
IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 2, APRIL 2021 599

Success and Failure in Software Engineering:
A Followup Systematic Literature Review

Damian A. Tamburri , Fabio Palomba , Member, IEEE, and Rick Kazman , Senior Member, IEEE

Abstract—Success and failure in software engineering are still
among the least understood phenomena in the discipline. In a recent
special journal issue on the topic, Mäntylä et al. started discussing
these topics from different angles; the authors focused their con-
tributions on offering a general overview of both topics without
deeper detail. Recognizing the importance and impact of the topic,
in this article we have executed a followup, more in-depth system-
atic literature review with additional analyses beyond what was
previously provided. These new analyses offer: a grounded-theory
of success and failure factors, harvesting over 500+ factors from the
literature; 14 manually validated clusters of factors that provide
relevant areas for success- and failure-specific measurement and
risk-analysis; a quality model composed of previously unmeasured
organizational structure quantities which are germane to software
product, process, and community quality. We show that the topics
of success and failure deserve further study as well as further
automated tool support, e.g., monitoring tools and metrics able
to track the factors and patterns emerging from this article. This
article provides managers with risks as well as a more fine-grained
analysis of the parameters that can be appraised to anticipate the
risks.

Index Terms—Success and failure, software engineering,
systematic literature reviews.

I. INTRODUCTION

IN THE scope of software production and operation, the
notions of success and failure are intriguing, having different

forms and manifesting under varied conditions [1], [2]. In a
recent special issue of Empirical Software Engineering on this
topic [3], the editors remarked that, “despite ongoing concerns
over the failure rate of software projects, basic questions such
as “How do we measure general software success?” and “How

Manuscript received September 12, 2019; revised January 14, 2020; accepted
February 23, 2020. Date of publication June 1, 2020; date of current version
February 5, 2021. This work was supported in part by the European Commis-
sion under Grant 0421 (Interreg ICT), Werkinzicht, in part by the European
Commission under Grant 787061 (H2020), ANITA, in part by the European
Commission under Grant 825040 (H2020), RADON, in part by the European
Commission under Grant 825480 (H2020), SODALITE, and in part by the Swiss
National Science Foundation through the SNF Project PZ00P2_186090 (TED).
Review of this manuscript was arranged by Department Editor Tugrul Daim.
(Corresponding author: Damian Andrew Tamburri.)

Damian A. Tamburri is with the Eindhoven University of Technology, The
Jheronimus Academy of Data Science, 5612 AZ Eindhoven, The Netherlands
(e-mail: d.a.tamburri@tue.nl).

Fabio Palomba is with the University of Salerno, 84084 Fisciano SA, Italy
(e-mail: fpalomba@unisa.it).

Rick Kazman is with the University of Hawaii & SEI/CMU, Honolulu, HI
96822 USA (e-mail: kazman@hawaii.edu).

Color versions of one or more of the figures in this article are available online
at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEM.2020.2976642

can software failure rates be measurably reduced?” remain still
only partially explored.” The editors concluded that address-
ing these questions is critical to further understand and steer
software projects toward success. We pick up the challenge
from where it was left off [3]. In this article, we refine and
reexecute the research design set up by the editors in their special
issue introduction, aimed at identifying and analyzing a set of
papers focused on the topics of success and failure in software
engineering research and practice.

The goal we address is to add further analyses on top of
what Mäntylä et al. [3] offer as a preliminary analysis. Our
objectives with these additional analyses are threefold. First,
we aim to elicit a grounded theory of success and failure factors
so that other researchers may identify such factors and how to
measure them, ideally creating a general software success (or
failure) prediction model. Second, we aim to highlight the most
relevant themes of factors thus identifying the areas of software
engineering research and practice that are undersupported by
measures. Third, we aim to elicit a rigorous quality model for
these undersupported quantities.

Briefly, our results show that success and failure in software
projects is mediated by more than 500 factors (e.g., presence
of users directly in the software process [4]) arranged in 40+
core-concepts (e.g., effort estimation). Furthermore, there exist
14 themes along which success and failure are determined (in
practice) and studied (in research), such as best practices evalua-
tion and monitoring, or software measurement or organizational
structure and motivation. Finally, 5 out of the 14 themes reflect
organizational structure quality which, to date, does not have a
rigorous model (that is, a set of measurable quantities [5]). As
the final contribution of this article, we offer a first attempt at
such a quality model that captures the most recurrent measurable
factors and quantities from the aforementioned five themes, such
as truck-factor [6] or socio-technical congruence [7].

Replication package: Finally, to encourage replication, we
make available a comprehensive package containing all papers,
grounded-theory sources as well as analysis of the data per-
formed in this article.1

The rest of this article is organized as follows. Section II
outlines the terminology used in this article. In Section III,
we describe our research methods, while Section IV overviews
the results achieved. Section V provides discussions on the key
findings of the article. Finally, Section VI concludes this article.

1[Online]. Available: https://figshare.com/s/e6f0968e55c2cd024389

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1230-8961
https://orcid.org/0000-0001-9337-5116
https://orcid.org/0000-0003-0392-2783
mailto:d.a.tamburri@tue.nl
mailto:fpalomba@unisa.it
mailto:kazman@hawaii.edu
https://ieeexplore.ieee.org
https://figshare.com/s/e6f0968e55c2cd024389

600 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 2, APRIL 2021

II. SCOPE AND TERMINOLOGY

The scope intended for this article draws primarily from the
single preliminary study reported in Mäntylä et al. [3], which
encompasses a very large sample of research and discusses the
concepts of success and failure or the context in which such
phenomena manifest themselves from a very high level. The
scope we set out to investigate as a spin-off of the aforementioned
previous work encompasses the high relevance and high-impact
research currently available in the literature that elaborates either
on 1) the primary studies emerged in Mäntylä et al. [3] or 2) on
any of the concepts or conclusions emerged in the same paper.
With respect to point 1 above, we are aware that these phenomena
are complex and cannot be simplistically reduced to mere factors
and dimensions. Our goal is to build upon the work by Mäntylä
et al. and consequently collect a grounded theory, which acts
as a foundation of what is known about these phenomena such
that further work can be developed based on this foundation.
With respect to point 2 above, this article is a followup study
to Mäntylä et al. and, for this reason, we inherit much of
the terminology previously used in the target study [3]. In the
following, we report those terms and their associated meaning:

Context: This reflects successful or failed software engineering
projects and their study from any empirical, experimental, or
theoretical perspective.
Success: Success represents the long-lasting conditions where-
fore a software project is maintained in a state meeting its
expectations.
Failure: A failure is the moment in time where a software project
no longer meets its expectations.

In the following section, we describe the research methodol-
ogy we employed to conduct our followup systematic literature
review.

III. RESEARCH APPROACH

A. Research Design

The goal of this article is to obtain an in-depth overview on
the phenomena of software success and failure. The purpose
is to provide the research community with actionable insights
on the factors impacting a software project to be successful, so
that future studies could be devised to explicitly target novel
methodologies and methods to take those factors under control.
Our perspective is of both researchers and practitioners, who are
interested in gathering deeper knowledge of the attributes to be
monitored to mitigate the risk of software failure.

To this end, we aimed at providing further analyses on top
of the literature retrieved to provide a greater depth of under-
standing. The analyses we added aim at answering the following
research questions (RQs).

RQ1. What factors are reportedly connected to success or
failure?

RQ2. What themes emerge across such factors?
RQ3. What themes are currently unobserved and what pre-

viously existing metrics can support these unobserved
themes?

Note that, in the scope of RQ3, by unobserved we mean the
factors and themes emerging from RQ1 and RQ2 that currently

have no accepted metrics to support their appraisal. The ultimate
goal of this research question is to provide practitioners with a
quality model, that is, an aggregate of measures which were pre-
viously defined, evaluated, and automated for these unobserved
factors and themes. Fig. 1 recaps the main steps undertaken to
attain results as well as the inputs and outputs of each phase
using a simple box and line diagram. The main boxes in the
figure represent steps that were undertaken while smaller boxes
represent results of those steps linked by action arrows; for the
early dataset and sample selection stages, arrows are augmented
with quantities connected to the sampling process. Finally, dot-
ted lines connect each analysis (quantitative or qualitative) with
its analysis results.

