
1310 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 67, NO. 4, NOVEMBER 2020

Blockchain Performance Analysis for Supporting
Cross-Border E-Government Services

Dimitris Geneiatakis , Yannis Soupionis, Gary Steri , Ioannis Kounelis, Ricardo Neisse, and Igor Nai-Fovino

Abstract—With the continuous development of distributed
ledger and blockchain technologies, new use cases apart from cryp-
tocurrencies have come into the spotlight. In this article, we evaluate
whether an e-government service could be a suitable candidate
for a blockchain transformation. We selected as a reference test
system an existing cross-border e-government service that is used
for supporting goods exchanges across the European Union. We
show how such an indicative paradigm can be transformed into a
blockchain system. In order to do so, we deployed it in an emulated
architecture for evaluating its performance under various realistic
conditions. Our results show that the deployed system is able to
meet the requirements, both in terms of throughput and transaction
speed. Moreover, it shows clear advantages in terms of usability and
synchronization between all entities.

Index Terms—Blockchain, e-government, Hyperledger Fabric,
performance evaluation.

I. INTRODUCTION

THE diffusion of distributed ledger and blockchain tech-
nologies is strictly linked to the digital world and cryp-

tocurrencies. Undoubtedly, their popularity has enormously
grown due to systems such as Bitcoin and Ethereum, which
have highly attracted people attention mainly as alternative
payment and trading platforms. The reason behind their suc-
cess is mainly due to the possibility of deploying decentralized
architectures where parties can transact with each other without
the need of a centralized trusted entity; indeed they rely on
peer-to-peer networking architectures. Moreover, the intrinsic
properties of blockchain ensure data immutability, provenance
and transparency for the accomplished transactions.

However, cryptocurrencies are not the only area where dis-
tributed ledgers and blockchains can be applied. During recent
years, several other use cases have been proposed in different
domains such as food supply chain [1], [2] or goods tracking [3].

Manuscript received June 30, 2019; revised November 15, 2019 and January
21, 2020; accepted February 28, 2020. Date of publication June 30, 2019; date
of current version October 9, 2020. This work was supported by the Directorate-
General for Taxation and Customs Union of the European Commission for
exploring the possibility of using blockchain technologies for data-sharing
scenarios, with a view on enabling more sophisticated use cases in which trusted
data play a key role. Review of this manuscript was arranged by Department
Editor K.-K. R. Choo. (Corresponding author: Dimitris Geneiatakis.)

The authors are with the Cyber and Digital Citizens’ Security Unit, European
Commission—Joint Research Centre, 21027 Ispra, Italy (e-mail: dimitrios.
geneiatakis@ec.europa.eu; yannis.soupionis@ec.europa.eu; gary.steri@ec.
europa.eu; ioannis.kounelis@ec.europa.eu; ricardo.neisse@ec.europa.eu;
igor-nai.fovino@ec.europa.eu).

Color versions of one or more of the figures in this article are available online
at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEM.2020.2979325

An important area where these technologies could bring their
advantages is certainly represented by the electronic government
(e-government) services, which does not include only interac-
tions with citizens, but also between institutions [4] known also
as government to government (G2G) services (including cross
boundaries interactions, i.e., between countries/states).

In e-government services, aspects related to transparency and
transactions security play a fundamental role for establishing
trust in the provided services. Current approaches, especially
for G2G services, establish security using either private com-
munication channels or well-known security communication
protocols over public networks. Both approaches are valid
and functional, however, on one side they do not guarantee
data security by design, i.e., integrity for the whole data life
cycle, and might raise security issues as reported in various
research works [4]–[6]. On the other side, they may not sup-
port nonrepudiation and liability services. Furthermore, current
e-government services face data synchronization issues because
administrative and legal requirements should be fulfilled first.
Also currently most of the e-government services rely on a
centralized service, a single point of failure.

Besides, it should be noted that in e-government services trust
issues, in general, can also be raised especially when dealing
with stored data, transactions validity, service and systems’ con-
formity among “distributed” entities. These aspects growing in
importance when cross-boundary integration is required, for in-
stance when considering different countries, state collaboration
for achieving efficient intergovernment service functionality. A
detailed analysis of trust issues in e-government services is out
of the scope of this article and can be found in [7].

Such challenges in e-government services can be solved by
using blockchain infrastructures as they are secure by design and
data sharing can be triggered when specific criteria are satisfied
through the use of smart contracts in completely transparent
and automated way. Indeed, blockchain technologies offer a
powerful framework for decentralized data processing and shar-
ing, but how suitable are they for e-government services? Will
scalability be a problem? Which are the requirements in terms of
hardware infrastructure? Such questions can be raised whenever
an e-government service is proposed to be converted into a
blockchain government(b-government) service.

This article provides an analysis to support policy makers
in deciding whether the adoption of blockchain overcurrent in-
frastructures and resources can efficiently support b-government
services. In this context, the Directorate-General for Taxation
and Customs Union of the European Commission is exploring

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6455-502X
https://orcid.org/0000-0001-7698-1771
mailto:dimitrios.geneiatakis@ec.europa.eu
mailto:yannis.soupionis@ec.europa.eu
mailto:gary.steri@ec.europa.eu
mailto:ioannis.kounelis@ec.europa.eu
mailto:ricardo.neisse@ec.europa.eu
mailto:igor-nai.fovino@ec.europa.eu
https://ieeexplore.ieee.org

GENEIATAKIS et al.: BLOCKCHAIN PERFORMANCE ANALYSIS FOR SUPPORTING CROSS-BORDER E-GOVERNMENT SERVICES 1311

the possibility of using blockchain technologies for data-sharing
scenarios for supporting G2G services among European Union
(EU) Member States Authorities (MSAs).

We opt for an existing e-government service that facilitates the
excise goods monitoring system between MSAs. We convert it
into a b-government service to explore its potentiality, operabil-
ity, and performance. An experimental version of the service is
deployed over the Hyperledger Fabric, which is a permissioned
blockchain platform, on a modularized environment that is ca-
pable of emulating real network conditions and architectures
depending on the needs. The configured blockchain system is
made of 28 nodes that represent MSAs in the service. We evalu-
ate the b-government service under different network conditions,
i.e., number of transactions sent to the service, network latency,
and bandwidth, and we analyze how the blockchain network size
can influence system performance.

The results of our article show that on one hand transforming
a data-sharing e-government to b-government service is techni-
cally feasible taking into consideration specific network config-
urations. For instance, in a network configuration with 4 Mb/s
and latency 3 ms client transaction round-trip time approximates
to 1 s, and the whole network can efficiently support throughput
up to 8 transactions per second (TPS), whereas if the available
bandwidth is 1 Gb/s the maximum throughput can reach up
to 48 TPS. On the other hand, system management could be
simplified, as the use of a smart contract ensures that the same
application logic is used and shared to all the participants, and
the intrinsic blockchain characteristics guarantee fundamental
security requirements by design. To the best of our knowledge,
this is the first article that evaluates at scale a b-government ser-
vice, i.e., considering 28 participant nodes, over a permissioned
blockchain platform and realistic networking configurations.

