

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/136158

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/136158
mailto:wrap@warwick.ac.uk

1

A Smart Contract System for Decentralized Borda
Count Voting

Somnath Panja, Samiran Bag, Feng Hao and Bimal Roy

Abstract—In this paper, we propose the first self-tallying decen-
tralized e-voting protocol for a ranked-choice voting system based
on Borda count. Our protocol does not need any trusted setup
or tallying authority to compute the tally. The voters interact
through a publicly accessible bulletin board for executing the
protocol in a way that is publicly verifiable. Our main protocol
consists of two rounds. In the first round, the voters publish
their public keys, and in the second round they publish their
randomized ballots. All voters provide Non-interactive Zero-
Knowledge (NIZK) proofs to show that they have been following
the protocol specification honestly without revealing their secret
votes. At the end of the election, anyone including a third-party
observer will be able to compute the tally without needing any
tallying authority. We provide security proofs to show that our
protocol guarantees the maximum privacy for each voter. We
have implemented our protocol using Ethereum’s blockchain as
a public bulletin board to record voting operations as publicly
verifiable transactions. The experimental data obtained from our
tests show the protocol’s potential for the real-world deployment.

Index Terms—E-voting, Self-enforcing voting, NIZK proofs,
Borda count voting, Ethereum smart contract, Blockchain tech-
nology.

I. INTRODUCTION

In a Borda count voting system, the voters cast their vote by
ranking the candidates according to the order of preference.
Each candidate obtains some points according to her position
in the ranking done by a particular voter. In the end all the
points obtained by her from all the voters are summed up and
on the basis of this sum the winner is selected. For example,
the least preferred candidate may get 0 point, the next one
may get 1 point and so on. The Borda count voting system
has been employed in the elections in Nauru [51], Slovenia
[26] and in Kiribati [51]. In Ireland, a modified version of
the Borda count system has been used by the Green party to
elect its president [22]. Unlike the plurality voting system, the
Borda count systems are designed to gather more information
from the voter regarding her predilection toward more than
one candidate.

Borda count voting using traditional paper ballot is not
only time consuming, but also prone to human errors. Hence,
there is a desirable need to advance toward using an elec-
tronic voting system. However, with the advent of e-voting
systems comes the need to ensure privacy and integrity of
the voting system. An electronic system can be vulnerable to

S. Panja and B. Roy are with the Applied Statistics Unit, Indian Sta-
tistical Institute, Kolkata, India. E-mails: {somn.math2007@gmail.com, bi-
mal@isical.ac.in}. S. Bag and F. Hao are with the Department of Computer
Science, University of Warwick, United Kingdom. E-mails: {samiran.bag,
feng.hao}@warwick.ac.uk. This work is supported by the Royal Society grant,
ICA/R1/180226.

several attacks like intrusion, software alteration/modification,
eavesdropping etc.

The lack of assurance on the integrity of e-voting systems
has encouraged researchers to devise e-voting systems that
provide end-to-end verifiability and that are proven to be
secure. The research on end-to-end verifiable e-voting systems
started with the pioneering work by Chaum [15]. Chaum’s
scheme uses visual cryptography to protect the privacy of
voters. Every voter is issued with two strips of paper cor-
responding to a vote. Each one of the two strips does not
divulge any secret on their own. When the two strips are
superposed on one another under a custom viewfinder, the
vote is revealed. The voter retains one strip and the other one
is digitized before getting destroyed. Once the polling station
voting has finished, all the saved voter receipts are published
on the bulletin board, so that the voters can verify that their
ballots are not discarded. This work first highlighted the notion
of end-to-end verifiability in voting. A voting system is called
end-to-end verifiable if it ensures that 1) every vote is cast as
intended, 2) every vote is recorded as cast, and 3) every vote
is tallied as recorded. Some other notable research works in
this area are MarkPledge [48], Prêt à Voter [53], Punchscan
[24], Scantegrity [14], Scantegrity II [16], scratch & vote [3],
STAR-Vote [6], Adder [37], and Helios [4]. These systems
use either mix-net [15] or homomorphic encryption [2], but
they all involve a set of trustworthy tallying authorities (TAs)
to perform the decryption and tallying process in a publicly
verifiable way.

A major difficulty of implementing the above schemes is
to find and manage a set of trustees who perform complex
cryptographic operations as tallying authorities. Threshold
control schemes can be applied to distribute the trust among
TAs. Nonetheless, if a sufficient number of trustees collude,
they can trivially breach the privacy of the e-voting system.

Hao, Ryan and Zielińksi proposed a decentralized online
voting scheme in [30]. This scheme allows a finite number
of voters to conduct voting without requiring the help of
any tallying authorities. This scheme is called Open-Vote
network (OV-net). OV-Net consists of two rounds. In the
first round each voter publishes her public key on the public
bulletin board. In the second round each voter publishes her
randomized ballot that is generated using the public keys of
other voters, the secret key of that voter and her secret vote.
Once all the encrypted ballots are available on the bulletin
board, anyone can easily calculate the tally from them. This
scheme relies on non-interactive zero-knowledge proofs for
proving the well-formedness of each ciphertext. The scheme
offers the maximum possible privacy guarantee as each voter

2

learns nothing more than the tally and their own vote. A public
observer learns nothing more than the tally from the bulletin
board.

The OV-Net scheme is designed to support plurality voting
where every voter gets to vote for a single candidate. In
this paper, we propose a decentralized Borda count e-voting
scheme by extending OV-Net to support ranking-based voting.
Similar to the OV-Net scheme, our Borda count scheme also
has two rounds. In the first round, the voters publish their
public keys, and in second round they publish their encrypted
ballots under a public key re-constructed by combining every
other voter’s public keys. Each encrypted ballot comes with
a Non-interactive Zero-Knowledge (NIZK) proof to prove the
well-formedness of the ballot. Once all the voters submit their
ballots, the tally can be computed from the published infor-
mation available on the bulletin board. Anyone can compute
the tally and verify the correctness of all operations with the
help of the NIZK proofs. Our scheme offers strong privacy
guarantee. A probabilistic polynomial time adversary learns
nothing other than the tally and whatever she can interpret
from the tally. We have implemented the Borda count e-voting
scheme on Ethereum’s [64] platform and have evaluated the
efficiency of our scheme.

Contributions. Our contributions in this paper include the
following. (1) We propose the first self-tallying decentralized
Borda count voting protocol. The proposed protocol provides
maximum voter privacy: an individual vote can only be
revealed by a full-collusion attack that involves all other voters.
All voting data is publicly available, and the correct execution
of the protocol can be verified by any public observer. The
proposed protocol does not require any trusted authority to
compute the tally; the tally can be computed by each voter,
as well as by any observer of the election. (2) We provide
security proofs to prove the security of the proposed scheme.
In particular, we show that the proposed scheme guarantees
the maximum voter privacy against colluding voters. (3) We
provide an implementation of the proposed protocol over
Ethereum Blockchain. It is a boardroom-scale voting system
implemented as a smart contract in Ethereum. Our imple-
mentation demonstrates the feasibility of using Ethereum for
secure Borda count voting with public verifiability.

II. RELATED WORK

In most of the e-voting systems, trustworthy election au-
thorities are required to preserve voter’s privacy, to decrypt
the vote and to compute the tally in a verifiable manner.
Generally, threshold cryptography is used to distribute this
trust among multiple tallying authorities; see, for example,
Helios [1]. However, while using threshold cryptography, if
the tallying authorities collude among themselves altogether,
voter’s privacy will be lost.

Several researchers have proposed e-voting systems based
on blockchain. In [66], Zhao and Chan propose a voting
system using Bitcoin. In their voting system, random numbers
and zero-knowledge proofs are used to hide the vote. In [60],
Tarasov and Tewari propose an e-voting system based on
cryptocurrency. In this system, a centralised trusted authority

exists to coordinate the election. Tivi [63], Followmyvote [25]
and The Blockchain Voting Machine [32] are Internet voting
systems that use blockchain as a ballot box. These systems
depend on trusted authorities to achieve voter’s privacy. In
Tivi, the trusted authority shuffles the encrypted votes before
decrypting and computing the tally. In Followmyvote, the
trusted authority obfuscates the link between a voter’s identity
and her voting key before the voter casts her vote. In our
proposed protocol, the voter’s privacy and the tally procedure
do not depend on trusted election authorities. We implement
the proposed protocol using smart contract in such a way that
the Ethereum bockchain’s consensus mechanism enforces the
execution of the voting protocol. Recently, the Abu Dhabi
Securities Exchange [33] has launched a blockchain-based
voting service. In Estonia, blockchain-based voting systems
[9] have been proposed for the internal elections of politi-
cal parties and shareholder voting. The possibility of using
blockchain in e-voting is also discussed in a report [9] by
the Scientific Foresight Unit of the European Parliamentary
Research Service. Recently, in [5], Bag et al. propose an end-
to-end verifiable Borda count voting system. However, their
scheme is on a centralised setting where a central facility (i.e.,
a touch-screen voting machine) is used to directly record votes
from voters. In such a setting, it is inevitable that the touch-
screen machine learns the voter’s choice. In this paper, we
propose the first self-tallying decentralized Borda count voting
protocol, in which voters cast votes using their own devices
in a distributed manner. No third-party entity can learn the
voter’s input unless all other voters are compromised (i.e., in
a full-collusion attack).

The first self-tallying voting protocol was proposed by
Kiayias and Yung [38] for boardroom voting. Their protocol
has the following three attractive features: it is self-tallying;
it provides the maximum voter privacy; and it is dispute-free.
We discuss these properties in detail in a later section. Their
protocol executes in three rounds. However, the computational
load for each voter is heavy and it increases linearly with
the number of voters. A subsequent protocol by Groth [29]
improves the computational complexity. The computational
load for each voter is less than the Kiayias and Yung’s protocol
[38] and remains constant with the number of voters; however,
the protocol trades off round efficiency for less computation. It
requires (n+1) rounds, where n is the number of voters. The
round efficiency is worse than the Kiayias and Yung’s protocol
[38]. Hao, Ryan and Zieliński investigated the computation
complexity and proposed the Open Vote Network (OV-Net)
protocol [30]. Their protocol significantly improves computa-
tional complexity. Their protocol executes in only two rounds.
In fact, their protocol is a generalization of the anonymous veto
network (AV-net) protocol [31] with the added self-tallying
function. McCorry et al. [46] provided the first implementation
of the OV-Net protocol using the Ethereum blockchain.

III. PRELIMINARIES

In this section, we describe the security definitions that
our proposed protocol is expected to satisfy. We also state
the assumptions based on which we prove these security
properties.

3

A. Desirable properties

In a decentralised voting system, some voters may collude
with each other to breach other voters’ privacy or manipulate
the voting outcome. A full collusion against a particular voter
occurs when all other voters involve in the collusion. No
decentralized system can preserve an honest voter’s privacy
in case of full collusion since the honest voter’s vote can be
obtained by subtracting the colluding voters’ votes from the
final tally. Therefore, we only consider partial collusion which
involves some voters, but not all.

Under the threat model of partial collusion, the following
three properties (also see [38], [29]) should be fulfilled by a
decentralized voting protocol.

1) Maximum ballot secrecy: This is an extension of the
usual ballot secrecy requirement. In a voting system with
maximum ballot secrecy, an attacker who colludes with
a group of voters will only learn the partial tally of the
remaining voters, but nothing beyond that.

2) Self-tallying: During the tallying phase, the final tally
can be computed by anyone including voters and third-
party observers without external help. This is naturally
expected in a decentralized voting protocol.

3) Dispute-freeness: A voting scheme is dispute-free if ev-
ery observer of the election can verify the fact that every
voter follows the protocol honestly. This requirement
means that the result should be publicly verifiable.

In a self-tallying voting protocol, the last voter can compute
the tally before casting her vote. This leads to two issues. First,
the last voter can use the knowledge of the tally to decide how
she will cast her vote. This issue can potentially influence the
result of the election. To prevent this issue, Kiayias and Yung
[38] and Groth [29] suggest that an election authority can
cast the last vote. During the tallying phase, this last vote is
excluded from the final tally. We can apply this method in our
implementation, however, in this case, the election authority
needs to be trusted not to collude with the last voter. Therefore,
this method relies on the trusted election authority. Instead,
McCorry et al. [46] propose an extra commitment round to
address this issue. In this round, every voter stores the hash of
their encrypted vote in the blockchain as a commitment. The
last voter will still be able to compute the tally before casting
her vote, however, she will not be able to change her vote. We
follow the same approach.

