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On the Interconnection of Cross-Cutting Concerns

within Hierarchical Modular Architectures
Herwig Mannaert, Peter De Bruyn, Jan Verelst

Abstract—Modularity is often employed to increase the flexi-
bility and adaptability of a system. A well-known issue during
the design of modular systems is the emergence of ripple effects
propagating throughout the system when one module is changed
which is dependent on other modules within the system. While
several techniques or approaches have been proposed to mitigate
these effects, they often neglect the integration and intercon-
nection of cross-cutting concerns (i.e., functionalities which are
required across different parts of the main functional dimension)
within the system. This paper argues that the proper integration
of cross-cutting concerns is important in order to avoid ripple
effects and preserve the adaptability of a modular system. Based
on a set of possible integration architectures which offer different
alternatives to integrate cross-cutting concerns within a modular
structure, we introduce the Integration Design Matrix (IDM) as
an instrument to systematically analyze the cross-cutting concern
provisioning within specific modular artifacts. A set of design
guidelines is proposed to optimize the integration of the cross-
cutting concerns, applicable within the context of the IDM. We
illustrate our approach by means of examples in several domains.

Index Terms—Modular architecture, cross-cutting concerns,
integration design matrix.

I. INTRODUCTION

MANY human-made artifacts are designed as hierarchi-

cal modular systems. While many different modularity

interpretations [1] or measurement types [2] exist, modular

systems are in essence defined as being composed of a set

of interacting subsystems (modules) over multiple aggregation

layers or levels [3]. These artifacts can be both tangible and

intangible. A suitable example of the first one may be a

house (with rooms and bricks as its modules), whereas a

software system (having packages, classes, methods, etcetera

as its modules) may be an illustration of the latter one.

Its application seems logical and is well documented within

engineering [4], but has also been considered relevant for

topics outside this area, such as management [5]. Modu-

lar architectures are believed to be associated with several

beneficial characteristics including complexity reduction (by

breaking down the problem into a set of subproblems which

are easier to handle), adaptability (the system can be changed

by adding, removing or replacing only certain parts) and the

potential for re-use (modules with a general purpose can

be optimized and serve as best practice building blocks for

multiple systems) [3], [6], [7], [1]. The modularity of a product

is often assumed to be related to the organizational architecture

[8], [9] and both the modularity concept [10], [11] as well

as the (standardized) interfaces arising between them [12],

[13] are considered as one way to enable (the adoption of)

TABLE I
EXAMPLES OF MODULAR AGGREGATION LEVELS AND CROSS-CUTTING

CONCERNS IN THE CONTEXT OF HOUSING AND SOFTWARE.

Housing Software

Modular • city • community

aggregation • neighbourhood • application

levels • house • package

• room • entity

• wall/floor/ceiling • class

• brick/device • data structure, method/routine

Cross- • electrical power • persistency/database access

cutting • heating • access control/security

concerns • water supply • remote service access

• Internet connection • transactional integrity

• multimedia access • logging/archiving

innovations. However, realizing the integration of complex

modular systems is challenging in practice [14] and the design

does not always seem to result in the acclaimed benefits such

as adaptability [15], [16].

Moreover, while some design knowledge for high qual-

ity hierarchical modular systems exists (cf. infra), generally

applicable prescriptive guidance seems limited. For instance,

available metrics to measure the degree of modularity in a

system seem to produce inconsistent results [17]. In particular,

very little attention is paid to the integration of so-called cross-

cutting concerns: concerns which are relevant for multiple

(often most) parts within the system and are therefore said

to “cut across” the complete hierarchical structure. Consider

for instance concerns such as security, persistency and remote

access within the context of a software application: all of them

are needed in almost all parts of a software system. While

the idea of cross-cutting concerns is generally accepted within

certain software programming paradigms, its existence has (to

the best of our knowledge) not yet been widely acknowledged

within other areas. We argue in this paper that the concept

of cross-cutting concerns is relevant in the design of modular

systems in many other fields as well. For instance, utilities

in housing, such as heating, electricity and isolation might

be considered as relevant candidates to be identified and

analysed as cross-cutting concerns for that domain. Moreover,

we posit that the way in which these cross-cutting concerns

are integrated throughout a system plays an important role in

the extent to which a modular system may (not) realize its

envisioned benefits (such as adaptability).

Table I provides examples of some relevant aggregation

levels and cross-cutting concerns with the housing and soft-
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ware domain. Similarly as we performed in this introduction,

we will provide illustrations from these domains throughout

the rest of this paper in order to clarify our reasoning and

illustrate its applicability. The remainder of this paper will

be structured as follows. Section II will cover some related

work, including some concepts which will be used later on.

In Section III, we will explore the different possible ways

to integrate and connect cross-cutting concerns. Based on

the benefits and drawbacks of these different architectures,

we will provide some recommendations or design guidelines

in Section IV, and present various indications from practice

supporting their relevance and validity in Section V. In order to

support the practical application of these design guidelines, we

will propose a tool (matrix notation) in Section VI to represent

and optimize existing modular architectures in that regard. Our

conclusions are offered in Section VII.

II. RELATED WORK

This paper attempts to make contributions to the design of

modular structures, and their cross-cutting concerns in partic-

ular. Later on, we propose a matrix notation to facilitate our

recommendations. We therefore review some of the existing

literature on these domains.

A. Modular design principles

Regarding the design of hierarchical modular structures in

general, important work has been done by Alexander [18],

Simon [3] and Baldwin and Clark [6], [7]. Two important

concepts in this regard are coupling and cohesion. Coupling

is a measure for the degree to which modules are dependent

on one another. High coupling is considered harmful for

a design as it reduces the possibility to (re)use, adapt or

study the modules in a system independently. Cohesion is

a measure for the degree to which a module is confined to

one concern or functionality. High cohesion is considered

as beneficial for a design as the clear focus of the module

decreases a module’s complexity and increases its ability to

be recombined with other modules. Therefore, the typical

advice for a good modular design is to have low coupling and

high cohesion. While not all authors explicitly use the same

terminology, many of their ideas do align with these concepts.

For instance, Simon [3] argues that complex systems which

are not hierarchic and (near) decomposable (i.e., having strong

interactions within each component and negligible interactions

between components) are most likely too complex for human

understanding. Baldwin and Clark [7] equally adhere to the

idea that intermodular dependencies should be minimal and

state that an explicit formulation of remaining intermodular

dependencies (“design rules”) is necessary in order to realize

the potential benefits of modular structures. Other authors have

formulated domain specific criteria for the design of modules,

mostly in alignment with the low coupling/high cohesion

reasoning. For instance, Myers [19] proposed a specific set

of types of coupling and cohesion for software applications

and Parnas [20] proposed the idea of ‘information hiding’ by

prescribing that software modules should only have access to

each others interface, thereby lowering coupling.

Some typical observations occurring during the design of

modular systems and some (implicit) heuristic design princi-

ples for modular systems can be related to these fundamental

concepts.

1) Coupling: Consider for example ripple effects, a gener-

ally observed phenomenon when changing modular structures

[21], [22], [16], [23]. Such effects occur when an initial change

to a module necessitates (a large amount of) changes to other

modules, in their turn possibly requiring adaptations to other

modules, etcetera. One could argue that such ripple effects are

actually a manifestation of a (highly) coupled modular design

in which many modules are dependent on one another such

that changes to a module cannot be performed in isolation,

resulting in the occurrence of an undesired multiplication or

leverage effect when performing such a change.

2) Cohesion: In software engineering, most designers know

that duplications within a modular structure are pernicious and

need to be avoided [24], [23]. Duplication typically implies

that a certain recurring part or functionality is combined with

other parts of modules throughout the system. The modules

containing the duplications therefore combine at least two

concerns or functionalities, demonstrating low cohesion. These

modules then become implicitly coupled as changes to the

duplicated functionality need to be performed at all relevant

modules in order to safeguard consistency, resulting again in

the occurrence of an undesired multiplication or leverage effect

when performing such a change. Duplication should be clearly

distinguished from the mere reuse of a module, whether in

software or physical systems. Here, the reuse of a module

or part in a black box is desired and could only propagate

multiplication or leverage effects if its replacement would

violate (i.e., forcing a change to) the external interface. In

contrast, duplicating logic in software or integration wiring in

physical systems would indeed trigger propagation effects in

case of changes.