B. Literature Retrieval Approach

To retrieve the target literature, we executed an augmented re-
trieval strategy described in previous work [3]. The new strategy
focuses on eliciting papers that focus on industrial applicability
of the proposed claims, results, and contributions or which
offer results stemming from industrial practice and experience.
Specifically, to retrieve papers we execute the following search
string:

TITLE-ABS ((“software engineering” OR “software de-
velopment” OR “software project” OR “it project” OR “it
development” OR “it engineering”) AND TITLE (“success”
OR “failure”) AND BODY (“case-study” OR “industrial-*”
OR “practiction*”))

where TITLE-ABS indicates that the subsequent search terms
are considered only in the scope of title and abstract of the papers.
TITLE indicates that the search is conducted only on papers titles
whereas BODY indicates that the search is conducted only on
the body of the articles. This is the exact search string defined
by Mäntylä et al.

The search process has been conducted on a number of
different databases, namely:

1) IEEE Xplore digital library;2

2) ACM digital library;3

3) ScienceDirect;4

4) SpringerLink;5

5) Scopus;6

6) Engineering Village;7

The selection of these databases was driven by our willingness
to gather as many papers as possible to properly conduct our
systematic literature review. In this respect, the selected sources
are recognized as the most representative and complete for
Software Engineering research and are used in many other SLRs
[8] because they contain a massive amount of literature—journal
articles, conference proceedings, books, etc.—related to our
research questions. As described by Mäntylä et al. [3], no paper

2[Online]. Available: http://ieeexplore.ieee.org
3[Online]. Available: https://dl.acm.org
4[Online]. Available: http://www.sciencedirect.com
5[Online]. Available: https://link.springer.com
6[Online]. Available: https://www.scopus.com
7[Online]. Available: https://www.engineeringvillage.com

http://ieeexplore.ieee.org
https://dl.acm.org
http://www.sciencedirect.com
https://link.springer.com
https://www.scopus.com
https://www.engineeringvillage.com

TAMBURRI et al.: SUCCESS AND FAILURE IN SOFTWARE ENGINEERING: A FOLLOWUP SYSTEMATIC LITERATURE REVIEW 601

Fig. 1. Overview of our research design, from sources to results.

on success and failure in software engineering was published
before 1970: thus, our search targeted papers published between
January 1970 and August 2019.

With the above procedure we elicited an initial set of 609
papers, of which 159 were on software project failures and 434
on software project successes with the others describing case-
studies or direct practitioner experience without any specific
success or failure discussion.

Then, we executed the same manual filtering process of
Mäntylä et al. [3] to remove nonrelevant sources. Specifically,
we filtered out:

1) papers that were not written in English;
2) papers whose full text was not available;
3) short papers (up to four pages) just reporting preliminary

results;
4) papers from workshops;
5) papers that adopted the term “failure” to indicate software

faults;
6) papers that described a method or tool that theoretically

would reduce the risk of project failure or increase the
likelihood of success, but that did not actually assess it;

7) papers that described the failure or success of introducing
new tools or processes, but that did not relate this to
project success or failure;

8) papers referring to just one development phase rather
than the entire software lifecycle;

9) papers that were about project success and failure, but
that did not provide research results;

10) duplicate papers; specifically, we excluded conference
papers in case an extended journal article version was
available.

The manual filtering was conducted by two of the authors of
this article, who jointly scanned each candidate paper and judged
its suitability for the study. This initial process took two weeks
and led to the final selection of 89 primary studies, almost evenly
balanced between success and failure. These papers all come
from well established and high-ranking8 conferences and jour-
nals sponsored by ACM, IEEE, Springer, Elsevier, and Wiley.

C. Analysis and Synthesis Methods

1) Qualitative Analysis: Analysis and synthesis of results
were carried out through the well-known grounded theory (GT)
approach [9].

8either class A* or A or B from the CORE Edu Rankings portal http://portal.
core.edu.au/

Fig. 2. Grounded theory as employed in this article.

Fig. 2 outlines how we realized and represented the the-
ory. Specifically, core concepts are represented as boxes with
factors as attributes; relations reflect either memos or explicit
relations found between factors. Every cluster is mapped to a
note reporting its frequency and relative weight (measured in
terms of reported code occurrences, and in how many papers
those codes were reported) while every factor is mapped to
a reference literature element with indication of whether the
factor was leading to success (filled circle) or failure (unfilled
circle). For example, the usage of the buddy-pairing best practice
as part of Cisco systems’ strategies to address global software
engineering from one of our success-story reports is tagged
with the “best practice” code, as well as the “global-software
engineering process” code.

2) Quantitative Analysis: Following an approach similar to
that proposed by Mäntylä et al. [3], we used the well-established
topic modeling technique known as latent Dirichlet allocation
(LDA). However, rather than applying the technique to our
papers as done previously, we applied the technique to cluster the
factors emerging from our grounded theory activities, along with
their textual definitions. Clustering of such factors allowed us
to elicit a detailed view of the factors themselves, thus enabling
the extraction of valuable themes among them. Furthermore, to
preserve the relations elicited through grounded theory, the clus-
ter analysis was conducted using the native XMI formatted files
extracted from the models defined previously in Section III-C1.

For this topic modeling exercise, log-likelihood was used
to assess clustering appropriateness. We began with the same
number of clusters as the target study (k = 10 clusters), but that
number was increased until at least one of the newly emerging
clusters contained less than half of the mean population of factors

http://portal.core.edu.au/

602 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 2, APRIL 2021

Fig. 3. Grounded theory content analysis.

in the previous round. This approach was aimed at allowing the
extraction of themes that were meaningful, i.e., they reflected
semantic commonalities among factors. In addition, we used
hyperparameter tuning over LDA hyperparameters alpha and
beta [10]. To conduct all the above preprocessing and analyses,
we exploited the NetCulator bibliometric analytics tool9 that
supports LDA and a number of similar natural-language analyses
and clustering techniques.

IV. RESULTS

A. Grounded Theory of Success
and Failure: General Overview

The entire grounded theory we elicited cannot be trivially
represented and reported here because of its size and extensive
detail. The grounded theory counts 561 factors and 40 core
concepts in total, linked by 84 cooccurrence relations. How-
ever, an overview is available to browse as an online image.10

Furthermore, the grounded theory is available for further study
as part of our replication package in three formats: MagicDraw
resident UML format, XMI 2.11, and PDF.

In the scope of this article and to address RQ1, we of-
fer an outline of the core-concepts and their content analysis

9[Online]. Available: https://www.netculator.com/
10[Online]. Available: https://tinyurl.com/y79hfvby

[11]. Fig. 3 plots an overview of the most frequently occur-
ring core-concepts captured with the method as described in
Section III-C1. This plot shows the clusters ordered from top to
bottom by increasing number of coded papers per cluster; every
bar reports the stacked numbers of 1) coded occurrences, 2)
papers in which the codes were applied for the core-concept, and
3) number of factors reported for the core concept. Occurrences
reported on nine papers or fewer were omitted for the sake of
readability.

The clusters we report reflect an equal mix of typical software
lifecycle phases (e.g., requirements engineering, at the top of
Fig. 3) as well as practices used in those phases (e.g., V&V
and Automated Testing). Moreover, the clusters reflect varied
levels of abstraction among core concepts. Remarkably, the
most frequent code is in the low-abstraction spectrum of the
aforementioned level; according to our analysis, the application
of best practices as well as their success appraisal (bottom of
the plot) is the most frequent code cluster. This evidence reflects
that best practices as a construct of software engineering shows
a presence, which is comparable to the most frequent core-
concepts. This indicates, first, a gap in the levels of abstraction
concerning both success and failure as evident from the state of
the art and second, a relative distance in the depth of knowledge
in the respective clusters found. Specifically, the clusters reflect
the definitions outlined below:

1) Requirements engineering: Factors in this cluster address
the creation, processing, resolution, traceability, or qual-
ity of requirements as well as any factors influencing

https://www.netculator.com/
https://tinyurl.com/y79hfvby

TAMBURRI et al.: SUCCESS AND FAILURE IN SOFTWARE ENGINEERING: A FOLLOWUP SYSTEMATIC LITERATURE REVIEW 603

any phases of their lifecycle. Example factors include
requirements validation by end users as well as use of
adequate language with the stakeholders.

2) Software knowledge engineering: Factors in this cluster
address the creation and retrieval of knowledge and
artifacts of a software design, its implementation, and
its operations. Sample factors include tacit knowledgeas
well as knowledge brokers.

3) Project management: Factors in this cluster address the
fallacies and pitfalls manifesting during, or related to the
role of project management. Factors include the choice
of software development model as well as post-mortem
analysis.

4) Agile and lean-*: Factors in this cluster address any pos-
itive or negative characteristics agile tenets, according to
the definitions in Schwaber [12] and Kumar [13]. Sample
factors include developer software production worflow
awareness as well as human agile metrics.

