternative. Abdullah and Najib [36]
used intuitionistic fuzzy AHP for REPT selection in Malaysia,
assessing the different technologies on the basis of nine crite-
ria divided into technical, economic, environmental, and social
categories, again with nuclear energy proving to be the opti-
mal choice. Cutz et al. [37] chose the best biomass conversion

technology in Central America. Looking at the specific condi-
tions surrounding biomass supply in each individual country,
they applied a fuzzy MCDM method to identify a number of
suitable technologies for converting biomass into energy on the
basis of technical, economic, environmental, and sociopolitical
criteria. Their findings indicated that the most suitable technol-
ogy in this area would be direct combustion.

Khishtandar et al. [38] conducted a study involving bioen-
ergy production technologies in Iran. They started by classify-
ing 15 criteria, divided into environmental, economic, technical,
and social categories and then applied the hesitant fuzzy lin-
guistic term sets method to rank the technologies; their find-
ings indicated that biogas and biodiesel were the best and worst
technologies, respectively. Van de Kaa et al. [39] conducted a
study involving thermochemical conversion technologies in the
Netherlands, assessing the performance of gasification, com-
bustion, and pyrolysis, based on 12 relevant factors that were
clustered into four groups (characteristics of the format support,
characteristics of the format, format support strategy, and other
stakeholders), after which, based on expert opinions and using
BWM, the factor weights were calculated and the technologies
ranked. The results identified gasification as the best alternative.

Ren [40] conducted a study to select the best sustainable way
for combined cooling, heat, and power technologies, using a
hybrid methodology combining interval BWM and VIKOR to
determine the weights of the evaluation criteria and alterna-
tive ranking, respectively, identifying 13 criteria, divided into
economic, environmental, technological, and social categories,
and concluding that fuel cells provide the most sustainable
technology. Yazdani et al. [41] used a combination of ana-
Iytical network process, decision-making trial and evaluation
laboratory, weighted aggregated sum product assessment, and
complex proportional assessment to identify the best REPT in
the European Union member states, using 13 criteria, divided
into environmental, social, and economic categories, identifying
hydropower technology as the most attractive REGT.

After conducting a comprehensive literature review, we
present a comprehensive framework for the selection of biofuel
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Fig. 1.

production technology, dividing all the relevant decision-making
criteria into three dimensions of sustainability: economic,
environmental, and social sustainability (see Table I).

Fig. 1 presents a summary of Table I on the frequency of the
appearance of the sustainability dimensions and their associated
criteria in existing literature.

As can be seen from Fig. 1, Economic dimension has ap-
peared in almost all studies (46 out of 48), while the other two
dimensions, Environmental and Social, have appeared in 33 and
28 studies, respectively. Counting the number of criteria of each
dimension appeared in each study, we see that in total, all the
Economic-related decision criteria have appeared 241 times in
the existing literature, while for the other two dimensions, En-
vironmental and Social, this number is 79 and 45, respectively.
This shows that while Economic dimension has received a lot
of attention in the existing literature, Environmental and Social
dimensions have been largely overlooked.

Of the MCDM methods used in the studies we reviewed, AHP
occurred most frequently. However, the BWM, a new MCDM
method developed by Rezaei [19], outperforms AHP in sev-
eral aspects. The BWM: 1) is more consistent than AHP, be-
cause the number of pairwise comparisons in AHP is greater
than that in BWM, which has a cognitive effect on the evaluator
when it comes to analyzing all of the criteria together consis-
tently (BWM requires 2n — 3 pairwise comparisons, compared
to n(n — 1)/2 pairwise comparisons for AHP) [19], [70], [71];
2) reduces the number of comparisons, thus increasing the re-
turn rate for the questionnaire [19], [72]; and 3) only applies
integers, making it easier to use [19], [73], [74]. The BWM has
been used successfully in different areas, including innovation
and technology management [75], [76], supply chain manage-
ment [77]-[79], and water resource management [80].

III. BEST-WORST METHOD

The BWM, a vector-based method, is the method used
in this paper. Determining the weights of the criteria using
BWM involved the following steps [1-4 being done by the
decision maker(s)] [81].

Frequency of appearance of sustainability dimensions and all their associated decision criteria in existing literature (48 references).

1) Determine a set of decision criteria {c1, ¢a,...,¢p}.

2) Identify the best (B) and the worst (W) criteria.

3) Determine the preference of the best over all the other
criteria by a number from 1 to 9 (where 1 is “equally
important” and 9 is “extremely more important”). The
result of best-to-others comparisons is vector Apg =
(a1, aB2,...,aBj,---.,apn), where ap; shows the
preference of criterion B over criterion j.