The second issue that since the last voter knows the tally
before casting her vote, she may refrain from casting her vote
if she is dissatisfied with the result of the election. In that
case, no one will be able to compute the final tally, and the
election will need to be restarted. To circumvent this issue,
Kiayias and Yung [38] and Khader et al. [36] propose an
additional round engaging the rest of the voters. However,
in this case, we must assume the remaining voters do not
drop out of the election half-way; otherwise, the election will
be aborted again. To address this issue, we use Ethereum’s
blockchain and smart contract to enforce a financial incentive
for all voters using a deposit and refund paradigm as done in
[46]. In our implementation, it is mandatory for all voters to
deposit some money into the smart contract to register for an

election. This deposit is refunded automatically to the voter
once her vote is successfully accepted by the blockchain. A
voter who registers for an election but withholds her vote
simply loses the deposit. This provides a countermeasure to
this abortive issue. The confiscated deposit could be used as
a compensation for all compliant voters or be donated to a
charity.

B. Cryptographic assumption

We state the cryptographic assumption that we use to
prove the security properties of our proposed protocol. If this
assumption holds, the proposed protocol satisfies the above
security properties. We first describe some notations that we
use throughout our paper.

Notation: We follow the notation introduced by Camenisch
and Stadler [12]. We use PK{λ : Γ = γλ} to denote a non-
interactive proof of knowledge of a secret λ such that Γ = γλ

for publicly known Γ and γ. We shorten the notation to PK{λ}
if the context is clear.

Cryptographic setup: Our system works on a DSA like
multiplicative cyclic group setting or an ECDSA-like group
setting over an elliptic curve, where the decision Diffie-
Hellman problem is assumed to be intractable [19]. Let Gq
be a subgroup of Z∗p of prime order q, where q | p− 1. Let g
be a generator of that group.

The decision Diffie-Hellman assumption [19] is defined as
follows:

Assumption 1: (DDH) If α, β are randomly and uniformly
chosen from Z∗q , given (g, gα, gβ , ρ) where ρ ∈ {gαβ , R} and
R is randomly and independently chosen from Gq , it is hard
to decide whether ρ = gαβ or ρ = R.

IV. OUR SCHEME

The Borda count scheme is a ranked choice voting method
in which voters rank candidates in order of preference. A
score is associated with each rank. Let there are k candidates
competing in an election. Assume a score aj is associated
with the j-th rank and aj−1 > aj ,∀j ∈ {2, ..., k}, i.e., a
higher score implies a higher rank of the candidate. At the
end of the election, the scores obtained by a candidate are
added together. Finally, the candidates are ranked according
to their scores obtained. The candidate with the highest score
wins the election. In this scheme, a participant’s vote will be of
the form (v1, v2, ..., vk), where (v1, v2, ..., vk) is a permutation
of (a1, a2,, ak).

In our protocol, we assume that there is an authenticated
public channel available for each participant. This assumption
is common in previous e-voting protocols; see, for example,
Kiayias and Yung’s protocol [38], Groth’s protocols [29],
the open vote network [30], and general multi-party secure
computation protocols [27], [28]. This authenticated public
channel can be realized by using physical means or a public
bulletin board where recorded ballots are stored securely in an
append only manner [46].

Our protocol is inspired by Open Vote Network [30] but we
have adapted the protocol to support Borda count. This results

4

in a new e-voting protocol, which is also the first ranked-
choice voting system based on Borda count in a decentralized
setting.

Our protocol works in two rounds. Assume that there are n
participants in an election. We denote the i-th participant as Vi.
They all agree on public group parameters (Gq, g). Let there
are k candidates competing in the election. Let us assume
that the score corresponding to the j-th rank is aj , where
aj−1 > aj ;∀j ∈ {1, 2, ..., k}.

A. Voting Phase

Each participant Vi generates k random values
(xi1, xi2, ..., xik) as their secrets, where xij ∈R Zq;∀j ∈
{1, 2, ..., k}. Each participant executes the following two-
round protocol. We denote the vote cast by the i-th participant
Vi as vi = (vi1, vi2, ..., vik), where (vi1, vi2, ..., vik) is a
permutation of (a1, a2, ..., ak). Here, vij is the score given
by the participant Vi to the j-th candidate.

First round. Every participant Vi calculates
Xi1 = gxi1 , Xi2 = gxi2 , ..., Xik = gxik and publishes
(Xi1, PK{xi1}, Xi2, PK{xi2}, . . . , Xik, PK{xik}), where
PK{xij} is the non-interactive zero-knowledge (NIZK) proof
for xij ;∀j ∈ {1, 2, ..., k}. The NIZK proofs are generated
by using Schnorr’s signature [54] (see Appendix A for more
details).

At the end of this round, every participant verifies the
validity of all zero-knowledge proofs. Each participant Vi then
computes gyij =

∏i−1
l=1g

xlj/
∏n
l=i+1g

xlj ;∀j ∈ {1, 2, . . . , k}.
Second round. Each participant Vi calculates Zij =

{gyij}xijgvij ;∀j ∈ {1, 2, ..., k} and generates a non-
interactive zero-knowledge (NIZK) proof to prove the well-
formedness of the ballot. The NIZK associated with each
participant’s ballot proves that (vi1, vi2, ..., vik) is a permu-
tation of (a1, a2, .., ak). In order to prove the statement, it is
sufficient to prove the following k relations.
• a1 ∈ {vi1, vi2, , ..., vik} for the score corresponding to

the 1-st rank.
• a2 ∈ {vi1, vi2, , ..., vik} for the score corresponding to

the 2-nd rank.
• . . .
• ak ∈ {vi1, vi2, , ..., vik} for the score corresponding to

the k-th rank.
The above k relations hold true if and only if the following

relations are true:
∨kj=1(Xij = gxij ∧ Zij = {gyij}xijga);∀a ∈

{a1, a2, ..., ak}. We denote this NIZK proof as Πj [xi1, xi2,
..., xik : Xi, Zi];∀j ∈ {1, 2, .., k}, where Xi =
(Xi1, Xi2, ..., Xik), Zi = (Zi1, Zi2, ..., Zik). More details
about the NIZK proof can be found in Appendix A.

Each participant Vi publishes (Zi1, Zi2, ..., Zik) and k NIZK
proofs Πj [xi1, xi2, ..., xik : Xi, Zi];∀j ∈ {1, 2, ..., k}.

B. Tallying phase

Anyone can compute
∏n
i=1{gyij}xijgvij = gΣni=1vij , where

j ∈ {1, 2, ..., k}. This equality follows from the fact that
Σni=1xijyij = 0;∀j ∈ {1, 2, ..., k} (proposition 1, see also
[31]).

Each participant, as well as observers of the election, can
check the validity of all the NIZK proofs to ensure that no
badly formed vote has been cast to distort the tally.

The total score obtained by the j-th candidate is Σni=1vij ,
which is normally a small number for all j ∈ {1, 2, ..., k}.
Since the quantity Σni=1vij is a small number, the discrete
logarithm of gΣni=1vij can be computed by exhaustive search
or Shanks’ baby-step giant-step algorithm [43]. Finally, each
participant and all observers of the protocol can rank candi-
dates in order of their total scores.

Proposition 1: For xij and yij as defined above
Σni=1xijyij = 0;∀j ∈ {1, 2, ..., k}.

Proof: According to the protocol, yij = Σl<ixlj −
Σl>ixlj ;∀j ∈ {1, 2, ..., k}.

Now for any fix j ∈ {1, 2, ..., k}, Σni=1xijyij =
Σni=1xij(Σl<ixlj − Σl>ixlj) = 0. �

The use of NIZK proofs in the protocol is to ensure that all
participants follow the protocol faithfully. In the first round,
each participant posts k NIZK proofs to prove her knowledge
of the exponents (xi1, xi2, ..., xik). The Fiat-Shamir heuristic
is employed in our protocol to construct NIZK proofs [23].
Consequently, our NIZK proofs are in the Random Oracle
Model [7]. The algorithm 1 and algorithm 2 provided in
Appendix A describe the procedure to create and verify these
NIZK proofs respectively.

In the second round, each participant posts k NIZK
proofs to prove that her encrypted vote is a permutation of
(a1, a2, ..., ak) without reveling which permutation. In order
to prove this, first note that the terms of our protocol form ex-
ponential ElGamal encryptions of vij , where i ∈ {1, 2, ..., n}
and j ∈ {1, 2, ..., k}. This can be realized by treating gyij as
the public key and using the published terms of 1-st round.
Thus, we form

(gxij , {gyij}xijgvij), where i ∈ {1, 2, ..., n} and j ∈
{1, 2, ..., k}.

This will be an ElGamal encryption of gvij ;∀j ∈
{1, 2, ..., k} with public key gyij and randomization xij ;∀j ∈
{1, 2, ..., k}. Thus, the published terms for the first and
second rounds form an exponential ElGamal encryption of
vij , ∀i ∈ {1, 2, ..., n} and ∀j ∈ {1, 2, ..., k}. We use an
efficient NIZK proof technique proposed by Cramer, Damgård,
and Schoenmakers [17] to construct proofs of conjunctive
knowledge, disjunctive knowledge and combination of both.
This essentially proves that (vi1, vi2, ..., vik) is a permutation
of (a1, a2, ..., ak) without revealing which permutation (i.e.
which message corresponds to which ciphertext). Note that we
do not need to decrypt these ciphertexts in order to obtain the
tally. The algorithm 3 and algorithm 4 provided in Appendix
A describe the procedure to create and verify these 1-out-of-k
NIZK proofs respectively.

V. SECURITY ANALYSIS

In this section, we prove that our scheme is secure against
all probabilistic polynomial adversaries who try to deduce the
vote given by a voter. We also show that the public bulletin
board does not reveal any additional information regarding the
voter’s privacy other than the tally. In case of partial collusion,

5

we prove that if an attacker colludes with some m number of
voters, then she will learn the partial tally of the n−m voters,
but nothing beyond that. The partial tally of the honest voter’s
vote can be obtained by subtracting the colluding voter’s vote
from the final tally. Therefore, colluding voters can always
compute the partial tally of votes of the remaining voters.
The security of our scheme relies on the intractability of the
Decisional Diffie-Hellman (DDH) problem. We prove that if
the DDH problem is intractable in the group Gq , then this
scheme is secure.

In the following sections, we show that our protocol satisfies
the three security requirements mentioned in section III-A.

A. Maximum ballot secrecy

In this section, we show that our protocol is secure
under the threat model of partial collusion. In the pro-
tocol, each participant Vi sends k ephemeral public keys
(gxi1 , gxi2 , ..., gxik) along with k NIZK proofs of expo-
nents in the first round and sends an encrypted bal-
lot (gyi1xi1gvi1 , gyi1xi2gvi2 , ..., gyi1xikgvik) with k 1-out-of-k
NIZK proofs in the second round. The k 1-out-of-k NIZK
proofs in the second round ensure that (vi1, vi2, ..., vik) is a
permutation of (a1, a2, ..., ak). In this protocol, the value of
yij depends on the values of secret keys xij of all voters
except Vi, where j ∈ {1, 2, ..., k}. We now discuss the security
properties of yij . Let us consider any participant Vi, where
i ∈ {1, 2, ..., n}. The following properties hold true for any
participant Vi.

Lemma 1: Considering the threat model of partial collusion
against a participant Vi, the yij is a secret random value in Zq
to attackers for all j ∈ {1, 2, ..., k}.

Proof: Let us first fix any j ∈ {1, 2, ..., k}. Since we are
considering the partial collusion against Vi, there exists at least
one other participant Vm (m 6= i) who is not involved in the
collusion. Hence, the secret random value xmj generated by
the participant Vm is unknown to the colluders. According
to the protocol, xmj is uniformly distributed over Zq and
known only to the participant Vm. Note that for a fixed j,
yij is computed from all xij known to colluders (in the worst
case) and a random number xmj unknown to the colluders.
Therefore, yij is uniformly distributed over Zq and unknown
to the colluders. Since the above discussion holds true for any
j ∈ {1, 2, ..., k}, yij is a secret random value in Zq to attackers
for all j ∈ {1, 2, ..., k} even in the worst case. �

Lemma 2: If the assumption 1 (DDH) holds in the group
Gq , then given g, gα1 , gα2 , ..., gαm and gβ1 , gβ2 , ..., gβm ∈
Gq , and a challenge ρ ∈ {ρ1, ρ2}, where ρ1 =
(gα1β1 , gα2β2 , ..., gαmβm) and ρ2 = (R1, R2, ..., Rm), Ri ∈
Gq,∀i ∈ {1, 2, ...,m}, it is hard to decide whether ρ = ρ1 or
ρ = ρ2.

