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     Abstract—With the increasing penetration of electric vehicles 

(EVs) into the automotive market, the electricity peak demand 
would increase significantly due to home-EV-charging. This 
paper tackles this problem by defining an ‘ideal’ EV consumption 
profile, from which a day-ahead pricing model is derived. Based 
on historical residential EV-use data ranging over a year, we 
demonstrate that the proposed optimization process results in a 
pricing profile that achieves a dual objective of minimizing the 
total electricity cost, as well as the peak aggregate system demand. 
Importantly, the proposed formulation is simple, and accounts for 
the tradeoff between consumer convenience in terms of the 
number of available charging slots during a day and the reduction 
in the total electricity cost. This technique is demonstrated to be 
scalable with respect to the size of the community whose EV 
charging demands are being optimized. 

     Index Terms—consumer behavior; day-ahead pricing; electric 

vehicle (EV) charging. 

I. INTRODUCTION  

The automotive sector is a major source of carbon 
emissions. The main emission from this sector, CO2, is widely 
regarded as an anthropogenic greenhouse gas, affecting the 
climate [1]. In 2016, the transportation sector in the US 
overtook electricity generation in terms of the total metric tons 
of CO2 emitted into the atmosphere [2], which suggests that 
CO2 produced by traditional car-fuel consumption has had a 
significant impact on climate change. As an alternative, EVs 
are experiencing higher penetrations in the market in order to 
halt the increasingly negative effects of fossil fuel-fed 
transportation. The energy consumed by EVs could be derived 
from renewable sources of energy such as solar photovoltaic, 
wind and biomass generation. Besides, EVs also offer other 
benefits such as lower operational costs [3] [4].  

However, the grid must transform so as to keep up with the 
demand for electrified transportation [5]. With the 
development of more efficient and cheaper charging hardware, 
ever increasing public charge stations, and reducing costs, a 
charging point in every home seems to be achievable so that 
EVs can be charged whenever required. Under a new draft 
directive of Europe Union in October 2016, it would be 
mandatory for every new or refurbished home in Europe to 
have an electric car charging point by 2019, in a move that has 
been considered vital to the success of EV uptake. However, a 
potential problem for charging EV at home is that the peak of 
total power demand for a household moves up compared with 
the residential power demand alone. Residents' electricity is 
usually concentrated at 18:00-20:00 [6], the same period 
during which residents would charge their EVs immediately 
after parking at home. As a result, at the community scale, the 

peak demand rises significantly with more EVs. This increase 
in the system peak demand has become a major technical 
constraint for the widespread use of electric vehicles. 

To tackle this problem, a novel pricing scheme is proposed 
in this paper to reduce the system peak demand by encouraging 
customers to avoid charging at peak hours of residential 
demand through a day-ahead scheduling process. This plan 
requires two prerequisites. One is hardware support such as the 
presence of smart meter at each home, which can be connected 
to an electric vehicle controlling charging switch according to 
the programmed scheduling [7]. The other assumption is that 
the residential electricity consumption will not be affected by 
the electricity price, meaning that lifestyle is not changed by 
electricity prices, with the purpose of measuring the effect of 
price on EV charging manners. Alternatively, this constraint 
may be justified by assuming that variable pricing only exists 
for EV charging, and not for the conventional home appliance 
demand. Literature survey in EV charging indicates that most 
previous studies only consider fixed available charging times. 
For instance, in [8], an EV is supposed to be connected to the 
grid at 6:15PM, and is scheduled to leave at 7:30AM on the next 
day. Clearly, there is lack consideration of the user’s 
preferences about when to charge before the scheduling process 
is done. To the contrary, in this work, a randomized algorithm 
is adopted to choose the available timeslots with respect to the 
users’ charging probabilities.  

Our contributions are summarized as follows: (1) we 
develop a day-ahead pricing model based on the difference 
between the existing demand curve and desired ‘ideal’ demand 
curve in order to minimize the peak power demand, and (2) we 
propose a novel method to choose the available charging 
timeslots according to consumer charging behavior, exploring 
the balance point of electricity cost and daily convenience from 
the user’s perspective. Overall, for a realistic test system, we 
demonstrate a reduction in the peak demand of 25.93%, via EV 
charging scheduling with mixed-integer linear programming 
(MILP) based on the price, available charging times, as well as 
the physical constraints of EV-charging. 