The rest of this article is organized as follows. Section II pro-
vides a background on blockchain technologies and highlights
their main characteristics. Section III describes an e-government
service as an indicative example suitable for blockchain trans-
formation. Section IV determines a blockchain platform, among
different options, for implementing such a service. Section V
analyzes the experimental architecture in which the service is
deployed for emulating real network and system conditions.
Section VI reports on the service performance considering dif-
ferent configurations. Section VII overviews the related works
in blockchain with emphasis on e-government applications, and
performance evaluations. Finally, Section VIII concludes this
article.

II. BACKGROUND ON BLOCKCHAIN

Distributed data storage system is a well-studied research
domain that facilitates data storage, sharing, and synchronization
in different nodes over a network. In fact, the very first distributed
database system was introduced in 1980 [8]. In this context,
until now different distributed solutions such as Dynamo [9]
and Cassandra [10] have been proposed to fulfill different needs
and requirements.

With the advent of distributed ledger technologies (DLTs) [11]
and blockchain systems, data consistency across nodes, in-
tegrity, and immutability can be achieved by design. The term

Fig. 1. Blockchain data structure high-level representation. Each block holds
users’ data, a hash of the current block (C_h), and a link to the previous block
(Ph).

blockchain actually identifies the underlying data structure of the
first types of DLTs, even though nowadays not all the DLTs are
based on a blockchain. The blockchain records and synchronizes
data in blocks of transactions chained with the support of cryp-
tographic techniques. Each block contains the cryptographic
hash of the previous block, a time stamp and the transaction
data. In this way every block is cryptographically linked to the
previous one, making the list of records immutable. In fact,
changing data in the chain would imply the recalculation of the
hashes, unfeasible from an organizational and computational
point of view. Fig. 1 illustrates an abstraction of a blockchain
data structure.

In a typical blockchain scenario, end users submit transactions
to a peer-to-peer network where particular type of nodes validate
and insert them in a new block, which is then propagated to all
the participants. Each transaction is digitally signed by the user
with its private key, so no other entity can claim the authorship
neither can the user repudiate it.

All the participants in a blockchain network hold their own
copy of the data, and can thus calculate independently the current
known “state” of the system. As a result, there is no single point
of failure, in contrast to centralized data storage services. Due
to a synchronization mechanism that the network supports in
case of failure of a participant, the latest state of the system
can be resumed, so that all the participants, at any time, share a
common ground truth. Indeed, this is achieved using a Byzantine
fault tolerance (BFT) [12] consensus mechanism such as proof
of work [13] and proof of stake (PoS) [14]; however, a detailed
analysis of consensus mechanisms is out of the scope of this
article. We nonetheless refer the interested reader to relevant
state-of-the-art related works [15], [16].

Another important characteristic of blockchain systems is the
way users access them in order to read, submit, and validate
transactions. When anyone can read and access the system,
the blockchain is categorized as public; anyone can fetch the
whole blockchain and read its contents. The opposite is to have
a private blockchain, where only authorized entities have access.
Similarly, depending on whom can submit and validate transac-
tions, the blockchain is called permissionless or permissioned.

With the development of Ethereum,1 blockchain systems
introduced the notion of smart contract functionality. A smart

1[Online]. Available: https://ethereum.org/

https://ethereum.org/

1312 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 67, NO. 4, NOVEMBER 2020

contract is a computer program that is capable of executing or
enforcing a predefined agreement using a blockchain, when and
if specific conditions are met. It is deterministic2 and benefits
from the intrinsic properties of a blockchain system in order to
deploy a service that even “trustless” entities could trust.

III. IDENTIFIED SCENARIO

This section provides an overview of an existing e-
government service that requires data sharing among different
entities. The service that we have identified is in the context
of monitoring the movement of excise goods, such as tobacco
and alcohol, across EU Member States (MS) and is called Excise
Movement and Control System (EMCS). In particular, we are in-
terested in the facilitator of the data-sharing platform that EMCS
is using, the System for Exchange of Excise Data (SEED).

A. System for Exchange of Excise Data

Common rules for exchanging excise goods across MS are
governed by the Directive 2008/118/EC.3 Excise goods that
are transferred within the EU territory have to be authorized
and monitored by the appropriate MSAs, during the whole life
cycle of the exchange procedure. Information about the goods
and their movements is recorded in an electronic administrative
document (eAD), which is the core of EMCS, and its structure is
described in Commission Regulation (EC) No 684/2009.4 eADs
are submitted by a consignor to the MSA of dispatch, which
validates and forwards them to the final destination (consignee)
via the corresponding MSA.

In order to allow a prompt and correct validation of the eADs,
both consignors and consignees (merchants) must be registered
and authorized by the respective MSA. Such registration records
that are called trader authorizations consist of the following:

1) merchant identification number;
2) merchants name and address;
3) types of goods;
4) identification of the liaison office;
5) date of registration;
6) record ending date;
7) registration offices.
MSAs are responsible not only to validate and confirm the

correctness of merchants records but also to check their compli-
ance with SEED rules before distributing them to other MSAs
through SEED. Indeed, SEED is a repository that, among the
others, maintains and distributes all the relevant information
regarding merchants among MSAs.

More specifically, whenever a new merchant registration, or
an update of an existing record occurs, the corresponding MSA
validates its correctness, and “pushes” the new data into the
local service, i.e., the data storage of an MSA. Afterward, the
updated records are communicated to the central service that
performs conformity checks to control whether the data comply

2Smart contract’s output is the same for everyone who executes it.
3[Online]. Available: https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=

CELEX:32008L0118
4[Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=

CELEX%3A32
009R0684

Fig. 2. SEED architecture data registering overview. Users at MSAs introduce
new data and push them in the central service, which is responsible to distribute
to all the relevant participants in order to keep their databases updated.

with the underlying rules. If this is the case, the relevant MSA
is informed, the registration data are integrated in the central
service (i.e., reference DB), and distributed to all MSAs. Here,
it should be noted that according to the data synchronization
rules of SEED, the following conditions hold:

1) the central service should make available the new data to
all the MSAs at the latest on the day when they become
legally valid;

2) each MSA is responsible for updating its national registra-
tion repository as soon as they receive any updates from
the central service.

The whole procedure for registering and distributing SEED
information is illustrated in Fig. 2. A detailed analysis of the
SEED can be found in [17].