Proof: We prove the lemma by showing that if there
exists a probabilistic polynomial time (PPT) adversary A
that can decide whether ρ = ρ1 or ρ = ρ2, then we can
use the same to construct another adversary B against
assumption 1. We construct the adversary B as follows. The
inputs to the adversary B are g, gα, gβ . The adversary B
receives the challenge ρ = {gαβ , R}, where R ∈R Gq . It

chooses γ1, γ2, ..., γm and η1, η2, ..., ηm uniformly at random
from Zq . It computes δi = ργiηi ,∀i ∈ {1, 2, ...,m}. B
calculates gβi = gβγi ,∀i ∈ {1, 2, ...,m}. B also calculates
gαi = gαηi ,∀i ∈ {1, 2, ...,m}. Note that after this step,
αi = αηi and βi = βγi,∀i ∈ {1, 2, ...,m}. Now the
adversary B sends (gα1 , gα2 , ..., gαm), (gβ1 , gβ2 , ..., gβm)
and (δ1, δ2, ..., δm) to A. Now if ρ = gαβ ,
then (δ1, δ2, ..., δm) = (ργ1η1 , ργ2η2 , ..., ργmηm) =
({gαβ}γ1η1 , {gαβ}γ2η2 , ..., {gαβ}γmηm) =
({gαη1}βγ1 , {gαη2}βγ2 , ..., {gαηm}βγm) =
(gα1β1 , gα2β2 , ..., gαmβm); otherwise if ρ = R, then
(δ1, δ2, ..., δm) = (R1, R2, ..., Rm). According to our assump-
tion, upon receiving (gα1 , gα2 , ..., gαm), (gβ1 , gβ2 , ..., gβm)
and the challenge (δ1, δ2, ..., δm) from B, A can distinguish
between (gα1β1 , gα2β2 , ..., gαmβm) and (R1, R2, ..., Rm). If
the adversary A can distinguish between these two values,
B can also distinguish between gαβ and R. Hence, B can
identify the correct value of ρ. Thus, we have constructed
an adversary B against the assumption 1 (DDH assumption).
Hence, the lemma 2 is proved. It can be easily verified that
Adv(A) ≤ Adv(B). �

Lemma 3: Given g ∈ Gq,G = {gxi , gyi : yi = (Σi−1
j=1xj −

Σµj=i+1xj), i ∈ {1, 2, ..., µ}} and yi are unknown for all
i ∈ {1, 2, ..., µ}. If Σµi=1vi = Σµi=1v

′
i and vi, v

′
i ∈ Zq ,

then the bulletin boards A and B as given in Table I are
indistinguishable.

gy1x1gv1 gy1x1gv
′
1

gy2x2gv2 gy2x2gv
′
2

... ...

... ...

... ...

gyµxµgvµ gyµxµgv
′
µ

A B

TABLE I
INDISTINGUISHABILITY OF BULLETIN BOARD A AND B

Proof: Without loss of generality, we assume that
Σµi=1vi = Σµi=1v

′
i = v. Since yi = Σi−1

j=1xj − Σµj=i+1xj for
all i ∈ {1, 2, ..., µ}}, we have Σµj=1xjyj = 0. Thus, we may

write gxµyµ = (1/gΣ
(µ−1)
i=1 xiyi). Also, since Σµi=1vi = v, we

may write gvµ = (gv/gΣµ−1
i=1 vi). Note that yi’s are unknown

for all i ∈ {1, 2, 3, .., µ}. From Lemma 2, we can write
A = (gy1x1gv1 , gy2x2gv2 , . . . , gyµ−1xµ−1gvµ−1 , gyµxµgvµ) =
(gy1x1gv1 , gy2x2gv2 , . . . , gyµ−1xµ−1gvµ−1 , gv/

∏µ−1
i=1 g

yixigvi) ≈c
(R1 ∗ gv1 , R2 ∗ gv2 , ..., Rµ−1 ∗ gvµ−1 , gv/

∏µ−1
i=1 Ri ∗ gvi) ≈c

(R1, R2, ..., Rµ−1, g
v/
∏µ−1
i=1 Ri) ≈c (R1 ∗ gv

′
1 , R2 ∗

gv
′
2 , . . . , Rµ−1 ∗ gv

′
µ−1 , gv/

∏µ−1
i=1 Ri ∗ gv

′
i) ≈c

(gy1x1gv
′
1 , gy2x2gv

′
2 , . . . , gyµ−1xµ−1gv

′
µ−1 , gv/

∏µ−1
i=1 g

yixigv
′
i) =

(gy1x1gv
′
1 , gy2x2gv

′
2 , . . . , gyµ−1xµ−1gv

′
µ−1 , gyµxµgv

′
µ) = B,

since gv
′
µ = (gv/gΣµ−1

i=1 v
′
i). �

Lemma 4: Let us assume that R = {a1, a2, ..., ak}, and
ν = Σkj=1aj . Given g ∈ Gq , Xi = (Xi1, Xi2, ..., Xik) and
Yi = (Yi1, Yi2, ..., Yik), where Xij = gxij , Yij = gyij , yij =
(Σi−1

l=1xlj − Σµl=i+1xlj) and yij is unknown to the attacker
∀j ∈ {1, 2, ..., k},∀i ∈ {1, 2, ..., µ}, µ ∈ N, the two bulletin
boards A and B as in Table II and Table III respectively are
indistinguishable, where

6

1. vij , v′ij ∈ R,∀j ∈ {1, 2, .., k},∀i ∈ {1, 2, ..., µ}
2. ∪kj=1vij = ∪kj=1v

′
ij = R,∀i ∈ {1, 2, ..., µ}

3. Σkj=1vij = Σkj=1v
′
ij = ν, ∀i ∈ {1, 2, ..., µ}

4. Σµi=1vij = Σµi=1v
′
ij ,∀j ∈ {1, 2, ..., k}

gy11x11gv11 gy12x12gv12 ... gy1kx1kgv1k

gy21x21gv21 gy22x22gv22 ... gy2kx2kgv2k

...

...

...
gyµ1xµ1gvµ1 gyµ2xµ2gvµ2 ... gyµkxµkgvµk

TABLE II
BULLETIN BOARD A

gy11x11gv
′
11 gy12x12gv

′
12 ... gy1kx1kgv

′
1k

gy21x21gv
′
21 gy22x22gv

′
22 ... gy2kx2kgv

′
2k

...

...

...

gyµ1xµ1gv
′
µ1 gyµ2xµ2gv

′
µ2 ... gyµkxµkgv

′
µk

TABLE III
BULLETIN BOARD B

Proof: The proof follows from Lemma 3. �
Lemma 5: Let us assume that R = {a1, a2, ..., ak}, and

ν = Σkj=1aj . Given g ∈ Gq , Xi = (Xi1, Xi2, ..., Xik)
and Yi = (Yi1, Yi2, ..., Yik), where Xij = gxij , Yij =
gyij , yij = (Σi−1

l=1xlj − Σµl=i+1xlj) and yij is unknown
∀j ∈ {1, 2, ..., k},∀i ∈ {1, 2, ..., µ}, µ ∈ N, the two bulletin
boards A and B as in Table IV and V respectively are
indistinguishable, where

1. vij , v′ij ∈ R,∀j ∈ {1, 2, .., k},∀i ∈ {1, 2, ..., n− µ}
2. ∪kj=1vij = ∪kj=1v

′
ij = R,∀i ∈ {1, 2, ..., n− µ}

3. Σkj=1vij = Σkj=1v
′
ij = ν, ∀i ∈ {1, 2, ..., n− µ}

4. Σn−µi=1 vij = Σn−µi=1 v
′
ij = vj ,∀j ∈ {1, 2, ..., k}

Proof: Let us choose votes vij ∈ R, for all i ∈ {n − µ +
1, n − µ + 2, ..., n} and for all j ∈ {1, 2, ..., k} such that
∪kj=1{vij} = R, for all i ∈ {n−µ+ 1, n−µ+ 2, ..., n}. Now
we set v′ij = vij , for all i ∈ {n− µ+ 1, n− µ+ 2, ..., n} and
for all j ∈ {1, 2, ..., k}. After this step, Σni=1vij = Σni=1v

′
ij =

vj+Σni=n−µ+1vij , for all j ∈ {1, 2, ..., k}. Now, if an attacker
can distinguish between the two bulletin boards, she will be
able to disprove Lemma 4. �

Lemma 6: Considering a partial collusion where an attacker
colludes with µ < (n− 1) voters, the attacker will only learn
the partial tally of n−µ honest voters, not the individual votes
of honest voters.

Proof: Without loss of generality, we assume that
{Vn−µ+1, Vn−µ+2, ..., Vn} is the set of colluding voters
and {V1, V2, ..., Vn−µ} is the set of honest voters. In
the proposed Borda count scheme, each voter Vi chooses
(xi1, xi1, ..., xik) uniformly at random from (Zq)k and pub-
lishes (gxi1 , gxi2 , ..., gxik) in the first round along with k zero-
knowledge proofs PK{xij},∀j ∈ {1, 2, ..., k}. In the second
round, each voter Vi publishes (Zi1, Zi2, ..., Zik), where Zij =
{gyij}xijgvij , yij = Σl<ixlj − Σl>ixlj ,∀j ∈ {1, 2, ..., k}.
The attacker will know votes of the colluding voters and
their randomness, i.e. attacker will know (vi1, vi2, ..., vik)

and (xi1, xi1, ..., xik) for each colluding voter Vi, where
i ∈ {n − µ + 1, n − µ + 2, ..., n}. Therefore, the attacker
can compute (Zi1, Zi2, ..., Zik) for each colluding voter Vi,
where i ∈ {n − µ + 1, n − µ + 2, ..., n}. According to the
protocol, yij = (Σi−1

l=1xlj−Σnl=i+1xlj), ∀j ∈ {1, 2, ..., k},∀i ∈
{1, 2, ..., n}. From Lemma 1, in case of partial collusion, we
can conclude that yij’s are unknown ∀j ∈ {1, 2, ..., k},∀i ∈
{1, 2, ..., n}. Hence. the attacker’s view of the bulletin board
will be same as given in Table IV.

Now according to the Lemma 5, the attacker will not be
able to distinguish the two bulletin boards given in Table IV
and Table V with the same partial tally for honest voters.
Therefore, the attacker will only learn the partial tally of
honest voters, not the individual votes of honest voters.

gu11gv11 gu12gv12 ... gu1kgv1k

gu21gv21 gu22gv22 ... gu2kgv2k

...

...

...
gun−µ1gvn−µ1 gun−µ2gvn−µ2 ... gun−µkgvn−µk

gun−µ+11 gun−µ+12 ... gun−µ+1k

gun−µ+21 gun−µ+22 ... gun−µ+2k

...

...

...
gun1 gun2 ... gunk

TABLE IV
BULLETIN BOARD A, WHERE uij = yijxij , ∀j ∈ {1, 2, ..., k} AND

∀i ∈ {1, 2, ..., n}.

gu11gv
′
11 gu12gv

′
12 ... gu1kgv

′
1k

gu21gv
′
21 gu22gv

′
22 ... gu2kgv

′
2k

...

...

...

gun−µ1gv
′
n−µ1 gun−µ2gv

′
n−µ2 ... gun−µkgv

′
n−µk

gun−µ+11 gun−µ+12 ... gun−µ+1k

gun−µ+21 gun−µ+22 ... gun−µ+2k

...

...

...
gun1 gun2 ... gunk

TABLE V
BULLETIN BOARD B, WHERE uij = yijxij , ∀j ∈ {1, 2, ..., k} AND

∀i ∈ {1, 2, ..., n}.

B. Self-tallying
In our protocol, during the tallying phase, the final tally

can be computed by anyone, including voters and observers
of the protocol, without any external help. This can be easily
checked by observing the protocol and the Proposition 1. In
the first round of the protocol, voters choose their private key,
and in the second round their public keys are combined in
such a way that the random factors vanishes after the second
round. Thus, during the tallying phase, the final tally can be
computed correctly by any observer of the protocol. Therefore,
our protocol satisfies the self-tallying property. The use of
zero-knowledge proofs in the protocol is to ensure that all
voters follow the protocol faithfully.

7

C. Dispute-freeness

Our protocol also satisfies the dispute-freeness property.
The use of k non-interactive zero-knowledge proofs in the
first round of the protocol ensures that the voter knows the
secret keys (xi1, xi2, ..., xik) corresponding to the public keys
(gxi1 , gxi2 , ..., gxik). The use of k non-interactive Cramer,
Damgård, and Schoenmakers [17] zero-knowledge proofs en-
sures that each ballot will encode exactly one permutation of
(a1, a2, ..., ak). Furthermore, since we use a public authenti-
cated channel, any attempt to cast more than one vote can
be detected by other participants of the protocol. Thus, our
protocol enforces the one-man-one-vote requirement, which,
combined with the public verifiablity of all operations in the
protocol, ensures dispute-freeness.