Determine the preference of all the criteria over the
worst. The result of others-to-worst comparisons is vec-
tor A, = (alw, AW 5+ oo s AWy« v - oy anw), where a;w
denotes the preference of criterion j over criterion W.

5) Compute the optimal weights (w}, w3, ..., w}).

The optimal weights are calculated by minimizing the max-
imum absolute difference of {|wp — ap;w;|, |w; — a;www|}
for all j, which is translated into the following optimization
problem:

4)

min mjax{|w3 —ap;jw;|, |lw; — a;wwwl}

such that
n
ij =1
j=1

w; > 0, forall j. (1
Model (1) is converted into:
min &
such that
lwp — apjw;| <&, forall j

lw; — a;www| <&, forall j

w; > 0, forall j. 2)
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Fig. 2. Hierarchical tree for criteria.

W* = (wi, w3, ..., w;) that is optimal weight of criteria is
the result of Model 2. £*, result of the objective function in
Model 2, indicates the consistency rate. If £* is close to zero, that
means a high level of consistency in the pairwise comparisons
provided by the expert(s).

When there is an MCDM problem with more than one level,
the results of Model 2 are called local weights. To determine the
global weight of subcriteria in the last level of the hierarchical
tree, their local weight is multiplied by the weight of the category
to which they belong.

IV. DATA COLLECTION

In this paper, screening the criteria was the first data collec-
tion step. To improve the power of discrimination of the de-
cision maker [82] and the reliability of comparison between
criteria [19], the criteria included in Table I were screened us-
ing an online questionnaire based on a five-point Likert scale.

Seven experts were invited to screen the criteria, after which
the criteria with an average value of over 3.5 were retained,
while the others were eliminated. The need to maintain a bal-
ance among subcriteria [83] was the reason for selecting 3.5
as the cutoff point. Fig. 2 shows the results of the screening
process.

A summary explanation of criteria in Fig. 2 is presented in
Table II.

The next step involved an online questionnaire based on the
criteria shown in Fig. 2, and using the BWM to determine the
relative weight of the criteria. In this step, 35 experts were asked
for their opinion. Because renewable energy is a new indus-
try in Iran, there were some university and research institute
researchers among the people who filled in the questionnaire.
All the respondents were identified on the basis of their on-
line profile. Respondents needed to have sufficient knowledge
and experience with renewable energy facilities. Of 35 experts
involved in this research, 22 (63%), with 7.73 years’ work ex-
perience, were employed as senior managers in organizations
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TABLE I

DEFINITION OF CRITERIA BEING SCREENED

Criteria

Definition

Investment cost

The fixed costs related to each technology

Technology cost

The cost of owning each technology

Incentives and subsidies

The amount of financial support provided by government for each
technology

Infrastructure availability

Equipment and facilities that should be provided for each technology

Resource availability

The amount of raw material that is accessible for each technology

Operation and production cost

The costs that have a direct relation to the volume and quality of
products

Maintenance cost

The cost related to keeping each technology running

Raw material cost

The cost of raw material used by each technology

Labor cost The amount of labor cost needed for each technology

Payback period The length of time required for each technology to compensate its
initial cost

Profitability The degree to which a technology yields a profit

Productivity Value added/(Inputs )

Set up time The time required for each technology to start running

Reliability The length of time that each technology can work at high quality

Flexibility The variety of products generated by each technology

Production time

The time spent producing a specific number of products by each
technology

Social impacts

The different social effect of each technology

Effect on food security

The impact of each technology on the volume of products cultivated

Ease of conforming with health and
safety

The effect of each technology on the health of people working with
the technology and living in the community

Job creation

The number of jobs created using each technology

Expert human resource

The number of high qualified specialists for working with each
technology

Contribution to energy sufficiency

The contributions of each technology to country’s energy
independence

Energy losses

The amount of energy used by each technology for production of
products

Air pollution

The effect of each technology on the air pollution

Land use change

The impact of each technology on the area of land cultivated with
biomass

related to energy, like the Niroo Research Institute, Research In-
stitute of Petroleum Industry and Renewable Energy and Energy
Efficiency. The remaining 13 (37%) were employed as faculty
members, with an average work experience of 11.08 years. Col-
lecting the results of the two steps, screening and weighting the
criteria, took seven and 30 days, respectively. After completing
and collecting the questionnaires, using the arithmetic mean, ex-
pert opinions about the effective criteria on energy generation
technology from biomass were collected, and the criteria in the
three dimensions were ranked.

