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Abstract—Dramatic raising of Deep Learning (DL) approach
and its capability in biomedical applications lead us to explore
the advantages of using DL for sleep Apnea-Hypopnea severity
classification. To reduce the complexity of clinical diagnosis using
Polysomnography (PSG), which is multiple sensing platform, we
incorporates our proposed DL scheme into one single Airflow
(AF) sensing signal (subset of PSG). Seventeen features have been
extracted from AF and then fed into Deep Neural Networks to
classify in two studies. First, we proposed a binary classifications
which use the cutoff indices at AHI = 5, 15 and 30 events/hour.
Second, the multiple Sleep Apnea-Hypopnea Syndrome (SAHS)
severity classification was proposed to classify patients into
4 groups including no SAHS, mild SAHS, moderate SAHS,
and severe SAHS. For methods evaluation, we used a higher
number of patients than related works to accommodate more
diversity which includes 520 AF records obtained from the MrOS
sleep study (Visit 2) database. We then applied the 10-fold
cross-validation technique to get the accuracy, sensitivity and
specificity. Moreover, we compared the results from our main
classifier with other two approaches which were used in previous
researches including the Support Vector Machine (SVM) and
the Adaboost-Classification and Regression Trees (AB-CART).
From the binary classification, our proposed method provides
significantly higher performance than other two approaches with
the accuracy of 83.46%, 85.39% and 92.69% in each cutoff,
respectively. For the multiclass classification, it also returns a
highest accuracy of all approaches with 63.70%.

Index Terms—sleep apnea-hypopnea syndrome (SAHS) sever-
ity classification, deep neural networks, machine learning, one
single airflow sensing signals, feature extraction from airflow
signals.

I. INTRODUCTION

Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS)
is characterized by repetitive episodes of airflow reduction
(hypopnea) or cessation (apnea), which are caused by upper
airway collapse during sleep [1]. Most common symptom
of OSAHS is snoring, a sleep disturbance, which results
in drowsiness during day time [2]. Furthermore, there are
also effects to health qualities such as increasing the risk of
Hypertension, Diabetes, Acute Myocardial Infarction, Heart
attack, Stroke, Depression, etc. [2]. Polysomnography (PSG)
is a clinical measurement technique for the sleep disorder
diagnosis [3]. However, multiple physiological signal record-
ings such as electroencephalogram (EEG), electrocardiogram

(ECG), electromyogram (EMG), oxygen saturation of blood
(SpO2), leg movement, airflow, cannula flow, respiratory rate
and body position are incorporated to PSG [4]. In general,
PSG is performed overnight inside sleep laboratory, either
in the hospital or in the clinic [5]. Once PSG is recorded,
medical doctor with OSAHS expertise need to perform an
offline analysis on the whole physiological signals from PSG.
Eventually, clinic would report Apnea-Hypopnea Index (AHI)
which indicates severity of people with OSAHS [6]. AHI is
catagorized as the following states: no SAHS (Sleep Apnea-
Hypopnea Syndrome) (AHI < 5 events/hr), mild SAHS (5
≤ AHI < 15 events/hr), moderate SAHS (15 ≤ AHI < 30
events/hr), and severe SAHS (AHI ≥ 30 events/hr) [6]. Due
to complexity and high cost of PSG [7], [8], one study reported
that 90% of people who had OSAHS were undiagnosed
[9]. Thus, simplifying OSAHS diagnosis remains a challenge
issue.

A common approach to solve mentioned issue is reducing
the complexity of SAHS (using single physiological signal),
cost and analysis time, which are typically required in clinical
diagnosis using PSG [10]. In previous works, researchers did
try using single physiological recording from PSG to predict
AHI using various computational methods. Single lead ECG,
SpO2 from pulse oximeter and airflow (AF) from thermis-
tor were proposed candidates in single recoding for SAHS
diagnosis [11]–[14]. Referred works are based on the same
computational strategy which are finding violated periods on
the signals and scoring them as apnea-hypopnea related events.
The scores are interpreted into AHI eventually. In this study,
we aim to develop an automated algorithms to predict SAHS
severity by using single time-series, AF which is sensed by the
thermistor in front of nose. The comparison of physiological
recordings in standard PSG indicated that AF is the most direct
measure in breathing obstruction. Moreover, an amplitude of
AF will change dramatically during apnea or hypopnea periods
[8] [15].