D. Limitation

In this section, we discuss the limitations of our protocol.
One limitation is that all voters must follow the protocol till the
tally process. If some voters do not send data in the second
round of the protocol, no one will be able to compute the
tally, and hence the tallying will fail. However, this attack
is conspicuous since everyone will be able to identify the
attackers. In that case, voters can exclude the attackers from
the election and restart the protocol to recover from the attack.
Note that the voter’s privacy is still preserved. Nevertheless,
there would be delay in the election process.

In our implementation of the protocol using Ethereum
Blockchain and smart contract, we use a deposit and refund
paradigm [40] to enforce a financial incentive to all voters
as a countermeasure to this issue. All voters are required to
deposit some money into the smart contract to register for the
election. This deposited money is refunded to the voter after
she successfully casts her ballot. However, a registered voter
will lose her deposit if she does not cast her vote successfully
in the second round of the protocol.

Our protocol is not coercion-resistant since a voter can be
coerced to vote for a particular candidate and to reveal her
secret parameters to prove how she voted. This is another
limitation of our system. Normally, this kind of coercion
resistance is provided in a supervised environment like in a
polling station [35]. However, in decentralized environment
where the voting process is unsupervised, providing coercion
resistance seems difficult.

Here, we mention that the above limitations also exist in
the Kiayias and Yung [38], Groth [29] and open vote network
[30] protocols. Although a centralised voting protocol that is
executed in a supervised environment with trusted election
authorities may prevent this kind of issues, however, the
trustworthiness of the election authorities is often called into
question. In our proposed protocol, the tally can be computed
by voters themselves (and any observer of the protocol)
without involving any tallying authority.

Therefore, for a small-scale election where the above lim-
itations are not of great concern, the proposed decentralised
Borda count protocol can prove to be useful and efficient.

VI. PERFORMANCE ANALYSIS OF THE PROTOCOL

In this section, we analyze the computation and communica-
tion cost of our proposed protocol. There are only two rounds
in our protocol. As discussed in [27], in any secure multy-party
computation protocol, minimum two rounds are required to
compute a function securely. Since exponentioations are the
most expensive operations in our protocol, we analyze our
protocol in terms of the number of exponentiations.

We assume that the number of candidates competing in
the election is k. In the first round, each voter needs to
do k exponentiations to generate public keys. In addition,
there are k NIZK proofs corresponding to their k secret
keys. Each of these NIZK proofs requires one exponentiation
for creation and 1.2 exponentiations for verification. (Here
we do not count the cost of validating a public key, which
requires one exponentiation in the finite field setting but is
essentially free in the elliptic curve setting.) We assume that
the simultaneous multiple exponentiation (SME) technique
[47] is used to optimize computations. Using the SME method,
a term of the form gxhy requires about 1.2 exponentiations
to calculate. Hence, a voter needs to do 2k exponentiations
in the first round to create her public keys along with NIZK
proofs. In order to verify these NIZK proofs, one needs to do
1.2k exponentiations. In the second round, a voter needs to
do k exponentiations to generate the ballot. In addition, the
voter needs to create k 1-out-of-k NIZK proofs. Each of these
1-out-of-k NIZK proofs requires (2.4(k− 1) + 2) exponentia-
tions for generation and 2.4k exponentiations for verification
of the same. Hence, all k 1-out-of-k NIZK proofs require
(2.4k2 − 0.4k) exponentiations for generation and 2.4k2 for
verification. Hence, in the second round, a voter needs to do
(k+ ((2.4k2− 0.4k))) exponentiations to generate her ballot.
All together, a voter needs to do (2k+(k+((2.4k2−0.4k))))
exponentiations i.e. (2.4k2 + 2.6k) exponentiations to cast
her vote in the election. The total number of exponentiations
required to verify a ballot is equal to (1.2k + 2.4k2). In the
first round of the protocol, the size of public keys of a voter is
k elements of group the Gq . In addition, in the first round, the
size of k NIZK proofs is k elements of Zq plus k elements
of Gq . Hence, the size of the public keys along with NIZK
proofs is 2k elements of the group Gq plus k elements of the
group Zq . In the second round of the protocol, the size of each
ballot is k elements of the group Gq . In addition, the size of
each of k 1-out-of-k NIZK proofs is 2k elements of Zq plus
2k elements of Gq . Hence, in the second round, the size of
each ballot along with k 1-out-of-k NIZK proofs is (k+ 2k2)
elements of the group Gq plus 2k2 elements of the group Zq .
Therefore, all together, the total space required by a voter is
(3k+ 2k2) elements of the group Gq plus (2k2 +k) elements
of the group Zq .

Table VI and Table VII highlight the computation and com-
munication cost (space) respectively for the proposed Borda
count protocol when k candidates compete in the election.

Note that the OV-Net protocol requires (2.4k − 0.4) ex-
ponentiations (using the SME technique) for generation and
2.4k exponentiations for verification of the NIZK proof in
the second round of the protocol. Therefore, the number

8

of exponentiations required in the OV-Net protocol is O(k)
that is linear with the number of candidates contesting in
the election. However, our proposed Borda count protocol
requires (2.4k2 − 0.4k) exponentiations for generation and
2.4k2 exponentiations for verification of the NIZK proofs in
the second round of the protocol. Therefore, the number of
exponentiations required in our proposed protocol is O(k2)
that is quadratic with the number of candidates competing in
the election. Our protocol requires significantly more computa-
tion than OV-net which is based on plurality voting, because a
ranked-choice voting system is inherently more complex than
a non-ranking based voting system. However, a ranked-choice
voting system tends to give a fairer outcome as the system
takes in more information from voters about their preferences
than a non-ranking based system (e.g., plurality).

First round Second round

Public keys NIZKP Total Ballot NIZKP Total

k k 2k k 2.4k2−0.4k 2.4k2+0.6k

TABLE VI
THE COMPUTATION COST FOR THE PROPOSED SCHEME IN NUMBER OF
EXPONENTIATIONS WHEN k CANDIDATES COMPETE IN THE ELECTION.

First round Second round

Public keys NIZKP Total Ballot NIZKP Total

k · a k · a+
k · b

2k · a +
k · b

k · a 2k2 ·a+
2k2 · b

(k+2k2)·a+
2k2 · b

TABLE VII
THE COMMUNICATION COST (SPACE) FOR THE PROPOSED SCHEME WHEN
k CANDIDATES COMPETE IN THE ELECTION. a AND b REPRESENT THE SIZE

OF EACH ELEMENT OF THE GROUP Gq AND Zq RESPECTIVELY.

We now compare the performance of our proposed Borda
count ranked-choice voting system with some of the well-
known non-ranking based voting systems. Several crypto-
graphic voting protocols are proposed in the literature, how-
ever, most of them offer security and integrity assurance
by introducing a set of trustworthy tallying authorities [38],
[29]. For the purpose of comparison, we consider only the
self-tallying voting protocols without involving any tallying
authorities. Therefore, we compare our protocol mainly with
the Kiayias-Yung [38], Groth [29] and OV-Net [30] protocols.
Table VIII highlights a comparison between our proposed
Borda count protocol and these three previously proposed
plurality voting solutions.

In [38], Kiayias-Yung proposed a 3-round veto protocol.
In the first round, each voter i chooses a random value xi
from Zq and publishes her public key Pi = gxi . In this
round, the voter needs to compute one exponentiation and the
corresponding NIZK proof for the knowledge of the exponent.
In the second round, each voter chooses n-vector private keys
(y1, y2, ..., yn) uniformly at random from Znq and publishes
the corresponding public keys (gy1 , gy2 , ..., gyn), where n is
the number of voters. To perform this step, a voter needs
to compute n exponentiations. Each voter also computes
(P y11 , P y22 , ..., P ynn), which requires n more exponentiations.

In round three, each voter performs one more exponentiation.
After this step, the tally can be computed universally. There-
fore, each voter needs to perform (2n+ 2) exponentiations in
total. For each exponentiation, the voter needs to publish the
corresponding NIZK proof. Each voter publishes O(nk) data,
where k is the number of candidates contesting in the election,
and n is the total number of voters. The final tally is computed
from O(n2k) data. Table VIII summarizes the performance of
this protocol.

Groth [29] investigated the Kiayias-Yung’s protocol in order
to reduce its system complexity. Groth’s protocol has (n+ 1)
rounds, where n is the total number of voters. In round 1,
each voter i publishes her public key. After this step, each
voter sends her encrypted vote one after another depending
on the result sent by the previous voter. As a result, instead of
finishing the protocol in three rounds as in [38], the protocol
requires n+ 1 rounds, where n is the total number of voters.
In total, the first voter needs to compute three exponentiations
and the corresponding NIZK proofs. All other voters need to
compute four exponentiations along with four corresponding
NIZK proofs in total. Each voter publishes O(k) data, where
k is the number of candidates contesting in the election. The
final tally is computed from O(nk) data.

The OV-Net protocol [30] executes in two rounds, which
is more efficient than the Kiayias-Yung [38] and Groth’s [29]
protocols. In the first round, every voter publishes one public
key along with a NIZK proof of the corresponding secret key.
A voter needs to compute one exponentiation and one NIZK
proof for the knowledge of the exponent. In the second round,
each voter sends her encrypted vote along with one 1-out-
of-k NIZK proof. In this round, the voter needs to compute
one exponentiation and one 1-out-of-k NIZK proof. Each
voter publishes O(k) data, k being the number of candidates
contesting in the election. The final tally is computed from
O(nk) data, where n is the total number of voters.

All of the protocols discussed above are designed to
implement a plurality voting electoral system. We pro-
pose a Borda count voting protocol that is a ranked-
choice voting system. Our proposed protocol runs in
two rounds. In the first round, each voter Vi calcu-
lates Xi1 = gxi1 , Xi2 = gxi2 , ..., Xik = gxik and
publishes (Xi1, PK{xi1}, Xi2, PK{xi2}, . . . , Xik, PK{xik}),
where PK{xij} is the NIZK proof for xij ;∀j ∈ {1, 2, ..., k}.
A voter needs to compute k exponentiations and k NIZK
proofs for the exponents. In the second round, each voter
Vi publishes (Zi1, Zi2, ..., Zik) and k 1-out-of-k NIZK proofs
Πj [xi1, xi2, ..., xik : Xi, Zi]; ∀j ∈ {1, 2, ..., k}, where Zij =
{gyij}xijgvij ;∀j ∈ {1, 2, ..., k}. Our protocol adopts the same
cancelling technique as in [30] to achieve self-tallying without
involving any tallying authority, but our system is designed
to support ranked-choice voting instead of plurality voting.
The construction and verification of zero-knowledge proofs
are different from [30]. In our system, each voter publishes
O(k2) data, where k is the number of candidates contesting
in the election. The final tally is computed from O(nk2) data,
where n is the total number of voters.

9

Protocols Election type Rounds Exp NIZKP for
exponent

NIZKP for
equality

1-out-of-k
NIZKP

Total
traffic

Total
computation

Kiayias-Yung [38] Plurality (Non-ranking based) 3 2n+2 n+ 1 n 1 O(n2k) O(n2k)

Groth [29] Plurality (Non-ranking based) n+ 1 4 2 1 1 O(nk) O(nk)

OV-Net [30] Plurality (Non-ranking based) 2 2 1 0 1 O(nk) O(nk)

Proposed protocol Borda count (rank-choice based) 2 2k k 0 k O(nk2) O(nk2)

TABLE VIII
COMPARISON WITH RELATED PROTOCOLS PROPOSED IN THE LITERATURE. THE NUMBER OF PARTICIPANTS IN THE ELECTION IS n, AND THE NUMBER

CANDIDATES CONTESTING IN THE ELECTION IS k.

VII. A SMART CONTRACT IMPLEMENTATION

The proposed decentralized Borda Count protocol is suitable
for implementation over a Blockchain. In this paper, we
propose a smart contract implementation of our protocol on
Ethereum in order to enforce the execution of the voting
protocol. We are using Ethereum since it can store and execute
programs that are written as smart contracts. Ethereum’s
consensus mechanism enforces the correct execution of these
smart contracts. Its peer-to-peer network serves as an authen-
ticated public channel. We use the blockchain as a public
bulletin board as well as to enforce the execution of the
election process in a timely manner.

A. Ethereum

An Ethereum transaction is a digitally signed instruction
constructed by a user of the Ethereum blockchain. There
are two types of transactions: those that create smart con-
tracts and those that are responsible for message calls. An
Ethereum transaction consists of several fields, which specify
the sender’s and the receiver’s addresses, and the transaction
data [46].

There are two types of accounts available in Ethereum
blockchain. They are called Contract Account and Externally
Owned Account.

