
IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021 105

A Deep Neural Network With Multiplex Interactions
for Cold-Start Service Recommendation

Yutao Ma , Member, IEEE, Xiao Geng, and Jian Wang , Member, IEEE

Abstract—As service-oriented computing (SOC) technologies
gradually mature, developing service-based systems (such as
mashups) has become increasingly popular in recent years. Faced
with the rapidly increasing number of Web services, recommending
appropriate component services for developers on demand is a
vital issue in the development of mashups. In particular, since
a new mashup to develop contains no component services, it is
a new “user” to a service recommender system. To address this
new “user” cold-start problem, we propose a multiplex interaction-
oriented service recommendation approach, named MISR, which
incorporates three types of interactions between services and
mashups into a deep neural network. In this article, we utilize
the powerful representation learning abilities provided by deep
learning to extract hidden structures and features from various
types of interactions between mashups and services. Experiments
conducted on a real-world dataset from ProgrammableWeb show
that MISR outperforms several state-of-the-art approaches regard-
ing commonly used evaluation metrics.

Index Terms—Cold start, deep learning, mashup development,
service recommendation, service-based system.

I. INTRODUCTION

W ITH the maturity of service-oriented computing (SOC),
the development paradigm of software systems is shift-

ing from component-based software development (CBSD) to
service-oriented software development (SOSD). The SOSD
paradigm can reduce the cost and effort of system development
and increase the reusability and quality of software systems [1].
Nowadays, numerous Web services have been published on the
Internet, and mashups (i.e., a new type of web application),
which provide specific functionalities by integrating one or more
Web services, become increasingly popular in this context [2].
The rapidly increasing number of Web services poses significant
challenges for effective service management and reuse. Thus,

Manuscript received July 28, 2019; revised October 12, 2019; accepted
December 16, 2019. Date of publication January 15, 2020; date of current
version November 13, 2020. This work was supported in part by the National Key
Research and Development Program of China under Grant 2017YFB1400602,
in part by the National Science Foundation of China under Grant 61972292,
Grant 61832014, Grant 61702378, and Grant 61672387, in part by the Natural
Science Foundation of Hubei Province of China under Grant 2018CFB511, and
in part by the Science and Technology Project of Shenzhen City of China under
Grant CKCY20180322093215776. Review of this manuscript as arranged by
Department Editor P. Hung. (Corresponding author: Jian Wang.)

The authors are with the School of Computer Science, Wuhan Univer-
sity, Wuhan 430072, China (e-mail: ytma@whu.edu.cn; xiaogeng5515@whu.
edu.cn; jianwang@whu.edu.cn).

Color versions of one or more of the figures in this article are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEM.2019.2961376

promptly recommending appropriate component services for
developers and easing their selection burden has become a vital
issue in the development of mashups.

Service recommendation usually refers to recommending
services according to users’ explicit and implicit preferences
(e.g., invocation and subscription) as well as historical data
of service compositions [1]. The content information of user
requests and service descriptions (including structured or un-
structured descriptions in texts or Web services description
language documents) can also be utilized if provided. In recent
years, researchers from different research fields have proposed
many service recommendation approaches. The keyword-based
approach [2], [3], ontology-based approach [4], [5], and latent-
semantics-based approach [6], [7] were studied to this end in the
beginning. Considering the limited capability to achieve better
performance by exploiting only the content information, other
useful information of service usages, such as invocation history,
co-invocation, and popularity, was also involved in improving
the recommendation performance further [8]–[14].

The hybrid approach usually uses collaborative filtering (CF),
natural language processing (NLP), and other techniques to deal
with the content information and usage history. For example,
Li et al. [8] combined functionality and usage history in a
topic model to recommend services in mashup creation. Xiong
et al. [13] also presented a hybrid recommendation approach
by integrating CF and deep learning for NLP. Since most of
these hybrid approaches leverage the interaction history between
mashups and web application programming interfaces (APIs),
they perform well in the normal recommendation process for
services. However, if a developer wants to create a new mashup
without any component service, the mashup does not have any
interaction with the existing APIs. The lack of such interaction
information will decrease the performance and generalizability
of these hybrid approaches.

More specifically, a specific scenario investigated in this
article is described as follows. A developer who plans to develop
a new mashup inputs his or her functional requests into a service
recommender system. Then, the developer wants to obtain a list
of candidate services that can be used in the development of the
mashup. From the perspective of the recommender system, the
new mashup to be built does not contain any component service,
which could be regarded as a new “user” to the recommender
system. In such a scenario, the traditional CF-based approach
does not work well because no usage history is available to the
new mashup. Therefore, how to deal with the new “user” cold-
start problem remains challenging for the mashup development.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4239-2009
https://orcid.org/0000-0002-1559-9314
mailto:ytma@whu.edu.cn
mailto:xiaogeng5515@whu.edu.cn
mailto:jianwang@whu.edu.cn
http://ieeexplore.ieee.org

106 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021

In this article, we propose a multiplex interaction-oriented
service recommendation approach (referred to as MISR) to
address the cold-start problem of developing new mashups. An
interaction in the MISR represents an underlying relationship
between a mashup and a service. Unlike the hybrid approaches
mentioned previously, the objective of the MISR is to take ad-
vantage of the dominant representation learning ability of deep
learning to learn hidden structures from various interactions
between services and mashups. In the proposed approach, three
types of interactions between services (or APIs) and mashups,
including content interaction, implicit neighbor interaction, and
explicit neighbor interaction, are identified and incorporated into
a deep neural network (DNN), which can predict ratings of
candidate services on a new mashup, i.e., the probabilities of
candidate services to be invoked by a new mashup. Note that
the content interaction indicates a relationship of functionality
matching between a new mashup and a candidate service, and the
two neighbor interactions represent the relationships between a
new mashup’s neighbor mashups that share similar functionali-
ties and candidate services.

The main contributions of this article are threefold.
1) We make an in-depth analysis of the cold-start prob-

lem in service recommendation for new mashup devel-
opment, which has not yet been sufficiently discussed
before.

2) We propose a novel multiplex interaction-oriented service
recommendation approach, called MISR, by integrating
three types of interactions between services and mashups
into a DNN.

3) Experiments conducted on a real-world dataset crawled
from the website ProgrammableWeb1 demonstrate that the
proposed approach outperforms several state-of-the-art
approaches regarding recommendation performance.

The rest of this article is organized as follows. Section II
presents the related work of service recommendation. Section III
defines the cold-start problem and introduces the details of the
proposed approach. Section IV reports the experimental results
and analysis. Section V concludes this article.

II. RELATED WORK

The primary goal of recommender systems is to predict user
ratings or preferences on an item. Along with great success in
commercial applications, they have already been prevalent in
the modern society. According to the type of information used in
recommender systems, the existing recommendation algorithms
mainly fall into three types: collaborative filtering algorithms
that utilize usage history, content-based algorithms that utilize
the content information, and hybrid algorithms that utilize two
or more types of information [15]–[17].

In the past decade, recommendation algorithms have
been widely used in the services computing field to address the
“service overload” problem on the Internet. Generally speaking,
service recommendation systems analyze developers’ requests
(or their preferences) and recommend appropriate candidate

1https://www.programmableweb.com

services for them. According to the aforementioned taxonomy of
general recommendation algorithms, service recommendation
methods can also be divided into the following three types:
content-based approach, CF-based approach, and hybrid
approach.

A. Content-Based Service Recommendation

The content-based approach recommends services according
to the content similarities between candidate services and the
target mashup. As earlier progress in this direction, the keyword-
based approach matches services to mashup development re-
quests in terms of keyword similarities, but it cannot recommend
semantically relevant services [2], [3].

Semantics-aware service recommendation approaches were
then proposed to overcome the limitation of the keyword-based
approach. These approaches can be generally classified into two
categories. First, the ontology-based approach annotates mashup
requests and service descriptions with domain ontologies and
calculates their semantic similarities based on logical reasoning
[4], [5]. However, the lack of appropriate domain ontologies
and the high cost of manual annotation make it difficult to
apply such an approach to large-scale datasets [18]. Second, the
latent-semantics-based approach usually extracts text features
by using topic models and measures the content relevance of
services to mashup requests in terms of their feature similarities
[6], [7]. However, the bag-of-words model used in the approach
ignores word orders, possibly leading to the loss of semantic
information.