5) Process improvement: Factors in this cluster refer to the
quantities and qualities of software processes that can
be tracked and measurably improved. For example, the
adoption of a common vocabulary or the development of
a shared vision.

6) System design: Factors in this cluster refer to the pros,
fallacies, and pitfalls surrounding or in connection to
a system’s design and designers. For example, factors
include software design reviews as well as detailed design
verification.

7) Verification and validation, automated testing: Factors
in this cluster refer to connections between software
success/failure and its V&V processes and tools. Sample
factors include design-for-testability and ensuring test
coverage.

8) People and motivation: Factors in this cluster address
the human and organizational issues of people and their
motivations. Sample factors include low staff turnover
and supportive relationships.

9) Project characteristics: Factors in this cluster cover
characteristics of projects and their role as mediators
for success and failure. Sample factors include project
lifespan and object-level concurrency control.

10) Success and success inhibitors: This cluster contains
success drivers and factors contributing to its definition
and its inhibition. Such factors include errors in tracking
the actual costs and debts as well as dependence on other
projects.

11) Failure and modes of failure: This cluster contains failure
drivers and factors contributing to software failure as well
as modes of failure reported in the literature. Factors in-
clude failure reticence and wrong automation of manual
processes.

12) Best-practices: This cluster contains factors relating to
the definition, application, and successful appraisal of
best practices. Out of all the clusters, this one the least
abstract, containing just three subfactors: 1) the degree of
dissemination and use of best practices; 2) the appraisal

of successful use of best practices; 3) preconditions for
best practice use.

B. Success and Failure Distilled: Topic Modeling Results

The results of the topic modeling exercise are recapped in
Figs. 4 and 5.

Fig. 4 outlines the raw results of the 14 themes emerging
from topic modeling. Dots indicate most-probable word radixes
belonging to each theme (not reported on the figure for the
sake of brevity but highlighted later in this section); edges
reflect relations among core concepts from our grounded theory
exercise.

On the other hand, Fig. 5 reports a manual representation of
the themes emerging from the topic modeling exercise. Names
for the themes were chosen independently by two analysts, with
subsequent conflict resolution (Kalpha = 0.89). For the manual
creation of the figure, we also used the relations previously
reported as part of the grounded theory exercise (directed arrows
in Fig. 5). However, for the sake of visualization, all relations
were collapsed into a single (unweighted) arrow linking the
clusters occurring in each relation. Based on the relations, the
emerging sets of themes self-arranged into two domain areas
that delimit the phenomena under study (success and failure of
software engineering projects).

The area on the left-hand side of Fig. 5 incorporates people
themes (subversion [15], organizational structure and motivation
[16], agility [17]) as well as themes that discuss internal software
product characteristics, that is, themes of characteristics of
the product which are not perceived externally by end-users—
specifically, the quality of documentation [18], user-centric de-
sign [19], software measurement [20], software planning and
estimation [21]. Finally, this area contains best-practices eval-
uation and monitoring, which is often considered orthogonal
to all of the above but empirically is linked to the emergence of
subversion [22] and is reportedly connected to software planning
and effort estimations.

The area on the right-hand side of Fig. 5 incorporates
process-specific themes (process improvement [23], accuracy
of automated quality predictions [24]) as well as external
product themes, that is, characteristics of the software product
that are perceived externally—specifically, the distribution of
its software process [25], its interaction design characteristics
[26] as well as the extent to which external products
have contributed to that product through prototyping and
reuse [27].

The themes emerging in both domain areas are fleshed out in
the following sections, arranged left-to-right, and top-to-bottom
following the contents of Fig. 5. We provide definitions of
themes and, as is typical for LDA-based topic modeling, we
offer the list of the most important terms as determined by the
algorithm (arranged by decreasing rank with a cutoff below 20%
probability) for each theme.

1) Domain Area 1: People, Internal Software Characteris-
tics, Best Practices:

1) Subversion: The concept of subversion refers to con-
cepts and challenges of subversize stakeholders previously

604 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 2, APRIL 2021

Fig. 4. Topic modeling clustering topology analysis [14] results.

Fig. 5. Summary of topic modeling results.

introduced by Ross and Glass [15]. In the scope of our
topic modeling exercise, this theme corresponds to most
recurrent words and substrings (using wildcards) specified
as follows: friction*, restrict*, *communication*, *coop-
eration*, disregardof*, and lackof*.

2) Skills and Roles: The concept of software skills and ap-
propriate role management is still under investigation from
several perspectives [28], [29], though most prominently
from an educational viewpoint. Concerning the theme,

most recurrent words and substrings we reported are: soft*,
*motivation, coaching, *experience, domain*, trust, *size,
core-*, and connected*.

3) Best practices evaluation and monitoring: We reported
a strong presence of factors and themes relating to the
application, appraisal, and effectiveness measurement of
best practices, intended as recurrent solutions for known
and established problems [30]. Most recurrent words
and substrings for this topics are as follows: defect-*,

TAMBURRI et al.: SUCCESS AND FAILURE IN SOFTWARE ENGINEERING: A FOLLOWUP SYSTEMATIC LITERATURE REVIEW 605

accura*, change-*, *prediction, *accuracy, *success,
and *practice.

4) Software measurement: Software measurement [20] is
a key activity in the scope of software engineering re-
search. Most recurrent words and substrings concerning
this theme within the scope of our results are as follows:
quality, define, instrument*, customer*, stakeholder*,
community, and *interpretation.

5) Organizational structure and motivation: Organizational
structure refers to the graph of recurrent, explicit or im-
plicit relations of coordination, co-operation, and com-
munication relations occurring among individuals in an
endeavor [16]. The terms occurring for this theme reflect
a prominent role of motivation as a driving force. Specif-
ically, recurrent words and substrings are: turnover, *mo-
tivated, environment, feedback, recognition*, and *moti-
vator*.

6) Software planning and effort estimation. A well-
established area of software engineering research and
practice, software planning, and effort estimation are
key activities in software engineering economics [31]. In
the scope of our work, most recurrent words and sub-
strings relating to this theme are: misuse, earn*, staff*,
and governance.

7) Documentation quality: From the perspective of software
maintenance and evolution, documentation is a discrimi-
nant in successful or failing software projects [32]–[34].
We obtained the following recurrent words and substrings
for this theme: *knowledge*, domain*, requirements*,
formal*, granularity, broker*, and post-mortem.

8) Agility: Agility clearly relates to the use, level of, and
confidence around agile methods [35]. The adoption of ag-
ile methods is an established fact in software engineering
literature [36]; however, the factors that lead to successful
or failing attempts at harnessing agile methods are still left
largely to speculation. In the scope of our topic modelling
exercise, the following terms were reported: self*, user*,
value*, pressure*, pair*, test*, and human*;

9) User-centric design: Finally, in the scope of topics re-
lating to people, internal software characteristics, as well
as best practices, we reported several factors and recur-
rent keywords relating to user-centric design [37], that
is, the framework of engineering where usability goals,
user characteristics, environment, and workflows are given
attention at each stage of the (software) design process.
Many of the keywords reported for this theme relate to
how practices from this framework lead to successful or
failing engineering attempts. Specifically, words and sub-
strings reported are: persona*, communit*, organization*,
usabilit*, integrat*, and context*;

2) Domain Area 2: Processes and External Product
Characteristics:

1) Process and product quality prediction accuracy: This
theme relates to the accuracy with which a quality predic-
tion is made or appraised in the scope of software engineer-
ing research [38], [39]. Several works from the literature
have touched upon this topic, most prominently along the

lines of defect prediction [24] and similar endeavours.
Words and substrings featured in this theme are: histor*,
objective*, improvement, additional*, and technolog*.

2) Interaction design: Interaction design refers to the design
of interactive products and services in which design focus
goes beyond the product under development and includes
the ways users are likely to interact with that product [40].
Although not a common software engineering topic of
focus, interaction design reflects several keywords occur-
ring frequently in general software engineering literature,
most prominently: socio-*, man-machine*, cognitive*,
anthropo*, bond*, and operation*.

3) Global distribution: Global distribution in the scope of
the themes emerging from our topic modeling refers to
the general subfield of software engineering that stud-
ies globally dispersed teams as part of global software
engineering and development [41], [42]. The most fre-
quent words and substrings relating to this theme are: re-
mote*, geograph*, standard*, expan*, distribut*, multi*,
and organization*.