 

II. PROPOSED DAY-AHEAD PRICING SCHEME 

The proposed technique for EV-charging optimization is 
split into several stages, as shown in Fig. 1. These are explained 
below. 

 

A. Ideal electricity consumption profile to minimize the 

aggregate peak demand 

The historical data that is used in this work is obtained from  



[6], and consists of a set of consumers’ residential demands, and 
their corresponding EV charging schedules. This data is split 
into weekdays and weekends, as typically, living habit on 
weekdays and the weekends for most households are very 
different. To determine the peak demand, the total power 
demand of the 𝑁 households in the community is obtained with 
a day cycle which is divided into 𝑆 timeslots. 

𝑋𝑡 =   ∑ 𝑥𝑖,𝑡 

𝑁

𝑖=1
, (1) 

 

𝑌𝑡 =  ∑ 𝑦𝑗,𝑡

𝑀

𝑗=1
, (2) 

 

𝐻 = arg(max(𝑋𝑡)) . (3) 

 
Here, 𝑥𝑖,𝑡, 𝑦𝑗,𝑡 are respectively the residential demand, and EV 

charging power at the 𝑡𝑡ℎ  timeslot for   𝑖th  household and 𝑗𝑡ℎ 
EV. 𝑋𝑡  is a vector of total residential demand for households 
during one day, and 𝑌𝑡 is the vector of total charging power. H 
is the index of timeslot with peak residential demand. 

The ‘ideal’ demand curve with the minimum possible peak 
demand is determined while keeping the total power demand 
constant (see Fig. 2 and 3). This desired total demand curve is 
based on the total electricity demand of all the households over 
one year, for the purpose of minimizing the peak demand and 
smoothing the curve. This means that the EV charging power 
would be preferably allocated to the timeslots with a smaller 
residential demand. This is represented by the following 
optimization problem: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑠1 +  𝑠2 (4) 
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Here, 𝑠1 and 𝑠2 are number of timeslots before and after peak 
demand point, and 𝐸𝑡 the desired average EV charging demand, 
the sum of which is equal to that obtained from the real 

historical data. The total demand of the residential and EV 
powers of the two sides should be the same in order to smooth 
the curve to the maximum extent. The objective here is to 
minimize the length of timeslots with the highest power 
demand. Constraint (5) aims to construct straight lines before 
𝑠1 and after 𝑠2 with the same height, and constraint (6) is set to 
satisfy that the sum of EV charging power before 𝑠1 and after 
𝑠2 equal to total original EV charging power, referring to Fig. 2 
and Fig. 3 in the simulation part for clarity. 
 

B. Day-ahead pricing model to achieve the ideal profile of 

consumption 

A day-ahead pricing model [9] is presented to solve the 
problem of increasing peak demand. The concession of comfort 
preference for consumers to charge EVs is attractive because 
charging is used to store energy in advance instead of real-time 
use as other appliances. EV charging can be turned on or off 
with intelligent-based control of smart meters without violating 
the minimum off-on interval. Therefore, the price is an 
incentive strategy for consumers to modify their charging time, 
while maintaining a balance between the cost and convenience. 
We would like to determine how much concession a consumer 
would make when the price is for the curve nearest to the ideal 
profile as explained in Section II. A: 

             𝑓𝑡 =  𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) 
𝐸𝑡 −  𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

  ,           (7)   

 

where 𝑓𝑡  is the price, and 𝑓𝑚𝑖𝑛  and 𝑓𝑚𝑎𝑥  are its lower and 

upper bounds. Normalization is proposed to compress this 

curve into a practical price range, assuming that the previous 

constant price is the average of the bounds. 𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥 are 

the minimum and maximum values of 𝐸𝑡  over all the time 

slots. 

 

C. Modeling randomly-available timeslots for EV charging 

1) Statistical EV charging behavior: Users’ habits 

regarding EV charging can be gleaned from the historical data. 

For each household, the times of charging at each timeslot are 

accumulated and then divided by the number of days; the result 

is regarded as the frequency of charging (this reflects the 

consumer’s charging behavior). In other words, if the charging 

frequency of an EV at the 𝑖𝑡ℎ  timeslot is the biggest, the 

probability of this EV to be charged at this time is assumed to 

be the highest.  