Due to the remarkable progress of deep learning in NLP, in
this article, we will utilize a DNN to extract text features from
the content information automatically.

B. CF-Based Service Recommendation

Collaborative filtering, which captures users’ implicit re-
quirements from their usage history, has been widely used in
service recommendation. The CF-based approach predicts the
quality of service (QoS) by leveraging historical QoS records
of similar users or services, aiming to recommend and select
high-quality services. For example, Zheng et al. [19] proposed a
neighborhood integrated matrix factorization (MF) approach to
predict QoS values. Chen et al. [20] presented a neighbor-based
approach to predict QoS values of candidate services by utilizing
the historical records of neighbors within the same region. Liu
et al. [21] made use of the location information to find similar
neighbors for users and services, and they predicted QoS values
using a location-aware CF method.

Besides QoS prediction, CF was also applied in some service
recommendation approaches to find similar users or services.
For example, in [22], a hybrid random walk approach was
adopted in computing the similarities between indirect users or
services, and an improved CF model was designed for service
recommendation. Zou et al. [23] integrated user-intensive and
service-intensive CF in a reinforced CF approach and eliminated
the interference of the services (or users) dissimilar with the
target service (or the target user). In [24]–[26], the authors built
a heterogeneous information network (HIN) using various types

https://www.programmableweb.com

MA et al.: DNN WITH MULTIPLEX INTERACTIONS FOR COLD-START SERVICE RECOMMENDATION 107

of information of mashups and services, measured an overall
similarity score between mashups based on HIN, and finally,
made a rating prediction using the user-based CF.

Since the service recommendation problem investigated in
this article is for a cold-start scenario, new mashups do not have
any usage history with the existing services, which hinders the
CF-based approach from achieving ideal results. Inspired by the
most “similar” strategy of the user-based CF, in this article, we
will learn the interaction between a new mashup and a candidate
service from the interactions between the mashup’s neighbors
(i.e., semantically similar mashups) and the service.

C. Hybrid Service Recommendation

Considering the performance limitation of a single prediction
model in service recommendation, many hybrid approaches that
integrate multiple models or various kinds of feature information
have been proposed in recent years.

Some hybrid approaches usually integrate additional feature
information into topic-model-based service recommendations.
In [8], the invocation records between mashups and services
were incorporated into a latent Dirichlet allocation (LDA) [27]
model to discover topics from the content information, which
enables the learned topics to model the connections among
services, mashups, and words. Gao et al. [9] applied LDA to
the data structure made up of services and their co-occurring
services. Xia et al. [10] clustered services into categories based
on their popularities and topic features extracted by LDA, and
they then combined the services in the most relevant category to
generate a set of candidate services.

Other hybrid approaches make use of the content information
and usage history in service recommendation. In [11] and [12],
the authors calculated the functional correlation scores between
services and mashups based on topic models and neighbor inter-
action probabilities by using CF methods, and then, they multi-
plied the scores to generate a list of candidate services. However,
these linear and multiplication-based approaches have a limited
ability to capture complex interactions between mashups and
services.

Deep-learning-based recommendation approaches, such as
Wide & Deep [28] and neural collaborative filtering (NCF)
[29], have been recently proposed. Wide & Deep memorizes
interactions with data with a large number of features. However,
the number of features identified in the interactions between
mashups and services is usually very small, which makes this
method difficult to apply to service recommendation scenarios.
Instead, NCF, which combines the advantages of neural net-
works and CF, has begun to attract much attention in this research
field. For example, Xiong et al. [13] integrated the invocation
records between mashups and services as well as their content
similarities into a DNN. Chen et al. [14] presented a preference-
based neural CF recommender model, which leveraged feature
vectors of users and items, including language preference and
historical data, to recommend appropriate services in the normal
recommendation process. However, the aforementioned two
DNN models do not work well for developing new mashups
without any component service before recommendation.

TABLE I
SYMBOLS USED IN THIS ARTICLE

In brief, these existing hybrid approaches have limitations in
capturing complex interactions between mashups and services,
especially in the scenario of the new “user” cold-start problem.
This article is, therefore, to address this problem.

III. MULTIPLEX INTERACTION-ORIENTED

SERVICE RECOMMENDATION

First of all, in Section III-A, we state the problem studied
in this article and analyze our solution with a real-life case.
Next, we detail two main components of the MISR, namely the
content interaction component and neighbor interaction compo-
nent, in Sections III-B and III-C, respectively. Section III-D then
shows how the two components are combined to make rating
prediction. Finally, we describe the offline training and online
prediction phases in Sections III-E and III-F, respectively. In
Table I, we list those frequently-used symbols in this section
and their respective meanings.

A. Overall Framework

1) Problem Statement: Above all, the problem to be ad-
dressed in this article can be described as follows. Given a re-
quest (in text form) to develop a new mashup, how to recommend
appropriate component services for developers to facilitate the
development process? In this article, we focus on recommending
possible component services for new mashups to be built.

Suppose a developer plans to develop a new mashup that
tracks the price of products on Amazon and provides price drop
alerts for users. First, the developer inputs the requirements into

108 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021

Fig. 1. Architecture of MISR.

a service recommendation system. The system aims to predict
the rating of each candidate service (denoted as s) over the new
mashup (denoted as m). We take “Amazon Product Advertising
API” as an example service, whose description is “Through
this API, developers can retrieve product information. The API
exposes Amazon’s product data and e-commerce functionality.”

We then analyze our solution from two aspects. On the one
hand, requests can be used to match with services that provide
the desired functionalities. Since developers are more likely to
select services that are able to meet their functional requests
when developing mashups, a content interaction component
can be designed to learn the functional interactions based on
the content information of m and s, as well as to analyze the
possibility of a developer selecting s for m from the functional
perspective. Here, the content information means user requests
and functionality descriptions of candidate services, and the
content interaction indicates the relationship of functionality
matching between m and s, i.e., whether the functionality of
s (e.g., retrieving product price) can meet the request of m.

On the other hand, the invocation history between mashups
and services can also be used to improve the recommendation
performance. Unfortunately, a new mashup has no invocation
history. If two mashups have similar functional descriptions,
they have a substantial probability of invoking the same service;
in other words, they may have similar interactions with the

same service. Although new mashup m has no interaction with
service s, the interactions between s and the neighbor mashups
(referred to as NM) of m that share similar functionalities can
be leveraged. The most intuitive way is to predict unknown
interactions between m and s from all the historical interactions
between NM and s (i.e., neighbor interaction). For example,
the content information of an existing mashup, PriceZombie, is
similar to the request of m, and s is a component service of
PriceZombie. Therefore, there is a substantial possibility that m
interacts with s.

In this article, we attempt to utilize neighbor interactions to
alleviate the absence of the direct interaction between m and
s. As a result, we propose a service recommendation approach
to learn the interactions between a new mashup and candidate
services based on their content information (also known as re-
quests in text form or functional descriptions) and the invocation
history of the new mashup’s neighbor mashups on the services.

2) Model Framework: As shown in Fig. 1, the proposed
MISR approach consists of two primary components: a content
interaction (CI) component, and a neighbor interaction (NI)
component, which is made up of an implicit neighbor interaction
(INI) part and an explicit neighbor interaction (ENI) part. The
CI component is a prerequisite for the NI component, and the
two parts in NI work in parallel. All the components are comple-
mentary to each other. Different types of interactions between

MA et al.: DNN WITH MULTIPLEX INTERACTIONS FOR COLD-START SERVICE RECOMMENDATION 109

candidate services and mashups can be learned from the three
components. These interaction vectors are then concatenated
and fed into a multiple layer perceptron (MLP), which predicts
the ratings of candidate services over the target mashup.

The CI component first represents the content information of
m and s as their word-embedding forms, and then, extracts their
respective feature vectors. Finally, an MLP is designed to process
the concatenated features and learn their content interactions.