A user creates a smart contract using her externally owned
account. The Ethereum currency ‘Ether’ can be stored in both
of these types of accounts. A user needs to purchase ‘gas’
using ‘Ether’ currency in order to execute a smart contract.
The gas price is set according to the conversion rate of ether to
gas. For each assembly ‘opcode’ (instruction), there is a fixed
gas cost to execute the instruction depending on its execution
time. The cost of gas to execute a transaction is regarded as
the transaction fee. This transaction fee is an incentive for the
miners to add the transaction into their block.

The integrity of the Ethereum blockchain depends on its
‘proof-of-work’ mechanism. The ‘proof-of-work’ is a com-
putationally difficult puzzle that must be solved by a miner
in order to get a block added to the blockchain. Ethereum’s
blockchain is a simplified version of the GHOST protocol
introduced by Sompolinsky and Zohar [59]. In Ethereum’s
blockchain, blocks are created in every 12 seconds interval. As
a result, there is a possibility that two or more blocks would be
created at the same time by different miners, and hence some
blocks would be discarded. These discarded blocks are added
to the blockchain as ‘uncle blocks’, and the corresponding
miners still get some rewards in ‘Ether’ currency. Furthermore,

if the same smart contract is called by multiple transactions,
the final state of the smart contract is determined by the order
of execution of the transactions.

We now discuss our implementation of the voting protocol
on Ethereum in the following sections.

B. Structure of Implementation

We follow the similar design architecture as proposed by
McCorry et al. in [46]. However, in [46], McCorry et al.
implemented the OV-Net protocol only for a two-candidate
election (‘yes’/‘no’ voting). We implement the proposed Borda
count protocol for multiple candidates who are contesting
in the election. Note that OV-Net protocol is designed for
plurality voting which is a non-ranking based voting system.
However, our proposed protocol is designed for Borda count
voting which is a ‘ranking-based’ voting system. The two
election processes are different. In addition, the structure of
ballots and the NIZK proofs are also different.

While implementing our protocol over Ethereum, some of
the tasks exceeded the maximum gas limit (approximately 8
million gas as in June, 2019) of a block. In [46], a single
transaction is sufficient to perform a task, however, due to
the complexity of the Borda count system, we had to send
multiple transactions in parallel to complete some tasks. We
split the tasks into several smaller tasks (within the gas limit)
in order to execute them in parallel. We have developed two
smart contracts in Solidity language:

(1) VoteContract: The voting protocol is implemented in
this contract. This contract also controls the voting process
and checks the validity of all zero-knowledge proofs.

(2) CryptoContract: This contract consists of the code
for creating zero-knowledge proofs. All voters call this smart
contract to create zero-knowledge proofs so that the same code
can be used by all voters. This contract can be executed locally
without interacting with Ethereum blockchain.

The election administrator is the owner of these two
smart contracts. We have also developed the following three
HTML5/Javascript pages to provide browser interfaces for the
users:

(1) administrator.html: This page is constructed for the
administrator to manage the entire election process. The
election administrator sets a list of eligible voters and a list
of timers using this page. The timers are used to set the
deadlines for various stages of the election process so the
voting process progresses in a timely manner. This page also
contains the code to notify the Ethereum blockchain to begin
the registration process, to close the registration process and

10

begin to cast the vote, to close the voting and compute the
tally based on these timers.

(2) voter.html: This page is implemented to facilitate the
voter to register and cast her vote.

(3) live.html: This page is dedicated for any observer of
the election process to watch the progress of the election
including the beginning and ending of each stage, voter
registration process and vote casting process. This page shows
the addresses of current registered voters, addresses of the
voters who have committed their vote and addresses of the
voters who have already cast their vote. However, it is not
possible to compute the running tally.

In addition, we have implemented a Java program to locally
generate the random private keys (xi1, xi2, ..., xik) and the
corresponding public keys (gxi1 , gxi2 , ..., gxik) for a voter.
The private keys are kept secret by the voter. These keys are
required by the voter’s web browser voter.html to register and
cast her vote.

We use the Web3 framework provided by the Ethereum
foundation for communication between the user’s web browser
and the Ethereum client. In our implementation, the user does
not need to directly interact with the Ethereum client, and it
is sufficient if the Ethereum client runs in the background.
The election administrator and all voters need to have their
own Ethereum account. The election administration sets the
list of eligible voters using their Ethereum account address.
Users (including voters and the election administrator) need to
unlock their account using their password to send transactions
to the blockchain from their web browser. The password is
used to decrypt their private key that is necessary to generate
the digital signature of the transaction.

C. Election Stages

The election runs in five stages in our implementation. Fig-
ure 1 depicts these stages. The election administrator arranges
the election process by providing a list of timers and eligible
voters to the smart contract. The contract only permits eligible
voters to register and cast their vote before the deadline as
specified by the list of timers. In addition, as mentioned before,
an eligible voter may need to deposit ether in the contract to
register for the election. This deposit is automatically refunded
to the voter after her vote is successfully accepted by Ethereum
blockchain. We now describe these election stages in detail.

Setup: At this stage, the election administrator sets a list
of eligible voters using their Ethereum account address, a
list of timers and the registration deposit d on the Ethereum
blockchain. The election administrator also sets whether the
optional commit stage should be enabled or not. The timers
are used to set the closing time (deadline) for each stage of
the election to enforce that the election process progresses in
a predefined timely manner. The list of timers includes the
following timers.
−Tendreg: Voters must register for the election before

this time limit. To register for the election, a voter needs
to send her voting keys along with the NIZK proofs
(gxi1 , PK{xi1}, gxi2 , PK{xi2}, ..., gxik , PK{xik}), where
PK{xij} is the NIZK proof of xij ;∀j ∈ {1, 2, ..., k} and k

Fig. 1. Election stages in our protocol implementation.

is the number of candidates competing in the election, to the
blockchain before this time.
−Tstartvote: This represents the time before which the

blockchain must be notified by the election administrator to
start the election (i.e. the second round of our protocol). If the
election administrator fails to notify the blockchain by this
time, the voting process will be aborted, and all registered
voters will get their deposit back.
−Tendcommit: If the Commit (optional) stage is enabled

by the election administrator in this Setup stage, vot-
ers must send the hash of their vote to the blockchain
as a commitment before this time. All voters send
H((Zi1, Zi2, ..., Zik),Πj [xi1, xi2, ..., xik : Xi, Zi];∀j ∈
{1, 2, ..., k}), where Πj [xi1, xi2, ..., xik : Xi, Zi]; ∀j ∈
{1, 2, ..., k} are k non-interactive zero-knowledge proofs cor-
responding to the vote in the second round of our protocol
and Zij = {gyij}xijgvij ;∀j ∈ {1, 2, ..., k}, k is the number
of candidates competing in the election. This time is effective
only if the Commit stage (optional) is enabled. If some regis-
tered voters fail to commit their vote by this time, the election
process will be aborted. In that case, all other registered voters
who have successfully committed their vote by this time can
get their deposit back.
−Tendvote: This represents the time before which all voters

must cast their vote in the election. All voters send their
vote ((Zi1, Zi2, ..., Zik),Πj [xi1, xi2, ..., xik : Xi, Zi];∀j ∈
{1, 2, ..., k}) as defined in the second round of the protocol. If
some registered voters fail to cast their vote by this time, the

11

election process will be aborted. The deposit of those voters
will be confiscated. However, all other registered voters who
have successfully cast their vote by this time will automatically
get their deposit back.
−Tmin: This represents the minimum length of time in

which the commitment stage and voting stage must remain
active. In a decentralized voting protocol, voters should be
given sufficient time to commit and cast their votes. Therefore,
the commitment and voting stage should remain active for a
sufficient amount of time.

At the end of this stage, the election administrator notifies
the Ethereum blockchain to change the state (of the contract)
from the Setup to the Registration stage.

Registration: At this stage, all eligible voters first review
the parameters of the election set by the election admin-
istrator such as timers (closing time for each stage of the
election) and the registration deposit d. Then eligible vot-
ers may choose to register for the election. Let there be
k candidates competing in the election. To register for the
election, a voter needs to compute her voting keys along
with the non-interactive zero-knowledge proofs. The voter
sends the voting keys along with NIZK (non-interactive zero-
knowledge) proofs to the blockchain along with a deposit
of d ether. Ethereum verifies the NIZK proofs by executing
the smart contract code and adds the transaction to the
blockchain upon successful verification of the NIZK proofs.
Ethereum rejects all registration request transactions that are
received after Tendreg . At the end of this stage, the election
administrator notifies the blockchain to change the state from
Registration to either the optional Commit stage or the Vote
stage depending on whether the optional Commit stage is
enabled or not. During this transition, Ethereum computes all
voter’s reconstructed keys (gyi1 , gyi2 , ..., gyik), where gyij =∏i−1
l=1g

xlj/
∏n
l=i+1g

xlj ;∀j ∈ {1, 2, ..., k}.
Commit (optional): If the optional commit stage is en-

abled, all registered voters publish the hash of their vote
and NIZK proofs H((Zi1, Zi2, ..., Zik),Πj [xi1, xi2, ..., xik :
Xi, Zi];∀j ∈ {1, 2, ..., k}) to the blockchain. Ethereum
rejects all commitment transactions that are received after
Tendcommit. After receiving commitments from all registered
voters, the contract automatically changes its state to the Vote
stage.

Vote: All voters cast their vote at this stage. All voters
publish their ballot - (Zi1, Zi2, ..., Zik),Πj [xi1, xi2, ..., xik :
Xi, Zi];∀j ∈ {1, 2, ..., k} to the blockchain. Ethereum accepts
the transaction if the verification of all the NIZK proofs
succeeds. The smart contract refunds the deposit d to the
voter after successfully accepting her ballot (encrypted vote).
Ethereum rejects all ballots that are received after Tendvote.
The administrator notifies Ethereum to change the state of the
contract to the Tally stage after all voters cast their ballots.

Tally: At this stage, Ethereum computes the tally for each
candidate once it receives the corresponding notification from
the election administrator. To compute the tally for the j-th
candidate, Ethereum evaluates

∏n
i=1{gyij}xijgvij = gΣni=1vij ,

where j ∈ {1, 2, ..., k}. Ethereum then computes the total
score Σni=1vij obtained by the j-th candidate using brute force
search, for each j ∈ {1, 2, ..., k}. Note that this brute force

search is feasible since the tally is a small number.

D. Design choices

We now focus on the design choices for implementing our
protocol on Ethereum.

Score associated with each rank and the tally com-
putation. In a Borda count protocol, a score is associated
with each rank. Let there be k candidates contesting in the
election. In our proposed scheme, a voter’s vote will be of the
form (v1, v2, ..., vk), where (v1, v2, ..., vk) is a permutation of
(a1, a2, ..., ak). The score aj is associated with the j-th rank
and aj−1 > aj ,∀j ∈ {1, 2, .., k} i.e a higher score implies
higher rank of the candidate. In our implementation, we set
the following scores associated to each rank: a1 = k, a2 =
k − 1, ..., ak = 1. Therefore, at the tallying phase, the total
score obtained by a candidate (final tally) can be at most
nk, where n is the number of participants in the election.
Furthermore, the minimum total score that can be obtained by
a candidate is n. In our proposed protocol, at the tallying
stage, anyone can compute

∏n
i=1{gyij}xijgvij = gΣni=1vij ,

where j ∈ {1, 2, ..., k}. The total score obtained by the j-th
candidate is Σni=1vij . Therefore, n ≤ Σni=1vij ≤ nk, which is
normally a small number. Thus, the exhaustive search (brute-
force) requires at most (n(k−1)+1) operations to compute the
discrete logarithm of gΣni=1vij for all j ∈ {1, 2, .., k}, where n
is the number of participants in the election.

The election administrator. In our implementation, the
election administrator sets the parameters of the election,
list of eligible voters. The election administrator notifies the
smart contract to begin the Registration stage. Note that a
smart contract can not start executing code without user
interaction. Therefore, there must be a user who can take
the responsibility of notifying the smart contract to begin the
election process and compute the tally. We assume that the
election administrator notifies the blockchain. A registered
voter can also notify the blockchain.

Preventing re-entrancy attack. This attack is possible if
a smart contract sends ‘ether’ to a user before deducing their
balance. An attacker can exploit this vulnerability by calling
the smart contract recursively in such a way that sending of
ether is repeated, however, the deduction of balance is done
only once. Using re-entrancy vulnerability in DAO, an attacker
stole 3.6 million ether. Luu et al. [45] analyze that there are
186 distinct smart contracts stored on the blockhain vulnerable
to this attack. To thwart this attack, Reitwiessner [52] suggests
to first deduce the balance before sending the ether. We follow
the same in our implementation.