B. Why SEED on Blockchain?

In this section, we overview the benefits and challenges
for transforming “SEED like” e-government services into b-
government services. Currently in SEED, MSAs are responsible
for integrating their local service with the central one in order
to share and keep merchants’ related information updated. This
means that MSAs have to develop their own software, as a local
service, that is capable of communicating with the central service
and fulfilling the SEED functionality and requirements. On one
side, this gives to an MSA more freedom and flexibility on the
technical implementation. On the other side, such an option can
have the following drawbacks.

1) Compatibility issues could arise in case the requirements
for local service implementation were not respected.

2) Updating the functionalities is more complex since all
different implementations should be separately updated.

3) The overall maintenance cost can be high.
Furthermore, all the data-sharing communications in SEED

are made asynchronously in a time frame between 15 min and
2 h, whereas as already described in Section III-A each MSA has
to update its national registration repository as soon as it receives
updates from the central service. Therefore, data are not shared at
real (or near real) time among MSAs. In addition, the current im-
plementation relies on a separate infrastructure in order to ensure
security. Though this approach is valid and functional, it does
not by design guarantee data integrity, authenticity, and identity

https://eur-lex.europa.eu/legal-content/GA/TXT/{?}uri$=$CELEX:32008L0118
https://eur-lex.europa.eu/legal-content/EN/TXT/{?}uri$=$CELEX%3A32penalty -@M 009R0684

GENEIATAKIS et al.: BLOCKCHAIN PERFORMANCE ANALYSIS FOR SUPPORTING CROSS-BORDER E-GOVERNMENT SERVICES 1313

of the originator. Finally, the architecture of a Trans-European
System, such as SEED (see Fig. 2), relies on a central service
for the dissemination of information to all the participants. As
the central service poses a single point of failure it has strong
requirements in terms of reliability and performance.

We are interested in investigating blockchain potentiality on
data-sharing services such as SEED. This is because blockchain
is secure by design in certain aspects, i.e., preserving data
integrity, and enabling data sharing in near real time among
entities that do not necessarily need to trust each other when
specific requirements are met. With the use of smart contracts
all entities would share the same solution and run a common
logic, ensuring at any time, consistency of the data validation
procedures, and reducing the total maintenance cost, compared
to a situation where each entity maintains its own solution. This
way the global trust could be enhanced.

Moreover, using a blockchain architecture for such a system,
would guarantee high reliability and performance of the global
system without dependence on a high-performance central ser-
vice, thus making the system more resilient. As a result, data
sharing could is provided in a secure, immutable, traceable and
transparent way.

At this point, one might argue that 1) data changes might be
challenging because such functionalities are not directly sup-
ported, nevertheless they can be enforced at a data management
layer as all the data history is recorded (in the raw blockchain
data), and 2) in such a federated application environment similar
approaches like [9], [10] can be used. However, they lack built-in
security mechanisms, and do not support common logic sharing
over a data distributed mechanism among all participants.

IV. SEED ON BLOCKCHAIN IMPLEMENTATION

In order to implement SEED on blockchain, we need to first
identify the most suitable platform. To do so, we set the require-
ments that are needed in such a service, and determine which
platform better meets them, from a technical and architectural
point of view. Afterward, to assess the performance of SEED
in blockchain we relied on an environment that is capable of
emulating real network architecture. On top of the emulating
architecture, we built a b-government service (for SEED) using
Hyperledger Fabric (ver. 1.1) and considering different network
parameters to identify possible system bottlenecks and resources
restrictions. Our performance evaluation relies on well-known
metrics such as request round-trip time and utilization of system
resources. All the details of our approach are reported in the
following sections.

A. Blockchain Platform Options

The technical choice of implementing any e-government ser-
vice on a blockchain relies on a variety of factors. Specifically, in
SEED like e-government paradigms the following requirements
must be covered.

1) Req. 1: Service data cannot be public due to legal
obligations.

2) Req. 2: Common logic should be shared among all the
participants.

3) Req. 3: Service data should be shared as soon as adminis-
trative and legal rules are met.

4) Req. 4: Cost should be as low as possible.
Currently, various types of blockchain platforms have been

developed, and can be used for deploying related services.
Table I overviews the most well-known platforms consider-
ing their different characteristics, e.g., smart contract, consen-
sus mechanisms, etc., as they have already been described in
Section II.

Based on the available options those that provide public access
to data are excluded, such as Bitcoin, Ethereum, IOTA,5 and
Ripple, due to data-sharing restrictions (Req. 1). Even if these
systems can be deployed separately from the main network (e.g.,
Ethereum privatenet), they still do not provide access control
mechanisms that would exclude other entities from joining the
network, when using a public IP address.

Furthermore, as all the entities must share the same logic,
smart contract functionality should be supported (Reqs. 2 and
3). As a result, the available options are the Hyperledger fam-
ily solutions and EOS.6 However, since public administration
would like to support services at the lower possible cost, plat-
forms that introduce transaction fees are excluded as well (Req.
4). Therefore, Hyperledger Fabric and Sawtooth are platforms
without fees that support consensus mechanisms requiring the
collaboration between “participants,” which is a suitable model
for e-government services.

Between the two, we chose Hyperledger Fabric as the con-
sensus mechanism is more suitable for our specific experiment.
Sawtooth uses a consensus mechanism that assigns to a random
participant the validation of a transaction, i.e., proof of elapsed
time. However, in SEED like services we want to define a priori
who the validator will be, and in particular who is entitled to
endorse specific operations.

B. SEED Flow on Hyperledger Fabric

In a typical SEED service scenario, users at local services,
i.e., National Administrations, submit their transactions, which
afterward are forwarded to the ordering service in order to
disseminate the corresponding data to all the MSAs (see Fig. 2).
At this point, it should be noted that all the participants in
the network are uniquely identified through digital certificates,
which are embedded in the exchanged messages. To achieve the
data-sharing service over the Hyperledger Fabric infrastructure,
the transaction flow will be the following.

1) Transaction submission: A client submits a signed trans-
action proposal to the corresponding MSA node, in which
it includes also his/her identity (X.509 certificate).

2) Transaction verification: The MSA node verifies the va-
lidity of the transaction, simulates the execution of the
related smart contract functionality, and returns a signed
endorsement result to the client. The identity of the MSA
node (X.509 certificate) is also included in this response.

3) Transaction ordering: The client sends the transaction
proposal and the related result to the ordering service. The

5[Online]. Available: https://www.iota.org/
6[Online]. Available: https://eos.io/

https://www.iota.org/
https://eos.io/

1314 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 67, NO. 4, NOVEMBER 2020

TABLE I
BLOCKCHAIN PLATFORMS

Fig. 3. Overview of transaction flow on Hyperledger Fabric.

latter orders all the transactions coming from different
clients, builds the blocks and broadcasts them to all the
MSA nodes.