The NI component aims to learn interactions between m and
s based on the usage history of the neighbor mashups of m to s.
A prerequisite of the component is to get neighbor mashups that
are most similar tom in terms of content similarity, which will be
detailed in Section III-C. In the INI part, neighbor mashups and
s are mapped into a deep feature space by applying node2vec
[30], a graph embedding technology in deep learning, to the
invocation matrix. Then, we can obtain the weighted represen-
tation of m in the space. After concatenating the representations
of m and s, an MLP is used to learn their interactions in this
feature space. The ENI part learns more direct interactions from
the original invocations about the neighbor mashups of m to s.

B. Content Interaction Component

The functionality descriptions of mashups and services,
namely their content information, generally have two forms:
word sequence and separate word set. We use descriptions and
tags as the representatives of the two types of information and
extract their features in different ways. Finally, the content
interaction between mashups and services can be learned based
on the extracted features.

Before extracting features by deep learning techniques, we
need to use a dense vector to represent each term that appears
in the content information of existing mashups and services. To
this end, we first transform these terms into sparse binary vectors
with one-hot encoding, e.g., [0, 0, …, 1, …, 0]. Next, we feed the
vectors into an embedding layer and map each term to a dense
vector or an embedding. More specifically, the embedding layer
can be viewed as a lookup table, and the embedding of a term is
indeed its corresponding weights in the embedding layer.

1) Feature Extraction From Word Sequences: After the pre-
processing of truncation or padding, the word sequence in-
formation of m and s are transformed into their respective
word-embedding forms, Em and Es, which are two matrices
with a fixed size. The process can be described as

E = [et1 , et2 , . . . , eti , . . . , etL]
T (1)

where E denotes the word-embedding representation of a word
sequence, L is the length of the processed sequence, ti is the
ith term in the sequence, and eti is the D-dimensional word
embedding for ti.

We then extract feature vectors fromEm andEs. As a popular
class of DNNs, convolutional neural networks (CNNs) have
been successfully applied in many NLP tasks [31]. Here, we
design a new network (named text_inception) based on incep-
tionV2 [32] to extract feature vectors. Fig. 2 shows the structure
of the text_inception network.

Fig. 2. Structure of the text_inception network.

The convolution layer in Fig. 2 captures feature maps of
different scales from E by using parallel convolution kernels of
different sizes. We first introduce how the convolution operation
works on sequential data. Inspired by Kim’s work [31], we use
convolution kernel j with shared weightW j ∈ Rws×D to extract
a local feature cji from ws terms adjacent to ti. The process is
described as

cji = f
(
W j∗E(i:(i+ws−1), :) + bj

)
(2)

where E(i:(i+ws−1), :) is a ws×D submatrix of E formed by
rows from i to i+ ws− 1, ∗ denotes a convolution operation,
bj is a bias term corresponding to W j , and f is a rectified linear
unit (ReLU) function that can avoid the gradient disappearance
problem and encourage sparse activations [29]. We apply the
convolution kernel j to different locations in the sequence, and
then, get a feature map cj ∈ RL.

cj =
[
cj1, c

j
2, . . . , c

j
i , . . . , c

j
L

]
. (3)

In the convolution layer, the first two branches utilize 1×D
and 3×D convolution kernels, respectively. The third branch
first executes a convolution on E with 3×D kernels, and then,
executes another convolution on this result with 3× 1 kernels,
increasing the nonlinearity of the network and improving fea-
ture abstraction. Moreover, it can reduce the number of model
parameters as well as the risk of overfitting. In the fourth branch,
a max-pooling operation with size 3× 1 is first carried out,
followed by a convolution operation with 1×D kernels. The
max-pooling helps the convolution operation obtain higher level
features. After the last convolution operations in all the four
branches end, E is compressed into a feature map cj ∈ RL.
These feature maps are then concatenated in the concatenation
layer for subsequent operations.

C =
[
c1, c2, . . . , cj , . . . , cF

]T
(4)

where F is the sum of all the convolution kernels in the last
convolution layer in the four branches.

110 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021

A global average pooling (GAP) layer, followed by the incep-
tionV2 [32], is applied to the pooling of C. We then utilize an
MLP to process the pooling results and obtain a dense feature
vector. The process can be expressed as

l1 = f
(
WT

1

[
c1GAP, c

2
GAP, . . . , c

i
GAP, . . . , c

F
GAP

]T
+ b1

)
(5)

li = f
(
WT

i li−1 + bi
)

(i = 2, 3, . . . , n) (6)

where ciGAP denotes the GAP result of a feature map ci; WT
i

and bi denote the weights and bias parameter of the ith layer,
respectively; and li denotes the output of the ith hidden layer in
the MLP.

For convenience, we use MLP to represent all the operations
contained in the MLPs in this article. Equations (5) and (6) can
be simplified as

vseq = MLP
[
c1GAP, c

2
GAP, . . . , c

i
GAP, . . . , c

F
GAP

]T
. (7)

Particularly, vseqm
and vseqs

represent the features extracted
from the word sequence information of m and s, respectively.

2) Feature Extraction From Separate Word Sets: Unlike nat-
ural language sequences, the tags of mashups or services are
represented in the form of a separate word set. We cannot
apply the text_inception network and other deep-learning-based
techniques designed for word sequences to the feature extraction
of tags. For word set T , we retrieve and average the embeddings
of all words to obtain its feature vector of fixed size, vset.

vset = average [eT1
. . . eTi

. . . eTx
] (8)

where eTi
is the embedding of the ith term in the set and x is

the size of the set.
3) Content Interaction Learning: After the feature vectors of

mashup m and service s, denoted by vseqm
, vseqs

, vsetm , and
vsets , are extracted by the text_inception network and average
pooling, respectively, they are concatenated together and fed
into an MLP to learn their functional (or content) interactions.
Finally, a low-dimensional content interaction vector, cims, can
be obtained as

cims = MLPCI
(
vseqm ⊕ vseqs ⊕ vsetm ⊕ vsets

)
(9)

where ⊕ denotes the concatenation operation.

C. Neighbor Interaction Component

The NI component aims to learn the interactions between m
and s based on the usage history of the neighbor mashups of m
to s. An essential work of the NI component is to find neigh-
bor mashups NM for new mashup m based on their content
similarities. When calculating the content similarity between
a neighbor mashup nmi and m, we compute the similarity
between word sequences and the similarity between separate
word sets, respectively, and then, integrate the two similarities.
Since the word sequence features of m and nmi are real-valued
vectors, we calculate their similarity, simvseqm ,vseqnmi

, using
the commonly used Cosine similarity.

simvseqm ,vseqnmi
=

vseqm
· vseqnmi

‖vseqm
‖‖vseqnmi

‖ . (10)

The similarity between the separate word set of m and that
of nmi, simvsetm ,vsetnmi

, is computed in the same way. The
weighted sum of the two similarities is regarded as the content
similarity between m and nmi. In this article, a and b are not
set to fixed values, and they act as learnable parameters in the
process of model training.

simm,nmi
=a× simvseqm ,vseqnmi

+b× simvsetm ,vsetnmi
.

(11)
We select K most similar mashups of m to build its neighbor

mashups NM in terms of their content similarities. Next, the in-
teractions between neighbor mashups NM and s are leveraged
using the following two strategies.

1) Implicit Neighbor Interaction: When modeling the inter-
actions between mashups and services based on their histori-
cal invocations, a general framework is to map mashups and
services into the same feature space and then define or learn
their interactions in this unified space. For example, MF models
first use latent factors to represent mashups and services, and
then, utilize their inner product to model their interactions.
Some deep-learning-based models, such as NCF, use an MLP to
process the latent representations of mashups and services and
capture their complex interactions.

Similarly, in this part, we first apply node2vec to learn the
latent representation of all existing mashups and services from
the mashup-service invocation matrix. In the following step,
an intuitive strategy is to employ multiple MLPs to learn the
interaction between each neighbor mashup of m and s. Then,
we integrate these interactions to learn the interaction between
m and s with another MLP. However, the computational com-
plexity of this strategy is too high. Therefore, we adopt a feasible
strategy: we calculate a weighted representation of mashupm in
the same feature space and use an MLP to capture the interaction
of m and s in this feature space.

As a graph embedding method, node2vec has achieved re-
markable results in processing graph data with plenty of inter-
active information among elements [33]. Because the mashup-
service invocation matrix can be transformed into a graph where
nodes denote mashups/services and edges represent invocations
between them, it is feasible to use node2vec to learn low-
dimensional representations of mashups and services.