B. Cross-cutting concerns

Regarding the specific idea of cross-cutting concerns within

hierarchical modular structures, we are only aware of explicit

discussions taking place within the software engineering com-

munity. In particular, cross-cutting concerns, i.e., concerns

that are present or cut across the functional structure, are

an essential concept within the Aspect-Oriented Programming

(AOP) paradigm as introduced by Kiczales [25]. Here, reusable

code related to concerns such as logging or security are defined

within so-called advices. These advices can be inserted at

particular points (called joinpoints) within the regular code. As

a consequence, the actual code which is compiled or executed

is the result of regular code with advices woven into it at the

specified joinpoints.

While other domains do not seem to explicitly mention

the existence of cross-cutting concerns, some of them tend

to recognize them in an indirect way. For instance, within

the housing domain, Keymer [26] and Slaughter [27] discuss

design strategies for the creation of more adaptable build-

ings. Some of them stress the importance of an adequate

design of services distribution (plumbing, wiring, electricity,
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air conditioning, etcetera), encouraged by the fact that these

are (or will be) typically needed at many places in a building

and play a crucial role regarding the extent of the impact

when carrying out changes. The fact that the distribution of

services or utilities is needed at many places across the main

functional structure, and may trigger multiplication or leverage

effects when implementing changes, coincides with our basic

definition and motivation for the analysis of architectures

in terms of cross-cutting concerns. Similarly, Eppinger and

Browning [28] briefly discuss an investigation regarding the

systems engineering and system integration aspects of the

PW4098 jet engine. The outcome of the investigation resulted

in a modular systems with six regular subsystems as well

as two “more spatially distributed” subsystems which were

“more functionally integrative across the engine” (i.e., the

mechanical components and the externals and controls). Such

subsystems that cannot be easily confined to one location in the

modular structure are highly similar to cross-cutting concerns.

As another example, some authors adopting a system approach

within management literature employ the notions ‘subsystems’

versus ‘aspect systems’ (or ‘aspectsystemen’) [29], [30]. When

considering a system as a set of related objects, a subsystem

will focus on a subset of these objects (considering all types of

relations) whereas an aspect system will focus on a subset of

types of relations (considering all objects). In that context, the

production department within an organization could be seen

as an example of the former and an analysis of the social

relationships between employees as an example of the latter.

As a consequence, also the idea of aspect systems stresses the

importance of being able to look in a cross-cutting way at

specific concerns in a hierarchical system.

Finally, in general modularity literature, one could argue that

(in an indirect way) the idea of “design rules” as proposed by

Baldwin and Clarck [7] could be interpreted as one way to fa-

cilitate the plugging in of cross-cutting concern functionalities

all across a modular system by adopting explicitly agreed upon

interfaces to those cross-cutting concerns. Apart from that, the

discussion of cross-cutting concerns or a similar idea within

general modularity theory seems limited. As a consequence,

the need for and reflection on cross-cutting concerns within

general modularity thinking and its applications does not seem

completely absent in extant literature but is treated in a rather

implicit way resulting in very few available prescriptive design

guidelines.

C. Matrix notations

Regarding the use of graphical or matrix-based representa-

tion forms to study modular artifacts, we have been preceded

by many others. For instance, Steward [31] introduced the

so-called Design Structure Matrix (DSM) which visualizes

(maps) and studies the dependencies between design parame-

ters. The notation has later on be leveraged for the purpose of

analyzing processes, organizations and product architectures in

a variety of domains [32], [33], [28] and is still being further

developed and applied in contemporary research [34], [35],

[36]. In such a DSM, the parts or design parameters of a

system are depicted on both the horizontal and vertical axis

of the matrix and x’s are placed on all cells where a particular

part or design parameter impacts or depends on another part

or design parameter. In a more general approach, more diverse

values can be used within the matrices (e.g., numeric values

between 0 and 1 indicating the strength of an interaction,

colors to represent certain dimensions, etcetera). All kinds of

clustering and sequencing algorithms can be applied to these

matrices in order to group parts into modules and minimize

non-diagonal (or at least intermodular) dependencies (i.e.,

coupling) within the system.

Whereas DSMs are square matrices typically focusing

on elements of the same project domain, one of its pro-

posed extensions allows the mapping of elements of different

project domains. More specifically, a Domain Mapping Matrix

(DMM) is a rectangular m× n matrix mapping two different

project domains, where m is the size of DSM1 (of project

domain 1) and n is the size of DSM2 (of project domain

2) [37]. Further, combinations between DSMs and DMMs

exist such as the House of Quality (HoQ) [38], [39] which

consists of multiple matrices, including a roof depicting the

dependencies between technical requirements (similar to a

DSM) and a matrix mapping technical requirements onto

customer requirements (being a DMM). Consequently, intra-

domain representations (i.e., DSMs), inter-domain represen-

tations (i.e., DMMs) and combinations of both (i.e., the

House of Quality) can be identified when considering matrix

based notations for system modeling and analysis, possibly

even extended to multi-domain matrices (MDMs) when also

applying computational methods to combined intra- and inter-

domain matrices [40].

Given their focus on the mapping of dependencies, the

study of design change propagations throughout systems has

become one of the main usages of DSMs and DMMs. For

instance, Baldwin and Clark [7] show a problem-solving path

on a DSM illustrating the cycling within an interconnected

task structure through which a designer might need to go

when working on a modular system. Further, Koh et al.

leveraged DSMs and DMMs to assess the changeability of

complex engineering systems and to use these change forecasts

to prioritize component modularisation [41], [42]. In order

to assess the impact on planned changes on other compo-

nents, they combine the Change Propagation Impact with the

Change Propagation Likelihood. While our work shares the

emphasis on the impact of change, we only consider change

(propagation) for certain identifiable anticipated changes, and

assume change propagation to be deterministic and binary, i.e.,

the anticipated change is propagated or not.

The applicability of these matrix notations for system

modeling and analysis for a multitude of domains has been

accurately documented in literature. For instance, the work

of Eppinger and Browning [28] provides a broad overview of

several domains in which the DSM has been applied, including

examples within the domains we introduced in the previous

section, i.e., housing and software. For example, regarding

the former, a discussion is presented which uses DSMs to

analyze an earlier proposed layer taxonomy by Brand [43] to

decompose a typical building based on the expected range of

change. The test largely confirmed the relevance of the dif-
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ferent layers but equally identified four different dependency

types among components, including “low dependencies inside

of the layer and high dependencies outside” indicating that

often many of the components in the modularized environment

where still dependent on outside concerns. Regarding the

latter, it was illustrated how DSMs can be used to optimize

the modular architecture of software and to provide visibility

into undesirable and cyclical dependencies between Java Jar

files.

As modularity is an inherently recursive concept, modeling

efforts such as matrix notations can be applied on a variety of

aggregation levels, ranging from very fine-grained levels up

to very coarse-grained aggregation levels, as is also apparent

from the examples that have previously been documented in

literature [28]. In this context, Maier has presented a detailed

framework for the level of detail or granularity in models

and engineering design, and discussed related concepts like

abstraction, hierarchy, and aggregation [44]. Nevertheless, the

choice of the appropriate level of granularity depends to a large

extent to the context, application domain and purposes for

which the model is used and few prescriptive and unambiguous

guidelines in this regard have been found in literature. Hence,

we consider the formulation of strict and generally applicable

guidelines for the identification of the appropriate granularity

level to be noncritical as it is highly context-dependent and

we can further build upon the earlier identification of various

aggregation levels with a corresponding granularity in many

application domains where it has been proven to be rather

non-problematic in the past.

As our matrix notation will focus on the design of cross-

cutting concern within the modular structure of an artifact,

our approach could be considered as an intra-domain rep-

resentation. However, our notation differs from the existing

DSM by the fact that we consider —a limited number of—

aggregation levels on both axes, only consider a static (non-

dynamic) perspective, and specifically focus on the integration

of the various cross-cutting concerns or utility services within

and between the aggregation levels.