4) Transaction commitment: MSA nodes receive the blocks
of transactions from the ordering service and, upon ver-
ification of their validity in the context of the deployed
policy, e.g., at least one MSA node should have signed the
transaction, write them in their local copy of the ledger.

All the underlying network communications can be (op-
tionally) protected by transport layer security (TLS) [18]. The
above-mentioned procedure is illustrated in Fig. 3, whereas the
details for the MSA nodes and the ordering related services
are specifically described in Section V-C. A detailed analysis
of the Hyperledger Fabric architecture can be found in [19].

V. EXPERIMENTAL INFRASTRUCTURE

In this section, we briefly present our experimental infrastruc-
ture and the steps followed to recreate the emulated information
and communications technology (ICT) network topology, which
accommodates our SEED like service in order to assess the
general performance of the system.

A. Experimental Platform for Internet Contingencies
(EPIC) Overview

The EPIC [20] is a hybrid facility for studying the security
and stability of distributed systems. The architecture of EPIC
relies on an emulation testbed based on the Deter software [21],
[22] in order to recreate the cyber part of a distributed system,
e.g., servers and corporate network.

By employing an emulation-based testbed we ensure strong
fidelity, repeatability, measurement accuracy and safety of the

cyber layer. This approach is well-established in the field of
cyber security [23]–[25] and was chosen in order to overcome
the major difficulties that arise while trying to simulate the
behavior of ICT components under stress, attacks, or failures.
In terms of resources EPIC consist of 356 experimental nodes,
eight switches only for the experimentation infrastructure and a
few special physical equipment, such as programmable logical
controllers.

B. Recreating Cyber Systems

The Deter adaptation for testing purposes of advanced net-
work systems allows the assignment of computational resources
to a virtual network topology. The EPIC can set parameters to
the physical infrastructures in order to implement and emulate a
realistic network topology. The process is made as transparently
as possible. This way provides significant advantages in terms of
repeatability, scalability, and controllability of our experiments.

The Deter software comes with a Web interface where it is
possible to assign physical equipment in order to create emulated
networks. Briefly, the main steps of the process are as follows.

1) Write the experimental script, which describes in detail the
network architecture/topology. In order to compose the
script, the network simulator 2 (ns2) scripting language
is used. This eases the process for future reuse of our
experiment.

2) The EPIC software then initiates the experiment. Based on
the script, it reserves and assigns the necessary physical re-
sources. The process of allocating resources to someone’s
experiment is called swap-in.

3) Additionally, EPIC creates virtual private networks on
the network switches in order to construct the network
topology by connecting experimental nodes. Then, the
software adjusts other parameters of the network, such
as latency and packet loss, by assigning additional nodes
for these specific purposes.

4) Applications and services specific for the experiment, e.g.,
Docker containers, can be initiated and configured either
automatically or manually, by logging in to each node that
has been assigned into the specific experiment.

C. SEED Blockchain Service Configuration on EPIC

Our experimental testbed blockchain architecture for a
SEED like service relies on the Hyperledger Fabric. From an

GENEIATAKIS et al.: BLOCKCHAIN PERFORMANCE ANALYSIS FOR SUPPORTING CROSS-BORDER E-GOVERNMENT SERVICES 1315

Fig. 4. SEED Hyperledger Configuration on EPIC infrastructure.

architectural point of view the system consists of the “ordering”
service and the “distributed” components, i.e., MSA nodes. The
high-level architecture is illustrated in Fig. 4.

The ordering service is managed by “trusted” authorities
among the participants, meaning that it can be distributed in
different locations, and not all the components need to be phys-
ically colocated; this way there is no single point of failure. In
fact, any trusted entity in the network can potentially operate an
ordering service node; however, this should be defined during
blockchain network bootstrapping procedure.

The main task of the ordering service is to sort the mes-
sages/requests exchanged between the participants. It consists of
the following services: ZooKeeper (three instances), Kafka (four
instances), and Orderer (three instances). Each of the instances
of a specific service is executed on a different machine, and thus
can be distributed onto different places. This is the minimum
configuration in terms of capacity for supporting failover at the
ordering service. The number of the required instances for each
of the supporting services is defined in the Hyperledger Fabric
specifications.7 In particular, in this setup, only one instance for
each of the different services is “allowed” to be in fail status
without affecting the ordering service availability. For instance,
if one of the Kafka instances is not responding, the ordering
service is still functional; however, if a second one becomes
unavailable, then the ordering service will not be functional.

The distributed components are managed by the participants,
i.e., MSAs in the network and require management only at
“local” level. All the services for each MSA are hosted on
a single machine. MSAs nodes main goal is to endorse the
transactions proposed by the clients and receive the ordered
blocks of transaction from the ordering service to maintain their
local copy of the ledger. In particular, each MSA operates the
following services.

7[Online]. Available: https://hyperledger-fabric.readthedocs.io/en/release-1.
4/orderer/ordering_servi ce.html

1) CouchDB, the database that maintains the world state (all
the valid transactions) of the blockchain and allows the
storage of javascript object notation (JSON) objects.

2) Peer, a core service in the Hyperledger Fabric architec-
ture as it stores the ledger and validates the transactions
according to the defined policy.

3) A certificate authority (CA) that provides digital identities
(certificates) to the participants (users) of the local orga-
nization to the blockchain network supporting a complete
life cycle of the generated certificates.

4) A smart contract that implements basic SEED specifi-
cation checks such as user access control and message
conformity.

5) An application interface for interacting with the
blockchain, which is implemented as a representational
state transfer (REST) service. This component accom-
plishes all the interactions (as described in Section IV-B)
on behalf of the user in order to commit a transaction in
the blockchain network. In fact, this component generates
the trader authorization requests in JSON format.

At this point, it should be noted that all the Hyperledger Fabric
related services both for the ordering service and MSA peer
nodes subsystems are configured and executed using the corre-
sponding docker images with the standard deployment option.
Moreover, in our configuration all the underlying network com-
munications, between the participants (clients, peers, and the
ordering service), are securely protected by TLS. All the required
certificates and private keys both for TLS and for the blockchain
services are generated during blockchain network initialization
procedure according to Hyperledger Fabric specifications.

VI. PERFORMANCE EVALUATION

In this section, we study the performance of our system in
terms of computational resources and its responsiveness. To
do so, we use as indicators memory, central processing unit
(CPU), and end-to-end service delivery under various testing
scenarios on the EPIC infrastructure described in Section V.
We consider different network parameters such as latency and
traffic conditions, i.e., TPS submitted to the system, in order to
simulate typical operational characteristics.

A. Monitoring Indicators

To evaluate the system performance for each experimental
test, we use the following indicators.