An optimized random walk strategy is used to generate node
sequences according to the graph structure derived from the
mashup-service invocation matrix. Then, we process the node
sequences by the skip-gram model and learn the representa-
tion of each node. Compared with the MF-based approach,
node2vec captures more complex interactions between mashups
and services. After obtaining representations of all existing
mashups and services, we calculate the weighted representation
of mashup m using the following equation:

rm =
∑

nmi∈NM

simm,nmi
· rnmi

(12)

where nmi is a neighbor mashup of m, simm,nmi
is the content

similarity between m and nmi, and rnmi
is the representation

of nmi obtained by node2vec.

MA et al.: DNN WITH MULTIPLEX INTERACTIONS FOR COLD-START SERVICE RECOMMENDATION 111

Finally, we concatenate the representations of m and candi-
date service s, and then, compress the concatenation result into
an implicit interaction vector by an MLP.

inims = MLPINI (rm ⊕ rs) (13)

where rs denotes the representation of s obtained by node2vec.
2) Explicit Neighbor Interaction: In the second strategy, we

learn explicit interactions from the direct invocation history
of the neighbor mashups (NM) of m to s. More specifically,
we first construct a sparse binary vector sms according to the
invocation records of NM to s, described as follows:

sms = (Inm1,s, Inm2,s, . . . Inmi,s, . . . InmK ,s) (14)

where Inmi,s is an identity signal that indicates whether s is
a component service of nmi (nmi ∈ NM). Since the number
of neighbor mashups is K, the dimension number of sms is
also K.

Finally, sms is fed directly into an MLP, and the explicit
interaction between m and s, enims, can be learned from the
direct invocation history of NM to s.

enims = MLPENI (sms) . (15)

3) Combination of the Two Components: After learning the
three types of interactions between m and s, we design an MLP
to incorporate them and output the rating of s over m, r̂ms. The
MLP enables the three interactions to enhance and complement
each other and model the relationship between m and s more
accurately. Because our approach outputs the possibility of m
invoking s or the rating of s over m (r̂ms), we adopt a sigmoid
activation function in the last layer of this MLP to constrain
rating values ranging between 0 and 1 for the implicit feedback
recommendation task.

r̂ms = MLPfusion (cims ⊕ inims ⊕ enims) . (16)

D. Offline Model Learning

Since the goal of our approach is to predict the rating of a
service over a mashup, each training sample as an input to MISR
consists of a mashup and a service. A positive sample (labeled
as 1) is composed of a mashup and its component service, while
a negative sample (labeled as 0) is a pair of a mashup and an
irrelevant service without actual invocations.

The predicted value of MISR should be approximate to 1
for positive samples and 0 for negative samples. The likelihood
function is defined as

P
(
Y +, Y −|Θ)

=
∏

(m,s)εY +

r̂ms

∏
(m,s)εY −

(1− r̂ms) (17)

where r̂ms is the predicted rating of service s over mashup m,
Θ is the parameter set, Y + represents a set of positive samples,
and Y − denotes a set of negative ones.

Maximizing the likelihood probability of (17) is equivalent to
minimizing the loss function described as follows:

J = −
∑

(m,s)∈Y +∪Y −
(rms log r̂ms + (1− rms) log

× (1− logr̂ms)) (18)

Algorithm 1: Training Algorithm of MISR.

Input: positive sample set Y +, negative sample set Y −,
mashup-service invocation matrix MS, and number of
epochs p

Output: parameter set Θ
//Model preparation
1. Y ← Y + ∪ Y −;
2. M ← FindMashup(Y), S ← FindService(Y);
3. for each mashup m in M and each service s in S do
4. rs ← node2vec(MS), rm ← node2vec(MS);
5. for each word ti in m. ct and each word ti in

s. ct do
6. Initialize eti by the pretrained glove model;
7. end for
8. end for

//Model training
9. ΘCI ← call Algorithm 2 (p, Y);

10. for each mashup m in M do
11. Compute vseqm

and vsetm using (7) and (8),
respectively, with the pretrained CI component;

12. end for
13. ΘINI ← call Algorithm 3 (p, Y , {vseqm

}m∈M ,
{vsetm}m∈M , {rm}m∈M , {rs}s∈S);

14. ΘENI ← call Algorithm 4 (p, Y , {vseqm
}m∈M ,

{vsetm}m∈M , MS);
15. ΘMLPfusion

← call Algorithm 5 (p, Y , ΘCI, ΘINI,
ΘENI);

16. Initialize Θ with ΘCI, ΘINI, ΘENI, and ΘMLPfusion
;

17. Update Θ by fine-tuning the MISR;
18. return Θ.

where rms denotes the label (0 or 1) of a sample that consists of
m and s.

Then, we need to use an optimization algorithm to find
the parameters that minimize the loss function of our end-to-
end deep-learning-based model. Adaptive moment estimation
(Adam) [34], an extension of the stochastic gradient descent
(SGD), has been widely used in deep learning applications. It
designs independent adaptive learning rates for different param-
eters by calculating the first-order and the second-order moment
estimation of the gradient. Besides, Adam can be applied to
large-scale datasets and high-dimensional space. Therefore, we
select Adam as our optimization algorithm to update model
parameters in this article.

The whole training process is depicted as Algorithm 1.
Lines 1–8 show the preparation for model training. We first

employ node2vec to process the invocation matrix and get the
vector representation of each mashup and each service. Next,
we set the embedding of the words appeared in the content
information of mashups and services to be trainable, and use
their word embeddings pretrained by the glove model [35] to
initialize their corresponding weights in the embedding layer.

The parameters to be optimized in this model mainly include:
weight parameters in the embedding layer, parameters in the
text_inception network, weight parameters used to calculate

112 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021

Algorithm 2: Training Algorithm of the CI Component.
Input: number of epochs p and sample set Y
Output: parameter set ΘCI of this pretrained component
1. for epoch = 1, …, p do
2. for each sample (m, s) in Y do
3. Compute cims using (19);
4. Compute r̂ms using (20);
5. Update ΘCI to minimize J in (18) with Adam;
6. end for
7. end for
8. return ΘCI.

mashup similarities (i.e., a and b), and weight and bias parame-
ters in MLPCI, MLPINI, MLPENI, and MLPfusion.

Lines 9–17 demonstrate our training strategy for the MISR.
Since MISR is a hierarchical model with several nested MLPs,
directly updating all parameters may result in slow convergence.
Therefore, we first train each component in MISR separately,
then use their parameters to initialize the parameters in MISR,
and finally, fine-tune the whole model.

Taking the training algorithm of the CI component,
Algorithm 2, as an example, we show how to train an individual
component of the MISR. For each sample of (m, s), we only
use the CI component to process the content information of m
and s (denoted by m. ct and s. ct), and then, we obtain a content
interaction vector cims. Here, the content information of each
mashup and service is linked to the corresponding mashup and
service. Next, we perform a nonlinear transformation on the
vector to directly predict the rating of s over m, r̂ms.

cims = fCI (m.ct, s.ct) (19)

r̂ms = f
(
WT

CIcims + bCI

)
(20)

where fCI represents all operations in the CI component, WCI

and bCI are the parameters used for the transformation, and f
is the sigmoid activation function. Then, we perform backward
propagation and update the parameters in the CI component,
according to (18)–(20) (see lines 3–5 in Algorithm 2).

Line 3 in both Algorithm 3 and Algorithm 4 aims to find the
most similar neighbor mashups for mashup m when training
both the INI part and the ENI part. Lines 3–5 in Algorithm 5
indicate that we use the pretrained components to calculate in-
termediate interaction vectors for each mashup-service instance
in sample set Y .

E. Online Prediction and Complexity Analysis

In the online recommendation phase, the MISR predicts the
possibility of mashup m invoking service s, and the detailed
process is described as follows.