III. CROSS-CUTTING CONCERN INTEGRATION

ARCHITECTURES

The initial decomposition (or aggregation) of a modu-

lar system is typically performed in one single dimension,

which we call the main functional dimension or concern.

For a general hierarchical modular system, this dimension is

schematically represented in the horizontal plane of Figure 1:

the individual cuboids represent individual modules (e.g., the

rooms in a house or classes in a software system), the bars the

connections/interactions between the modules (e.g., the walls

between the rooms or a method call between classes). When

considering cross-cutting concerns, we focus on functionalities

which are of a different kind, nature or dimension than the ones

typically considered in the main functional dimension (e.g.,

electricity, security, etcetera) as they are required (by defini-

tion) across different parts of the main functional dimension.

Introducing a new cross-cutting concern therefore leads to an

integration problem as multiple functional dimensions need to

Fig. 1. A modular system considered from one main dimension [45].

Fig. 2. Embedded integration architectures [45].

be combined. This integration can be performed in different

ways. Based on our earlier work [45], this section presents

several ways to do so, which we call integration architectures.

A. Embedded architectures

A first option is to embed the actual implementation of the

cross-cutting concern within or around the main functional

modules. We refer to this implementation as the embedded

integration architecture or architecture 1. This architecture is

graphically represented in Figure 2 by the colored cylinders

added to some of the cuboids. For example, a fireplace or

electricity generator could be placed in every room (or some

rooms) of a house. Or a method taking care of persistency

could be added to one or multiple software classes. Often, as a

field matures, standard solutions for generic cross-cutting con-

cerns (shared across many systems) might arise. For instance, a

standardized electricity generator or persistency method can be

designed, incorporating best practices and becoming re-used in

many modules along many systems. Therefore, we distinguish

between an embedded dedicated (i.e., non-standardized) inte-

gration architecture and an embedded standardized integration

architecture, which we label as architectures 1A and 1B,

respectively. In Figure 2, we differentiate between both by

leaving the cylinders of dedicated cross-cutting concern imple-

mentations empty, whereas the standardized implementations

are indicated with an “S”.

B. Relayed architectures

A second option is to have the cross-cutting concern part

within or surrounding the main functional modules to act

as a proxy or “connector” to a provider framework. This

framework provides the actual implementation of the cross-

cutting concern at another location, i.e., outside the considered

main modules, allowing for a more elaborate implementation

and often benefitting from so-called advantages or economies

of scale. We refer to this implementation as the relay integra-

tion architecture or architecture 2. In Figure 3, we represent

relayed implementations of a cross-cutting concern by using

another plane. Think for example of an elaborate electricity

distribution network in a house to which the different rooms

in a house connect via sockets in its walls. Or various classes in

a software system calling an elaborated persistency framework
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(a) Relay to dedicated framework integration architecture.

(b) Relay to standardized framework integration architecture.

(c) Relay to framework gateway integration architecture.

Fig. 3. Relay integration architectures [45].

taking care of persisting all kinds of data. Also here, the re-

layed integration architecture can make use of a dedicated (i.e.,

self-designed, non-standardized) or a standardized framework

to provide the cross-cutting concern. That is, one can design

its own electricity distribution or persistency framework or

make use of an already existing and standardized distribution

network or persistency framework (e.g., Java Persistency API).

Therefore, we distinguish between a relay to a dedicated (i.e.,

non-standardized) framework and a relay to a standardized

framework, which we label as integration architectures 2A and

2B, respectively. Integration architecture 2A is visualized in

Figure 3a. Note that this option does not only require modular

design decisions regarding the main functional dimension, but

also regarding the cross-cutting concern dimension (i.e., the

cuboids in the cross-cutting concern plane) as well as the

connection between both (i.e., the vertical bars). Integration

architecture 2B is visualized in Figure 3b. As in this case

the main functional dimension connects to an (external) stan-

dardized framework, the internal modular design thereof does

not need to be considered and an empty cross-cutting concern

plane is used. Connecting the main modules to this plane

is based on accessing a standardized interface, like a socket

tapping into electrical power provided at a standard voltage

and frequency, or some annotation lines configuring the data

class to use the persistency framework.

In integration architectures 2A and 2B, modules still connect

individually to a provider framework. When using a relay

to a framework gateway (which we define as integration

architecture 2C), an intermediate level or gateway module is

added. This intermediate module is the single point which

connects to the provider framework and allows all main

modules to switch collectively to another provider framework

at once (instead of individually) as now the proxy modules

in the main functional dimension only refer to the framework

gateway. Integration architecture 2C is visualized in Figure 3c,

in which the intermediate gateway module is represented by

the broad yellow cylinder. Consider for instance a central

power supply or converter in a building which provides the

possibility to change the nature of the external power (e.g.,

solar panels or the national electricity grid). Or a dedicated

class in a software application, to which all other classes refer,

ensuring the connection to a provider of naming and directory

services (this is less realistic for a persistency framework).

Figure 4 provides an overview of the different integration

architectures we discussed above. It should be clear that,

typically, multiple cross-cutting concerns for a system can

or should be considered concurrently and the chosen cross-

cutting concern integration architecture can differ for every

individual cross-cutting concern for every individual module.

For instance, Figure 4 represents up to 4 cross-cutting concerns

integrated by using 4 different integration architectures (the en-

capsulation of the connections in additional small cuboids will

be discussed in the next section). Table II provides examples

of each of the provided integration architectures for our two

running cases: the electricity concern in housing structures

and the persistency concern in software architectures. For

the housing electricity case, each example distinguishes two

hierarchical or aggregation levels to which the relevant cross-

cutting concern is provided, as mentioned between brackets.

The software persistency case only describes the hierarchical

or aggregation level of the class.

IV. DESIGN GUIDELINES FOR INTEGRATING

CROSS-CUTTING CONCERNS

While the previous section discussed some cross-cutting

concern integration architectures, it did not cover the question

whether one architecture is superior to another. Additionally,

other aspects than the choice of integration architectures might

influence the quality of the cross-cutting concern design within

a modular structure. This section proposes a set of design

guidelines for this purpose. We use existing design principles

as discussed in Section II-A to motivate our guidelines. It

is important to mention in this context that our three design

guidelines should be applied together as their partial applica-

tion might in fact deteriorate a design. Indeed, the underlying

motivation of the design guidelines is to limit the impact of

change, and as such they are only necessary conditions.

A. Encapsulation

Guideline: The integration of a cross-cutting concern

should be performed in an encapsulated way. This means,

first, that every cross-cutting concern (i.e., its actual imple-

mentation or the relay connecting to the actual centralized

implementation) should have its own separate module. Stated
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Fig. 4. Integration architectures for cross-cutting concerns [45].

TABLE II
EXAMPLES OF IMPLEMENTATIONS OF CROSS-CUTTING INTEGRATION ARCHITECTURES

Housing (electrical power) Software (persistency)

Embedded dedicated

integration

architecture (1A)

• every house has its own electricity generator (aggrega-

tion level = house)

• every device requiring electricity to operate has a battery
embedded within it (aggregation level = device)

• every software class contains a custom made module
(e.g., method) which completely takes care of the persis-
tency for that class (aggregation level = software class)

Embedded standard-

ized integration archi-

tecture (1B)

• every house has its own standardized (commoditized)
electricity generator (aggregation level = house)

• every device requiring electricity to operate has a
standardized (commoditized) battery embedded within in
(aggregation level = device)

• every software class contains a standardized module
(e.g., method) which completely takes care of the persis-
tency for that class (aggregation level = software class)

Relay to dedicated

framework

integration

architecture (2A)

• every house taps electricity from the shared (dedicated)
solar panel electricity grid provided by the local community
(aggregation level = house)

• every device requiring electricity to operate taps
electricity from a dedicated electricity grid within the house
by means of cables (aggregation level = device)

• every software class contains a relay module (e.g.,
method) calling into a dedicated framework at a higher
aggregation level (e.g., a software entity) covering persis-
tency (aggregation level = software class)

Relay to standard-

ized framework in-

tegration architecture

(2B)

• every house taps electricity from the standardized
national electricity distribution network (aggregation level

= house)

• every device requiring electricity to operate taps elec-
tricity from a standardized wireless electricity grid within
the house (aggregation level = device)

• every software class contains a relay module (e.g.,
method) calling into an immanent standardized framework
covering persistency (e.g., Java Persistency API) (aggrega-

tion level = software class)

Relay to framework

gateway integration

architecture (2C)

• the electricity for each house is provided through a
gateway at the level of its community which may switch
between electricity provided by the community or the
national electricity grid (aggregation level = house)

• every device requiring electricity to operate connects
via sockets to a gateway at the level of the house which
can switch between electricity provided by the house’s
own electricity generator (e.g., based on solar panels) or
the national electricity distribution network (e.g., nuclear
energy) (aggregation level = device)

• every software class contains a relay module (e.g.,
method) calling into a dedicated gateway (which may
switch or adapt to changes in the persistency provider
framework) (aggregation level = software class)
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otherwise, the cross-cutting concern should not be joined with

the main functional concern in one atomic module. Second,

this means that this separate module should only interact with

other modules through a predefined and stable interface 1.