4) Process improvement: Process improvement refers to the
segment of software engineering research and practice
dedicated to appraising and improving the quality of soft-
ware processes [43], [44]. In the scope of our topic mod-
eling, words and substrings relating to process improve-
ment are: progress*, train*, ad-hoc, capabilit*, principl*,
chang*, need*, expectation*, and assess*.

5) Reuse and Prototyping: The last emerging theme out of
topic modeling reflects the role of software reuse and rapid
prototyping as strategies for software engineering, where
reuse indicates the recycling of existing software assets
into a new or evolved version of a software product [45]
while prototyping reflects the preparation of mock-ups for
exploratory requirements engineering [46]. Key terms for
this theme are: decreas*, upgrad*, reverse, and cost*.

V. USAGE, IMPLICATIONS, AND THREATS TO VALIDITY

A. Discussion

Our results indicate that the phenomena of software success
and failure is extensive and span a large variety of factors and
themes, not all of which are currently measured or tracked.
Furthermore, there seems to be a mismatch or some form of
failure reticence in the field, since the literature reports a majority
of studies focused on software success as opposed to failure.

We conclude that further research should be dedicated into
both the phenomena under study, but emphasize that such re-
search should elaborate more on the phenomena associated with
software failure, the factors entailed, and their many relations
and ramifications.

Stemming from previous studies, we renew the conclusions
of those studies with our own data and observations. In addition,
we provide three other observations:

1) Creating and Validating Instruments for Measuring Suc-
cess: we confirm this finding from multiple perspectives.
For example, we discovered that the correct use and
appraisal of best practices in software engineering is least

606 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 2, APRIL 2021

understood and yet such understanding is urgent since it
often mediates software failure and success altogether.

2) Representative Sampling Without Population Lists: Al-
though we did not conduct any specific analysis to confirm
this finding, we did in fact report a relative paucity of
methodological detail in about 70% of the papers that we
surveyed. The lack of rigour and replicability compro-
mises the generalizability of individual findings.11

3) Identifying Empirically Validated and Actionable Ante-
cendents: Similarly to the previous point, we did not con-
duct any systematic analysis focusing on the antecedents
in question but we did report a relative lack of dimensions,
factors, and valid metrics from a considerable subset of the
primary studies. Specifically about 60% of the primary
studies do not conclude with measurable quantities to be
tracked and improved.

Furthermore, the study highlights several other findings, most
prominently on the importance of the dimensions of subversion
around software, described in both this article and its prece-
dent as the process whereby the values and principles of an
established software engineering project are undermined, in
an attempt to transform the social order and its structures of
power, authority, hierarchy, and social norms in line with some
desired end-state differing from the project goal. Our findings
highlight a prominence of subversive dimensions. The existence
and prominence of such dimensions further motivates streams
of inquiry around social software engineering [47] and the
quality of organizational and community structures [48]–[50]
for software engineering.

B. Addressing the Research Questions

This article set out to address three research questions,
namely:

1) What factors are reportedly connected to success or
failure?

2) What themes emerge across such factors?
3) What measurable quantities exist in themes that are not

currently being measured?
In addressing these research questions we reported, in the

scope of RQ1, the following:

Answer to RQ1. There exist more than 500 factors ar-
ranged in more than 40 topical clusters of factors. Among
these clusters, the most impactful in terms of occurrence and
frequency (established via content analysis) range from soft-
ware engineering phases such as requirements engineering to
the use and effectiveness-appraisal of best practices. Further
research can use the isolated clusters (and the factors therein)
to devise tools and metrics for continuous monitoring and
analysis.

Furthermore, in the scope of RQ2, we aimed to determine
additional themes within the factors, beyond those found in our

11Nevertheless, to encourage replication, a comprehensive replication pack-
age is provided online here: https://figshare.com/s/e6f0968e55c2cd024389

manual qualitative clustering. For this second endeavour, we
reported the following:

Answer to RQ2. There exist 14 underlying themes among
the more than 500 factors in our analysis. Themes emerging
from this analysis constitute essential risk engineering targets
for successful software engineering.

Based on our results and the answers to both research ques-
tions, the two perspectives that may make practical use of the
synthesis that we have provided reflect practitioners’ efforts
in avoiding failure and researchers’ efforts in figuring out and
measuring both success and failure.

On one hand, practitioners can focus on the factors (and
clusters thereof, see Fig. 3) that reflect 1) success and success
inhibitors, 2) failure and failure modes as well as 3) best prac-
tices and their evaluation. In so doing, practitioners can use the
factors we provide as indicators to assess their project status and
can plan and instrument corrective actions.

On the other hand, researchers can use the theoretical mod-
eling exercise reported in Fig. 3 to further understand and
potentially measure the factors, focusing on operationalizing any
factors that were not previously measured. At the same time, the
topic modeling exercise we reported in Section IV-B could be
used as a basis to design, prototype, and evaluate automated
computational intelligence [51] methods, tools, and techniques
to automatically determine the status of software projects, e.g.,
analyzing data stemming from the DevOps pipelines around
such projects.12

Finally, in the scope of RQ3, we set out to identify the
dimensions emerging from the previous analyses which, to date,
do not have any automated means of measurement, tracking, and
improvement in software engineering research and practice. To
address this gap, we elaborated a quality model [52] obtained by
identifying the factors from our study (RQ1 and RQ2), which
are currently not supported by any artefact corresponding to the
definition of a quality model [53]. A quality model establishes
relationships between project quality outcomes (e.g., bug rates,
issue resolution time, size and vigor of the community, etc.) and
characteristics of the product and its community. The following
section outlines this contribution in more detail.

C. Quality Model for Unobserved
Software Quality Dimensions

To address the gap identified by RQ3, we operated a simple
systematic search of every keyword discovered as part of topic
modeling (see RQ2, Section IV) along with the additional search
string defined as follows:

quality ∧ (model V framework V metric V measure V
measurement V analysis V parameter).

As a result of this exercise, our model addresses three un-
observed themes: 1) subversion; 2) organizational structure and
motivation; 3) skills and roles.

12[Online]. Available: https://dzone.com/articles/role-of-predictive-
analytics-in-devops

https://figshare.com/s/e6f0968e55c2cd024389
https://dzone.com/articles/role-of-predictive-analytics-in-devops

TAMBURRI et al.: SUCCESS AND FAILURE IN SOFTWARE ENGINEERING: A FOLLOWUP SYSTEMATIC LITERATURE REVIEW 607

We aggregated all metrics and empirically investigated quan-
tities from software engineering research that emerged from the
systematic search above. The metrics and quantities involved
are all related to features and characteristics of a social graph
construct, known as Developer Social Network, loosely defined
by Meneely and Williams [54] as the superimposed communi-
cation and collaboration networks structures emerging during
the software development. The aforementioned construct was
previously touched upon by several other research attempts, also
in relation to software failure [55]. We reuse this construct as a
reference to flesh out the metrics we discovered in the literature
that address the aforementioned observation gaps. A total of 38
metrics were found.

An elaboration in full detail of all the 38 metrics for of each
quality category featured in the model is outside of the scope of
this contribution, which is aimed at offering an aggregate quality
model rather than a detailed treatise or synthesis of each factor.13

The emerging quality model features five categories of pre-
viously defined, validated metrics that can aid the observability
of subversion, organizational structures and motivation, as well
as skills and roles. These metrics span:

1) developer social networks (DSNs)—these mainly reflect
population metrics applied in the context of DSNs [57];

2) socio-technical—these mainly reflect quantities that were
introduced to relate communication (i.e., information
interchange) and collaboration (i.e., cooperated action
over software artefacts) together, most prominently socio-
technical congruence [58];

3) core-community members—these mainly reflect the dif-
ference between features in the core and periphery of the
network structure [59], [60];

4) turnover—these mainly reflect the degrees of freedom or
variability of members within the DSN;

5) social networks analysis (SNA)—these mainly reflect the
use of “classical” SNA metrics that were previously ap-
plied in the context of software engineering [61].

To address RQ3 we argue as follows:

Summary for RQ3. There exist three themes emerging
from our systematic literature analysis that are currently
not supported by a full-fledged quality model. They are:
1) subversion; 2) organizational structure and motivation;
3) skills and roles. Nevertheless, there exist in the literature
a considerable number of metrics to address the aforemen-
tioned gaps. These metrics are openly available online [56]
and reflect five categories of quality that need to be explicitly
tracked to monitor the extent of software success and to ward
off software failure. The proposed quality model can be used
in conjunction with established technical, process, or other
quality models for software engineering practice.

13For complete details, the reader may refer to [56], which contains a complete
overview of all factors in the quality model, their operationalization, and their
implementations in practice.