2) Available charging timeslots: The historical data 

recorded the charging behaviors of the users.  However, the 

number of available charging timeslots should be determined 

accurately so that optimization could be performed to 

minimize the electricity cost. Here we define a parameter 

called Comfort Tolerance (τ), which measures how much 

concession customers would give to comfort in order to 

achieve the least electricity cost that would result in the ideal 

demand curve: 

𝜏 =  
𝑇𝑖

𝑎𝑣𝑎𝑖

𝑆
. (8) 

 𝑇𝑖
𝑎𝑣𝑎𝑖  is the number of chosen available charging durations of 

𝐸𝑉𝑖  during a day. Thus, a higher value of 𝜏 reflects that the 

 
Fig. 1.   Flowchart depicting the proposed EV-charging optimization process. 



customer would compromise more comfort in exchange for 
monetary benefit.  

Once the total number of available charging timeslots is 
determined, EV users are selected randomly in the order of 
descending charging probability for each household. This 
means that timeslot allocations are not fixed; there is an 
inherent randomness in the allocation process. For this, a 
roulette wheel selection scheme is proposed. A turntable is 
divided into 𝑆 timeslots, and the area of each EV is proportional 
to its charging frequency, and a random user is selected from 
here. This process is repeated until all the available timeslots 
are filled. 

 

D. Optimization problem formulation 

1) Optimization model: The objective of EV charging 

scheduling is to determine the optimal charging time and 

power such that the electricity cost is minimal, while at the 

same time being constrained in terms of the charging level, 

storage capacity, and consumers’ convenience. The objective 

function is expressed as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑖 =  ∑ {𝑃𝑖,𝑡 ∙ ∆𝑡 ∙ 𝑓𝑡}
𝑇𝑖

𝑡=1
, (9) 

where 𝐶𝑖 is electricity cost during the scheduled time of 𝐸𝑉𝑖, 

𝑇𝑖  the length of the charging period for 𝐸𝑉𝑖 , 𝑃𝑖,𝑡  the power 

consumed by 𝐸𝑉𝑖 at the 𝑡th timeslot, ∆𝑡 the duration for each 

timeslot, and 𝑓𝑡 the electricity price during the 𝑡th timeslot. 

The following constraints are imposed on the above 

optimization objective: 

 Allowable charging time: An EV is only allowed to be 

charged during available timeslots defined as a vector 𝑇𝑖  

with the length of 𝑇𝑖
𝑎𝑣𝑎𝑖 . 

 

𝑃𝑖,𝑡 = 0     ∀𝑡 ∉ 𝑇𝑖 , (10) 

 

 Electric energy balance for interruptible loads: EV is 

regarded as an interruptible load [10] which is capable to 

charge continuously within the bound of charging power 

( i. e. , 𝑃𝑚𝑖𝑛 and  𝑃𝑚𝑎𝑥 ). Given the above condition, 

charging status of EV throughout the scheduling horizon 

should satisfy: 

 

∑ 𝑃𝑖,𝑡 ∙ ∆𝑡
𝑡∈𝑇𝑖

=  𝐸𝑖 , (11) 

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑖,𝑡 ≤ 𝑃𝑚𝑎𝑥 , (12) 

 Frequent switching limit: In order to extend the lifespan 
of the electrical machinery, off-on intervals should be 
limited as follows: 

𝑌𝑖,𝑡−1 − 𝑌𝑖,𝑡 + 𝑌𝑖,𝑘 ≤ 1 

∀ 𝐾 ∶  1 ≤ 𝐾 ≤  𝑇𝑜𝑓𝑓−𝑜𝑛 , 𝐾 ∈ 𝑁+ 

∀ 𝑡 ∈ (1, 𝑁 − 𝑇𝑜𝑓𝑓−𝑜𝑛 + 1), 𝑡 ∈ 𝑁+. (13) 

where 𝑇𝑜𝑓𝑓−𝑜𝑛 represents the minimum off-on interval for EV 

charging, and 𝑌𝑖,𝑡 is defined as the status of mechanical part of 

EV (“1” for “on” and “0” for “off”).   

     2) MILP solver: It can be seen that the formulated 

optimization problem is a MILP [11], as variables in (13) are 

limited to integers, while in the other two constraints, no such 

restriction exists. Different from LP, the time complexity for 

MILP formulations is not linear or polynomial, and these form 

NP-hard problems. Improvements such as resolving, 

generating cutting planes, and applying primal heuristics could 

be utilized to improve the efficiency of the solver. There are 

some popular optimization solvers to solve MILP such as 

CPLEX, GUROBI, MOSEK and XPRESS. Here we use 

GUROBI, which is a commercial solver with high efficiency 

and supports a variety of programming and modeling 

languages.  