In contrast to aforementioned computational strategy, we
implemented our method by using statistical based features
together with either classical machine learning approaches
(support vector machine, SVM and Adaboost-Classification
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and Regression Trees, AB-CART) or a modern artificial neural
networks (deep neural networks, DNNs). Proposed method
begins with statistical extracting features of Apnea and Hy-
popnea events, and time domain from overnight AF signals.
Then, we incorporated features into SVM, AB-CART and
DNN for evaluations. Classification tasks had been arranged
from simple scenarios which are binary classifications (cut-
off indices at AHI = 5, 15 and 30 events/hr). Finally, we
performed the same method on multiple classes (no-SAHS,
mild-SAHS, moderate-SAHS, and severe-SAHS) afterwards.
The experimental studies and performance evaluations were
designed according to a previous research on SAHS severity
classification using AF signals [16].

Merits of our works are proposing novel feature extractions
from AF signals and performance evaluations on large popula-
tion. Experimental results of proposed DNNs using proposed
features outperformed classical machine learning approaches
with the same features. Furthermore, accuracy of proposed
DNNs was beyond AB-CART, which was reported to be state-
of-the-art for SAHS detection using AF [16].

II. METHODS

In this section, we first introduce OSAHS datasets from
men who parent Osteoporotic Fractures named MrOS [17]–
[20]. Then, we propose statistical based feature extraction
from overnight AF signals. The extracted features had fed
into SVM and DNN approaches for performance comparison
afterwards. 10-fold cross-validation was used to evaluate the
performance in both approaches. Binary classifications (three
different AHI cutoff indexes) and multi-classes classifications
(four severity levels including no-SAHS/control participants)
were performed in this study.

A. Datasets

MrOS sleep data (Visit 2) was used in this study. There
were 1,026 men of age 65 years or older participated in
standard sleep examinations from six clinical centers. Raw
polysomnography (PSG) data in European Data Format (EDF)
files with XML annotation files were exported from Com-
pumedics Profusion software. AF signals in PSG were ac-
quired from ProTech Thermistor sensors with 32 Hz sampling
rate and high-pass filter at 0.15 Hz cutoff. Each annotation
file includes starting and ending times of both Apnea and
Hypopnea events. We labeled the severity of SAHS using
the AHI variable provided in the datasets. Here, AHI are the
numbers of Apnea events in all desaturations and Hypopnea
events with 4% oxygen desaturation per hour [21].

B. Subsampling and Data Preparation

We did random 520 subjects from the whole
datasets for our study. In regard to personal annotation

file, we gathered pieces of AF signals during Apnea and
Hypopnea events individually. Both AF signals from Apnea
and Hypopnea were treated in the same way. In this way, each
participant had different numbers and periods of AF samples.
Low frequency band is usually a major band in the AF signals

TABLE I
DEMOGRAPHIC DATA FOR THE FOUR-CLASS DIVISION

no mild mod severe All
Subjects 185 190 85 60 520
AHI(e/h) 1.82±

1.40
8.71±
2.97

21.50±
3.95

41.20±
9.90

12.10±
13.10

[22], so low-pass filter with 3 Hz cut-off was applied on all
AF samples prior to feature extraction process.

C. Feature Extraction
After the subsampling and filtering processes, we extracted

17 features from overnight AF samples in the followings:
• Number of Apnea events.
• Number of Hypopnea events.
• Summation of Apnea and Hypopnea events.
• Summation of periods (in seconds) from Apnea and

Hypopnea events
• Average of maximum amplitudes from all AF samples.
• Average of minimum amplitudes from all AF samples.
• Average of mean amplitudes from all AF samples.
• Average of standard deviation of amplitudes from all AF

samples.
• Maximum periods from all AF samples.
• Minimum periods from all AF samples.
• Mean of periods from all AF samples.
• Standard deviation of Apnea and Hypopnea periods from

all AF samples.
• Variance of periods from all AF samples.
• Weighted averaged maximum amplitude from all AF

samples
• Weighted averaged minimum amplitude from all AF

samples
• Weighted averaged mean amplitude from all AF samples
• Weighted averaged standard deviation of amplitudes from

all AF samples
Period of each AF sample is the weight factor in weighted

averaging on the last four features.

D. Classification of Sleep Apnea-Hypopnea Syndrome (SAHS)
Severity

There were two main classification tasks in our experiments.
First, we aimed to construct three binary classifiers for three
AHI cutoff indices, which are clinical standard SAHS cutoff
classes (AHI = 5, 15 and 30 events/hr). The number of subjects
in this task were shown in Table I. The second task was to
classify subjects in to four standard SAHS classes (normal,
mild, moderate and severe). To avoid imbalanced population
we did subsampling again in this task, from 520 to be 270
subjects including 70 from normal, mild and moderate subjects
and 60 from severe subjects.