In the CI component, the content information of m and s is
transformed into their word embedding form. Then, we extract
feature vectors of m and s from their content information by
using the text_inception network and the average pooling layer,
respectively, denoted by vseqm

, vseqs
, vsetm , and vsets . Next,

Algorithm 3: Training Algorithm of the INI Part.
Input: number of epochs p, sample set Y , content feature
sets of mashups extracted by the pretrained CI
component Vseq and Vset, and latent representation sets
of mashups and services by applying node2vec to MS,
Rm and Rs

Output: parameter set ΘINI of this pretrained component
1. for epoch = 1, …, p do
2. for each sample (m, s) in Y do
3. NM ← FindNeighbors(Vseq, Vset); //(10)
4. Compute rm using (12);
5. Compute inims using (13);
6. r̂ms = f(WT

INIinims + bINI);
7. Update ΘINI to minimize J in (18) with

Adam;
8. end for
9. end for

10. return ΘINI.

Algorithm 4: Training Algorithm of the ENI Part.
Input: Number of epochs p, sample set Y , content
feature sets of mashups extracted by the pretrained CI
component Vseq and Vset, and mashup-service
invocation matrix MS

Output: parameter set ΘENI of this pretrained
component
1. for epoch = 1, …, p do
2. for each sample (m, s) in Y do
3. NM ← FindNeighbors(Vseq, Vset);
4. Construct sms using (14) and MS;
5. Compute enims using (15);
6. r̂ms = f(WT

ENIenims + bENI);
7. Update ΘENI to minimize J in (18) with

Adam;
8. end for
9. end for

10. return ΘENI.

Algorithm 5: Training Algorithm of MLPfusion.
Input: number of epochs p, sample set Y , and parameter
sets ΘCI, ΘINI, and ΘENI

Output: parameter set ΘMLPfusion

1. for epoch = 1, …, p do
2. for each sample (m, s) in Y do
3. Compute cims using (9) with ΘCI;
4. Compute inims using (13) with ΘINI;
5. Compute enims using (15) with ΘENI;
6. Compute r̂ms using (16);
7. Update ΘMLPfusion

to minimize J in (18) with
Adam;

8. end for
9. end for

10. return ΘMLPfusion
.

MA et al.: DNN WITH MULTIPLEX INTERACTIONS FOR COLD-START SERVICE RECOMMENDATION 113

these features vectors are input into an MLP to obtain a content
interaction vector cims. For simplicity, in the convolutional layer
of the text_inception network, we assume that the channel num-
bers of feature maps in each branch are the same, and the channel
numbers in the input and output of each convolution layer are
also the same, denoted as C. Thus, the complexity of the con-
volutional layer is O(8L×D × C2 + 3L× C2 + 3D × C),
where L is the length of a word sequence or a word set and
D is the dimension of word embeddings. The complexity of
the GAP layer in the text_inception network is O(4C × L), and
that of the average pooling layer to process separate word sets
is O(D × L).

After getting the feature vectors of mashup m, vseqm
and

vsetm , we calculate its content similarity to the existing mashups
and obtain the neighbor mashup set NM . The complexity of
this processing is O(P (H +D) + P logK), where H is the
dimension of vseqm

, D is the dimension of vsetm as well as
that of word embeddings, P is the number of potential neighbor
mashups, K is the size of NM , and P logK is the cost of
searching top K values from a list that has P elements.

Next, in the INI component, we compute the representation
of m, rm, according to (12). The complexity is O(K × V),
where V is the dimension of rm. We then input rm and the
representation of s obtained by node2vec into MLPINI and get
an implicit interaction vector of m and s, inims. At the same
time, the ENI component constructs an invocation vector ofNM
to s using (15), then inputs it into MLPENI, and finally, learns
an explicit interaction vector of m and s, enims.

Finally, MLPfusion integrates multiple forms of interactions
between m and s, i.e., cims, inims, and enims, and predicts the
possibility of m invoking s.

The complexity of MLPs, including MLPCI, MLPINI,
MLPENI, MLPfusion, and the MLP in the text_inception net-
work, is O(

∑N
i=1 ni−1ni), where N is the number of layers in

each of the MLPs and ni is the number of units in the ith layer.
Note that we do not consider bias parameters for simplicity.

To sum up, the simplified complexity of predicting the rating
of a candidate service over a mashup is O(L×D × C2 +
P (H +D + logK) +K × V +

∑N
i=1 ni−1ni). If the structure of

MLPs is fixed, parameters L, D, C, H , and V can be regarded
as certain constants. Therefore, the complexity can be rewritten
as O(P logK +K).

After predicting the rating of each candidate service
over a mashup, the recommender system outputs the Top-
K services with the highest ratings for the target devel-
oper. Therefore, the complexity of the whole online rec-
ommendation process is O(Q(P logK +K) +QlogQ) =
O(Q(P logK +K + logQ)), where Q is the number of candi-
date services and QlogQ is the cost of sorting Q elements using
the quick sort algorithm.

IV. EXPERIMENTAL SETUPS AND RESULTS

A. Experimental Settings

All experiments were carried out on a workstation with Intel
Core 8 Xeon(R) at 3.50 GHz, GeForce GTX 1080, and 32-GB

memory, running the Ubuntu 16.04 operating system. The source
code implemented based on Keras2 is available on GitHub.3

1) Dataset: We crawled a dataset from ProgrammableWeb,
the largest online Web service registry, on July 25, 2016. The
mashups and services without functional descriptions, the ser-
vices that have not been invoked, and the mashups with fewer
than two component services were removed from the original
dataset. The experimental dataset contains 1979 mashups and
728 services, and the sparsity of the mashup-service invocation
matrix is 99.6%. We preprocessed the textual descriptions of
these mashups and services by removing punctuation and stop
words.

The functional descriptions of the mashups in the test set
were used as textual requests to build new mashups, and the
recommended lists of services were compared with the actual
component services of the mashups for evaluation. Also, we
randomly generated some negative samples (i.e., a pair of a
mashup and a service without invocation relations), which are
six times as many as positive samples, to construct our training
dataset.

2) Evaluation Metrics: In this article, we evaluated different
recommendation approaches using the fivefold cross-validation
technique. The 1979 mashups were divided into fivefolds. In
each time, onefold was used for testing, and the others for
training. Then, we averaged the results of fivefolds and took
them as the final result. We adopted the following evaluation
metrics to measure the recommendation performance.

Precision, Recall, and F1-measure at top N services in the
ranking list are defined as

Precision@N =
1

|M |
∑
m∈M

|rcmd (m) ∩ actual (m)|
|rcmd (m)| (21)

Recall@N =
1

|M |
∑
m∈M

|rcmd (m) ∩ actual (m)|
|actual (m)| (22)

F1@N =
1

|M |
∑
m∈M

2
|rcmd (m) ∩ actual (m)|
|rcmd (m)|+ |actual (m)|

(23)

where M is the set of mashups in the test set and |M | denotes
the size of M . For mashup m, rcmd(m) is the recommended
service list, while actual (m) is its actual component services.

Mean average precision (MAP) at top N services in the
ranking list is defined as

MAP@N =
1

|M |
∑
m∈M

1

Nm

N∑
i=1

(
Ni

i
× I (i)

)
(24)

where Ii indicates whether a service at the position i in the
ranking list is an actual component service of m, Nm is the
number of component services ofm, andNi denotes the number
of actual component services of m occurred in the top i services
of the ranking list.

2https://keras.io
3https://github.com/ssea-lab/MISR

https://keras.io
https://github.com/ssea-lab/MISR

114 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021

Normalized discounted cumulative gain (NDCG) at top N
services in the ranking list is defined as

NDCG@N =
1

|M |
∑
m∈M

1

Sm

N∑
i=1

2I(i) − 1

log2 (1 + i)
(25)

where Sm represents the ideal maximum DCG score that can be
achieved for m.

3) Baseline Approaches: Most of the previous works men-
tioned in Section II-C cannot work in the scenario of this article,
i.e., recommending services to a new mashup. To evaluate the
effectiveness of our approach, we selected six state-of-the-art
service recommendation approaches that can work in the sce-
nario for comparison.

1) Term Frequency–Inverse Document Frequency (TF-IDF)
[10]. The method recommends services using TF-IDF-
based cosine similarities between content information of
services and a mashup.

2) Aggregating Functionality, Use history, and Popularity
of APIs (AFUP) [11]. The approach first computes two
probabilities that a mashup invokes a service by analyzing
their content similarity and the usage history of neighbor
mashups and the service, then multiplies them based on
Bayes’ theorem, and finally, ranks candidates according
to their popularity.