 

III. CASE STUDY AND SIMULATION RESULTS 

A. Assessment metrics 

To assess the effectiveness of the proposed price-
determining algorithm as well as EV charging scheduling 
compared with original profiles, we use the following metrics: 

1) Peak demand: The power distribution grid is designed to 
deal with the highest possible peak demand. However, if this 
limit is exceeded during its operation, blackouts could result. 
The objective of this paper is to reduce the peak of aggregate 
domestic and EV charging demands. 

2) Ramp rate: The ramp rate is the time-rate of change of 
the instantaneous real power consumption in the system. Limits 
are established on this to prevent undesirable effects due to 
rapid changes in loading or discharge, including large 
frequency deviations and the loss of stability. Ideally, the ramp 
rates have to be as minimal as possible. 

3) Variance of the demand curve: Lower fluctuations in the 
demand reflects a better stability of electricity consumption 
curve. As is known, the ideal curve is shaped like a combination 
of straight line and smooth curve minimizing the variance. 
Thus, smaller variance of the curve is expected, representing 
the flat curve. 

We mention here that the objective of the proposed price- 
curve determination algorithm is used to minimize the peak 
demand. However, the ramp rate and variance are used to 
determine the quality of the resultant demand profile.  

 

B. Load profiles before EV-schedule optimization 

In order to test the proposed EV scheduling model, we refer 
to the 2009 RECS data set for the Midwest region of the US. 
This includes the historical demand profiles for 200 
households, as well as in-home EV-charging behaviors for 256 
EVs present in these households, assuming Level 1 (1.92 kW) 
residential charging infrastructure. Using models presented in 
[6], realistic load profiles are simulated, which reproduce 
realistic residential power consumption patterns and EV 
charging profiles. We assume that all of these households 
belong to a common community, and the data represent the net 
system demand. A day is divided into 144 timeslots, each with 
a duration of 10 minutes, starting at 12:00AM (midnight). The 
average electricity usage for residential and (residential + EV 
charging) profiles from this dataset is depicted in Fig. 2.  



     From the data above, the ideal electricity demand curve is 
designed, and shown in Fig. 3. From this figure, we see that the 
peak demand of the residential curve is high during weekdays.  
If the EV charging were to happen completely at periods away 
from the peak period (the desired EV charging behavior of the 
community), the peak demand of the total system would now 
equal the peak residential demand. 

From the difference of the ideal and original curves, the day-
ahead price curve is obtained using (7). Finally, to make the 
price curve reasonable and close to practical values, lower and 

upper bounds are set to be 15￠/ kWh and 20￠/ kWh. As shown 

in Fig. 4, the lower price corresponds to a bigger difference of 
the two curves with the aim to encourage customers charging 
more during this period. Thus, EV-charging optimization is 
introduced based on this price profile, the results of which are 
explained in the sequel.  

 

C. Simulation results after EV-schedule optimization 

For the original test community (200 households), day-
ahead EV scheduling is adopted with the assumption that all 
households are enrolled into the scheme. The simulation 

parameters are as follows: 𝑃𝑚𝑎𝑥 = 1.92 kW, 𝑃𝑚𝑖𝑛  = 0.96 kW, 
and 𝑇𝑜𝑓𝑓−𝑜𝑛= 30 min. 

As mentioned previously, the available charging time are 
chosen randomly based on their charging probability. To 
account for the randomness, each EV optimization is processed 
for 20 times. The boxplots for the total residential and EV-
charging demands after optimization are obtained, and 
presented in Fig. 6. 

TABLE I 

EFFECTIVENESS OF OPTIMIZATION-REDUCTION OF SYSTEM PEAK DEMAND 
 

Size Number 

of 
timeslots 

Original 

peak 
demand 

(kW) 

Ideal 

peak 
demand 

(kW) 

Optimized 

peak 
demand 

(kW) 

 

Reduction 
(%) 

1 129 457.988 331.621 339.249 25.93 

0.9 118 408.737 294.294 337.417 17.40 

0.8 107 366.251 267.234 320.816 12.41 

0.7 98 311.441 225.748 281.271 9.68 

0.6 88 259.742 192.400 240.983 7.22 

0.5 78 222.096 161.601 198.267 10.72 

From this figure, it is clear that the system demand is close to 
the ideal profile, with a significant reduction in the aggregate 
peak demand. Again, this result is for 200 households; when the 
size of the community increases, peak demand for the whole 
community can be reduced to a larger extent, as more and more 
EVs are available for optimization. The corresponding ramp 
rate is presented in Fig. 5, with shows that ascent or descent rate 
is within an acceptable range of [-4kW/min, 5kW/min], about 
1% of the total demand. From the perspective of electricity 
servers, it is tolerable but not ideal. 