D. Observations and Implications

First, from a purely statistical perspective, the clusters and
themes discussing best practices—their evaluation and moni-
toring as well as software success and failure—were the most
popular ones emerging from this article. Furthermore, these
themes and clusters emerged both from topic modeling and
grounded theory. And this topic by far outweighed all others
in terms of software engineering research and practice. This
finding confirms what was previously reported in Mäntylä et al.
[3]. Further research should thus be dedicated to establishing
this research cluster/theme as a research topic in its own right.

Second, based on the extent of our data (500+ factors over
40+ clusters), software success and failure are vast phenom-
ena, which deserve dedicated software engineering research on
their own. Specifically, the dimensions and factors along which
success (or failure) unfold need statistically significant factor
analysis using time-series analysis [62] or similar approaches to
effectively establish what factors and dimensions contribute to
or facilitate success. Conversely, our data indicate that we know
much more about success than we do about failure (e.g., see
Table III). The number of codes applied for the core concepts
of success and failure differ by almost 2 to 1 and the number of
papers in which these codes were applied is 1.7 times higher for
success. To address this gap like other engineering disciplines,
software engineering research should dedicate research to es-
tablish more background knowledge on software failure (e.g.,
reflecting postmortem analysis [63], empirical software failure
research, fault lines [64], etc.). In summary, further research
along this line should be dedicated to better understand software
failure, perhaps starting from well-known cases of software fail-
ure, e.g., in open-source. Specifically, open-source phenomena
such as forge failure, community forking, and sustainability
beyond forks are still not widely studied and thus deserve further
empirical and experimental research.

Finally, our three RQs together amount to a single key mes-
sage: software engineering is a perilous game of equilibrium
over as many as 500+ degrees of freedom. Constant feedback
loops between all areas of the organizational and technical
structures involved, be they open- or closed-source, is required
to maintain this equilibrium. Sustaining these feedback loops by
any means necessary should be a key goal for future software
engineering research.

E. Threats to Validity

The conclusion provided by our study might have been threat-
ened by a two main factors: the collection of a complete set of
papers on the subject of interest and the way we analyzed the
collected sources to provide new knowledge.

In the first instance, the major challenge of a systematic
literature review is that of finding a comprehensive set of papers
to study and analyze. In our case, we built a search string that
not only included keywords coming from the reference work of
Mäntylä et al. [3], but also aimed at retrieving papers offering
results stemming from industrial practice and experience. Using
this strategy, we were able to survey the literature on success and
failure more comprehensively and from different perspectives.

608 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 2, APRIL 2021

In doing so, we queried all major databases currently available
in the software engineering research, hence increasing the com-
prehensiveness of our research. Furthermore, it is worth noting
that two authors jointly scanned each of the papers coming from
the application of the search string with the aim of 1) assessing
its fitting to the goals of the article, thus discarding nonrelevant
ones by means of the exclusion criteria defined in Section ??
and 2) increasing the overall reliability of the methodological
procedure, by conducting a joint effort in evaluating it.

When analyzing the sources retrieved after the application of
the search string, we applied formal grounded theory methods to
let emerge themes related to software engineering success and
failures. To increase the reliability of the applications of such
a methodology in our context, two authors of this article have
jointly performed the task: they analyzed each of the retrieved
sources to understand concepts and assign codes. Furthermore,
to ensure internal and construct validity even further, the set of
codes for grounded theory was later double-checked by an exter-
nal researcher having more than 10 years of research experience,
who fully confirmed the initial codes assigned by the two authors
of this article. With these steps, we aimed at increasing the
overall validity and reliability of the reported results; neverthe-
less, we cannot exclude possible imprecision and/or subjective
judgment that may have played a role in the elaboration of the
codes. For these reasons, we make our data publicly available
to enable further replications and verification of our analyses.

VI. CONCLUSION

This section reports on the practical usage of the results
achieved in this article and outlines our future research agenda
on the topic.

A. Results Usage in Practice

From a more practical perspective, the results provided in the
previous pages can be used in at least four practical scenarios.

First, practitioners steering their own software engineering
endeavours can use the overview provided in Fig. 3 and 5 to un-
derstand the potential areas at risk within their software projects.
Later, once these areas are understood, practitioners can use
the more fine-grained and detailed grounded theory to pick and
choose which factors are known inside those sensitivity areas.
In the same vein, practitioners can also bootstrap new software
engineering endeavours providing an appropriate software risk
analysis starting from the results we have provided.

Second, practitioners can use the metrics and indicators ac-
counted for in our grounded-theory or any of its syntheses
in this article as input for organizational quality tracking and
continuous improvement, just as technical metrics are used to
track and improve software coding practices. In line with this
contribution, we have designed and implemented a research tool
to automate the elicitation and analysis of such metrics. This tool
is being refined based on a fork of the Siemens CodeFace tool14

and is currently under experimentation.15

14[Online]. Available: http://siemens.github.io/codeface/
15The tool is available and free to use under the Apache 2 license agreement:

https://github.com/maelstromdat/CodeFace4Smells

Third, practitioners and software vendors active in the quality
assurance software tools market segment can use the factors and
reference analyses in the scope of our RQs to refine their tools
in line with the findings of this study or even devise new tools
to support the unobservable dimensions isolated as part of our
response to RQ3.

Fourth, practitioners can conduct a self-assessment of their
software projects with respect to the factors we summarized
in the previous sections. A rudimentary risk self-assessment
methodology entails at least the following steps.

1) Download the grounded-theory model we have provided
online.16

2) Use the model as a checklist to assess whether failure-
inducing factors (those marked with an empty circle linked
note reporting the papers discussing them) may be leading
to risks of failure.

3) Use the model as a checklist to assess whether success-
facilitating factors (those marked with a filled circle linked
note reporting the papers discussing them) are reflected in
the project under study.

4) Elaborate the total risk of failure as follows:
a) Elaborating the known risks: Subtract the positive

knowns, that is, the sum of known success-facilitating
factors exerting an observable effect on the project
from the negative knowns exerting an observable effect
on the same project. This is reasonable since risk
is higher if negative factors are manifested, but can
be lowered to the degree that positive and success-
inducing factors are manifested.17

b) Elaborating the unknown risks: Sum together any
remaining negative and positive unknowns from the
model. This is reasonable since the risk of failure
is higher the more factors’ effects are unknown to
an observer, regardless of whether those effects are
positive or negative.

c) Elaborating a grand total: Sum together the two com-
pounding quantities above.

The steps entailed in (4.a-c) allow practitioners to get a rough
evaluation of the risk coverage for the project under study. More
formally:

Software Failure Risk:

ρ =
∑

[(Pn −Nn) + U];

where Pn indicates the positive knowns, while Nn indicates
the negative knowns, and U indicates any remaining unknowns,
e.g., accounting for contingency management and preparedeness
planning. The above methodology and the basic formula are to be
seen as a rudimentary starting point for further experimentation,
which is beyond the scope of this article. However, we are
planning several applications of the aforementioned method-
ology and formula in action in industry to elaborate more on its
construct and external validity.

16[Online]. Available: https://tinyurl.com/y79hfvby
17This assumes that all factors have an equal mutual effect, which is obviously

an open research question.

http://siemens.github.io/codeface/
https://github.com/maelstromdat/CodeFace4Smells
https://tinyurl.com/y79hfvby

TAMBURRI et al.: SUCCESS AND FAILURE IN SOFTWARE ENGINEERING: A FOLLOWUP SYSTEMATIC LITERATURE REVIEW 609

Fig. 6. Omniscient DevOps Analytics; concept tailored from [65].

B. Synthesis and Future Work

This article builds upon previous studies of the complex
phenomena of software success and failure. The literature in
question focuses on the software engineering domain and covers
a broad range of perspectives over the discipline. In this article,
we have presented a more extensive and rigorous analysis of
the literature, by executing three analyses aimed at deepening
our understanding of software success and failure. The three
analyses reflect: 1) a grounded theory of the phenomena under
study; 2) the emergent themes hidden beneath such a theory; 3)
the measurable quantities from software engineering research
that account for previously unobserved themes and factors from
analyses (1) and (2) above. In the future, we plan to further
analyze the data and factors produced as part of our research
question 1, e.g., to offer automated means of classification for
the factors. Furthermore, we plan to analyze the data in our
replication bundle for the purpose of generalizing a more refined
taxonomy or ontology for the purpose of instrumenting auto-
mated reasoning and risk analysis (e.g., to support postmortem
analysis).