1) Request round-trip time, that is, the time elapsed from the
moment in which a user submits an operation request (i.e.,
write) and the moment in which he/she receives service
response. The monitoring procedure is accomplished by
integrating a recording service both in the user and REST
service.

2) System resources utilization in which we monitor the
utilization of CPU and memory for all the related services.
To keep track of the utilization of system resources, we
relied on docker’s built-in monitoring services.

3) Transaction commit rate, that is, the pace at which the
transactions have been written in the blockchain. To do

https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer/ordering_servi ignorespaces ce.html

1316 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 67, NO. 4, NOVEMBER 2020

TABLE II
DESCRIPTION OF THE EXPERIMENTAL TESTS CONSIDERING A BLOCKCHAIN

NETWORK OF 28 NODES CONFIGURED WITH 4 MB/S NETWORK BANDWIDTH

AND 3-MS LATENCY

so, we use the fetchblock8 to monitor when transactions
are recorded in the blockchain.

B. System Parameters and Configuration

Real environment characteristics (parameters and constraints)
should be considered to assess system performance. In this work,
we mainly study how 1) the number of TPS, 2) the operational
(available) network bandwidth, and 3) the corresponding latency
affect the system performance.

Based on the testbed architecture described in Section V, we
have deployed 28 nodes, which represent the MSAs services
in the context of SEED. The ordering service is configured on
a “separate” system in order to provide the minimum failover
mechanism required by Kafka, as described in Section V. Both
the ordering service and MSA services were configured as virtual
machines in the EPIC infrastructure, supporting in terms of
hardware four CPU cores (1.7 GHz each) and 16 GB of RAM.

For all the test cases, a single OR endorsing policy was
enforced, meaning that each transaction is endorsed only by one
MSA node. Clients submit transactions to the MSA node in their
jurisdictions (country) that would endorse those transactions.
However, all the MSA nodes commit the transactions submitted
by all the clients (MSA nodes are all in the same Hyperledger
channel). Clients submit in total 130 k transactions, simulating
the yearly volume of SEED, that are equally distributed to all the
28 MSA nodes of the network. In our experimental tests, client
requests correspond to trader authorization records, as described
in Section III, submitted in JSON format.

C. Throughput

In this set of experiments (see Table II), we study how the
system performs under different traffic conditions when the
bandwidth is limited to 4 Mb/s and the network latency is set
to 3 ms. In particular, we scale the traffic targeting the ordering
service in terms of TPS from 2.5 to 13 TPS.

Results demonstrate that end-to-end delay (request round-trip
time) both for the end-user and the REST service is not impacted
for the test cases up to 8 TPS. In fact, the average response time
varies between 1 and 1.3 s. However, when the TPS rate increases

8[Online]. Available: https://github.com/cendhu/fetch-block

Fig. 5. User and REST service response time considering different number of
TPS.

TABLE III
THROUGHPUT ACHIEVED WITH 4 MB/S BANDWIDTH AND RELATED

RESOURCE UTILIZATION

to more than 10 TPS then the average response time increases
up to 30 s, approximately 29× compared to the previous cases.
This trend is confirmed by the REST service response time that
follows the same trend. Fig. 5 overviews the round-trip time for
serving a single request both for the end-user and the REST
service as well.

Furthermore, to identify whether the request submission rate,
i.e., TPS is influenced by the deployed configuration we also
monitor the transactions commit rate. The commit rate increases
with the TPS up to a certain threshold. After this threshold, the
commit rate drops and the round-trip times grow considerably,
indicating a poor performance in terms of transaction writing
throughput. Table III lists the relationship between transactions
submission, commit rate, and round-trip time.

Regarding resources utilization for MSA nodes, the CPU
utilization for the peer service ranges between 33% and 41%. For
instance, in the case of 2.5 TPS the CPU utilization approximates
35% of the available resources, which slightly varies for the rest
of the cases. On the contrary, the REST service CPU utilization
increases “steadily” as the TPS rate raises. In fact, CPU utiliza-
tion from 2.5 to 13 TPS increases by 7×. This shows the stress
of the REST service that corresponds to the delay introduced
in the requests delivery. A similar trend is demonstrated by the
CouchDB service as well, however, after 12.5 TPS the CouchDB
CPU utilization starts to decrease because the REST service is

https://github.com/cendhu/fetch-block

GENEIATAKIS et al.: BLOCKCHAIN PERFORMANCE ANALYSIS FOR SUPPORTING CROSS-BORDER E-GOVERNMENT SERVICES 1317

Fig. 6. MSA nodes services CPU utilization considering different number
of TPS.

Fig. 7. MSA nodes services MEM utilization considering different number
of TPS.

not capable of processing properly the TPS generated by the
clients. As for the smart contract CPU utilization, it is negligible.
Fig. 6 overviews the CPU utilization trend for MSA nodes hosted
services.

As far as memory utilization for the peer and the REST service
is concerned, it can be as low as 4.5%, whereas the memory
footprint for the CouchDB remains stable under all cases (less
than 2%). Even if the memory utilization by the smart contract
increases, it is less than 1% in all tests. At this point, it should
be noted that for all the MSA services, after 10 TPS the memory
utilization decreases and this is due to the fact that the network
bandwidth and the REST service throttle the generated traffic.
Fig. 7 overviews the memory utilization trend for MSA services.

Regarding resource utilization by the ordering service, the
number of TPS does not have any influence on the ZooKeeper
service in terms of memory and CPU utilization as Figs. 8
and 9 demonstrate. However, this is not the case for the Orderer
and Kafka services. Indeed, as TPS increases, the ordering
service CPU utilization increases up to 2.5×. The same trend
is followed also by the Kafka service, though after 10 TPS the
CPU utilization decreases.

Overall, considering the current configuration for these sce-
narios, such an architecture cannot properly handle traffic more

Fig. 8. Ordering services CPU utilization considering different number
of TPS.

Fig. 9. Ordering services memory utilization with considering different num-
ber of TPS.

TABLE IV
DESCRIPTION OF THE EXPERIMENTAL TESTS CONSIDERING A BLOCKCHAIN

NETWORK OF 28 NODES CONFIGURED WITH 4 MB/S NETWORK BANDWIDTH

CONSIDERING DIFFERENT LATENCY VALUES

In all the scenarios, clients send 8 TPS to the ordering system.

than 10 TPS, as round-trip time for serving a single request
increases “exponentially.” The REST service is a point of throt-
tling for the generated traffic, taking into consideration the
limitation of the available bandwidth as well.