Here, we incorporated proposed features into proposed
DNNs and classical machine learning (ML) approaches,
which are Support Vector Machine (SVM) and Adaboost-
Classification and Regression Trees (AB-CART), for com-
parative classifiers. To validate DNNs, we did split datasets
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Fig. 1. Illustration of proposed SAHS severity classifier using seventeen statistical-based features and Deep Neural Networks (DNNs).

into three subsets which were 80% for training set, 10% for
validation set and 10% for testing set. To validate the rest of
comparative classifiers, we did use exactly the same datasets
as DNNs except validation set. Classical ML does not require
validation set or we can simply say that testing set is same as
validation set in ML. 10-fold cross-validation had incorporated
into these datasets.

1) Deep Neural Networks (DNNs): As shown in Figure1,
proposed features were fed into the DNNs. DNNs was imple-
mented using Keras API [23] with configuration parameters
as follows:

• A stack of fully-connected neural networks with layer
size of 1024, 512, 256, 128, 64, 32, 16, 8, and 4 hidden
nodes.

• Each DNN layer was followed by the Hyperbolic tangent
(tanh) activation function.

• The optimizer was RMSprop with the learning rate of
0.001.

• The softmax function was applied for classification.

2) Machine Learning (ML) Approaches: To present superi-
ority of proposed DNNs over conventional approaches, two
classical ML approaches had been used as comparative or
baseline classifiers. Conventional SVM with linear kernel and
balancing classed weights and AB-CART from scikit-learn
API [24] had been performed in this study. While SVM is
standard baseline classifier, AB-CART had been proposed to
use with Airflow (AF)-related sleep Apnea severity in previous
study [16].

In the binary classifications, one way repeated measure
analysis of variance had been implemented to compare the
performance of three classifiers using three metrics: sensitivity,
specificity and accuracy. While, confusion matrices had been
computed for performance comparison of multiple classes
task.

III. RESULTS AND DISCUSSION

After performing binary classification using 3 SAHS sever-
ity level cutoffs including AHI = 5, 10 and 15 along with
the SVM classifiers, the AB-CART classifiers and our main
classifier with or DNN approach, the results are shown in Table
II.

For cutoff at AHI = 5, the accuracy of SVM ranges from
76.4% to 79.38% (mean ± standard error, 77.89% ± 1.49%),
AB-CART ranges from 75.78% to 78.54% (mean ± standard
error, 77.12% ± 1.42%) and our main classifier ranges from
82.38% to 84.54% (mean ± standard error, 83.46% ± 1.08%).

For cutoff at AHI = 15, the accuracy of SVM ranges
from 77.64% to 80.82% (mean ± standard deviation error,
79.23% 1.59%), AB-CART ranged from 77.7% to 80% (mean
± standard error, 78.85% ± 1.15%) and our main classifier
ranges from 84.14% to 86.64% (mean w± standard error,
85.39% ± 1.25%).

For cutoff at AHI = 30, the accuracy of SVM ranges from
76.53% to 79.61% (mean ± standard error, 78.07% ± 1.54%),
AB-CART accuracy ranges from 89.82% to 91.7% (mean ±
standard error, 90.76% 0.94%) and our main classifier ranges
from 92.14% to 93.24% (mean ± standard error, 92.69% ±
0.55%).

While our DNNs classifiers reached the highest accuracy
from all classifiers in every cutoffs and also increased in each
of the cutoff, the SVM reached the highest Specificity at
AHI = 5 and Sensitivity at AHI = 15 and 30, the AB-CART
reached the highest Sensitivity at AHI = 5 and Sensitivity
at AHI = 15 and 30. One way repeated measures ANOVA
revealed that there were significant difference of mean ac-
curacy among results from three approaches in every cut-
offs (AHI=5: F(2)=2313.822, p<0.05, AHI=15: F(2)=9.850,
p<0.05, AHI=30: F(2)=50.771, p<0.05). After pairwise com-
parisons were performed, we found that the accuracies of our



TABLE II
SUMMARY OF 10-FOLD SENSITIVITY, SPECIFICITY AND ACCURACY OF BINARY CLASSIFICATION IN EACH AHI SEVERITY CUTOFF USING SVM,

AB-CART AND DNN CLASSIFIER. BOLD NUMBERS IN THE TABLE REPRESENT THE SIGNIFICANT HIGHEST VALUES IN EACH CUTOFF.