Preventing replay attack. In the first round of our
protocol, all voters send publicly their public keys with NIZK
proofs (gxi1 , PK{xi1}, gxi2 , PK{xi2}, ..., gxik , PK{xik}).
Another eligible voter might replay the same keys and NIZK
proofs but without actually knowing the corresponding private
keys. This will invalidate the purpose of the NIZK proof
which is supposed to enforce the user to prove the knowledge
of the private key. To prevent this replay attack, we follow
the technique suggested in [30], by including the sender’s
unique identity (msg.sender) as an input argument to the hash

12

function in the NIZK proofs. Therefore, no other voter can
use the same NIZK proof as every sender’s identity over the
blockchain is different.

Downloading full blockchain. Currently, it is necessary
to download the full Ethereum blockchain to verify the
correct execution of the voting protocol. Note that a voter
can participate in the election without downloading the full
Ethereum blockchain, however in that case, the voter needs to
trust Ethereum blockchain for correctly executing the protocol.
The voter only needs to broadcast her transactions in the
Ethereum blockchain network. They can use live.html page
for confirmation of their registration and to view that their
vote has been included in the blockchain. This enables voters
with limited resources to cast their vote.

Refund of the deposit. In our implementation, all registered
voters must send their ballots before the deadline so as to
ensure that their ballots are included in the blockchain. The
deposit d acts as a financial incentive that is refunded to the
voters who adhere to the protocol and submit their ballots in
time. However, those voters who fail to do so in time will
face forfeiture of their deposit. The confiscated deposit can be
used to compensate compliant votes or to support a charitable
cause. The deposit is automatically refunded to a voter if either
the voting process is successfully completed or if the voting
process is aborted due to some other voter’s failure in adhering
to the protocol.

E. Experiment on Ethereum

We deployed our implementation on Ethereum’s private
network that mimics the production network. We have tested
our implementation for different numbers of voters and for
different candidates competing in the election. We present the
results of our experiments with eighty voters and a varying
number of candidates. In Table IX, we have outlined each
transaction’s computational and financial cost for eighty voters
and five candidates contesting the election.

The total number of transactions in an election depends on
the number of voters and the number of candidates competing
in the election. The number of transactions that we sent
to simulate the election process is shown in Table IX. The
election administrator is denoted by the prefix ‘AD:’ and each
voter is denoted by the prefix ‘VT:’ (see Table IX). Each
transaction is a broadcast transaction. We have calculated the
cost in US Dollar (denoted by ‘$’ in the table) and rounded
it to two decimal places.

Currently, the maximum gas limit of a single Ethereum
block is approximately 8 million. The amount of gas required
to store our code as a smart contract exceeds the gas limit
of a single Ethereum block. Therefore, we had to create
two smart contracts, namely, VoteContract and CryptoContract
. The main protocol logic is implemented in the contract
‘VoteContract’, whereas, the code for the creation of the NIZK
proofs is implemented in the contract ‘CryptoContract’. The
verification of the NIZK proofs is implemented in the contract
‘VoteContract’.

As shown in Table IX, the voter registration costs approx-
imately 48% of the block capacity when five candidates are

Entity: Transaction A B C D
AD: VoteContract 1 5, 498, 780 5, 498, 780 1.70
AD: CryptoContract 1 3, 698, 878 3, 698, 878 1.14
AD: Eligible 1 4, 349, 336 4, 349, 336 1.34
AD: Begin setup 1 257, 209 257, 209 0.08
VT: Register 1 3, 850, 910 3, 850, 910 1.19
AD: Begin election 5 7, 149, 237 35, 746, 186 11.05
VT: Commit 1 183, 457 183, 457 0.06
VT: Vote 5 7, 213, 571 36, 067, 855 11.14
AD: Tally 5 5, 629, 272 28, 146, 362 8.70
Administrator Total 14 77, 696, 751 24.01
Voter total 7 40, 102, 222 12.39

TABLE IX
A BREAKDOWN OF THE COST FOR EIGHTY PARTICIPANTS USING OUR

PROTOCOL WITH FIVE CANDIDATES COMPETING IN THE ELECTION. THE
COSTS ARE APPROXIMATED IN USD (‘$’) USING THE CONVERSION RATE

OF 1 ETHER=$309 AND THE GAS PRICE OF 0.000000001 ETHER THAT ARE
REAL WORLD COSTS IN JUNE, 2019. WE HAVE APPROXIMATED THE COST

FOR THE ELECTION ADMINISTRATOR ‘AD’ AND THE VOTER ‘VT’.
COLUMNS ARE REPRESENTED AS - A: NUMBER OF TRANSACTIONS, B:
COST PER TRANSACTION IN GAS, C: CUMULATIVE COST IN GAS, D:

CUMULATIVE COST IN ‘$’.

competing in an election. Note that, as mentioned before, the
maximum block capacity in Ethereum blockchain is about 8
million gas as in June, 2019. Thus, the current block supports
at most two voter registrations per block. The vote casting
costs more than the capacity of a block. Therefore, we made
five transactions to cast a vote. The reason is that the number
of exponentiations increases with the number of candidates
completing in the election, and hence the cost of verifying
NIZK proofs also increases. As shown in Table IX, we have
made five transactions to cast a vote when the number of
candidates competing in the election is five. Each transaction
of vote casting costs approximately 90% of the block capacity.
This suggests that five blocks are needed to cast a vote. Note
that, in Ethereum, currently blocks are generated at a rate of
one block in every 12 seconds.

Overall, the cost for the election administrator to run the
election with 80 voters and 5 candidates is approximately
$24.01. The average cost for each voter to run an election with
80 participants and 5 candidates is approximately $12.39.

The code in the contract ‘CryptoContract’ is executed
locally on the voter’s device, not on the Ethereum network.
This contract provides the same NIZK proofs for all voters
throughout the execution of the protocol.

We have performed experiments with 3, 10, 20, 45, 60, 80
voters and with 2, 3, 4, 5 candidates and plotted the results
to show how the costs for the election administrator and voter
vary with different numbers of candidates. Figure 2 depicts
the average cost for the election administrator based on the
number of voters and the number of candidates competing in
the election. From this figure, we see that the cost for the
election administrator increases linearly with the number of
voters. Figure 3 depicts the cost for each voter based on the
number of voters participating in the election and the number
of candidates competing in the election. From this figure, we
see that the cost for each voter remains nearly constant with
the number of voters participating in the election.

Figure 4 shows a breakdown of the election administrator’s
gas cost based on the number of voters when 5 candidates

13

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

C
o

s
t

($
)

Number of voters

Election administrator’s cost for 2 candidates
Election administrator’s cost for 3 candidates
Election administrator’s cost for 4 candidates
Election administrator’s cost for 5 candidates

Fig. 2. The election administrator’s cost based on the number of voters
participating in the election and the number of candidates competing in the
election.

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

C
o

s
t

($
)

Number of voters

Voter’s cost for 2 candidates
Voter’s cost for 3 candidates
Voter’s cost for 4 candidates
Voter’s cost for 5 candidates

Fig. 3. Each voter’s cost based on the number of voters participating in the
election and number of candidates competing in the election.

are competing in the election. The figure shows that the gas
consumption for different tasks increases linearly with the
number of voters except for beginning the registration. The
maximum gas limit that an Ethereum block can consume was
set at 8 million as in June, 2019. In our implementation,
the number of transactions to compute reconstructed keys is
equal to the number of candidates. Still, each transaction for
computing reconstructed keys reaches computation and storage
limit for around 87 voters due to the block’s gas limit. Due to
this block gas limit, we had to make as many transactions as
the number of candidates to compute the tally.

Timing measurements analysis. We have performed all
the tests on a Chieftec desktop machine running Windows
10 Enterprise version 1809 equipped with 4 cores, 3.10 GHz
Intel Core i5-2400 and 32 GB RAM. The timing analysis

 0

 500000

 1×10
6

 1.5×10
6

 2×10
6

 2.5×10
6

 3×10
6

 3.5×10
6

 4×10
6

 4.5×10
6

 5×10
6

 5.5×10
6

 6×10
6

 6.5×10
6

 7×10
6

 7.5×10
6

 8×10
6

 8.5×10
6

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

G
a

s

Number of voters

EA’s cost to begin registration
EA’s cost for each transaction to compute tally

EA’s cost to set voters as eligible
EA’s cost per transaction to compute reconstructed key

Fig. 4. The gas costs for different tasks of the election administrator (EA)
based on the number of voters participating in the election when the number
of candidates competing in the election is 5.

measurements of different tasks of our protocol are highlighted
in Table X. We have rounded all time measurements up to the
nearest millisecond. The time measurement of each task is
performed using the .call() function on the local daemon.

The voting contract ‘VoteContract’ contains the main logic
of the protocol including the code for enforcing the election
process in a timely manner. The task ‘Register voting key’
in Table X involves the verification of the Schnorr’s zero-
knowledge proofs created in the first round of the protocol. The
time required to complete this action depends on the number
of candidates competing in the election. Table X shows the
time required to complete this action for different numbers
of candidates. Beginning the election involves computing the
reconstructed keys for every voter corresponding to each
candidate. The time required for this action depends on both
the number of voters and the number of candidates competing
in the election. Casting a vote involves the verification of
the 1-out-of-k zero-knowledge proofs created in the second
round of the protocol. It depends on the number of candidates
competing in the election. The task ‘Tally’ in Table X includes
calculating the sum of all the cast votes and then getting the
tally for each candidate by brute-force (exhaustive searching).
The time required for these tasks is shown in Table X for
different numbers of candidates contesting in the election.

The cryptography contract ‘CryptoContract’ is used to cre-
ate all zero-knowledge proofs using the .call() function. There
is no need to send the transactions to this smart contract. The
time required to create the schnorr’s ZKP in the first round of
the protocol depends on the number of candidates competing
in the elections, as shown in Table X.

VIII. DISCUSSION ON APPLICATIONS

Ranking based voting systems are popular among voting
experts as they tend to gather more information from the voters

14

Action A B C D
Create ZKP(X) 34 48 75 91
Register voting keys 57 84 104 138
Begin election 204 305 401 493
Create k 1-out-of-k ZKP 213 515 908 1465
Cast vote 207 483 824 1261
Tally 162 385 457 694

TABLE X
A TIMING MEASUREMENT FOR DIFFERENT FUNCTIONS THAT RUN ON

ETHEREUM DAEMON. HERE X IS A k-TUPLE (x1, x2, ..., xk), WHERE k IS
THE NUMBER OF CANDIDATES COMPETING IN THE ELECTION. THE k IN

THE CREATE-1-OUT-OF-K ZKP REPRESENTS THE NUMBER OF
CANDIDATES COMPETING IN THE ELECTION. THE NUMBER OF

PARTICIPANTS IS EIGHTY. COLUMNS ARE REPRESENTED AS THE AVERAGE
TIME IN MILLISECONDS FOR A: 2 CANDIDATES, B: 3 CANDIDATES, C: 4

CANDIDATES, D: 5 CANDIDATES.

with regard to their preferences as opposed to simple plurality
voting where a voter is able to make only a single choice
among a set of candidates. It is well known that a plurality
voting system can produce election results that do not reflect
the true sentiments of the voters [49]. An example of the fact
is the 1988 election for electing the prime minister in Canada
[49]. The key issue in this election was free trade with the
USA. Approximately 60% of the population was opposed to
free trade in this three-candidate election. However, the pro
free trade candidate won the election since the anti free trade
votes got split between two anti free trade candidates. Such
pitfalls of the plurality voting system are caused due to the
electoral system taking only limited information from voters:
only a favorite candidate is indicated. These pitfalls can be
avoided by taking more information from voters, e.g., using a
ranking-based voting system [49].

Borda count is a typical ranking based voting system
that elects a winner taking into account a voter’s degree of
proclivity toward one or more candidates. Thus, Borda count is
sometimes described as a consensus-based voting system [44].
One of the good features of Borda Count is that it is “mono-
tone”, as increasing the score for a candidate only helps them
win [18]. Hence, this voting system more faithfully reflects
the sentiment of the electors than common plurality voting
systems. However, these schemes are not heavily deployed
in practice due to the complexity involved with them. The
complexity around ranking based voting systems have so far
led people into shying away from using them in real life. Our
paper proposes an easily implementable Borda count e-voting
system, and it brings ranking based voting systems closer to
practice. Our scheme is publicly verifiable and it guarantees
the privacy of every voter to the maximum such that only
a full-collusion can break it. Moreover, the scheme does not
rely on any trusted third parties. This scheme could motivate
researchers to explore new applications in the field of ranking-
based e-voting, this previously uncharted territory. Below we
provide a list of areas where the Borda Count voting method
has been applied.