D. Network Latency

In this set of experiments (see Table IV), we analyze how
network latency can affect service performance. In particular,
the network bandwidth is limited to 4 Mb/s and the network
latency for all the MSAs is configured to different values, i.e.,

1318 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 67, NO. 4, NOVEMBER 2020

TABLE V
NETWORK LATENCY DISTRIBUTION BETWEEN BLOCKCHAIN NODES

Fig. 10. User and REST service response time considering different network
latency values.

3, 100, 500, and 1000 ms. We also consider a test case in which
MSAs nodes network latency is configured to real distribution
values (see Table V) based on operational data. For all the tests,
the traffic targeting the ordering service is configured at 8 TPS.
This is an optimal value when the system is configured at 4 Mb/s,
as the results in the Section VI-C demonstrate.

Results show that network latency highly affects end-user
experience in terms of service responsiveness. For instance,
when network latency is set to 3 ms, the request round-trip time
is on average around 1 s, whereas as latency increases from 100
to 1000 ms the round-trip time increases up to 9×. This trend is
illustrated in Fig. 10.

Furthermore, to identify whether the request submission
rate, i.e., TPS is influenced by the latency we also monitor
the transaction commit rate as in the case of throughput. In
fact, the request submission rate and transactions commit rate
keep almost the same pace under all latency test cases (see
Table VI).

As far as resource utilization (both for CPU and memory) is
concerned, neither the MSA nodes nor the ordering services
are affected by network latency as Figs. 11–14 demonstrate
correspondingly.

TABLE VI
SYSTEM PERFORMANCE FOR DIFFERENT LATENCY VALUES

Fig. 11. MSA nodes services CPU utilization considering different network
latency values.

Fig. 12. MSA nodes services utilization considering different network latency
values.

E. Bandwidth

In this set of experiments (see Table VII), we examine whether
the provided bandwidth could be a constraint in the context
of the provided service. We analyze how the system performs
considering different network bandwidth, i.e., 1 Mb/s, 4 Mb/s,
and 1 Gb/s, with an optimal network latency setting (that is 3 ms).

Results demonstrate that the available bandwidth speeds can
highly influence system performance mainly in terms of resource
utilization considering the maximum TPS among the available

GENEIATAKIS et al.: BLOCKCHAIN PERFORMANCE ANALYSIS FOR SUPPORTING CROSS-BORDER E-GOVERNMENT SERVICES 1319

Fig. 13. Ordering services CPU utilization considering various latency values.

Fig. 14. Ordering services utilization considering various latency values.

TABLE VII
DESCRIPTION OF THE EXPERIMENTAL TESTS CONSIDERING A BLOCKCHAIN

NETWORK OF 28 NODES CONFIGURED WITH NETWORK LATENCY

OF 3 MS CONSIDERING DIFFERENT VALUES OF BANDWIDTH

bandwidth. In fact, the maximum supported TPS for 1 Mb/s,
4 Mb/s, and 1 Gb/s is 1, 12, and 47 TPS, respectively (see
Table VIII and Fig. 15). This outcome shows that the available
bandwidth influences the maximum number of TPS that can
be sent to the ordering service. Interestingly, MSA nodes and
ordering service resources utilization, with emphasis on CPU
utilization, increases for all the services as TPS and available
bandwidth grow (see Figs. 16 and 17). With reference to memory
utilization, this trend occurs only for MSAs node peer and REST
services (see Figs. 18 and 19).

TABLE VIII
MAXIMUM THROUGHPUT ACHIEVED WITH DIFFERENT BANDWIDTH VALUES

Fig. 15. User and REST service response time considering different bandwidth
speeds.

Fig. 16. MSA nodes services CPU utilization considering different bandwidth
speeds.

F. Scalability

In the previous set of experiments, we analyzed how the
system performs under various traffic conditions considering
specific network configurations. However, at this point one
might raise a concern about system scalability when the network
size increases. To identify to what extent such a concern could
be a burden in the implementation of SEED like b-government
services, we run a set of experiment with different network sizes
up to 28 nodes (see Tables IX, X, and II).

Figs. 20, 21, and 5 show end-users and REST services re-
sponse time when the network size is configured with eight, 16,
and 28 nodes. Results demonstrate that the number of nodes

1320 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 67, NO. 4, NOVEMBER 2020

Fig. 17. Ordering services CPU utilization considering different bandwidth
speeds.

Fig. 18. MSA nodes services memory utilization considering different band-
width speeds.

Fig. 19. Ordering services memory utilization considering different band-
width speeds.

affects the network performance in terms of service quality, i.e.,
round-trip response time.

In particular, when the blockchain network is configured with
eight nodes, the system resources start to saturate over 30 TPS;
the user round-trip response time approximates 10 s for the user
and 2 s for the REST service. In the case of a blockchain of

TABLE IX
DESCRIPTION OF THE EXPERIMENTAL TESTS CONSIDERING A BLOCKCHAIN

NETWORK OF EIGHT NODES WITH 4 MB/S NETWORK BANDWIDTH AND

3-MS LATENCY

TABLE X
DESCRIPTION OF THE EXPERIMENTAL TESTS CONSIDERING A BLOCKCHAIN

NETWORK OF 16 NODES WITH 4 MB/S NETWORK BANDWIDTH AND

3-MS LATENCY

Fig. 20. User and REST service response time when the blockchain network
is consisted of eight nodes.

16 nodes, the system resources saturate with less than 20 TPS,
as the round-trip response time for both the user and the REST
service is 30 s at 20 TPS (see Fig. 21). As shown in Fig. 5,
for a blockchain network of 28 nodes and a throughput of 13.3
TPS, the round-trip response time is 30 s. Therefore, it is evident
that the blockchain network size for Hyperledger Fabric based
solutions influences the maximum throughput that the provided
service can handle.

VII. RELATED WORK DISCUSSION

In this section, we present related work on two main areas: 1)
use of blockchains in the context of e-government applications
and services, and 2) performance evaluations of blockchain

GENEIATAKIS et al.: BLOCKCHAIN PERFORMANCE ANALYSIS FOR SUPPORTING CROSS-BORDER E-GOVERNMENT SERVICES 1321

Fig. 21. User and REST service response time when the blockchain network
is consisted of 16 nodes.

platforms. For both areas, we describe existing studies and
compare them with our approach and performance evaluation
results. To the best of our knowledge, we are the first to propose
and evaluate a blockchain approach that supports collaboration
across different entities in a network that consists up to 28 nodes.

Blockchain technologies have been identified as a promising
technology to improve government services beyond their cryp-
tocurrency use [26] in many countries [27] and in many areas
including identity management, record keeping, value registry,
voting systems, health records management, and agriculture
[28]–[31].

A concrete example is described by Beris et al. in [32],
where they propose a re-engineering of Diavgeia, the Greek gov-
ernment portal for open and transparent public administration
using blockchain technologies. Their goal for using blockchain
technologies is to make decisions taken by the government
open, easily accessible to the public, and add immutability of all
decisions over time. The trust model implemented by this work
is different from the one adopted in this article since their focus
is on decisions made by one government’s institution, whereas
in our architecture the focus is on interactions across MSAs in
the EU.