V. RESULTS AND DISCUSSION

In this paper, the relevant criteria for selecting technologies
for converting biomass into energy and fuel were evaluated
based on three categories (economic, social, and environmental).
Tables III-V contain the mean and standard deviation of the
weights of criteria and subcriteria on levels 1-3, respectively.
According to the experts’ opinion, economic factors have the
greatest effect on technology selection for converting biomass
to energy (see Table III). Because Iran is such a major pro-
ducer of oil and gas [84], most technologies converting biomass
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TABLE III
WEIGHTS OF THE MAIN CRITERIA

Criteria Weight Standard deviation Rank

Economic 0.401 0.151 1

Environmental 0.363 0.139 2

Social 0.236 0.110 3
TABLE IV

WEIGHTS OF SUBCRITERIA IN LEVEL 2

Category Sub-criteria Weight Standard deviation = Rank
Investment costs 0.227 0.071 1
Resource availability 0.104 0.034 6

Economic Production and operation costs 0.174 0.060 3
Payback period 0.165 0.076 4
Profitability 0.181 0.090 2
Productivity 0.149 0.059 5
Energy losses 0.273 0.121 3

Environmental Air pollution 0.409 0.162 1
Land use change 0.318 0.162 2
Social impacts 0.259 0.125 3

Social Expert human resource 0.423 0.169 1
Contribution to energy sufficiency 0.318 0.150 2

TABLE V

‘WEIGHT OF SUBCRITERIA IN LEVEL 3

Category Sub-criteria Weight Standard deviation = Rank
Investment cost  Technology price 0.358 0.173 2
Incentives and subsidies 0.374 0.169 1
Infrastructure availability 0.268 0.117 3
Operation and Maintenance cost 0.347 0.176 1
production cost Raw material cost 0.340 0.148 2
Labor cost 0.313 0.139 3
Set-up time 0.176 0.079 4
Productivity Reliability 0.262 0.106 2
Flexibility (Versatility) 0.334 0.139 1
Production time (Timing of entry) 0.227 0.117 3
Effect on food security 0.242 0.124 3
Social impacts Ease of conforming with health and 0.419 0.148 1
safety
Job creation 0.340 0.149 2
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into energy have little economic justification, which means that
technologies with better economic conditions are more likely to
be selected. Economic dimension is usually considered as the
main aspect in the selection problem of energy production tech-
nologies [85]. The experts weighted environmental and social
categories as the second and third most important dimensions,
respectively (see Table III).

Similar to the results of the studies by Bouyukozcan and
Guleryuz [33], Amer and Daim [22], Kempegowda et al. [25],
and Si et al. [44], investment costs were identified as the most
influential subcriterion in the economic category (see Table IV),
which may be explained by the country’s high inflation and by
the costs involved in converting biomass into energy [86]. Based
on the respondents’ point of view, resource availability has the
minimum weight in technology evaluation (from the economic
perspective). As discussed in Section I, the existence of different
types of raw material in Iran [87] could explain the low weight
of resource availability. Profitability, production and operation
cost, payback period, and productivity are the other important
subcriteria in the economic dimension (see Table 1V).

Incentives and subsidies were identified as being the most im-
portant subcriterion of investment cost (see Table V), because
the government’s financial support (including direct grants, seed
capital, low-interest loans, loan guarantees, and investment tax
credit) in the area of renewable energies reduces the risk of in-
vestment [16]. Technology price and infrastructure availability
were weighted as the second and third most important subcri-
teria in this category (see Table V). Easy access to variety of
construction materials in Iran due to the existence of various
mines [88] can be considered as a reason to explain the low im-
portance of infrastructure availability compared to technology
price.

Experts identified maintenance cost as the main subcriterion
in the operation and production cost category (see Table V).
The difficulty of production process in biofuel industries [89], a
lack of experienced staff in Iran [90], and difficulties in gaining
access to equipment are the primary reasons why maintenance
cost was given such a high relative weight. Raw material cost
and labor cost are the other two important subcriteria in this
category (see Table V). Both high unemployment rate [91] and
high number of university graduates [92] in Iran are two causes,
which could lead to the low weight of labor cost among the three
subcriteria of operation and production costs.

Flexibility (versatility) was indicated as being the main subcri-
terion in the productivity category (see Table V) because using a
flexible production technology makes it possible to produce dif-
ferent types of products that meet different customer demands.
Since Iran, as a developing country, needs various types of en-
ergy, a flexible technology can prove useful. Reliability, produc-
tion time, and setup time are the other three important subcriteria
in this category (see Table V).

Expert staff was indicated as being the chief subcriterion of
the social category (see Table IV). Since renewable energy is
a new industry in Iran [93], the relatively low number of spe-
cialists is a deterrent factor in the selection of biofuel produc-
tion technology. Contribution to energy sufficiency and social

B Air pollution

® Land use change

® Expert human resource
Energy losses

© mOther fourteen criteria

[ m Effect on food security

H Production time

m Setup time

Fig. 3. Importance of subcriteria on technology selection.

impacts are the other important subcriteria in the social cate-
gory (see Table IV). Ease of conforming with health and safety
was identified as the most important subcriterion of the social
impact category (see Table V) because, in some technologies
that convert biomass into energy, the amount of methane being
released is significant [94]. Job creation and effect on food se-
curity are the other two important subcriteria in this category
(see Table V). Existing high volume of agricultural and urban
wastes in Iran [95] can be considered as a main reason to explain
the low importance of effect on food security compared to job
creation.