The Borda count voting has been used to aggregate prefer-
ences in many contexts [8]. In addition to democratic elections
([26], [51]), the Borda count voting scheme has been used
in elections by several academic institutions and professional
bodies [26], [55]. For instance, Borda count is used by X.Org

Foundation to elect its board of directors [10]. The Borda
count is also used for granting awards in several sports
competitions (such as Most Valuable Player Award, Heisman
Trophy etc. [50]) and singing competitions (such as Eurovision
Song Contest [50]), soccer competitions (such as the RoboCup
autonomous robot soccer competition [18]). Borda count is
also used by the OpenGL Architecture Review Board as
one of the feature-selection methods. It is used as a rank
aggregation method for the Web (where voters are the search
engines, and candidates are the pages). A summary of these
applications of Borda count voting can be found in [65], [21].
In [39], Kijazi and Kant used Borda count method to establish
group preferences for alternatives for forest use on Mount
Kilimanjaro. Laukkanen et al. [42] and Hiltunen et al. [34]
applied several voting methods including Borda count to assess
group preferences for forest management plans in Finland. In
[11], Burgman et al. discuss potential utility of various voting
systems including Borda count for environmental decision
making. Borda count is used for Waste Management in several
countries [61]. It is used in TOPSIS (technique for order
performance by similarity to ideal solution) ranking [56],
[58] and an extension of TOPSIS for group decision making
[57]. In another context, the Borda count method is widely
used for rank aggregation in the information retrieval area
[20]. Chatzichristofis et al. [13] propose an image retrieval
technique using Borda count.

The public verifiability and freeness from any tallying
authorities make our proposed Borda count system suitable
for deployment over an Ethereum-like blockchain as we have
demonstrated in Section VII. An e-voting system based on
blockchain can be effective for corporate governance and
shareholder activism [41], [62]. In February 2016, Nasdaq,
in cooperation with the Estonian Government, announced a
blockchain based e-voting that allows shareholders to vote
remotely in Annual General Meetings (AGMs) [9], [41]. Be-
sides Nasdaq, the Abu Dhabi Stock Exchange used blockchain
based e-voting to organise shareholder voting in annual general
meetings [33], [41]. Compared with these blockchain-based e-
voting systems, ours does not require any tallying authorities,
so the tallying and the verification of the tallying integrity can
be done publicly by the consensus algorithm that underpins
the blockchain.

IX. CONCLUSION

In this paper, we have proposed a two-round self-tallying
Borda count e-voting scheme. This scheme does not require
any trusted party to compute the tally. Instead, the scheme
ensures that anyone can compute the tally from the public
information made available on the bulletin board. Our scheme
ensures the maximum voter privacy, and upon the successful
completion of the protocol, the voters are strictly limited to
learn only the tally of the election and their own inputs. We
have presented security proofs to prove the security of the
protocol. Further, the scheme offers public verifiability. Every
voter generates NIZK proofs to prove that they have been
faithfully following the protocol specification without reveal-
ing their secret input. We have implemented the scheme on the

15

Ethereum blockchain. Both the theoretic and the experimental
analysis results show that this scheme is feasible to be used in
practice. In future work, we plan to investigate extending this
work to support more complex ranked choice voting systems
such as STV and Condorcet in a decentralized setting.

OPEN SOURCE CODE

The source code for the proof-of-concept implementation
of the proposed Borda count voting system over the Ethereum
blockchain can be found at https://github.com/smartcontract68/
Borda_count_smart_contract.

REFERENCES

[1] Ben Adida. Helios: Web-based Open-audit Voting. In Proceedings of
the 17th Conference on Security Symposium, SS’08, pages 335–348,
Berkeley, CA, USA, 2008. USENIX Association.

[2] Ben Adida, Olivier De Marneffe, Olivier Pereira, Jean-Jacques
Quisquater, et al. Electing a university president using open-audit voting:
Analysis of real-world use of Helios. EVT/WOTE, 9(10), 2009.

[3] Ben Adida and Ronald L. Rivest. Scratch & Vote: Self-contained Paper-
based Cryptographic Voting. In Proceedings of the 5th ACM Workshop
on Privacy in Electronic Society, WPES ’06, pages 29–40, New York,
NY, USA, 2006. ACM.

[4] Syed Taha Ali and Judy Murray. An overview of end-to-end verifiable
voting systems. Real-world electronic voting: Design, analysis and
deployment, pages 171–218, 2016.

[5] Samiran Bag, Muhammad Ajmal Azad, and Feng Hao. E2E Verifiable
Borda Count Voting System without Tallying Authorities. In Proceed-
ings of the 14th International Conference on Availability, Reliability
and Security, ARES 2019, Canterbury, UK, August 26-29, 2019., pages
11:1–11:9. ACM, 2019.

[6] Susan Bell, Josh Benaloh, Michael D. Byrne, Dana Debeauvoir, Bryce
Eakin, Philip Kortum, Neal McBurnett, Olivier Pereira, Philip B. Stark,
Dan S. Wallach, Gail Fisher, Julian Montoya, Michelle Parker, and
Michael Winn. STAR-Vote: A Secure, Transparent, Auditable, and
Reliable Voting System. In 2013 Electronic Voting Technology Work-
shop/Workshop on Trustworthy Elections (EVT/WOTE 13), Washington,
D.C., August 2013. USENIX Association.

[7] Mihir Bellare and Phillip Rogaway. Random Oracles Are Practical: A
Paradigm for Designing Efficient Protocols. In Proceedings of the 1st
ACM Conference on Computer and Communications Security, CCS ’93,
pages 62–73, New York, NY, USA, 1993. ACM.

[8] Duncan Black. The Theory of Committees and Elections. University
Press, Cambridge, 1958.

[9] P. Boucher. What if blockchain technology revolutionised voting?
http://www.europarl.europa.eu/RegData/etudes/ATAG/2016/581918/
EPRS_ATA(2016)581918_EN.pdf, Sept. 2016. Accessed on 14th Oct.,
2019.

[10] Robert Bredereck, Jiehua Chen, Piotr Faliszewski, André Nichterlein,
and Rolf Niedermeier. Prices Matter for the Parameterized Complexity
of Shift Bribery. Inf. Comput., 251(C):140–164, December 2016.

[11] MARK A. BURGMAN, HELEN M. REGAN, LYNN A. MAGUIRE,
MARK COLYVAN, JAMES JUSTUS, TARA G. MARTIN, and KRIS
ROTHLEY. Voting Systems for Environmental Decisions. Conservation
Biology, 28(2):322–332, 2014.

[12] Jan Camenisch and Markus Stadler. Efficient Group Signature Schemes
for Large Groups (Extended Abstract). In Proceedings of the 17th
Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’97, pages 410–424, London, UK, UK, 1997. Springer-Verlag.

[13] Savvas A. Chatzichristofis, Konstantinos Zagoris, Yiannis Boutalis, and
Avi Arampatzis. A Fuzzy Rank-Based Late Fusion Method for Image
Retrieval. In Klaus Schoeffmann, Bernard Merialdo, Alexander G.
Hauptmann, Chong-Wah Ngo, Yiannis Andreopoulos, and Christian
Breiteneder, editors, Advances in Multimedia Modeling, pages 463–472,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[14] D. Chaum, A. Essex, R. Carback, J. Clark, S. Popoveniuc, A. Sherman,
and P. Vora. Scantegrity: End-to-End Voter-Verifiable Optical- Scan
Voting. IEEE Security & Privacy, 6(3):40–46, May 2008.

[15] David Chaum. Secret-ballot receipts: True voter-verifiable elections.
IEEE security & privacy, 2(1):38–47, 2004.

[16] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan
Popoveniuc, Ronald L. Rivest, Peter Y. A. Ryan, Emily Shen, and
Alan T. Sherman. Scantegrity II: End-to-end Verifiability for Optical
Scan Election Systems Using Invisible Ink Confirmation Codes. In Pro-
ceedings of the Conference on Electronic Voting Technology, EVT’08,
pages 14:1–14:13, Berkeley, CA, USA, 2008. USENIX Association.

[17] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of
Partial Knowledge and Simplified Design of Witness Hiding Protocols.
In Yvo Desmedt, editor, Advances in Cryptology - CRYPTO ’94, 14th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 21-25, 1994, Proceedings, volume 839 of Lecture Notes
in Computer Science, pages 174–187. Springer, 1994.

[18] Jessica Davies, George Katsirelos, Nina Narodytska, Toby Walsh, and
Lirong Xia. Complexity of and algorithms for the manipulation of
Borda, Nanson’s and Baldwin’s voting rules. Artificial Intelligence,
217:20 – 42, 2014.

[19] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE
Trans. Inf. Theor., 22(6):644–654, September 2006.

[20] D. Ding, Le Chen, J. Li, and B. Zhang. AP-Scored Borda Counting for
Information Retrieval. In The Proceedings of the Multiconference on
"Computational Engineering in Systems Applications", volume 2, pages
1473–1478, Oct 2006.

[21] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank Ag-
gregation Methods for the Web. In Proceedings of the 10th International
Conference on World Wide Web, WWW ’01, pages 613–622, New York,
NY, USA, 2001. Association for Computing Machinery.

[22] Peter Emerson. Designing an All-Inclusive Democracy: Consensual
Voting Procedures for Use in Parliaments, Councils and Committees.
Jan 2007.

[23] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions
to Identification and Signature Problems. In Proceedings on Advances in
cryptology—CRYPTO ’86, pages 186–194, London, UK, 1987. Springer-
Verlag.

[24] Kevin Fisher, Richard Carback, and Alan T. Sherman. Punchscan:
Introduction and System Definition of a High-Integrity Election System.
In Workshop on Trustworthy Election. 2006, 2006.

[25] Followmyvote. Follow my vote. https://followmyvote.com/, 2012.
Accessed on 14th Oct., 2019.

[26] Jon Fraenkel and Bernard Grofman. The Borda Count and its real-world
alternatives: Comparing scoring rules in Nauru and Slovenia. Australian
Journal of Political Science, 49(2):186–205, 2014.

[27] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On
2-Round Secure Multiparty Computation. In Proceedings of the 22Nd
Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’02, pages 178–193, Berlin, Heidelberg, 2002. Springer-
Verlag.

[28] O. Goldreich, S. Micali, and A. Wigderson. How to Play ANY Mental
Game. In Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing, STOC ’87, pages 218–229, New York, NY, USA,
1987. ACM.

[29] Jens Groth. Efficient Maximal Privacy in Boardroom Voting and
Anonymous Broadcast. In Ari Juels, editor, Financial Cryptography,
8th International Conference, FC 2004, Key West, FL, USA, February
9-12, 2004. Revised Papers, volume 3110 of Lecture Notes in Computer
Science, pages 90–104. Springer, 2004.

[30] Feng Hao, Peter Y. A. Ryan, and Piotr Zieliński. Anonymous voting by
two-round public discussion. IET Information Security, 4:62–67, 2010.

[31] Feng Hao and Piotr Zielinski. A 2-Round Anonymous Veto Protocol. In
Bruce Christianson, Bruno Crispo, James A. Malcolm, and Michael Roe,
editors, Security Protocols, 14th International Workshop, Cambridge,
UK, March 27-29, 2006, Revised Selected Papers, volume 5087 of
Lecture Notes in Computer Science, pages 202–211. Springer, 2006.

[32] A. Hertig. The First Bitcoin Voting Machine
Is On Its Way. http://motherboard.vice.com/read/
the-first-bitcoin-voting-machine-ison-its-way, Nov. 2015. Accessed on
14th Oct., 2019.

[33] S. Higgins. Abu Dhabi Stock Exchange Launches Blockchain Voting.
http://www.coindesk.com/abu-dhabi-exchange-blockchain-voting/, Oct.
2016. Accessed on 14th Oct., 2019.

[34] Veikko Hiltunen, Jyrki Kangas, and Jouni Pykäläinen. Voting methods
in strategic forest planning - Experiences from Metsähallitus. Forest
Policy and Economics, 10(3):117–127, 2008.

[35] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant
electronic elections. In David Chaum, Markus Jakobsson, Ronald L.
Rivest, Peter Y. A. Ryan, Josh Benaloh, Miroslaw Kutylowski, and
Ben Adida, editors, Towards Trustworthy Elections, New Directions in

16

Electronic Voting, volume 6000 of Lecture Notes in Computer Science,
pages 37–63. Springer, 2010.

[36] Dalia Khader, Ben Smyth, Peter Y. A. Ryan, and Feng Hao. A Fair
and Robust Voting System by Broadcast. In Manuel J. Kripp, Melanie
Volkamer, and Rüdiger Grimm, editors, 5th International Conference on
Electronic Voting 2012, (EVOTE 2012), Co-organized by the Council of
Europe, Gesellschaft für Informatik and E-Voting.CC, July 11-14, 2012,
Castle Hofen, Bregenz, Austria, volume 205 of LNI, pages 285–299. GI,
2012.