Sensitivity Specificity Accuracy
SVM AB-CART DNN SVM AB-CART DNN SVM AB-CART DNN

Cutoff 5 63.79±
2.25

83.71 ±
1.51

80.47±
2.98

91.37 ±
5.93

65.24±
2.60

86.35±
1.25

77.89±
1.49

77.12±
1.42

83.46 ±
1.08

Cutoff 15 90.12 ±
1.44

60.28±
2.85

85.56±
1.57

51.10±
3.36

90.31 ±
1.33

86.96±
3.33

79.23±
1.59

78.85±
1.15

85.39 ±
1.25

Cutoff 30 96.29 ±
0.95

42.95±
6.29

93.06±
0.53

32.29±
2.81

97.17 ±
0.65

90.23±
4.23

78.07±
1.54

90.76±
0.94

92.69 ±
0.55

TABLE III
CONFUSION MATRIX OF 4 CLASSES FROM 10-FOLD CUMULATIVELY

SVM AB-CART DNN
Predicted→ no mild mod severe no mild mod severe no mild mod severe

Actual no 56 9 4 1 41 22 3 4 57 12 1 0
mild 20 26 17 7 18 26 20 6 11 44 12 3
mod 11 21 18 20 12 18 24 16 10 17 35 8

severe 4 2 14 40 4 6 17 33 3 9 12 36

DNNs classifiers are significantly higher than others (p<0.05).
Consequently, we can conclude that our classifiers are able to
sustain the sensitivity and specificity while still maintaining
the highest accuracy in all cutoffs.

Additionally, after the data was balanced in each SAHS level
and classified non-linearly into 4 classes, the cumulative con-
fusion matrix of 10 folds are computed as shown in the table
for every approaches III. The results from our DNNs classifiers
are promising and higher than the others, with the overall
accuracy of 63.70%, while the SVM reached only 51.85%
and the AB-CART reached only 45.93%. It represents that
our DNNs classifier provides a higher diagnostic performance
than the other approaches.

IV. CONCLUSION

In summary, we proposed statistical based feature extraction
from single channel overnight airflow (AF) signals. There
are seventeen features in total. Sets of features had fed
into proposed DNNs and classical machine learning (ML)
approaches, which are Support Vector Machine (SVM) and
Adaboost-Classification and Regression Trees (AB-CART),
for comparison. Binary and multiple sleep Apnea-Hypopnea
severity classifications had been conducted to demonstrate
the performance of our proposed features with DNNs which
outperformed classical machine learning techniques.

REFERENCES

[1] Eric J. Olson, John G. Park, and Timothy I. Morgenthaler. Obstructive
sleep apnea-hypopnea syndrome. Primary Care: Clinics in Office
Practice, 32(2):329–359, 2005.

[2] Shahrokh Javaheri, Ferran Barbe, Francisco Campos-Rodriguez,
Jerome A. Dempsey, and et al. Sleep apnea: Types, mechanisms, and
clinical cardiovascular consequences. Journal of the American College
of Cardiology, 69(7):841–858, 2017.

[3] Susheel P. Patil, Hartmut Schneider, Alan R. Schwartz, and Philip L.
Smith. Adult obstructive sleep apnea: Pathophysiology and diagnosis.
Chest, 2007.

[4] Clete A. Kushida, Michael R. Littner, Timothy Morgenthaler, Cathy A.
Alessi, and et al. Practice parameters for the indications for polysomnog-
raphy and related procedures: an update for 2005. Sleep, 28(4):499–521,
2005.

[5] Rahul K. Kakkar and Richard B. Berry. Positive airway pressure
treatment for obstructive sleep apnea. Chest, 132(3):1057 – 1072, 2007.

[6] Asher Qureshi, Robert D Ballard, and Harold S Nelson. Obstructive
sleep apnea. Journal of Allergy and Clinical Immunology, 112(4):643 –
651, 2003.

[7] J A BENNETT and W J M KINNEAR. Sleep on the cheap: the
role of overnight oximetry in the diagnosis of sleep apnoea hypopnoea
syndrome. Thorax, 54:958–959, 1999.

[8] W. Ward Flemons, Michael R. Littner, James A. Rowley, Peter Gay,
W. McDowell Anderson, David W. Hudgel, R. Douglas McEvoy, and
Daniel I. Loube. Home diagnosis of sleep apnea: A systematic review of
the literature: An evidence review cosponsored by the american academy
of sleep medicine, the american college of chest physicians, and the
american thoracic society. Chest, 124(4):1543 – 1579, 2003.

[9] M. Singh, P. Liao, S. Kobah, D.N. Wijeysundera, C. Shapiro, and
F. Chung. Proportion of surgical patients with undiagnosed obstructive
sleep apnoea. British Journal of Anaesthesia, 110(4):629 – 636, 2013.
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