3) Recommendation through Service Factors and Top-K
Neighbors (SFTN) [12]. The authors improve their pre-
vious work, the AFUP, by using the hierarchical Dirichlet
process (HDP) [36] and probability matrix factorization
to process the content information and usage history.

4) Preference-based Neural Collaborative Filtering Recom-
mender (PNCF) [14]. The framework compresses all
sparse features of users and items in an embedding layer,
and then, uses an MLP to model their interaction. How-
ever, its feature extraction component does not apply to
extract textual features, and we implement two variants for
this scenario: PNCF-HDP, which applies the HDP adopted
in the SFTN, and PNCF-Deep, which uses our feature
extraction strategy.

5) Service Set Recommendation (SSR) [37]. The approach
clusters services according to their functionalities, and
then, constructs service sets. Finally, the service set with
the highest utility function score (considering the com-
posability, functional similarity, and popularity) is recom-
mended.

Note that all baseline approaches and the MISR take descrip-
tions and tags as the content information. These two kinds of con-
tent information are processed indiscriminately by bag-of-words
models in the TF-IDF, AFUP, SFTN, SSR, and PNCF- HDP,
while being processed separately by deep learning techniques
in the PNCF-Deep and MISR. Moreover, the parameters of the
feature extractors and other parameters in the model are jointly
trained in the PNCF-Deep and MISR.

4) Parameter Settings: We set the dimension of word vectors
to 50 and initialized the vectors with the publicly available
50-dimensional word embeddings trained by the Glove model
[35]. The filter numbers in the four branches of the text_inception

network were set to 10, 10, 20, and 10, respectively. In node2vec,
the dimension of each node was set to 25, and other parameters
were set according to [30]. In MLPfusion, the unit numbers of
the four layers were set to 128, 64, 32, and 1, respectively. The
other MLPs used in the model shared the same structure, where
the numbers of units in two layers were set to 100 and 50,
respectively. Except for the MLP in the text_inception network
that selected PReLU [38] as the activation function, other MLPs
in the model used ReLU. The learning rate was set to 0.0003
when training each component of the MISR. When we began
to fine-tune the MISR based on all the pretrained components,
the learning rate was then reduced to 0.0001. For the baseline
approaches, we set most of their parameters according to the de-
fault settings mentioned in the original references and optimized
some parameters when necessary.

B. Performance of MISR

Fig. 3 presents the performance comparison of different
approaches, showing that the MISR outperforms all the six
baselines across all ranking positions. Since the complexity of
the SSR is exceptionally high, we only evaluated its performance
when the size of service sets is five.

The TF-IDF performed the worst because it just used the
content information, and the representations of mashups and
services did not appear to capture the latent semantics of textual
descriptions by using the TF-IDF. Besides the content informa-
tion and popularity, the AFUP and SFTN leverage the usage
history of neighbor mashups, but their performances were not
as good as expected. The reasons are twofold. First, their feature
extraction methods ignored word orders and lost some semantic
information. Second, the two probabilities derived from the
functionality and usage history were multiplied with the as-
sumption that they are conditionally independent of each other.
However, it is hard for the single multiplication to capture the
way how the content information and usage history jointly affect
service recommendation. Instead, the MISR aims to capture such
complicated interactions by a DNN.

We combined different parameter settings to optimize the
SSR, but its performance was still weak. There are two main
reasons. First, it did not utilize the usage history of neighbor
mashups like the MISR. Second, the pruning strategy it em-
ployed reduces the probability of the recommended service set
hitting actual component services.

The PNCF-Deep performed the best in the six baseline
methods. The possible reason is that the PNCF-Deep extracts
high-quality features from the content information and learns
the deep content interaction between mashups and services. The
PNCF-HDP worked worse than the PNCF-Deep, even though
it also used an MLP to learn the content interaction. The re-
sult indicates the superiority of our strategy for textual feature
extraction.

Although the MISR shares a similar content interaction com-
ponent with the PNCF-Deep, the NDCG@5, MAP@5, Preci-
sion@5, Recall@5, and F1@5 values of the MISR were higher
than those of the PNCF by 15.66%, 19.85%, 16.02%, 15.12%,
and 15.63%, respectively. These performance improvements

MA et al.: DNN WITH MULTIPLEX INTERACTIONS FOR COLD-START SERVICE RECOMMENDATION 115

Fig. 3. Performance comparison of different approaches. (a) NDCG@N. (b)MAP@N. (c) Precision@N. (d) Recall@N. (e) F1@N.

Fig. 4. Performance comparison of different variants of MISR. (a) NDCG@N. (b) MAP@N. (c) Precision@N. (d) Recall@N. (e) F1@N.

mainly benefit from the two elaborate NI parts that can exploit
the past interactions between neighbor mashups and services.

C. Ablation Study

As mentioned previously, the MISR utilizes three types of
interactions between mashups and services, namely the content
interaction and two neighbor interactions. To demonstrate the
necessity of the three components of the MISR, we designed
the following variants of the MISR for comparison: a model
(referred to as MISR-C) only uses the CI component, a model

(referred to as MISR-CII) consists of the CI and INI compo-
nents, a model (referred to as MISR-CEI) has the CI and ENI
components, and a model (referred to as MISR-IEI) composed
of the INI and ENI components.

According to the comparison among the variants of our ap-
proach shown in Fig. 4, the more interactions are involved, the
better the recommendation performance can we obtain. Both
the MISR-CEI and MISR-CII outperformed the MISR-C, sug-
gesting that both the ENI component and the INI component can
indeed learn useful interaction information. Moreover, the MISR
performed better than the MISR-CEI and MISR-CII, which

116 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021

TABLE II
PERFORMANCE OF DIFFERENT CONTENT SIMILARITY COMPUTATION METHODS (MEAN ± S. D.)

indicates that each of the two neighbor interaction components
can learn some complementary information missed by the other.

Compared with the MISR, the MISR-IEI ablates the CI
component and outputs worse recommendation results. Also,
the prediction performance of the MISR-IEI is inferior to that
of the MISR-C. This result indicates that in the process of
developing new mashups, developers pay more attention to the
degree of functionality matching between candidate services and
their requests, though the interaction experience obtained from
neighbor mashups is also beneficial to the development process.

Finally, the MISR-C performed far better than the TF-IDF.
This result demonstrates that the MISR does extract useful text
features from the content information of mashups and services
and can capture their functional interactions by an MLP.

D. Selection of Neighbor Mashups

In this article, a prerequisite of neighbor interactions is to find
neighbor mashups with similar requests to the target mashup.
More specifically, the content similarity between mashups and
the size of neighbor mashups are two critical factors in searching
for neighbor mashups. Therefore, we conducted two experi-
ments to investigate their respective impact on the selection of
neighbor mashups in this subsection.

1) Impact of Content Similarity on the NI Component: Find-
ing similar neighbor mashups in terms of the content similarity
between mashups is essential to the performance of the NI
component. As introduced in Section III-C, we calculate the

similarities between mashup texts and mashup tags, respec-
tively, and then, compute the weighted sum of them to obtain a
scalar similarity. In particular, the MISR extracts text features of
mashups by the text_inception network and takes their Cosine
similarity as text similarity (denoted as DeepText). The MISR
then obtains tag features of mashups using a pooling layer
and takes their Cosine similarity as tag similarity (denoted as
DeepTag). The similarity calculation strategy of the MISR is
denoted as DeepText + DeepTag.

As we know, there are many alternative ways to calculate the
content similarity between mashups (i.e., text similarity and tag
similarity). A commonly used way to calculate the text similarity
of two documents is to extract their feature vectors by the HDP
(a representative of traditional feature extractors) and calculate
the Cosine similarity between their HDP features (denoted as
HDPText) [12]. The simplest and most popular way to calculate
tag similarity is the method adopted in [24]–[26] (denoted as
metaPathTag).

metaPathTag (mi,mj) =
2× ∣∣Tagmi

∩ Tagmj

∣∣
|Tagmi

|+ ∣∣Tagmj

∣∣ (26)

where Tagmi
and Tagmj

denote the tag set of mashup mi

and mj , respectively, and |Tagm| is the size of the tag set of
mashup m.