[37] A. Kiayias, M. Korman, and D. Walluck. An Internet Voting System
Supporting User Privacy. In 2006 22nd Annual Computer Security
Applications Conference (ACSAC’06), pages 165–174, Dec 2006.

[38] Aggelos Kiayias and Moti Yung. Self-tallying Elections and Perfect
Ballot Secrecy. In David Naccache and Pascal Paillier, editors, Public
Key Cryptography, 5th International Workshop on Practice and Theory
in Public Key Cryptosystems, PKC 2002, Paris, France, February 12-14,
2002, Proceedings, volume 2274 of Lecture Notes in Computer Science,
pages 141–158. Springer, 2002.

[39] Martin Herbert Kijazi and Shashi Kant. Forest stakeholders’ value pref-
erences in Mount Kilimanjaro, Tanzania. Forest Policy and Economics,
12(5):357–369, 2010.

[40] Ranjit Kumaresan and Iddo Bentov. How to Use Bitcoin to Incentivize
Correct Computations. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’14, pages
30–41, New York, NY, USA, 2014. ACM.

[41] Anne Lafarre and Christoph Van der Elst. Blockchain Technology
for Corporate Governance and Shareholder Activism. SSRN Electronic
Journal, Jan 2018.

[42] Sanna Laukkanen, Teijo Palander, Jyrki Kangas, and Annika Kangas.
Evaluation of the multicriteria approval method for timber-harvesting
group decision support. Silva Fennica, 39(2):249–264, 2005.

[43] A. K. Lenstra and H. W. Lenstra, Jr. Handbook of Theoretical Computer
Science (Vol. A). chapter Algorithms in Number Theory, pages 673–
715. MIT Press, Cambridge, MA, USA, 1990.

[44] David Lippman. Voting Theory. Math in Society, 2013. Accessed on
17th January, 2020.

[45] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making Smart Contracts Smarter. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, pages 254–269, New York, NY, USA, 2016. ACM.

[46] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. A Smart
Contract for Boardroom Voting with Maximum Voter Privacy. In
Aggelos Kiayias, editor, Financial Cryptography and Data Security -
21st International Conference, FC 2017, Sliema, Malta, April 3-7, 2017,
Revised Selected Papers, volume 10322 of Lecture Notes in Computer
Science, pages 357–375. Springer, 2017.

[47] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 1996.

[48] C. Andrew Neff. Practical High Certainty Intent Verification for
Encrypted Votes, 2004.

[49] Jill Van Newenhizen. The borda method is most likely to respect the
condorcet principle. Economic Theory, 2(1):69–83, 1992.

[50] E. Niou and P.C. Ordeshook. Strategy and Politics: An Introduction to
Game Theory. EBL-Schweitzer. Taylor & Francis, 2015.

[51] Benjamin Reilly. Social Choice in the South Seas: Electoral Innovation
and the Borda Count in the Pacific Island Countries. International
Political Science Review, 23(4):355–372, 2002.

[52] C. Reitwiessner. Smart contract security. https://blog.ethereum.org/2016/
06/10/smart-contract-security/, June 2016.

[53] P. Y. A. Ryan, D. Bismark, J. Heather, S. Schneider, and Z. Xia. Prêt
á voter Voter: a Voter-Verifiable Voting System. IEEE Transactions on
Information Forensics and Security, 4(4):662–673, Dec 2009.

[54] C. P. Schnorr. Efficient Signature Generation by Smart Cards. J.
Cryptol., 4(3):161–174, January 1991.

[55] Siamak F Shahandashti. Electoral Systems Used around the World. In
Real-World Electronic Voting (Eds. Hao, Ryan), pages 93–118. CRC
Press, 2016.

[56] Hsu-Shih Shih, Wen-Yuan Lin, and ES Lee. Group decision making
for TOPSIS. In Proceedings Joint 9th IFSA World Congress and 20th
NAFIPS International Conference (Cat. No. 01TH8569), pages 2712–
2717. IEEE, 2001.

[57] Hsu-Shih Shih, Huan-Jyh Shyur, and E. Stanley Lee. An extension
of TOPSIS for group decision making. Mathematical and Computer
Modelling, 45(7):801 – 813, 2007.

[58] Hsu-Shih Shih, Chih-Hung Wang, and E.S. Lee. A multiattribute GDSS
for aiding problem-solving. Mathematical and Computer Modelling,
39(11):1397 – 1412, 2004.

[59] Yonatan Sompolinsky and Aviv Zohar. Secure High-Rate Transaction
Processing in Bitcoin. In Rainer Böhme and Tatsuaki Okamoto,
editors, Financial Cryptography and Data Security - 19th International
Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015,
Revised Selected Papers, volume 8975 of Lecture Notes in Computer
Science, pages 507–527. Springer, 2015.

[60] Pavel Tarasov and Hitesh Tewari. Internet Voting Using Zcash. IACR
Cryptology ePrint Archive, 2017:585, 2017.

[61] Bojana Tot, Goran Vujić, Zorica Srd̄ević, Dejan Ubavin, and Mário
Augusto Tavares Russo. Group assessment of key indicators of sustain-
able waste management in developing countries. Waste Management &
Research, 35(9):913–922, 2017.

[62] Christoph Van der Elst and Anne Lafarre. Blockchain and Smart
Contracting for the Shareholder Community. European Business Or-
ganization Law Review, 20(1):111–137, Mar 2019.

[63] B. Wire. Now You Can Vote Online with a Selfie. http://www.
businesswire.com/news/home/20161017005354/en/VoteOnline-Selfie,
Oct. 2016. Accessed on 14th Oct., 2019.

[64] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger EIP-150 REVISION (759dccd - 2017-08-07), 2017. Accessed
on: 2018-01-03.

[65] Y. Zhang, W. Zhang, J. Pei, X. Lin, Q. Lin, and A. Li. Consensus-Based
Ranking of Multivalued Objects: A Generalized Borda Count Approach.
IEEE Transactions on Knowledge and Data Engineering, 26(1):83–96,
Jan 2014.

[66] Zhichao Zhao and T.-H. Hubert Chan. How to Vote Privately Using
Bitcoin. In Sihan Qing, Eiji Okamoto, Kwangjo Kim, and Dongmei Liu,
editors, Information and Communications Security - 17th International
Conference, ICICS 2015, Beijing, China, December 9-11, 2015, Revised
Selected Papers, volume 9543 of Lecture Notes in Computer Science,
pages 82–96. Springer, 2015.

APPENDIX

APPENDIX A: THE NIZK PROOF ALGORITHMS USED IN
THE PROPOSED BORDA COUNT PROTOCOL

Algorithm 1: A prover with identifier ID generates
a NIZK proof of knowledge of a secret x such that
(Γ′ = gx) for known ID,Γ′, g.
Input : ID,Γ′, g, x such that (Γ′ = gx)
Output: η = PK{x : (Γ′ = gx)}
begin

choose random w ∈ Zq
calculate
t1 = gw.
calculate
c = H(ID, g,Γ′, t1)
calculate r = w − cx
return η = (r, t1)

end

In this section, we present the NIZK proof algorithms that
are required in the first and second round of the protocol. Al-
gorithm 1 (resp. Algorithm 2) represents the prover algorithm
(resp. verifier algorithm) for generation (resp. verification) of
the NIZK proof required in the first round of the protocol.
Let us assume that there are k candidates contesting in
the election. Algorithm 3 (resp. Algorithm 4) represents the
prover algorithm (resp. verifier algorithm) for generation (resp.
verification) of 1-out-of-k zero-knowledge proof required in
the second round of the protocol. Algorithm 3 (resp. Algorithm
4) is written for the i-th voter Vi to prove (resp. verify)
a proposition of the form ∨kl=1((Γ′l = gxil) ∧ (Γ′′l /g

vm =
{gyil}xil)), where vm is the score associated to the m-th rank,

17

Algorithm 2: Verification of proof η generated by
Algorithm 1 given ID,Γ′, g.

Input : ID,Γ′, g, η = (r, t1)
Output: success or failure
begin

calculate
c = H(ID, g,Γ′, t1)
calculate
t′1 = grΓ′c

if t1 = t′1 then
return success

else
return failure

end
end

Algorithm 3: A prover with identifier ID gener-
ates a proof of knowledge of a secret xij such that
∨kl=1((Γ′l = gxil) ∧ (Γ′′l /g

vm = {gyil}xil)), where
vm is the score associated to the m-th rank, m ∈
{1, 2, ..., k}, and the score vm is given to the j-th
candidate, j ∈ {1, 2, ..., k}.

Input : ID, g, k, (Γ′l,Γ′′l , {gyil})kl=1, xij , j, g
vm such

that Γ′j = gxij and Γ′′j /g
vm = {gyil}xij

Output: Πm = PK{xij : ∨kl=1((Γ′l =
gxil) ∧ (Γ′′l /g

vm = {gyil}xil))}
begin

choose random
w, r1, c1, r2, c2, ..., rj−1, cj−1, rj+1, cj+1, ..., rk, ck ∈
Zq

calculate t11 = gr1{Γ′1}c1 , t12 =
{gyi1}r1{Γ′′1/gvm}c1 , t21 = gr2{Γ′2}c2 , t22 =
{gyi2}r2{Γ′′2/gvm}c2 ,, tj−11 =
grj−1{Γ′j−1}cj−1 , tj−12 =
{gyij−1}rj−1{Γ′′j−1/g

vm}cj−1 , tj1 = gw, tj2 =
{gyij}w, tj+11 = grj+1{Γ′j+1}cj+1 , tj+12 =
{gyij+1}rj+1{Γ′′j+1/g

vm}cj+1 , ..., tk1 =
grk{Γ′k}ck , tk2 = {gyik}rk{Γ′′k/gvm}ck

calculate
c =
H(ID, (g,Γ′l, {gyil}, {Γ′′l /gvm})kl=1, (tl1, tl2)kl=1),

calculate
cj = c− (c1 + c2 ++ cj−1 + cj+1 + ...+ ck)
calculate rj = w − cjxij
return Πm =
(c1, c2,, cj−1, cj , cj+1, ..., ck, r1, r2, ..., rj−1, rj ,
rj+1, ..., rk, (tl1, tl2)kl=1)

end

m ∈ {1, 2, ..., k}, the score vm is given to the j-th candidate,
j ∈ {1, 2, ..., k}, Γ′l represents Xil corresponding to the l-th
candidate in the first round of the protocol, and Γ′′l represents
Zil corresponding to the l-th candidate in the second round of
the protocol as discussed in section IV-A. The algorithm for

Algorithm 4: Verification of proof Πm generated by
Algorithm 3 given ID, g, k, (Γ′l,Γ

′′
l , {gyil})kl=1, g

vm ,
where vm is the score associated to the m-th rank.
However, the verifier does not know to which candidate
(i.e. j) the score vm is given.

Input : ID, g, k, (Γ′l,Γ′′l , {gyil})kl=1, g
vm ,Πm =

(c1, c2, ..., ck, r1, r2, ..., rk, (tl1, tl2)kl=1)
Output: success or failure
begin

calculate
c′ =
H(ID, (g,Γ′l, {gyil}, {Γ′′l /gvm})kl=1, (tl1, tl2)kl=1)

if (c′ 6= (c1 + c2 + ...+ ck)) then
return failure

end

calculate
t′11 = gr1{Γ′1}c1 , t′12 = {gyi1}r1{Γ′′1/gvm}c1 , t′21 =
gr2{Γ′2}c2 , t′22 = {gyi2}r2{Γ′′2/gvm}c2 , ...,
t′k1 = grk{Γ′k}ck , t′k2 = {gyik}rk{Γ′′k/gvm}ck
if ((t11 = t′11)&&(t12 = t′12)&&(t21 = t′21)&&
(t22 = t′22)&&...&&(tk1 = t′k1)&&(tk2 = t′k2))
then

return success
else

return failure
end

end

the case when the score vm is given to any candidate other
than the j-th candidate can be obtained by straightforward
modifications. The symbol ‘ID’ denotes the publicly known
identifier of the voter. Following [31], [30], we include the
voter’s ID in the hash for the Fiat-Shamir transformation to
bind the identity with the ZKP and to prevent replay attacks.
For example, in our implementation over Ethereum, we use the
sender’s unique identity (msg.sender) as ‘ID’ in the argument
of the hash function. The purpose of using the sender’s unique
identity (msg.sender) is already discussed in section VII-D.
The symbols Γ′ and x in the Algorithm 1 and Algorithm 2
represent Xij and xij respectively for each of the i-th voter
Vi in the first round of the protocol as described in section
IV-A, where j ∈ {1, 2, ..., k}.