Motivation: First, the isolation of the cross-cutting con-

cern into a separate module increases cohesion. Indeed, when

the cross-cutting concern parts and main functional parts

are combined into one module, this module combines two

functionalities of a different kind. In contrast, having separate

modules for the cross-cutting concern and main functional

parts results in modules focusing on one type of functionality

and therefore exhibiting a higher degree of cohesion. Second,

only allowing the cross-cutting concern module to interact

via a clearly defined interface lowers coupling as only the

interface then represents the dependency with other modules.

The impact of a change is also better predictable (i.e., limited

to interactions via the interface), thereby preventing ripple

effects in the main functional module and beyond.

Illustration and reflections: In order to represent the

application of the encapsulation guideline visually, consider

Figure 4. Here, in contrast with Figures 2 and 3, we have

placed the cylinders depicting the cross-cutting concerns out-

side of the main concern cuboid to symbolize the fact that the

cross-cutting concern is isolated in a separate module. The

small bold cuboids encapsulating the cylinders represent the

module to be “shielded” by its interface.

In order to apply this guideline to a specific situation,

consider for instance the heating of the rooms of a house.

Here, a non-encapsulated variant could be the use of fireplaces

incorporated within the walls of the rooms (i.e., the fireplace

and walls constitute one inseparable whole). It is clear that, in

case the implementation of this cross-cutting concern would

need to be changed (e.g., upgrading to a more modern fire-

place), the impact of that change would not be limited to the

fireplaces themselves but would also entail ripple effects in the

room or functional module, as it would require drilling into the

walls, the areas surrounding the chimneys, etcetera. This effect

would not occur when an encapsulated variant is chosen, such

as a (un)pluggable electric heater. Here, the electric heater is a

separate module (it is not inextricably incorporated within the

wall) which interacts with the other modules via a clear inter-

face (its electricity plug). The electric heater can be changed

without impacting the wall: switching the electric heaters to

more modern electric heaters would only require the heaters

themselves to be replaced. Similarly in a software context,

persistency functionality added amidst variables and methods

1The idea of encapsulation is heavily inspired by the software community
where is it a widely acknowledged principle and practice. However, we
are aware that translating this idea of fully predefined and stable interfaces
to other domains such as mechanical designs should not be considered as
trivial or straightforward [46]. More specifically, a fully defined and blackbox
interface for mechanical designs should take into account multiple categories
of interactions (e.g., physical size, power consumption, electro-magnetic
fields, etcetera). Nevertheless, we wish to stress that the idea of “design
rules” as proposed by Baldwin and Clark [7] is similarly proposing explicitly
predefined and stable interfaces for modularity in general. Further, whereas
we are aware that it might be challenging to currently realize the design
guideline in a certain application domain, part of our contribution also aims
to provide an overview of potential innovation and improvement opportunities
for modular designs (of all kinds) in the near or distinct future.

of the main funcional classes (representing for instance the

domain entities of an information system like Customer, Order

and Invoice), would be non-encapsulated, as a change in the

implementation of the persistency would require coding efforts

within each of those modules leading in general to ripple

effects. On the other hand, isolating persistency code within

distinct methods or classes which can be used (“called”) by

other methods or classes would be an encapsulated approach,

confining the impact of a change in implementation to these

dedicated modules.

As we consider the possibility of multiple cross-cutting

concerns, our advice for encapsulation results in the design of

main modules surrounded by a set of non-main or peripheral

modules each implementing one cross-cutting concern in an

encapsulated way. For instance, within a housing context,

one could consider the living area within each room as a

main module and the heating, water provisioning, electricity,

etcetera as the non-main modules of a room (encapsulating

the cross-cutting concern implementation or its relay). In a

software context, it would imply the introduction of various

peripheral classes (encapsulating code dealing with concerns

like persistency, access control, and transactions) around the

main functional modules or domain classes.

B. Interconnection

Guideline: The cross-cutting concern module surround-

ing a main module, should not implement the cross-cutting

concern itself (i.e., embedded). Instead, the cross-cutting con-

cern implementation should be realized in a relayed way via an

interconnection. As a consequence, the cross-cutting concern

module surrounding the main module will act as a proxy.

Motivation: Having embedded cross-cutting concerns

leads to the duplication of their implementation at all places

where the concern is required. As discussed in Section II-A,

coupling and cohesion advise against this. Indeed, an embed-

ded implementation would result in ripple effects in case the

cross-cutting concern implementation needs to be updated as it

is spread out over multiple locations. Adopting proxies which

connect to a centralized cross-cutting concern implementation

would avoid this, allowing to update the cross-cutting concern

at one location. Further, we note that embedded implementa-

tions are not always feasible (e.g., due to space limitations)

and that the centralized production or provisioning of a cross-

cutting concern allows for typical advantages of centralisation,

like increased efficiency due to economies of scale.

Still, one might argue that two types of coupling re-

main. First, whereas embedded architectures are somewhat

autonomous (i.e., independent) in terms of their cross-cutting

concern provisioning, the use of an interconnection implies

that the proxies become dependent on the proper working

of the centralized cross-cutting concern implementation: its

failure might endanger the proper working of all decentral-

ized main modules. Such ‘single point of failure’ might for

instance be mitigated by making sure that a central redundant

emergency provider is in place, thereby leveraging another
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advantage of scale, i.e., increasing overall reliability2. Second,

the proxy modules themselves might have connections which

are specific for the chosen centralized cross-cutting concern

provisioning. In that case, a change to another centralized

cross-cutting concern provider might still require adapting all

proxies. This dependency can be resolved by employing a

gateway as an intermediary module to which both the proxies

and the actual cross-cutting concern implementation connect:

the cross-cutting concern provider can then be changed with-

out requiring changes to every individual proxy.

Illustration and reflections: In order to represent the

application of the interconnection guideline visually, consider

again Figure 4 where the previously discussed integration

architectures are shown in an encapsulated way. The red, green

and yellow planes represent the relayed implementation of the

cross-cutting concern connecting to the proxy modules via

the red, green and yellow vertical interconnections. Therefore,

these three architectures (2A, 2B, 2C) comply with the inter-

connection guideline. As the yellow architecture (2C) employs

a gateway, this option seems to get the ultimate preference.

In order to apply this guideline to a specific situation,

consider again the heating of a house. In case an embedded

architecture is opted for, the heat production is fully taken care

of (and therefore duplicated) in each room of the house. When

trying to change the heating provisioning (e.g., upgrading to

a more modern fire place), each room with heating would be

impacted. Such ripple effect would not occur when the heating

for the rooms is provided in a relayed way by using centralized

heat generation (e.g., using electricity to heat water) which is

then distributed (e.g., through pipes) to all relevant rooms. In

this case, changing the heat generation mechanism (e.g., using

gas instead of oil or electricity to heat the water) would only

require an adaptation of the central heat generator but would

not impact the radiators in each individual room (still having

hot water flowing through their pipes). The heat generation

itself would at the same time also be done in a more efficient

way by exploiting economies of scale. Of course, the absence

of an impact with respect to the connectors or radiators is only

valid for a set of anticipated changes, i.e., any heating system

that allows for the heat to be distributed by a traditional fluid.