To evaluate the impact of the content similarity calculation
methods on the NI component’s performance, we compared ours
(DeepText + DeepTag) with three variants: Variant 1 (Deep-
Text + metaPathTag), Variant 2 (HDPText + DeepTag), and

MA et al.: DNN WITH MULTIPLEX INTERACTIONS FOR COLD-START SERVICE RECOMMENDATION 117

TABLE III
RECOMMENDATION PERFORMANCE WITH DIFFERENT K (MEAN ± S. D.)

Variant 3 (HDPText + metaPathTag). Note that we replaced the
content similarity method in the MISR with the three variants,
respectively, to compare their performance.

As shown in Table II, our method (DeepText + DeepTag)
performs the best, followed by HDPText + DeepTag, and Deep-
Text+metaPathTag outperforms HDPText+metaPathTag. This
result indicates that our deep-learning-based feature extractor,
the text-inception network, performed better than the HDP in
extracting feature vectors for the NI component. One possi-
ble reason is that the CNN-based feature extractor can extract
text features with richer semantics. Another reason lies in the
effective combination between the text-inception network and
other components of the MISR. This combination enables the
text-inception network to generate task-specific text features for
the NI component.

It is evident from Table II that DeepText+DeepTag outper-
forms DeepText+metaPathTag, and HDPText+DeepTag per-
forms better than HDPText+metaPathTag. Compared with
metaPathTag, our DeepTag can extract better tag features to

facilitate the identification of similar neighbor mashups for the
NI component. The meta-path-based approach regards tags as
plain symbols without semantics, while DeepTag maps tags into
a semantic space using an embedding layer. We initialized the
embeddings of some tags with their pretrained word embeddings
in [35] and updated the embedding of all tags when training
the MISR. Therefore, in this way, DeepTag can capture richer
semantics of tags than metaPathTag.

2) Impact of the Size of Neighbor Mashups: The size of
neighbor mashups of the target mashup, K, determines how
many similar mashups are involved in the ENI and INI parts.
Therefore, the setting of K is a critical factor that affects the
performance of our approach. To study the impact of K on the
recommendation performance, we set its value from 10 to 50 by
step 10, while fixing the other parameters.

As shown in Table III, when K increases from 10 to 30, the
performance results of the MISR in terms of the five evalua-
tion metrics are increasing. This result is probably because the
increase of the size of neighbor mashups can help our approach

118 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021

learn the usage history of more similar mashups. Instead, the rec-
ommendation performance of the MISR becomes worse when
K exceeds 30. The reason probably lies in that some noisy data,
i.e., mashups with low similarity to the target mashup, were
introduced into the learning of neighbor interactions. Therefore,
we set K to 30 in our experiments.

E. Threats to Validity

Some potential factors may threaten the validity of our article,
and we discuss them in this subsection.

1) Internal Validity: The internal validity concerns the au-
thenticity of the experimental results. The threats to the internal
validity of our article fall into two main aspects: evaluation
criterion and parameter settings.

There is no suitable evaluation dataset at present, including
actual mashup requirements and component services. In our
experiments, the content information of mashups registered at
the ProgrammableWeb is regarded as the functional require-
ments provided by users when developing mashups. However,
user requirements in real-life scenarios may differ from mashup
descriptions regarding language style and expression pattern,
which is a threat to the internal validity of this article. Accord-
ing to our analysis, mashup descriptions provided by different
service providers embody the functionalities of mashups and
have different description styles, which display high similarities
to user requirements. Besides, this evaluation criterion has also
been used in experiments of the existing service recommenda-
tion approaches [13], [24]. Hence, we argue that this threat to
the internal validity of our article is not severe.

Since the source code of most of the baseline approaches is
not publically available, we implemented them and used their
default parameter settings mentioned in their original papers.
There is no guarantee that they have reached their optimal
performance stated in the corresponding papers, which is another
threat to the internal validity of our article. To mitigate this
threat, we asked two master students who are familiar with these
approaches to examine our implementation code and optimize
them as needed.

2) External Validity: The external validity concerns the gen-
eralizability of the experiment results. It is challenging for the
dataset used in our experiments to represent all the real-world
scenarios accurately. To mitigate this threat, ProgrammableWeb,
the largest real-world repository of web APIs, mashups, and
applications, was selected as the experimental dataset. The
mashups and services provided by over 1000 companies or
personal developers make ProgrammableWeb a typical repre-
sentative of service registries. To further minimize the general-
izability issue, we divided the crawled dataset into five groups
and performed fivefold cross validation in the experiment. Even
so, evaluations of more large-scale real-world datasets are still
needed in the future.

The MISR is designed for an utterly cold-start scenario where
a user only inputs functional requirements. Last but not least,
another threat to the external validity of this article is whether the
approach can be generalized into other real scenarios where de-
velopers have selected one or more component services. Because

the CI and NI components can work in these scenarios, the MISR
can still work, and the threat is also not severe. We need to further
improve the MISR by leveraging the information of services that
have been selected and modeling complex interactions among
candidate services, the selected services, and the target mashup.
This study will be our future work.

V. CONCLUSION AND FUTURE WORK

In this article, we proposed a multiplex interaction-oriented
service recommendation approach, referred to as MISR, for
developing new mashups without any component service. Three
types of interactions between services and mashups were in-
corporated into a DNN to model their explicit and implicit
relationships. Experiments on a real-world dataset demonstrated
that the proposed approach was able to outperform several
state-of-the-art service recommendation methods regarding five
evaluation metrics.

In the future, we plan to improve our approach in the following
aspects. First, the MISR is currently designed to recommend ser-
vices for new mashups without any component. We will extend
the model framework to make it applicable to service recommen-
dation scenarios where developers have selected one or more ser-
vices. Second, we will also consider the composability or com-
position patterns between services, e.g., two services developed
by the same company are more likely to be invoked together.

REFERENCES

[1] N. Zhang, J. Wang, and Y. Ma, “Mining domain knowledge on service
goals from textual service descriptions,” IEEE Trans. Serv. Comput., to be
published, doi: 10.1109/TSC.2017.2693147.

[2] Q. He et al., “Efficient keyword search for building service-based sys-
tems based on dynamic programming,” in Proc. Int. Conf. Serv.-Oriented
Comput., 2017, pp. 462–470.

[3] Q. He et al., “Keyword search for building service-based systems,” IEEE
Trans. Software Eng., vol. 43, no. 7, pp. 658–674, Jul. 2017.

[4] M. Al-Hassan, H. Lu, and J. Lu, “A semantic enhanced hybrid rec-
ommendation approach: A case study of e-Government tourism service
recommendation system,” Decis. Support Syst., vol. 72, pp. 97–109, 2015.

[5] L. Yu, J. Zhou, J. Zhang, F. Wei, and J. Wang, “Time-aware semantic web
service recommendation,” in Proc. IEEE Int. Conf. Serv. Comput., 2015,
pp. 664–671.

[6] W. Gao, L. Chen, J. Wu, and A. Bouguettaya, “Joint modeling users,
services, mashups, and topics for service recommendation,” in Proc. IEEE
Int. Conf. Web Serv., 2016, pp. 260–267.

[7] C. Lin, A. K. Kalia, J. Xiao, M. Vukovic, and N. Anerousis, “NL2API:
A framework for bootstrapping service recommendation using natural
language queries,” in Proc. IEEE Int. Conf. Web Serv., 2018, pp. 235–242.

[8] C. Li, R. Zhang, J. Huai, and H. Sun, “A novel approach for API recom-
mendation in mashup development,” in Proc. IEEE Int. Conf. Web Serv.,
2014, pp. 289–296.

[9] Z. Gao et al., “SeCo-LDA: Mining service co-occurrence topics for
composition recommendation,” IEEE Trans. Serv. Comput., vol. 12, no. 3,
pp. 446–459, May/Jun. 2019.

[10] B. Xia, Y. Fan, W. Tan, K. Huang, J. Zhang, and C. Wu, “Category-
aware API clustering and distributed recommendation for automatic
mashup creation,” IEEE Trans. Serv. Comput., vol. 8, no. 5, pp. 674–687,
Sep./Oct. 2015.

[11] A. Jain, X. Liu, and Q. Yu, “Aggregating functionality, use history, and
popularity of apis to recommend mashup creation,” in Proc. Int. Conf.
Serv.-Oriented Comput., 2015, pp. 188–202.