Finally, we plan to refine and further evaluate tool support to
track as many factors from our grounded-theory and themes as
possible, automating their investigation from openly available
application lifecycle management (ALM) tools of common use
during software development, such as quality metrics suites,
issue-tracking systems, CI/CD pipelines, and more. A vision for
how this might be realized is presented in previous work [65].
Specifically, the unobserved themes emerging from this study
could be supported for specifically tailored holistic DataOps
[66] software process, product, and people analysis ALM suite
[67] acting as an integrated predictive analytics solution working
continuously toward modeling success and failure by means
of machine-learning and similar advanced computational in-
telligence. In this vein, all the dimensions elaborated in our
grounded-theory could be supported by specific predictive mod-
eling computational intelligence while a holistic ALM suite
back-end could be trained as an ensemble method to assemble
the individual predictions toward an aggregated series of funda-
mental scores, thus instructing all software stakeholders in their
next steps. For example, see the recap in Fig. 6; the figure outlines
our future work toward a DevOps analytics suite, which could
be considered omniscient, that is, acting toward most if not all

of the dimensions accounted in the grounded-theory proposed
in this article across all dimensions we highlighted, namely, the
individuals dimension, their social-interactive communitarian
dimension, the organizational layer combining them as well as
the technical layer toward which their work is aimed.

ACKNOWLEDGMENT

The authors would like to thank Dr. F. Castri for his invaluable
effort and work in producing and allowing for the interrater
reliability assessment of the grounded theory reported in this
article. Furthermore, the authors would like to thank Dr. M.
Di Penta, Dr. H. Muccini, Dr. P. Pelliccione, and Dr. M. Di
Memmo for their precious insights, explanatory, and confirma-
tory discussions in the scope of addressing the threats to validity
of this work. Finally, they would like to thank the associate
editor and anonymous reviewers for the detailed and constructive
comments on the preliminary version of this article, which were
instrumental to improving the quality of our work.

1) Downloadable Dataset: figshare.com/s/e6f0968e55c2cd
024389

2) Primary studies:18 www.dropbox.com/s/3lj4h0otpt7jrxe/
SLRWorkingPortfolio.pdf?dl=0

3) GT codes list and definition: www.dropbox.com/s/
ia0yv225r8jcggr/code%20list.xlsx?dl=0

REFERENCES

[1] P. Ralph and P. Kelly, “The dimensions of software engineering success,”
in Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 24–35. [Online]. Available:
http://dblp.uni-trier.de/db/conf/icse/icse2014.html#RalphK14

[2] T. O. Lehtinen, M. V. Mäntylä, J. Vanhanen, J. Itkonen, and C. Lasse-
nius, “Perceived causes of software project failures—An analysis of their
relationships,” Inf. Softw. Technol., vol. 56, no. 6, pp. 623–643, 2014.

[3] M. V. Mäntylä, M. Jørgensen, P. Ralph, and H. Erdogmus, “Guest editorial
for special section on success and failure in software engineering.” Empir-
ical Softw. Eng., vol. 22, no. 5, pp. 2281–2297, 2017. [Online]. Available:
http://dblp.uni-trier.de/db/journals/ese/ese22.html#MantylaJRE17

[4] N. Iivari, Enculturation of User Involvement in Software Development
Organizations—An Interpretive Case Study in the Product Development
Context. Tampere, Finland: ACM Press, 2004, pp. 287–296.

[5] ISO/IEC Standard, Software Engineering—Product Quality—Part 1:
Quality Model, ISO/IEC, ISO Standard 9126-1, 2003.

[6] M. Torchiano, F. Ricca, and A. Marchetto, “Is my project’s truck factor
low?: Theoretical and empirical considerations about the truck factor
threshold,” in Proc. 2nd Int. Workshop Emerg. Trends Softw. Metric,
2011, pp. 12–18. [Online]. Available: http://dblp.uni-trier.de/db/conf/icse/
wetsom2011.html#TorchianoRM11

[7] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical con-
gruence: A framework for assessing the impact of technical and work
dependencies on software development productivity,” in Proc. 2nd ACM-
IEEE Int. Symp. Empirical Softw. Eng. Meas., 2008, pp. 2–11. [Online].
Available: http://portal.acm.org/citation.cfm?id=1414008

[8] B. Kitchenham and S. Charters, “Guidelines for Performing systematic
literature reviews in software engineering,” School of Computer Science
and Mathematics, Keele Univ., Keele, Newcastle, U.K., Jul. 2007.

[9] J. Corbin and A. Strauss, “Grounded theory research: Procedures, canons,
and evaluative criteria,” Qualitative Sociol., vol. 13, no. 1, pp. 3–21, 1990.

[10] A. Agrawal, W. Fu, and T. Menzies, “What is wrong with topic modeling?
(and how to fix it using search-based software engineering),” CoRR,
2016, arXiv:1608.08176. [Online]. Available: http://dblp.uni-trier.de/db/
journals/corr/corr1608.html#AgrawalFM16

[11] H.-F. Hsieh and S. E. Shannon, “Three approaches to qualitative content
analysis,” Qualitative Health Res., vol. 15, no. 9, pp. 1277–1288, 2005.

18Please consider that all copies are copyrighted and were downloaded for
research purposes only.

www.dropbox.com/s/3lj4h0otpt7jrxe/SLRWorkingPortfolio.pdf{?}dl$=$0
www.dropbox.com/s/ia0yv225r8jcggr/code%20list.xlsx{?}dl$=$0
http://dblp.uni-trier.de/db/conf/icse/icse2014.html#RalphK14
http://dblp.uni-trier.de/db/journals/ese/ese22.html#MantylaJRE17
http://dblp.uni-trier.de/db/conf/icse/wetsom2011.html#TorchianoRM11
http://portal.acm.org/citation.cfm{?}id$=$1414008
http://dblp.uni-trier.de/db/journals/corr/corr1608.html#AgrawalFM16

610 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 2, APRIL 2021

[12] K. Schwaber, Agile Project Management With Scrum. Redmond,
WA, USA: Microsoft Press, 2004. [Online]. Available: http://my.
safaribooksonline.com/9780735619937

[13] D. Kumar, “Lean software development,” The PROJECT PERFECT White
Paper Collection, 2005. [Online]. Avaialble: http://www.projectperfect.
com.au/downloads/Info/info_lean_development.pdf.

[14] R. Kwitt, S. Huber, M. Niethammer, W. Lin, and U. Bauer, “Statistical
topological data analysis—A kernel perspective,” in Proc. Adv. Neural Inf.
Process. Syst., C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R.
Garnett, Eds. 2015, pp. 3070–3078. [Online]. Available: http://dblp.uni-
trier.de/db/conf/nips/nips2015.html#KwittHNLB15

[15] J. Rost and R. L. Glass, “The impact of subversive stake-
holders on software projects,” Commun. ACM, vol. 52, no. 7,
pp. 135–138, 2009. [Online]. Available: http://dblp.uni-trier.de/db/
journals/cacm/cacm52.html#RostG09

[16] D. A. Tamburri, P. Lago, and H. v. Vliet, “Organizational social structures
for software engineering,” ACM Comput. Surv., vol. 46, no. 1, pp. 3:1–
3:35, Jul. 2013. [Online]. Available: http://doi.acm.org/10.1145/2522968.
2522971

[17] N. Abbas, “Software quality and governance in agile software develop-
ment.” Ph.D. dissertation, Univ. Southampton, U.K., 2009, British Library,
EThOS.

[18] G. Garousi, V. Garousi, M. Moussavi, G. Ruhe, and B. Smith, “Evaluating
usage and quality of technical software documentation: An empirical
study,” in Proc. 17th Int. Conf. Eval. Assessment Softw. Eng., Porto de
Galinh, Brazil, 2013, pp. 24–35. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2461003

[19] A. Soylu, P. D. Causmaecker, D. Preuveneers, Y. Berbers, and P. Desmet,
“Formal modelling, knowledge representation and reasoning for design
and development of user-centric pervasive software: A meta-review,” Int.
J. Metadata Semantics Ontol., vol. 6, no. 2, pp. 96–125, 2011. [On-
line]. Available: http://www.ahmetsoylu.com/wp-content/uploads/2011/
05/IJMSO_62_Soylu_et_al.pdf

[20] N. E. Fenton, “Software measurement: A necessary scientific basis,” IEEE
Trans. Softw. Eng., vol. 20, no. 3, pp. 199–206, Mar. 1994. [Online].
Available: http://dblp.uni-trier.de/db/journals/tse/tse20.html#Fenton94

[21] M. Nasir, “A survey of software estimation techniques and project planning
practices,” in Proc. 7th ACIS Int. Conf. Softw. Eng., Artif. Intell., Netw.,
Parallel/Distrib. Comput., Jun. 2006, pp. 305–310.