Similarly at the software level, persistency could be fully taken

care of by means of a method in each class (in which case it

would be dedicated) or could be provided by methods merely

2Remark that we suggest the possibility of introducing some kind of
duplication with the purpose of increasing reliability, whereas we earlier
argued that duplication within modular structures should be avoided in order to
enable, for instance, adaptability. However, it is important to be aware that the
idea of duplication as mentioned in Section II-A and afterwards mainly refers
to situations in which the number of duplications is proportional to the size
of the modular system in scope (e.g., fire places in every individual room of a
house, resulting in more (less) fireplaces for bigger (smaller) houses) and, as
a consequence, mostly larger than two (as would be the case when duplicating
due to reliability reasons). The duplication for reliability as we propose would
also be situated at a high and central aggregation level resulting in, again, a
duplication which is not proportional to the overall size of the modular system.
Conceptually, one could even argue that in case of duplication for reliability
reasons two different concerns can be distinguished: a first central module
being responsible for provisioning the cross-cutting concern by default and
a second central module acting as a back-up for the cross-cutting concern,
thereby not representing a genuine duplication as meant in Section II-A.
Therefore, we do not consider both viewpoints to be contradictory.

connecting to an existing persistency framework taking care

of the actual persistency functionality (in which case it would

use an interconnection), the latter resulting in a much smaller

impact when the specific implementation of persistency would

change. However, this impact would still be spread out across

the functional structure or domain entities, and could be further

reduced by introducing a central gateway module absorbing a

possible change of the actual provider framework.

C. Downpropagation

Guideline: The integration of a cross-cutting concern

should be implemented up to the lowest aggregation level

which is possible. With the lowest aggregation level possible,

we mean the lowest level within the hierarchical system at

which modules can still be changed, added or removed, and

at which the cross-cutting concern is relevant. At that level, a

cross-cutting relay concern module (e.g., a proxy) should be

present next to the main functional module.

Motivation: Insufficient downpropagation of the integra-

tion of a cross-cutting concern requires its provisioning and

implementation at a (higher) aggregation level. This requires

awareness of the structure of the lower aggregation level. In

particular, this implies that coupling is present between the

concerning aggregation levels as changes up to the lowest

aggregation level can lead to changes in the provisioning of

the cross-cutting concern at higher aggregation levels. In con-

trast, when integrating the cross-cutting concern at the lowest

aggregation level, the cross-cutting concern is immediately

provided (embedded or via a proxy) for each module at the

lowest aggregation level. Changes at this lowest aggregation

level will therefore not require adaptations at higher levels in

order to stay assured of the provisioning of the cross-cutting

concern.

Illustration and reflections: Figures 2 till 4 visually

represent the possible integration architectures when focusing

on one aggregation level (although the relay architectures

might imply that the actual implementation of the cross-cutting

concern is implemented at a higher aggregation level via a

relay). Therefore, these same alternatives can be considered at

each of the various aggregation levels of a modular system

(as we illustrated for instance in Table I). Following our

guideline, the integration of cross-cutting concerns (and hence,

a choice regarding their possible integration architectures)

should be implemented up to the lowest aggregation level

which is possible, for instance by using proxies (and not

merely reside within the higher aggregation levels). It is

clear that this guideline implies the adherence to the two

other guidelines. The combination of downpropagation with

embedded implementations would lead to large amounts of

duplications, while downpropagation without encapsulation

would lead to massive impacts in case of a change.

In order to apply the downpropagation guideline to a spe-

cific situation, consider again the heating of a house. Here, the

heating is now traditionally integrated up to the aggregation

level of the rooms, e.g., one or more radiator(s) in each room

to be heated. This is not yet the lowest thinkable hierarchical or

aggregation level as each room is typically constructed out of
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bricks. Therefore, one might argue that the heating integration

is traditionally not implemented up to the lowest aggregation

level possible and the implementation of the cross-cutting

concern connector or proxy (e.g., the radiator) is duplicated

in every room. In the hypothetical case where one might want

to enlarge every room with a set of additional bricks (i.e.,

enlarging the rooms), the radiators might not be of a sufficient

capacity to heat the whole room and might need to be changed.

Moreover, introducing an additional radiator in this room (or

in an additional room) would in general imply drilling into the

walls for connecting pipes. Stated differently, the cross-cutting

concern provisioning is coupled with the size and shape of

the room, and a change would easily lead to ripple effects in

the main structure. This coupling would not be present when

small heating radiators would be able to be integrated at the

lowest aggregation level (i.e., the brick) as the enlargement of

the rooms with additional bricks would automatically imply

the increase of heating capacity of each room3. We remark

that the idea of the “lowest possible aggregation level” should

be interpreted in a pragmatic way. As stated in Section II-C,

we only consider the obvious aggregation levels which are

relevant to the architecture and at which real functional

changes occur. For housing, this is obviously still the case

for a room or its bricks (e.g., rooms or bricks can be added

or changed) but no longer for extremely small parts such as

individual ‘molecules’ or ‘atoms’. In theory, one could argue

that these are —in the limit— modules of a house as well, but

as changes to molecules and atoms are typically not considered

relevant for the design of a house, we do not consider them

as relevant aggregation levels in this context. Similarly at the

software level, concerns like persistency should be relayed or

connected at the lowest level of domain classes to avoid ripple

effects in the handling of this concern at a higher level. In

the latter case, modules handling the concern at an higher

level, e.g., a component, often become aware of the lower

level domain entities like Customer or Order. Changing or

adding domain entities could therefore lead to modifications

and even structural changes in the code at higher levels, e.g.,

the component or application, handling and/or dispatching the

concern.

V. THE CONCEPT OF INTEGRATED ELEMENTS AND

SOME INDICATIONS FROM PRACTICE

Having proposed a set of design guidelines for the inte-

gration of cross-cutting concerns into hierarchical modular

structures, we now investigate the practical realization and

feasibility of these design guidelines. In a first subsection, we

present the concept of integrated elements, both in software

3One might argue that such a design might still necessitate adaptations
at a higher aggregation level when additional central capacity is required
to provide heating for all rooms which are now enlarged: for example, a
second central heat generator might need to be added at a centralized location.
However, similarly as we set out in Footnote 1, mainly the adaptations
due to duplications proportional to the size of the system are the ones that
generate ripple effects being harmful for a system’s adaptability. Clearly, the
number of locations where adaptations are required for the upscaling of the
provisioning of a centralized cross-cutting concern is not proportional to the
size of the system. On the contrary, the centralisation is in general aligned
with economies of scale and more appropriate to deal with scalability issues.

Fig. 5. A software element integrating cross-cutting concerns.

and in construction, as an optimal way to realize those

guidelines. While a reference implementation of such elements

has been implemented and published in software, it is more

hypothetical in other domains, such as construction. Therefore,

we discuss in the later subsections some recent evolutions and

realizations that can be regarded as (partial) implementations

of these concepts, and as indications of the relevance of our

proposed approach in such application domains.

A. Toward Integrated Elements

The design guidelines imply that the integration of cross-

cutting concerns into hierarchical modular structures should

be done through encapsulated interconnections that are propa-

gated down to fine-grained modular building blocks. In the

case of software, we have implemented and published the

architecture and automatic generation or expansion of so-

called elements in our previous work [45], [47]. The structure

of these software elements is schematically represented in

Figure 5 for three functional data entities (Order, Invoice, and

Payment), and three cross-cutting concerns, i.e., Persistency,

Access Control, and Remote Access. It realizes the design

guidelines of the previous section in the following way:

• Encapsulation: The lines of code that are specific for

a concern, i.e., the colored little disks, are encapsu-

lated within separate classes or modules, i.e., the small

rounded rectangles. These classes interact with other

classes through version-transparent interfaces that are

independent of the technology, allowing to change the

internal technology without impacting the other classes.