1) Scaling the proposed optimization algorithm: To test the 
scalability of the scheme for various sizes of the community, 
different households are randomly chosen to be a part of it, and 
the metrics are calculated for each case. As shown in Table I, 
with decreasing community size, the peak demand optimization 
increases. In the case when only 50% of original community 
(i.e. 100 households) are regarded as a new community, the 
peak demand after optimization is close to the original peak 
demand, suggesting that this scheme is more effective in a large 
community. One possible reason is that the diversity of EV 
charging times in a larger community promises available 
charging times staggered over different periods rather than 
clustered close together. Although all EVs are under the 
common pricing scheme, different available charging times 
restrict the optimization process, avoiding the situation that the 
peak demand from the rush hours is just shifted to timeslots 
with the lowest price, which is deemed as excessive 
optimization. At this point, we would like to note the 
implications of these results in terms of reducing local demand 
overloads as well. Even if we reduce the number of houses 
considered for optimization, we find that the net peak demand 
is reduced due to the staggering of the EV use patterns, which 
would avoid overloading of the system feeders. 

2) Impact of the number of users participating in the 
optimization process: In reality, not all of users would like to 
compromise their convenience for a smaller electricity cost. We 
now keep the community size as the original value of 200 
households, and test the flexibility of the proposed scheme  

Fig. 2. Original residential-only and total demands of the community. 

Fig. 3. ‘Ideal’ power demand of the community. 

Fig. 4. The desired day-ahead price curve. 

Fig. 5.   Ramp rate of the total electricity consumption. 

 

 

 

 

 



 
TABLE II 

ELECTRICITY COST SAVING IN EV CHARGING AFTER OPTIMIZATION 

 

EV No. Charging 

demand 

(kWh) 

Cost before 

optimization 

($/kWh) 

Cost after 

optimization 

($/kWh) 

Cost 
savings 

1 5.04 0.83 0.77 7.23% 

2 4.53 1.12 0.68 39.2% 

3 6.13 1.53 0.93 93.3% 

4 8.33 1.55 1.30 16.1% 

5 8.48 1.61 1.32 18.0% 

considering that only some of consumers are now enrolled in 
the optimization scheme. We attempt to determine the lower 
limit of this consumer-group size that would result in the 
optimized curve not surpassing the original peak demand. 
Referring to Fig. 7, where consumers participating in the 
scheme charge their vehicles at the lowest-priced timeslots, we 
see that as the number of consumers participating declines, so 
does the reduction of the peak demand.  
      To illustrate the cost savings brought about by the proposed 

optimization process, five households are chosen randomly, 

and the difference of their electricity costs before and after 

optimization are presented in Table II. It is assumed here that 

the price curve is employed for all of the consumers no matter 

whether they join the scheme or not. Clearly, all consumers 

save on electricity costs, but to varying degrees depending on 

their original charging behavior. 

 

IV. CONCLUSION 

A novel day-ahead electric vehicle charging scheduling 
scheme in a community scale is proposed to tackle the 
challenge of increased peak demand caused by popularity of 
EVs and introduction of home-charging infrastructure. The 

developed electricity price model is based on the current 
demand curve of the community, and serves the dual objective 
of reducing the total peak demand, and at the same time 
minimizing the EV-charging electricity costs. Importantly, one 
of the contributions of this study is in considering the tradeoff 
between consumer comfort and the achieved cost savings. 
Central to this is the random allocation of the available EV 
charging slots to the various users depending on the probability 
of use of the respective vehicles. The scalability and flexibility 
of the proposed scheme are demonstrated using numerical 
simulations for varying community sizes, and the percentage of 
residents that enroll into the scheduling program.  
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Fig. 7.  Peak demand reduction for different percentages of participants. 

Fig. 6.   Electricity demand after optimization of the community with 200 households. The blue and orange curves respectively denote the total system demand 

before optimization, and the ideal (desired) system demand. The box plots with the green and red outliers respectively denote the EV and total system demands 

after the proposed optimization process, obtained as a result of 20 trials. 