[22] D. A. Tamburri, R. De Boer, E. Di Nitto, P. Lago, and H. van Vliet,
“Dynamic networked organizations for software engineering,” in Proc.
Int. Workshop Social Softw. Eng., 2013, pp. 5–12.

[23] H. Ogasawara, T. Kusanagi, and M. Aizawa, “Proposal and practice
of software process improvement framework—Toshiba’s software pro-
cess improvement history since 2000,” J. Softw., Evol. Process, vol. 26,
no. 5, pp. 521–529, 2014. [Online]. Available: http://dblp.uni-trier.de/db/
journals/smr/smr26.html#OgasawaraKA14

[24] S. Assar, M. Borg, and D. Pfahl, “Using text clustering to predict defect
resolution time: A conceptual replication and an evaluation of predic-
tion accuracy,” Empirical Softw. Eng., vol. 21, no. 4, pp. 1437–1475,
2016. [Online]. Available: http://dblp.uni-trier.de/db/journals/ese/ese21.
html#AssarBP16

[25] C. Ebert, M. Kuhrmann, and R. Prikladnicki, “Global software engineer-
ing: An industry perspective,” IEEE Softw., vol. 33, no. 1, pp. 105–108,
Jan./Feb. 2016. [Online]. Available: http://dblp.uni-trier.de/db/journals/
software/software33.html#EbertKP16

[26] M. Bellingham, S. Holland, and P. Mulholland, “A cognitive dimensions
analysis of interaction design for algorithmic composition software,”
in Proc. Psychol. Program. Interest Group Annu. Conf., B. du Boulay
and J. Good, Eds. Psychology of Programming Interest Group, 2014,
p. 18. [Online]. Available: http://dblp.uni-trier.de/db/conf/ppig/ppig2014.
html#BellinghamHM14

[27] S. H. Rubin, “Knowledge-based software prototyping and reuse,” Int. J.
Artif. Intell. Tools, vol. 6, no. 1, pp. 127–147, 1997. [Online]. Available:
http://dblp.uni-trier.de/db/journals/ijait/ijait6.html#Rubin97

[28] R. Pham, “Improving the software testing skills of novices during on-
boarding through social transparency,” Ph.D. dissertation, , University of
Hanover, Hanover, Germany, 2016.

[29] H.-D. Yang, H.-R. Kang, and R. M. Mason, “An exploratory study on meta
skills in software development teams: Antecedent cooperation skills and
personality for shared mental models,” Eur. J. Inf. Syst., vol. 17, no. 1,
pp. 47–61, 2008. [Online]. Available: http://dblp.uni-trier.de/db/journals/
ejis/ejis17.html#YangKM08

[30] C. Ebert and R. Dumke, Best Practices in Software Measurement Establish
- Extract - Evaluate - Execute. Berlin, Germany: Springer-Verlag, 2007.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-71649-5

[31] B. Boehm, Software Engineering Economics. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1981.

[32] A. Boyd, “A goal-based approach to the evaluation and documenta-
tion of business process re-engineering,” Aslib Proc., vol. 56, no. 5,
pp. 286–300, 2004. [Online]. Available: http://dblp.uni-trier.de/db/
journals/aslib/aslib56.html#Boyd04b

[33] V. Borja, J. Harding, and K. Toh, “Product re-engineering process using
an enterprise modelling architecture,” Int. J. Agile Manag. Syst., vol. 2,
no. 3, pp. 214–225, 2000.

[34] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study
of the documentation essential to software maintenance,” in Proc.
23rd Annu. Int. Conf. Des. Commun.2005, pp. 68–75. [Online]. Avail-
able: http://portal.acm.org/citation.cfm?id=1085313.1085331&coll=
Portal&dl=ACM&CFID=1901909&CFTOKEN=99893798

[35] A. Elssamadisy and D. West, “Adopting agile practices: An incipient pat-
tern language,” in Proc. Conf. Pattern Lang. Programs, 2006, pp. 1:1–1:9.
[Online]. Available: http://doi.acm.org/10.1145/1415472.1415474

[36] A. Rohunen, P. Rodriguez, P. Kuvaja, L. Krzanik, J. Markkula, and B.
Turhan, “EnglishAgile adoption strategies in the context of agile in the
large: Flexi agile adoption industrial inventory,” in EnglishAgile Processes
in Software Engineering and Extreme Programming, ser. Lecture Notes in
Business Information Processing, A. Sillitti, A. Martin, X. Wang, and E.
Whitworth, Eds. Berlin, Germany: Springer, 2010, vol. 48, pp. 397–398.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-13054-0_50

[37] J. Rubin, Handbook of Usability Testing. How to Plan, Design, and
Conduct Effective Tests. New York, NY, USA: Wiley, 1994.

[38] M. Jörgensen, “Experience with the accuracy of software maintenance
task effort prediction models,” IEEE Trans. Softw. Eng., vol. 21, no. 8,
pp. 674–681, Aug. 1995.

[39] L.-W. Chen and S.-J. Huang, “Accuracy and efficiency comparisons of
single- and multi-cycled software classification models.” Inf. Softw. Tech-
nol., vol. 51, no. 1, pp. 173–181, 2009. [Online]. Available: http://dblp.uni-
trier.de/db/journals/infsof/infsof51.html#ChenH09

[40] A. Cooper and R. Reimann, About Face 3.0: The Essentials of Interaction
Design, 3rd ed. Hoboken, NJ, USA: Wiley, 2007. [Online]. Available:
http://www.amazon.de/About-Face-3-0-Essentials-Interaction/dp/
0470084111%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%
26tag%3Dws%26linkCode%3Dxm2 %26camp%3D2025%26creative%
3D165953%26creativeASIN%3D0470084111

[41] J. D. Herbsleb, “Global software engineering: The future of socio-
technical coordination,” in Proc. Future Softw. Eng. Conf., 2007, pp. 188–
198. [Online]. Available: http://dblp.uni-trier.de/db/conf/icse/fose2007.
html#Herbsleb07

[42] D. A. Tamburri, E. di Nitto, P. Lago, and H. van Vliet, “On the nature of
the GSE organizational social structure: An empirical study,” Proc. 7th
IEEE Int. Conf. Global Softw. Eng., 2012, pp. 1–10.

[43] R. B. Grady, Successful Software Process Improvement, 1st ed. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1997.

[44] M. Niazi, D. Wilson, and D. Zowghi, “Critical success factors for soft-
ware process improvement implementation: An empirical study,” Softw.
Process, Improvement Pract., vol. 11, no. 2, pp. 193–211, 2006.

[45] W. Frakes, “Systematic software reuse: A paradigm shift,” in Proc. Int.
Conf. Softw. Reuse: Adv. Softw. Reusability, 1994, pp. 2–3.

[46] M. Thompson and N. Wishbow, “Prototyping: Tools and techniques:
improving software and documentation quality through rapid prototyping,”
in Proc. 10th Annu. Int. Conf. Syst. Documentation, R. MacLean, Ed.,
1992, pp. 191–199. [Online]. Available: http://dblp.uni-trier.de/db/conf/
sigdoc/sigdoc1992.html#ThompsonW92

[47] J. Keyes, Social Software Engineering. Boca Raton, FL, USA: Taylor &
Francis, Auerbach Series, 2011.

[48] F. Palomba, D. A. Tamburri, A. Serebrenik, A. Zaidman, F. A. Fontana, and
R. Oliveto, “How do community smells influence code smells?” in Proc.
40th Int. Conf. Softw. Eng., Companion, 2018, pp. 240–241. [Online].
Available: http://doi.acm.org/10.1145/3183440.3194950

[49] D. A. Tamburri, F. Palomba, A. Serebrenik, and A. Zaidman, “Discov-
ering community patterns in open-source: A systematic approach and its
evaluation,” Empirical Softw. Eng., vol. 24, pp. 1369–1417, 2018.