• Interconnection: The lines of code in the colored little

disks do not implement the concern themselves, but

merely serve as a relay or interconnection to the solution

framework, i.e., the large flat coloured cuboid, that is

being used for the actual implementation of that concern.

• Downpropagation: The lines of code interconnecting the

functional structure with the frameworks implementing

the cross-cutting concerns, are propagated down to the

basic functional or domain entities, in this case the data

entities. This allows the addition or modification of these

domain entities without impacting existing interconnec-

tion code that would be located at a higher level.

As explained in [45], [47], such an element structure needs to

be defined for the basic building blocks of software systems,
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Fig. 6. A concept element for integrating concerns in construction [45].

i.e., data entities, processing tasks, workflow orchestrators, and

input/output connectors.

The structure of an analogous concept element for housing

or construction is schematically represented in Figure 6. This

basic functional building block, an integrated brick, accom-

modates four cross-cutting concerns, i.e., Communications,

Heating water, Sanitary water, and Electricity. It realizes the

design guidelines of the previous section in the following way:

• Encapsulation: The parts that are specific for a concern,

i.e., the colored small pipelines, are encapsulated within

slightly larger pipelines. These larger pipelines, connected

to the brick structure, are independent of the internal

technology. In this way, changes in an internal technol-

ogy, e.g. other types of communication wires, electricity

conductors or heating fluids, become possible without

impacting the rest of the brick structure.

• Interconnection: The small colored pipelines do not pro-

vide the utility themselves, but merely serve as a relay

or interconnection to a centralized utility provider. The

utilities are for instance provided by an external telecom-

munications network accessed through a communications

gateway, by a central heating system, or by a connection

to the water or electricity infrastructure.

• Downpropagation: The pipelines interconnecting the

functional structure with the infrastructure providing the

utilities, are propagated down to the basic building enti-

ties, in this case the bricks of the walls. This allows the

addition or removal of (parts of) walls without impacting

other (parts of) walls through drilling and plumbing.

As in the case of software elements, such an element structure

needs to be defined for the basic primary structures of housing,

i.e., inner walls, outer walls, floors and ceilings.

B. Some Elements in Construction

When we first proposed in [45] the concept element of

Figure 6, we also hypothesized in early 2016 on analo-

gous element structures for roads, encapsulating pipelines for

communications, water supply and drainage, and electricity.

Though we were not aware of any implementation at that time,

an initiative to develop such roads4 was announced in late

4See https://www.plasticroad.eu/

2016. Currently, several of such roads have been successfully

realized.

While solar photovoltaic power generation started off by

using separate photovoltaic panels mounted on top of the con-

struction structures, we currently see a trend toward integrating

photovoltaic cells into the construction units. For instance,

integrated solar tiles have become available for regular houses,

as in the Solar Roof®5, and photovoltaic cells have been

integrated in the hull structure of the trunk of the Crew

Dragon® spacecraft6. The possibility has also been mentioned

to integrate battery storage into the solar tiles.

The Hivehaus® modular living space initiative7, considering

a house as a modular aggregation of hexagonal compartments,

provides an example of integrating cross-cutting concerns

in standardized building blocks at a more course-grained

modular level. In these compartments, the distribution of

auxiliary facilities or utilities has been integrated upfront,

and adheres to encapsulation and interconnection. But of

course, the more coarse-grained modular level, i.e., the lack

of downpropagation, restricts the design freedom of the house

to an aggregation of the —in this case hexagonal— modular

building blocks.

Another example of compartmentalized building blocks

integrating utilities or cross-cutting concerns are containerized

data center solutions. These solutions integrate the various

auxiliary facilities at roughly the same modular level, e.g., a

40 feet container. While electricity is provided externally, most

other utilities, including air-conditioning, and batteries and

diesel generators for emergency power supply, are embedded

within the functional module. Though this lack of intercon-

nection may be less favorable to achieve advantages of scale,

it does provide evolvability with respect to the most prominent

type of change in this case, i.e., increasing data center capacity

by adding additional containers without impacting the existing

infrastructure of the containerized data centers.

C. Modular Structures in Airports

Airport terminals are in general large buildings exhibiting

some modular structure. Typical add-on modules to airport

terminals are jet bridges. Such a jet bridge, as represented

in Figure 7, is connected to the airport terminal, but subject

to an independent manufacturing processes. It seems therefore

logical that a typical concern or utility in the jet bridge, i.e., air

conditioning or cooling, is realized in an embedded —and not

standardized— way, as represented in Figure 7. Nevertheless,

air conditioning is a cross-cutting concern throughout the

entire airport terminal, and the various parts or corridors of the

terminal are probably connected to a central air conditioning

system. Hence, it could be beneficial to apply the interconnec-

tion guideline, and to tap into the central system for the air

conditioning concern of the jet bridges. This could bring scale

advantages (i.e., higher efficiency and lower redundancy) to the

cooling. It could also lead to an improved encapsulation, as

appropriate connections to the global circulation system could

5See https://www.tesla.com/solarroof
6See https://www.spacex.com/vehicles/dragon/
7See https://www.hivehaus.co.uk/
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Fig. 7. A jet bridge containing an embedded air conditioning system.

Fig. 8. Two airport gates with embedded security and baggage claim.

avoid impacts on the jet bridges when upgrading or modifying

the central cooling system. This is in contrast with the situation

as depicted in Figure 7, where a change in the embedded air

conditioning system could have a significant impact on the jet

bridge.

Though in general lacking physical barriers, airport gates

can be considered as the modules within an airport terminal,

and can be argued to be the main functional modules. Of

course, a lot of utilities or auxiliary facilities are shared

between —cut across— these functional modules. Consider for

instance check-in counters and security checkpoints, restau-

rants and bars, as well as toilets and washrooms. Though these

utilities do not exhibit downpropagation in most airports, we

can see at the Berlin Tegel airport that this is indeed possible.

As is visible in Figure 8, where both the security checkpoints

and the baggage claim areas have been downpropagated to

units comprising two gates. The embedded implementation of

these concerns is often experienced as pleasant, as there is no

danger of long waiting lines due to other flights. However,

as can be seen in Figure 9, the facilities for washrooms and

food and beverage have been downpropagated as well and

are embedded in the two-gate unit. While this results in a

rather limited offering for these utilities to the passengers

waiting at these gates, the introduction of interconnections for

Fig. 9. Two airport gates with embedded food, beverage, and washrooms.

these concerns (granting passengers access through a relay

connection to a centralized concourse with plenty of bars,

restaurants, and washrooms) could easily address this issue.

VI. THE INTEGRATION DESIGN MATRIX

So far, we have discussed the importance of cross-cutting

concerns and how they can be integrated within a modular

system. In a typical system, multiple cross-cutting concerns

and multiple aggregation levels are relevant. First, this calls for

a way to preserve the general overview. Second, a systematic

conformity assessment of our design guidelines of Section IV

is desirable and can provide relevant recommendations for the

system at hand8. Therefore, we propose in this section the

Integration Design Matrix (IDM) which visualizes many of the

aspects discussed before. In a first subsection, we present the

definition and interpretation of the IDM. Two other subsections

discuss two use cases of the IDM: the architecting of concerns

throughout various aggregation levels, and the architecting

of multiple concerns at a specific aggregation level. In both

subsections, we will indicate the opportunities the IDM offers

for evaluation, exploration, and ideation of architectures.

A. Definition and Interpretation of the IDM

Table III provides a general representation of an IDM9 An

IDM covers the design decisions for the integration of one

cross-cutting concern into an hierarchical modular structure.

Therefore, the IDM is similar to a Design Structure Matrix

(DSM), but features hierarchical aggregation levels for its

rows and columns instead of constituent subsystems/activities.

These hierarchical aggregation levels are domain-specific, but

8As mentioned before, our three design guidelines should be applied to-
gether as their partial application might in fact deteriorate a design: integrating
the heating of a house at the level of a brick (i.e., applying downpropagation)
without encapsulation, for example, would lead to the complete destruction
and rebuilding of walls when changes to the heating would occur.