[12] P. Samanta and X. Liu, “Recommending services for new mashups through
service factors and top-K neighbors,” in Proc. IEEE Int. Conf. Web Serv.,
2017, pp. 381–388.

https://dx.doi.org/10.1109/TSC.2017.2693147

MA et al.: DNN WITH MULTIPLEX INTERACTIONS FOR COLD-START SERVICE RECOMMENDATION 119

[13] R. Xiong, J. Wang, N. Zhang, and Y. Ma, “Deep hybrid collaborative
filtering for web service recommendation,” Expert Syst. Appl., vol. 110,
pp. 191–205, 2018.

[14] L. Chen, A. Zheng, Y. Feng, F. Xie, and Z. Zheng, “Software service
recommendation base on collaborative filtering neural network model,” in
Proc. Int. Conf. Serv.-Oriented Comput., 2018, pp. 288–403.

[15] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutierrez, “Recom-
mender systems survey,” Knowl.-Based Syst., vol. 46, pp. 109–132, 2013,
doi: 10.1016/j.knosys.2013.03.012.

[16] R. Yera and L. Martínez, “Fuzzy tools in recommender systems: A survey,”
Int. J. Comput. Intell. Syst., vol. 10, no. 1, pp. 776–803, 2017.

[17] J. Lu, D. Wu, M. Mao, W. Wang, and G. Zhang. “Recommender sys-
tem application developments: A survey,” Decis. Support Syst., vol. 74,
pp. 12–32, 2015.

[18] M. Aznag, M. Quafafou, and Z. Jarir, “Leveraging formal concept analysis
with topic correlation for service clustering and discovery,” in Proc. IEEE
Int. Conf. Web Serv., 2014, pp. 153–160, doi: 10.1109/ICWS.2014.33.

[19] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Collaborative web service QoS
prediction via neighborhood integrated matrix factorization,” IEEE Trans.
Serv. Comput., vol. 6, no. 3, pp. 289–299, Jul./Sep. 2013.

[20] X. Chen, X. Liu, Z. Huang, and H. Sun, “Regionknn: A scalable hybrid
collaborative filtering algorithm for personalized web service recommen-
dation,” in Proc. IEEE Int. Conf. Web Serv., 2010, pp. 9–16.

[21] J. Liu, M. Tang, Z. Zheng, X. F. Liu, and S. Lyu, “Location-aware and
personalized collaborative filtering for web service recommendation,”
IEEE Trans. Serv. Comput., vol. 9, no. 5, pp. 686–699, Sep./Oct. 2016.

[22] Y. Hu, Q. Peng, X. Hu, and R. Yang, “Time aware and data sparsity tolerant
web service recommendation based on improved collaborative filtering,”
IEEE Trans. Serv. Comput., vol. 8, no. 5, pp. 782–794, Sep./Oct. 2015.

[23] G. Zou, M. Jiang, S. Niu, H. Wu, S. Pang, and Y. Gan, “QoS-aware web
service recommendation with reinforced collaborative filtering,” in Proc.
Int. Conf. Serv.-Oriented Comput., 2018, pp. 430–445, doi: 10.1007/978-
3-030-03596-9_31.

[24] F. Xie, J. Wang, R. Xiong, N. Zhang, Y. Ma, and K. He, “An integrated
service recommendation approach for service-based system development,”
Expert Syst. Appl., vol. 123, pp. 178–194, 2019.

[25] T. Liang, L. Chen, J. Wu, H. Dong, and A. Bouguettaya, “Meta-path based
service recommendation in heterogeneous information networks,” in Proc.
Int. Conf. Serv.-Oriented Comput., 2016, pp. 371–386.

[26] F. Xie, L. Chen, D. Lin, Z. Zheng, and X. Lin, “Personalized service recom-
mendation with mashup group preference in heterogeneous information
network,” IEEE Access, vol. 7, pp. 16155–16167, 2019.

[27] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003. [Online]. Available:
http://jmlr.csail.mit.edu/papers/v3/blei03a.html.

[28] H. Cheng et al., “Wide & deep learning for recommender systems,”
in Proc. Workshop Deep Learn. Recommender Syst., 2016, pp. 7–10,
doi: 10.1145/2988450.2988454.

[29] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neu-
ral collaborative filtering,” in Proc. Int. Conf. World Wide Web, 2017,
pp. 173–182, doi: 10.1145/3038912.3052569.

[30] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2016, pp. 855–864, doi: 10.1145/2939672.2939754.

[31] Y. Kim, “Convolutional neural networks for sentence classification,”
in Proc. Conf. Empirical Methods Natural Lang. Process., 2014,
pp. 1746–1751. [Online]. Available: https://www.aclweb.org/anthology/
D14-1181

[32] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vision Pattern Recognit., 2016, pp. 2818–2826.

[33] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and
performance: A survey,” Knowl.-Based Syst., vol. 151, pp. 78–94, 2018,
doi: 10.1016/j.knosys.2018.03.022.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2015, arXiv: 1412.6980, [Online]. Available: https://arxiv.org/abs/1412.
6980

[35] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proc. Conf. Empir ical Methods Natural Lang.
Process., 2014, pp. 1532–1543. [Online]. Available: https://www.aclweb.
org/anthology/D14-1162

[36] M. D. Hoffman, D. M. Blei, C. Wang, and J. W. Paisley, “Stochastic
variational inference,” J. Mach. Learn. Res., vol. 14, pp. 1303–1347, 2013.
[Online]. Available: http://jmlr.org/papers/v14/hoffman13a.html

[37] W. Gao and J. Wu, “A novel framework for service set recommendation
in mashup creation,” in Proc. IEEE Int. Conf. Web Serv., 2017, pp. 65–72,
doi: 10.1109/ICWS.2017.17.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
surpassing human-level performance on imagenet classification,” in Proc.
IEEE Conf. Comput. Vision Pattern Recognit., 2015, pp. 1026–1034,
doi: 10.1109/ICCV.2015.123.

Yutao Ma (M’10) received the Ph.D. degree in com-
puter science from Wuhan University, Wuhan, China,
in 2007.

He is currently an Associate Professor with the
School of Computer Science, Wuhan University. He
was with the Institute of China Electronic System
Engineering Corporation, Beijing, China, as a Post-
doctoral Fellow and has been a Visiting Scholar with
the Department of Electronic and Computer Engi-
neeringy, Lehigh University, Bethlehem, PA, USA.
His research interests include the development and

maintenance of large-scale software service systems. He has authored and
coauthored more than 50 peer-reviewed papers and received two best paper
awards at international conferences.

Dr. Ma is currently a Senior Member of the China Computer Federation (CCF)
and a member of the CCF Technical Committee on Services Computing.

Xiao Geng received the B.S. degree in computer
science from the Central University of Finance and
Economics, Beijing, China, in 2018. He is currently
working toward the master’s degree with the School
of Computer Science, Wuhan University, Wuhan,
China.

His current research interests include services com-
puting, recommender systems, and deep learning.

Jian Wang (M’11) received the Ph.D. degree in com-
puter science from Wuhan University, Wuhan, China,
in 2008.

He is currently a Lecturer with the School of
Computer Science, Wuhan University. His current re-
search interests include services computing and soft-
ware engineering. He has authored and coauthored
more than 40 peer-reviewed papers.

He is currently a Member of the IEEE, a mem-
ber of the China Computer Federation (CCF), and a
member of the CCF Technical Committee on Services
Computing.

https://dx.doi.org/10.1016/j.knosys.2013.03.012
https://dx.doi.org/10.1109/ICWS.2014.33
https://dx.doi.org/10.1007/978-3-030-03596-9_31
http://jmlr.csail.mit.edu/papers/v3/blei03a.html
https://dx.doi.org/10.1145/2988450.2988454
https://dx.doi.org/10.1145/3038912.3052569
https://dx.doi.org/10.1145/2939672.2939754
https://www.aclweb.org/anthology/D14-1181
https://dx.doi.org/10.1016/j.knosys.2018.03.022
https://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/D14-1162
http://jmlr.org/papers/v14/hoffman13a.html
https://dx.doi.org/10.1109/ICWS.2017.17
https://dx.doi.org/10.1109/ICCV.2015.123

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