[50] D. A. Tamburri, R. Kazman, and H. Fahimi, “The architect’s role in com-
munity shepherding.” IEEE Softw., vol. 33, no. 6, pp. 70–79, 2016. [On-
line]. Available: http://dblp.uni-trier.de/db/journals/software/software33.
html#TamburriKF16

http://my.safaribooksonline.com/9780735619937
http://www.projectperfect.com.au/downloads/Info/info_lean_development.pdf
http://dblp.uni-trier.de/db/conf/nips/nips2015.html#KwittHNLB15
http://dblp.uni-trier.de/db/journals/cacm/cacm52.html#RostG09
http://doi.acm.org/10.1145/2522968.2522971
http://dl.acm.org/citation.cfm{?}id$=$2461003
http://www.ahmetsoylu.com/wp-content/uploads/2011/05/IJMSO_62_Soylu_et_al.pdf
http://dblp.uni-trier.de/db/journals/tse/tse20.html#Fenton94
http://dblp.uni-trier.de/db/journals/smr/smr26.html#OgasawaraKA14
http://dblp.uni-trier.de/db/journals/ese/ese21.html#AssarBP16
http://dblp.uni-trier.de/db/journals/software/software33.html#EbertKP16
http://dblp.uni-trier.de/db/conf/ppig/ppig2014.html#BellinghamHM14
http://dblp.uni-trier.de/db/journals/ijait/ijait6.html#Rubin97
http://dblp.uni-trier.de/db/journals/ejis/ejis17.html#YangKM08
http://dx.doi.org/10.1007/978-3-540-71649-5
http://dblp.uni-trier.de/db/journals/aslib/aslib56.html#Boyd04b
http://portal.acm.org/citation.cfm{?}id$=$1085313.1085331&coll$=$Portal&dl$=$ACM&CFID$=$1901909&CFTOKEN$=$99893798
http://doi.acm.org/10.1145/1415472.1415474
http://dx.doi.org/10.1007/978-3-642-13054-0_50
http://dblp.uni-trier.de/db/journals/infsof/infsof51.html#ChenH09
http://www.amazon.de/About-Face-3-0-Essentials-Interaction/dp/0470084111%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2 ignorespaces %26camp%3D2025%26creative%3D165953%26creativeASIN%3D0470084111
http://dblp.uni-trier.de/db/conf/icse/fose2007.html#Herbsleb07
http://dblp.uni-trier.de/db/conf/sigdoc/sigdoc1992.html#ThompsonW92
http://doi.acm.org/10.1145/3183440.3194950
http://dblp.uni-trier.de/db/journals/software/software33.html#TamburriKF16

TAMBURRI et al.: SUCCESS AND FAILURE IN SOFTWARE ENGINEERING: A FOLLOWUP SYSTEMATIC LITERATURE REVIEW 611

[51] J. Fulcher and L. C. Jain, Eds. Computational Intelligence: A Compendium,
ser. Studies in Computational Intelligence. New York, NY, USA: Springer,
2008, vol. 115. [Online]. Available: http://dblp.uni-trier.de/db/series/sci/
sci115.html

[52] International Standard Organization (ISO), International Standard
ISO/IEC 9126, Information Technology Product Quality Part 1: Quality
Model,” 2001.

[53] R. G. Dromey, “A model for software product quality,” IEEE Trans. Softw.
Eng., vol. 21, no. 2, pp. 146–162, Feb. 1995. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/tse/tse21.html#Dromey95

[54] A. Meneely and L. Williams, “Socio-technical developer networks: should
we trust our measurements?” in Proc. 33rd Int. Conf. Softw. Eng., 2011,
pp. 281–290. [Online]. Available: http://doi.acm.org/10.1145/1985793.
1985832

[55] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer social networks
predict failures?” in Proc. 16th ACM SIGSOFT Int. Symp. Found. Softw.
Eng., 2008, pp. 2–12.

[56] S. Magnoni, D. A. Tamburri, and E. D. Nitto, “A socio-technical quality
model for software engineering organisational structures: An empiri-
cal study,” Politecnico di Milano, Master Thesis Series, https://goo.gl/
Y9R4KY, 2016.

[57] C. Amrit and J. van Hillegersberg, “Mapping social network to software
architecture to detect structure clashes in agile software development,” in
Proc. 15th Eur. Conf. Inf. Syst., 2007, pp. 334–345. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ecis/ecis2007.html#AmritH07

[58] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical con-
gruence: A framework for assessing the impact of technical and work
dependencies on software development productivity,” in Proc. 2nd ACM-
IEEE Int. Symp. Empirical Softw. Eng. Meas., 2008, pp. 2–11. [Online].
Available: http://portal.acm.org/citation.cfm?id=1414008

[59] K. Crowston, K. Wei, Q. Li, and J. Howison, “Core and periph-
ery in free/libre and open source software team communications,” in
Proc. 39th Annu. Hawaii Int. Conf. Syst. Sci., 2006. Art. no. 118a.
[Online]. Available: http://dblp.uni-trier.de/db/conf/hicss/hicss2006-6.
html#CrowstonWLH06

[60] C. Amrit and J. van Hillegersberg, “Exploring the impact of socio-technical
core-periphery structures in open source software development,” J. Inf.
Technol., vol. 25, no. 2, pp. 216–229, 2010. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/jitech/jitech25.html#AmritH10

[61] M. Y. Allaho and W.-C. Lee, “Analyzing the social networks of contrib-
utors in open source software community,” in Proc. Appl. Social Media
Social Netw. Anal., 2015, pp. 57–75. [Online]. Available: http://dblp.uni-
trier.de/db/series/lnsn/kc2015.html#AllahoL15

[62] C. Couto, C. A. Maffort, R. Garcia, and M. T. Valente, “Comets: A dataset
for empirical research on software evolution using source code metrics
and time series analysis,” ACM SIGSOFT Softw. Eng. Notes, vol. 38, no.
1, pp. 1–3, 2013. [Online]. Available: http://dblp.uni-trier.de/db/journals/
sigsoft/sigsoft38.html#CoutoMGV13

[63] J. A. Hager, “Software cost reduction methods in practice: A post-mortem
analysis,” J. Syst. Softw., vol. 14, no. 2, pp. 67–77, 1991. [Online]. Avail-
able: http://dblp.uni-trier.de/db/journals/jss/jss14.html#Hager91

[64] K. Bahmani, Z. Semnani-Azad, K. P. Sycara, and M. Lewis, “Team
faultline measures: The effect of rescaling weights,” in Proc. 51st Hawaii
Int. Conf. Syst. Sci., 2018. [Online]. Available: http://dblp.uni-trier.de/db/
conf/hicss/hicss2018.html#BahmaniSS018

[65] D. A. Tamburri, D. Di Nucci, L. Di Giacomo, and F. Palomba, “Omniscient
devops analytics,” in Proc. Int. Symp. Softw. Eng. Aspects Continuous
Develop. New Paradigms Softw. Prod. Deployment, 2018.

[66] J. Ereth, “Dataops—Towards a definition,” in Proc. Conf. “Lernen, Wis-
sen, Daten, Analysen,” R. Gemulla, S. P. Ponzetto, C. Bizer, M. Ke-
uper, and H. Stuckenschmidt, Eds., vol. 2191, CEUR-WS.org, 2018,
pp. 104–112. [Online]. Available: http://dblp.uni-trier.de/db/conf/lwa/
lwda2018.html#Ereth18

[67] J. Klespitz, M. Bir, and L. Kovcs, “Cross-tool interoperability in het-
erogeneous application lifecycle management systems,” in SoMeT, ser.
Frontiers in Artificial Intelligence and Applications, H. Fujita and G. A.
Papadopoulos, Eds., vol. 286, Amsterdam, The Netherlands: IOS Press,
2016, pp. 213–220. [Online]. Available: http://dblp.uni-trier.de/db/conf/
somet/somet2016.html#KlespitzBK16

http://dblp.uni-trier.de/db/series/sci/sci115.html
http://dblp.uni-trier.de/db/journals/tse/tse21.html#Dromey95
http://doi.acm.org/10.1145/1985793.1985832
https://goo.gl/Y9R4KY
http://dblp.uni-trier.de/db/conf/ecis/ecis2007.html#AmritH07
http://portal.acm.org/citation.cfm{?}id$=$1414008
http://dblp.uni-trier.de/db/conf/hicss/hicss2006-6.html#CrowstonWLH06
http://dblp.uni-trier.de/db/journals/jitech/jitech25.html#AmritH10
http://dblp.uni-trier.de/db/series/lnsn/kc2015.html#AllahoL15
http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft38.html#CoutoMGV13
http://dblp.uni-trier.de/db/journals/jss/jss14.html#Hager91
http://dblp.uni-trier.de/db/conf/hicss/hicss2018.html#BahmaniSS018
http://dblp.uni-trier.de/db/conf/lwa/lwda2018.html#Ereth18
http://dblp.uni-trier.de/db/conf/somet/somet2016.html#KlespitzBK16

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