9In earlier work [48], [49], [50], [51] we already demonstrated the relevance
of the different integration architectures at multiple aggregation levels in
a simplified table for some specific application domains (i.e., logistics and
housing utilities). The IDM presented in this paper, builds on that idea but
presents a more structured elaboration.
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Cross-cutting concern L1 L2 ... Ln

aggregation Level L1

aggregation Level L2

aggregation Level . . .

aggregation Level Ln

TABLE III
GENERIC REPRESENTATION OF THE INTEGRATION DESIGN MATRIX.

in principle quite straightforward to identify for a domain en-

gineer, e.g., districts/neighbourhoods/buildings/rooms in con-

struction, or cloud/application/component/entity in software

systems. And while reading the entries in a row of a DSM

reveals the output or influence from other elements to which

this element is subject, these entries within an IDM indicate

whether this aggregation level provides a certain concern or

utility to the other levels.

The IDM representation enables engineers to preserve a

general overview of how a specific concern or utility is pro-

vided and distributed throughout the aggregation levels of the

architecture, and enables a systematic conformity assessment

of our design guidelines of Section IV:

• Every entry located on the diagonal of the IDM implies

an embedded integration architecture of type 1A or 1B.

• Moving upwards from the diagonal entails the applica-

tion of the interconnection guideline and corresponds

to an interconnected or relay integration architecture of

type 2A/2B/2C. This could facilitate the realization of

economies of scale as the concern or utility would be

provided at a higher aggregation level and would be

distributed to the lower levels.

• Moving to the right from the diagonal entails the applica-

tion of the downpropagation guideline and corresponds

to the distribution of the provided concern or utility to

lower aggregation levels. This could facilitate the ease of

changing and the evolution of the structure of the lower

aggregation level, as it would remain connected to the

utility distribution.

• The entries below the diagonal imply that the concern

or utility is produced at a lower aggregation level, in

order to be aggregated and made available at a higher

level. Though these architectures, providing utilities in a

distributed way, are in principle outside the scope of this

contribution, moving to the left from the diagonal would

imply interconnection, while moving downwards from the

diagonal would correspond to downpropagation.

• At every entry in the IDM, the proper encapsulation needs

to be investigated. Insufficient encapsulation of embedded

installations would lead to structural impacts on the

corresponding modules. In the case of interconnection or

down-propagation, such an improper encapsulation could

even lead to an avalanche of ripple effects due to a change

in the installation at an higher level.

As in a traditional DSM matrices, engineers could decide

Heating L1 L2 L3 L4

District : L1 1 1 ?

House : L2 1 ?

Room : L3 1

Brick : L4

TABLE IV
AN INTEGRATION DESIGN MATRIX FOR HEATING DISTRIBUTION.

to limit the values of the IDM entries to be binary, (i.e.,

the architecture is present or not), or to allow more diverse

values to be used within the matrices. Possible non-binary

values could be the letter identifying the specific architecture,

i.e., A, B, or C. Another possibility is to indicate whether

the architecture exhibits a proper encapsulation through the

conditional encirclement of the value, e.g., 1 or A .

There are several ways for an engineer within a particular

application domain to use an IDM. First, it can be used to

sketch an overview of the currently used integration architec-

tures for a specific utility or cross-cutting concern. Second, the

IDM highlights the extent to which the current cross-cutting

concern implementation (does not) adhere to our proposed

design guidelines. Third, as multiple cross-cutting concerns

are typically relevant for a given system, similar matrices can

be drawn for various cross-cutting concerns in order to get an

overview of the various integration architectures at a certain

aggregation level. Finally, it can be used for exploration and

ideation, as every remaining entry in an IDM may represent a

novel approach, while its position in the matrix entails several

possible advantages and disadvantages.

B. Architecting Concerns throughout Aggregation Levels

As stated in the previous subsection, the IDM can be used

to sketch an overview of the current integration of a cross-

cutting concern throughout the aggregation levels. Table IV

presents an IDM for the integration or distribution of heating

throughout hierarchical construction levels, distinguishing four

aggregation levels: the city or district level, the individual

house or building, the rooms in a house or building, and the

building blocks or bricks of those rooms. First, we can identify

traditional heating systems for housing in the active entries.

• I3,3 represents embedded heating in a room. A first exam-

ple is the use of a fireplace. This is clearly neither stan-

dardized (architecture 1A), nor encapsulated, as removing

the fireplace for another solution will result in a major

impact. Another example is the use of mobile heaters.

These are typically available off-the-shelve (architecture

1B), and as they can be connected to the electricity

system, pretty well encapsulated.

• I2,3 represents a central heating system. This intercon-

nection architecture clearly offers advantages of scale,

and can be considered to be well standardized and en-

capsulated (architecture 2B). Indeed, a large amount of

central heating systems, both oil and gas heating, can be
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introduced and connected to the existing heat distribution

pipes. However, the down-propagation is limited to the

level of the room, and this implies that structural changes

to the room, i.e., removing or extending a wall, may lead

to additional impacts on the heating distribution system.

In the first row or aggregation level, we find entries related to

modern evolutions regarding city or district heating10 [52]:

• I1,2 corresponds to centralized heating systems distribut-

ing heat to houses in a whole town or district. This can

clearly bring additional economies of scale, or enable the

use of resources not available to individual houses like

biomass or geothermal energy. Providing an appropriate

implementation of a heat exchanger, this could realize

the required encapsulation to shield the individual houses

from impacts due to changes in the central system.

• I1,3 represents the fact that the heating, produced cen-

trally at the city or district level, is downpropagated to the

level of the rooms. This can be done easily by connecting

the above mentioned heat exchanger to a typical central

heating system inside the house. As this heat exchanger

would decouple the rooms from the actual provider of

the heating, i.e., a change in the district heating system

could be accomodated by the heat exchanger at the level

of the house, this would correspond to a 2C architecture.

Finally, we can also identify some entries for exploration and

ideation, as a first step toward innovation.

• I2,4 corresponds to the downpropagation of the heat

distribution as conceptually represented in Figure 6. This

thorough downpropagation would allow to perform struc-

tural changes to the rooms (i.e., removing or modifying a

wall) without an impact on the heat distribution. However,

without proper encapsulation of the pipes transporting

the fluids, this could trigger change propagations on the

advanced construction bricks.

• I1,4 represents the fact that a centralized city or district

heating system, connected through a heat exchanger to the

central heating system of the house, could be combined

with the thorough downpropagation as represented in

Figure 6. Such a deep downpropagation could possibly

combine the advantages of major economies of scale

with extreme flexibility toward structural changes in the

construction of the houses and rooms.

Table V presents an IDM for the integration of the electricity

distribution, representing four aggregation levels: the region,

city, house, and room. We identify various entries:

• The entries on the first row represent the traditional elec-

tricity distribution: electricity is generated in centralized

power plants and the distribution is managed over an

entire region. Through an hierarchical system of distribu-

tion and electrical substations or transformer stations, this

electricity is distributed to the cities, communities, and

houses. Due to the lack of encapsulation at the houses, the

AC voltage is connected to houses and rooms without a

proper transformer. Therefore, it is not possible to change

the distribution voltage to DC without impact all houses,

10See http://www.cooldh.eu/

Electricity L1 L2 L3 L4

Region : L1 1 1 1 1

City : L2 1

House : L3 1 1 1

Room : L4

TABLE V
AN INTEGRATION DESIGN MATRIX FOR ELECTRICITY DISTRIBUTION.

Persistency L1 L2 L3 L4

Cloud : L1 1 1 1

Application : L2 1 1

Component : L3 1

Entity : L4

TABLE VI
AN INTEGRATION DESIGN MATRIX FOR SOFTWARE PERSISTENCY.

though most devices in the houses are based on DC and

solar power is generated in DC as well.

• I3,3 and I3,4 represent the situation where a house is self-

sufficient from an electrical point of view. Though the use

of diesel generators to realize this goal is considered to

be outdated and only suited for rural areas, the combined

use of solar panels and batteries could lead to a revival

of such an embedded architecture, as seems to happen

typically in the early days of new technologies.