Pongnumkul et al. [33] present a performance analysis and
comparison of Hyperledger Fabric and a private deployment
of Ethereum. According to their evaluation, the Hyperledger
Fabric outperforms Ethereum, which is an expected result since
Fabric relies also on an ordering service for consensus, whereas
Ethereum uses proof of work. In their worst case scenario, when
10 000 transactions are submitted in parallel to both blockchain
deployments, the latency of the Ethereum deployment is around
8 min, in contrast to 35 s for Hyperledger Fabric. Although the
authors present a comprehensive evaluation including latency,
transaction execution time, and throughput, they do not present
the details about the mining difficulty set on their Ethereum
deployment or the endorsement policy used in Hyperledger.
A final remark is that both systems are not yet competitive in
comparison to current database systems since their transaction
rate is comparatively low. In contrast to our evaluation, although
we focus only on the evaluation of Hyperledger Fabric, our
results are more complete since we present additional details
about the system architecture and the endorsement policies used.

These parameters are of high importance since they can have a
significant impact on the performance results.

Androulaki et al. in [19] describe in detail the Hyperledger
Fabric platform, including the architecture components, appli-
cations, use cases, and a performance evaluation. They point
out that Fabric is not yet performance-tuned, and that many
parameters including transaction size, ordering service configu-
ration, network architecture, among others may affect the results
obtained. In their article, they focus on a simple evaluation simu-
lating a cryptocurrency implementation with a single channel, an
ordering service using Kafka (three ZooKeeper nodes and four
Kafka brokers), and five peer nodes each belonging to different
organizations. All nodes were colocated in the same data center
with dedicated virtual machines (VMs). Using this configuration
they performed a few experiments varying block size, CPU
resources for each peer node, use of solid-state drive (SSD)
versus RAM disks, increasing the number of peers in one data
center, distributing peers over many different data centers. In our
approach, we analyze the same parameters with a larger network
of 28 nodes showing the behavior and performance issues when
these nodes are also colocated but considering constraints in the
network as well.

Thakkar et al. in [34] present a detailed performance anal-
ysis of Hyperledger Fabric, identify the main bottlenecks, and
suggest optimizations. For the latter, the authors show empirical
evaluation results comparing the performance before and after
their optimizations are implemented. In summary, they show the
following three main optimizations:

1) implementation of a caching mechanism for endorsement
policy verification with an improvement;

2) parallel execution of endorsements;
3) optimization of the state database to a native approach that

does not require REST invocations.
By combining their optimization approaches, in their specific

scenario, the performance improvements were in the order of
16× for transaction throughput.

Gorenflo et al. in [35] also show how Hyperledger can be
optimized for high transaction throughput. They suggest the
following four main optimization approaches:

1) to remove from the ordering service the transaction data
and only keep the metadata that is relevant for the trans-
action validation;

2) parallelization and caching of endorsement and validation
peers;

3) caching of the state database using an in-memory ap-
proach;

4) splitting of endorser and committer roles to different peers.
Similarly to Thakkar et al. [34], these changes are archi-

tectural design choices that are supported by Hyperledger and
do not require changes to the interfaces. By adopting these
additional optimizations the authors achieve an increase in
transaction throughput 7× higher than [34]. The optimizations
proposed by Gorenflo et al. and Thakkar et al. show that
the Hyperledger architecture is flexible and is prone to spe-
cific optimizations, considering a target blockchain architec-
ture and use case, where high transaction throughputs can be
achieved.

1322 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 67, NO. 4, NOVEMBER 2020

VIII. CONCLUSION

In this article, we described the results of an experimental
activity aiming at studying the performance of an existing
e-government service converted into its blockchain version.
More in detail, we identified as suitable test use case an existing
system (SEED) that is currently used within the EU to monitor
the exchange of excise goods. The study included the conversion
of the system into a b-government service considering different
business requirements, and its deployment in our test infras-
tructure. We deployed SEED in our emulated infrastructure and
tested under different network conditions in order to assess its
performance and determine its limits.

This article showed that transforming an e-government data
distribution service into a b-government equivalent is technically
feasible considering specific hardware and network require-
ments. For instance, in a blockchain network consisted of 28
participants (MSAs) with a network bandwidth of 4 Mb/s a
throughput of 8 TPS can be achieved without affecting service
responsiveness, whereas in case of 1 Gb/s the throughput of the
system rose to 48 TPS. Moreover, such a service transformation
would benefit from blockchain built-in features such as data
integrity and immutability, transparency, and common logic
sharing. To the best of our knowledge, this is the first time that
such a b-government service is evaluated under real network
conditions.

In the near future, we plan to extend our work with the
optimizations suggested by Thakkar et al. and Gorenflo et al.,
and evaluate SEED performance over other blockchain plat-
forms, i.e., Ethereum and study cybersecurity challenges on b-
government services [34], [35]. Furthermore, in order to enhance
trust, we will integrate a trusted execution environment, in the
same way implemented by Mast et al. for database systems in
[36], to the Hyperledger Fabric platform.

REFERENCES

[1] F. Tian, “A supply chain traceability system for food safety based on
HACCP, blockchain & Internet of Things,” in Proc. Int. Conf. Serv. Syst.
Serv. Manage., Jun. 2017, pp. 1–6.

[2] D. Tse, B. Zhang, Y. Yang, C. Cheng, and H. Mu, “Blockchain application
in food supply information security,” in Proc. IEEE Int. Conf. Ind. Eng.
Eng. Manage., Dec. 2017, pp. 1357–1361.

[3] E. Tijan, S. Aksentijević, K. Ivanić, and M. Jardas, “Blockchain technol-
ogy implementation in logistics,” Sustainability, vol. 11, no. 4, p. 1185,
Feb. 2019.

[4] V. D. Ndou, “E-Government for developing countries: Opportunities and
challenges,” Electron. J. Inf. Syst. Developing Countries, vol. 18, no. 1,
pp. 1–24, 2004.

[5] R. Palanisamy and B. Mukerji, “Security and privacy issues in E-
government,” in Cyber Behavior: Concepts, Methodologies, Tools, and
Applications. Hershey, PA, USA: IGI Global, 2014, pp. 880–892.

[6] A. Ramtohul and K. Soyjaudah, “Information security governance for e-
services in Southern African developing countries e-government projects,”
J. Sci. Technol. Policy Manage., vol. 7, no. 1, pp. 26–42, 2016.