Like the studies by Cdnovas-Rodriguez et al. [34], Amer and
Daim [22], and Buchholz et al. [46], air pollution was selected
as the most influential subcriterion by the experts (see Table IV),
because of the critical conditions of air pollution in Iran in recent
years [96]. According to the environmental performance index,
Iran ranks 83rd among 138 countries [97], so any technology that
improves air pollution is likely to be preferred. Land use change
and energy losses are the other two important subcriteria in this
category (see Table IV).

A. Global Weight of Criteria

Table VI lists the overall weight of the subcriteria that directly
affect the selection of biofuel production technology and indi-
cates that air pollution is the most important subcriterion when
selecting the best technology for converting biomass into energy
in Iran (see Table VI).

Air pollution levels in Iran can explain the weight of this sub-
criterion, as shown in Fig. 3. As a developing country, Iran is the
world’s third most polluted country, with an annual loss of $16
billion [98]. Land use change, expert staff, and energy losses are
the other important subcriteria that, based on the global weight,
make up for approximately 31% of all the criteria involving tech-
nology selection. The main reason why land use change is con-
sidered important may have to do with the fact that agriculture is
such a vital sector in Iran’s economy [99]. If, instead of growing
agricultural products, the land is used to grow biomass, Iran’s
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TABLE VI
GLOBAL WEIGHT OF SUBCRITERIA

Sub-criteria Weight Rank
Air pollution 0.148 1
Land use change 0.115 2
Expert staff 0.100 3
Energy losses 0.099 4
Contribution to energy sufficiency 0.075 5
Profitability 0.073 6
Payback period 0.066 7
Resource availability 0.042 8
Incentives and subsidies 0.034 9
Technology price 0.033 10
Ease of conforming with health and safety 0.026 11
Infrastructure availability 0.0244 12
Maintenance cost 0.0242 13
Raw material cost 0.0237 14
Labor cost 0.022 15
Job creation 0.021 16
Flexibility 0.020 17
Reliability 0.016 18
Effect on food security 0.015 19
Production time 0.014 20
Setup time 0.011 21

economy is bound to suffer irreparable damage. As indicated
earlier, due to the shortage of specialists in Iran, any technol-
ogy that requires fewer specialists has a better chance of being
selected. Based on the overall weights, setup time, production
time, and effect on food security are three subcriteria that have
a minimum impact on which biofuel production technology is
selected. Setup time also has the lowest weight in the study by
Ren [40].

VI. CONCLUSION

The aim of this paper was to assess the effective criteria for
biomass energy production technology in Iran. To this end, we
started by identifying the criteria affecting the technology selec-
tion, by reviewing existing studies, and then organizing them in
a sustainable framework of economic, social, and environmen-
tal dimensions. In the next step, based on the input from seven
experts, the criteria were screened, after which the weights of
the resulting criteria were determined using the BWM and input
from 35 experts.

According to the BWM results, economic factors turned out
to be the most important ones. The subcriteria making up this
category approach the various technologies from a different eco-
nomic perspective. Of the economic subcriteria, investment cost
was identified as being the most important factor, followed by
production and operation cost, profitability, payback period,

productivity, and resource availability. Within the environmen-
tal category, air pollution, land use change, and energy losses
are the most effective subcriteria, respectively. Furthermore, ex-
perts identified expert staff as being the most important subcri-
terion in the social category, followed by contribution to energy
sufficiency and social impacts. Based on the global weight and
taking into account Iran’s specific conditions, air pollution was
identified as the single most influential subcriterion.

These results had several implications for scholars and prac-
titioners. For scholars, the proposed framework can be useful in
designing and building a proper technology in the near future.
Public policy makers in Iran can use the results to meet Iran’s
future renewable energy needs, while investors can use the re-
sults of this paper to evaluate the risk factors and reliability of
the technologies involved.

The main limitation of this paper was identifying criteria that
affect technology selection. Although technology selection was
an important issue, there is no paper that covers different studies
in this field. Therefore, a review paper may provide useful in-
formation on technology selection. Although we assumed that
the criteria in the weighting process are independent of each
other, considering the effect of a possible interaction between
the different criteria is the second suggestion for future research.
Applying the proposed framework to select the most suitable
biofuel production technology is the third potential future
avenue for research resulting from this paper.
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