• I2,1 and I3,1 represent architectures where utility services

are being provided at a lower aggregation level and ag-

gregated or collected at a higher level. These architectures

are becoming quite relevant, as solar panels in farms and

even on individual houses are starting to offer electricity

to the grid, and being turned into virtual power plants.

Table VI presents an IDM for the integration of the per-

sistency concern in software applications, representing four

aggregation levels: the cloud, the software application, com-

ponent, and domain entity, e.g., Order or Invoice.

• I2,3 and I2,4 represent architectures where a persistency

framework, like JPA (Java Persistency API), is being

included in the application or application server, and

used by the various components and domain entities.

In accordance with our downpropagation guideline, we

have a preference for I2,4. As persistency frameworks

are typically standardized, this corresponds to an archi-

tecture of type 2B, and as we have argued both in the

design guidelines and in our previous work on software

architectures [45], [47], it is very important to encapsulate

the downpropagated interconnections properly.

• I3,4 represents the possibility to include the persis-

tency framework in the individual components of the

application, enabling individual components to change

their persistency framework independent from the other
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Fig. 10. Several IDMs for multiple concerns stacked on top of each other.

components. Of course, the interconnection needs to be

downpropagated to the domain entities, and encapsulated.

• The entries on the first row represent the offering of

persistency services in the cloud, enabling individual soft-

ware applications, components, or even domain entities,

to make use of a service API (Application Programming

Interface) for persistent storage. This type of architecture

is clearly emerging, both in dedicated service platforms

providing an integrated digital vault, and in generic

services offered by the main cloud providers.

For this concern, we currently do not see any relevant entries

below the diagonal. For concerns like data mining, one could

imagine such entries representing distributed data that is

collected at individual applications, components, or entities,

and submitted to centralized business intelligence systems.

C. Architecting Multiple Concerns at an Aggregation Level

While an individual IDM only covers the integration de-

sign of one particular cross-cutting concern, multiple cross-

cutting concerns are typically relevant for a given architecture.

Examples are the presence of concerns like heating, water,

electricity, and communication within a house or construction

facility, or the relevance of persistency, access control and

transactions in a software application. Therefore, for each

system, a number of different matrices can be created, equal

to the number of relevant cross-cutting concerns. This is

schematically represented in Figure 10, where the various

IDMs for the different concerns are visualised as blue planes

in a third dimension orthogonal to the IDM. This figure also

visualizes the possibility, represented in a perpendicular red

plane, of taking a level-slice, which provides the overview for

a certain aggregation level from which level the concerns or

utilities are provided to that level for a set of concerns.

A matrix for such a slice is represented in Table VII

for the concerns provided to an airport gate as described

in Section V-C. The slice considers the aggregation level

of the gate, and represents for the various concerns from

which aggregation level (the terminal L1 or the gate L2) the

individual concerns are provided to the level of the gate. While

these utility services are provided in most airports from the

level of the terminal (as represented in the matrix at the left

Standard Gate L1 L2

Security 1

Baggage 1

Restaurants 1

Washrooms 1

⇐⇒

Tegel Gate L1 L2

Secutity 1

Baggage 1

Restaurants 1

Washrooms 1

TABLE VII
AN IDM SLICE FOR THE GATE LEVEL IN TWO AIRPORT TYPES.

Gate L1 L2 L3

Secutity 1

Baggage 1

Restaurants 1

Washrooms 1

TABLE VIII
AN INNOVATIVE IDM SLICE FOR THE GATE LEVEL IN AN AIRPORT.

of Table VII), they are provided from within the level of the

gate in Berlin Tegel (matrix at the right of Table VII).

As mentioned before, the Berlin Tegel architecture might

be perceived as pleasant for security and baggage claiming,

but not for restaurants and washrooms due to the limited

offerings. In this case, the IDM can provide an environment

for ideation and innovation, enabling the exploration of more

diverse architectures for the provisioning of the various cross-

cutting concerns. In Table VIII, we present again a bit slice

for offering various utility services to gates, distinguishing 3

aggregation levels: the terminal, a small set of gates, and an

individual gate. In the envisioned structure, security and bag-

gage services would be provided at the gate level (entries L1,3

and L2,3), while restaurants and washrooms could be provided

at the terminal level (entries L3,1 and L4,1). These centralized

offerings would require an interconnection architecture, where

passengers could gain access from the individual gates to a

centralized concourse with restaurants and washrooms, with a

simple electronic access system making sure that they can only

return to their appropriate gate. One could also consider other

concerns or utilities, e.g., fitness rooms or business lounges,

and/or explore the possibility of providing utility services at

the level of subsets containing a (small) number of gates.

Table IX presents another matrix for such a level-slide,

representing the various cross-cutting concerns in software

applications that are provided to the aggregation level of the

domain entities (e.g., Order or Invoice). The possible aggrega-

tion levels to provide the cross-cutting concerns are, in accor-

dance with Table VI, the cloud, the application, component,

and domain entity. The entries in Table IX are consistent with

the guidelines presented in this paper, and with the software

architecture presented in our previous work [45], [47]. We

have also made use of the possibility, already mentioned in

Section VI-A, to represent architectural types instead of binary
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Domain Entity L1 L2 L3 L4

Persistency 2B

Transactions 2B

Access Control 2B

Naming Service 2C

Data Security 1B

TABLE IX
AN IDM SLICE FOR THE CONCERNS OF A SOFTWARE ENTITY.

values. We can identify the following architectures:

• Most cross-cutting concerns are provided from the appli-

cation level to the various domain entities, by including a

standardized framework like JPA (Java Persistency API)

for persistency, EJB (Enterprise Java Beans) for trans-

actions, or JEE (Java Enterprise Edition) access control.

Using interconnections to standardized frameworks, these

concerns are clearly implemented in a 2B architecture. As

explained in [45], the interconnection code is properly

encapsulated in separate classes implementing interfaces,

resulting in a 2B notation for the architecture.

• The naming service concern is implemented using a

standardized JNDI (Java Naming and Directory Interface)

framework. Due to the limited amount of programming

interfaces that are required, the interconnection code is

encapsulated in a set of central gateway classes, which

corresponds to a 2C architecture.

• The data access concern is implemented by inserting

additional constraints directly into the various queries.

This corresponds to a 1B architecture, as the inserted

querying code is standardized, but implemented within

the domain entities, and not properly encapsulated. There-

fore, the integration architecture for this cross-cutting

concern could and should be improved.

VII. CONCLUSION

The proper design of cross-cutting concerns within a mod-

ular architecture is important and non-trivial. This paper pre-

sented a set of general integration architectures and proposed

three design guidelines for that purpose. We also introduced

the Integration Design Matrix as a possible tool for verifying

the conformance to these guidelines and identifying interesting

innovation opportunities in a systematic way. In doing so,

we believe our work offers contributions for both theory

and practice. Regarding theory, we motivated and illustrated

that the relevance of cross-cutting concerns outreaches the

traditional area of software to hierarchical modular systems in

general. The integration architectures are formulated in general

modularity terms as well and might therefore contribute to

our knowledge on possible modular design options. While

some of the proposed design guidelines by themselves are

not new (e.g., encapsulation), their formulation in relation to

the design of cross-cutting concerns is (to the best of our

knowledge). Regarding practice, we remark that our design

guidelines were inspired on existing concepts such as coupling

and cohesion which have proven their value but might not

always be easily transferable into practice. As a consequence,

we believe that our design guidelines might potentially serve

as more specific instantiations of these general concepts and

might help to realize them in the context of cross-cutting

concern integration. Further, the IDM could act as a tool

allowing designers to manage the incorporation of cross-

cutting concerns in a modular system in a more systematic

way. It enables the generation of a quick overview of the

current status of a modular design with respect to its cross-

cutting concerns, and indicates opportunities for improvement

or innovation, as empty entries represent opportunities for ex-

ploration and ideation. Future research will be directed towards

the exploration of IDMs for different types of cross-cutting

concerns for systems within different application domains.

Whereas our aim was to provide a theoretical underpinning

and supporting design tool for modular systems in general, it

is clear that the specific elaboration of such matrices requires

in-depth knowledge of the system under consideration and

therefore necessitates the involvement of domain experts.
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