[7] P. Papadopoulou, M. Nikolaidou, and D. Martakos, “What is trust in
E-government? A proposed typology,” in Proc. 43rd Hawaii Int. Conf.
Syst. Sci., Honolulu, HI, USA, 2010, pp. 1–10.

[8] M. Hammer and D. Shipman, “Reliability mechanisms for SDD-1: A
system for distributed databases,” ACM Trans. Database Syst., vol. 5, no. 4,
pp. 431–466, Dec. 1980.

[9] G. DeCandia et al., “Dynamo: Amazon’s highly available key-value store,”
SIGOPS Oper. Syst. Rev., vol. 41, no. 6, pp. 205–220, Oct. 2007.

[10] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
Apr. 2010.

[11] M. Rauchs et al., “Distributed ledger technology systems: A con-
ceptual framework,” SSRN Electron. J., to be published, doi:
10.2139/ssrn.3230013.

[12] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,”
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul. 1982.

[13] M. Jakobsson and A. Juels, “Proofs of work and bread pudding protocols
(extended abstract),” in Secure Information Networks. Boston, MA, USA:
Springer, 1999, pp. 258–272.

[14] S. King and S. M. Nadal, “PPCoin: Peer-to-peer crypto-currency with
proof-of-stake,” 2012. [Online]. Available: https://pdfs.semanticscholar.
org/0db3/8d32069f3341d34c35085dc009a85ba13c13.pdf?_ga=2.
189270443.1680383901.1589560842-407403572.1523881355

[15] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun, “A review
on consensus algorithm of blockchain,” in Proc. IEEE Int. Conf. Syst.,
Man, and Cybern., Oct. 2017, pp. 2567–2572.

[16] C. Cachin and M. Vukolic, “Blockchain consensus protocols in the wild,”
2017. [Online]. Available: https://arxiv.org/abs/1707.01873

[17] European Commission, “Excise duties on alcohol, tobacco and energy,”
Sep. 2016.

[18] R. Oppliger, SSL and TLs: Theory and Practice, 2nd ed. Norwood, MA,
USA: Artech House, 2016.

[19] E. Androulaki et al., “Hyperledger Fabric: A distributed operating sys-
tem for permissioned blockchains,” in Proc. 13th EuroSys Conf., 2018,
pp. 30:1–30:15.

[20] C. Siaterlis, B. Genge, and M. Hohenadel, “EPIC: A testbed for scien-
tifically rigorous cyber-physical security experimentation,” IEEE Trans.
Emerg. Topics Comput., vol. 1, no. 2, pp. 319–330, Dec. 2013.

[21] J. Mirkovic, T. V. Benzel, T. Faber, R. Braden, J. T. Wroclawski, and S.
Schwab, “The DETER project: Advancing the science of cyber security
experimentation and test,” in Proc. IEEE Int. Conf. Technol. Homeland
Secur., Nov. 2010, pp. 1–7.

[22] T. Benzel, “The science of cyber security experimentation: The DE-
TER project,” in Proc. 27th Annu. Comput. Secur. Appl. Conf., 2011,
pp. 137–148.

[23] C. M. Davis, J. E. Tate, H. Okhravi, C. Grier, T. J. Overbye, and D. Nicol,
“SCADA cyber security testbed development,” in Proc. 38th North Amer.
Power Symp., Sep. 2006, pp. 483–488.

[24] T. C. Eskridge, M. M. Carvalho, E. Stoner, T. Toggweiler, and A. Granados,
“VINE: A cyber emulation environment for MTD experimentation,” in
Proc. 2nd ACM Workshop Moving Target Defense, 2015, pp. 43–47.

[25] K. E. Stewart, J. W. Humphries, and T. R. Andel, “Developing a vir-
tualization platform for courses in networking, systems administration
and cyber security education,” in Proc. Spring Simul. Multiconf., 2009,
pp. 65:1–65:7.

[26] S. Ølnes and A. Jansen, “Blockchain technology as a support infrastructure
in e-government,” in Electronic Government, M. Janssen et al., Eds. Cham,
Switzerland: Springer, 2017, pp. 215–227.

[27] A. Ojo and S. Adebayo, “Blockchain as a next generation government
information infrastructure: A review of initiatives in D5 countries,” in
Government 3.0—Next Generation Government Technology Infrastruc-
ture and Services:Roadmaps, Enabling Technologies& Challenges. Cham,
Switzerland: Springer, 2017, pp. 283–298.

[28] A. Alketbi, Q. Nasir, and M. A. Talib, “Blockchain for government
services—Use cases, security benefits and challenges,” in Proc. 15th
Learn. Technol. Conf., Feb. 2018, pp. 112–119.

[29] N. Kshetri and J. Voas, “Blockchain-enabled e-voting,” IEEE Softw.,
vol. 35, no. 4, pp. 95–99, Jul. 2018.

[30] Y.-P. Lin et al., “Blockchain: The evolutionary next step for ICT e-
agriculture,” Environments, vol. 4, no. 3, p. 50, Jul. 2017.

[31] E. Yavuz, A. K. Koç, U. C. Çabuk, and G. Dalkiliç, “Towards secure e-
voting using Ethereum blockchain,” in Proc. 6th Int. Symp. Digit. Forensic
Secur., Mar. 2018, pp. 1–7.

[32] T. Beris et al., “Towards a decentralized, trusted, intelligent and linked
public sector: A report from the Greek trenches,” in Companion Proc.
World Wide Web Conf., 2019, pp. 840–849.

[33] S. Pongnumkul, C. Siripanpornchana, and S. Thajchayapong, “Perfor-
mance analysis of private blockchain platforms in varying workloads,”
in Proc. 26th Int. Conf. Comput. Commun. Netw., Jul. 2017, pp. 1–6.

[34] P. Thakkar, S. Nathan, and B. Vishwanathan, “Performance benchmarking
and optimizing Hyperledger Fabric blockchain platform,” in Proc. IEEE
26th Int. Symp. Model., Anal. Simul. Comput. Telecommun. Syst., 2018,
pp. 264–276.

[35] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “FastFabric: Scaling Hy-
perledger Fabric to 20,000 transactions per second,” in Proc. IEEE Int.
Conf. Blockchain Cryptocurrency (ICBC), Seoul, South Korea, 2019, pp.
455–463.

[36] K. Mast, L. Chen, and E. G. Sirer, “Enabling strong database integrity
using trusted execution environments,” 2018. [Online]. Available: https:
//arxiv.org/abs/1801.01618

https://dx.doi.org/10.2139/ssrn.3230013
https://pdfs.semanticscholar.org/0db3/8d32069f3341d34c35085dc009a85ba13c13.pdf{?}_ga$=$2.189270443.1680383901.1589560842-407403572.1523881355
https://arxiv.org/abs/1707.01873
https://arxiv.org/abs/1801.01618

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

