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Abstract—A robust solution to the optimal micro-grid (MG) 
sizing problem requires comprehensive quantification of the 
underlying parametric uncertainties – particularly, the 
uncertainty in forecasts of meteorological, load demand, and 
wholesale electricity price time-series data. However, the 
associated data-driven processes for probabilistic uncertainty 
quantification are computationally expensive. Accordingly, the 
mainstream meta-heuristic-based MG sizing literature has failed 
to concurrently quantify more than four sources of forecast 
uncertainty. To address this knowledge gap, this paper introduces 
a novel computationally efficient, probabilistic MG sizing model 
that enables the simultaneous treatment of any (reasonable) 
number of data uncertainty. This provides a platform to 
characterize the uncertainty in ambient temperature and river 
streamflow for the first time in the MG optimal sizing literature. 
Importantly, the model supports the associated long-term 
strategic MG energy planning optimization processes through in-
depth analyses of the worst-case, most likely case, and best-case 
planning scenarios. To demonstrate the utility of the proposed 
model for community MG projects, a case study is presented for 
the town of Ohakune, New Zealand. Notably, the numeric 
simulation results have shown that the whole-life cost of the 
conceptualized MG would have been underestimated and 
overestimated by as much as 17% and 30% respectively in the 
best-case and worst-case scenarios if the problem-inherent 
uncertainties were not explicitly factored into the associated 
techno-economic analyses. 

Index Terms—Forecast uncertainty, Microgrids, Optimization, 
Power system planning, Probabilistic computing. 

I. INTRODUCTION 

The optimal sizing and designing of a micro-grid (MG) 
aims to minimize the whole-life cost of installing new 
distributed generation and storage technologies and the 
associated power conversion apparatuses, as well as the cost of 
purchasing energy from the grid (where applicable), over the 
analysis period, whilst adhering to a set of operational- and 
planning-level constraints [1]. To this end, the standard MG 
capacity planning problem conducts an hourly-resolved, year-
long energy management analysis for each candidate mix of the 
size of the components, which makes the problem 
computationally intensive [2]. On the other hand, the 

underlying energy scheduling problems that need to be solved 
as part of the aforementioned energy management analyses deal 
with various stochastic input parameters, such as forecasts of 
power loads, weather conditions, and wholesale electricity 
market prices (in grid-connected systems). Such sources of data 
uncertainty affect the energy management analyses, and the 
associated errors potentially propagate upward into the outer 
optimal MG sizing problem [3]. Accordingly, a recent, growing 
body of literature has formulated a range of stochastic MG 
sizing models, the associated solution algorithms of which can 
be broadly categorized into two classes [4]: (1) analytical (exact 
mathematical) solution algorithms, and (2) meta-heuristic 
optimization-based solution algorithms. 

As notable instances of the analytically solved probabilistic 
MG sizing models, mixed-integer linear programming (MILP)- 
and mixed-integer nonlinear programming (MINLP)-based 
renewable energy system capacity planning models are 
developed in [5], [6]. Although these approaches do not 
generally suffer from any computational complexity issues, 
they are associated with several simplifications to decompose 
the outer investment planning and inner operational planning 
decision-making processes. Accordingly, the accuracy of these 
methods depends primarily on the efficiency of the underlying 
decomposition techniques, as well as the associated mean-field 
and (non)linear relaxation approximations. However, the actual 
accuracy of exact mathematical solution approaches has not 
been evaluated in practically all the analytical models available 
in the literature as this requires knowledge of the truly optimal 
solution. On the other hand, swarm-based meta-heuristic 
optimization algorithms do not require any mathematical model 
approximations. However, when the number of decision 
variables grows, the running time for meta-heuristic-based 
solution approaches soon becomes prohibitively large. Such 
limiting factors are more prominent for data-driven stochastic 
solution algorithms where the number of the associated 
function calls and fitness evaluations is significantly larger than 
the corresponding deterministic methods – which result in 
significantly increased computational execution times. 

In this light, although their potential outperformance has 
been statistically validated in various MG capacity planning 
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studies [7], the existing meta-heuristic-based methods have 
failed to simultaneously address multiple problem-inherent 
forecast uncertainties. Table I summarizes the most notable 
meta-heuristic-based MG sizing approaches that have 
attempted to characterize at least one source of data uncertainty. 

TABLE I. SUMMARY OF STOCHASTIC META-HEURISTIC-BASED STUDIES 

Reference Meta-heuristic optimizer Uncertain Parameters(s) 

[8] Particle swarm optimization (PSO) Load demand 

[9] PSO Irradiance, load demand 

[10] Accelerated PSO Irradiance, load demand 

[11] Binary PSO Wind speed, irradiance, load  

[12] Weighted improved PSO Wind speed, irradiance 

[13] Genetic algorithm Irradiance, load, spot prices 

[14] Genetic algorithm Irradiance, load demand 

From the literature review emerge a number of key 
knowledge gaps, namely: (1) intractability of the existing meta-
heuristic-based approaches to simultaneously quantify more 
than three sources of parametric uncertainty, (2) negligence of 
the uncertainty coupled with ambient temperature and river 
streamflow (for potential micro-hydropower), and (3) lack of 
attention to fundamentally new meta-heuristics. In response, 
this paper introduces a comprehensive, robust, general MG 
designing and capacity planning optimization model able to 
address multiple parametric uncertainties – solar irradiance, 
ambient temperature, wind speed, electricity price, load 
demand, and river streamflow forecasts – at a time, based on a 
state-of-the-art meta-heuristic. A key contribution of the paper 
is integrating a heuristic, MILP-based scenario reduction 
algorithm as part of the innovative new energy planning 
optimization model for community MGs, which facilitates the 
characterization of any (reasonable) number of data 
uncertainties during the associated investment planning 
decision-making processes that are aware of the corresponding 
aggregate uncertainty budgets.  

II. TEST-CASE SYSTEM 

A grid-tied community MG system integrating solar 
photovoltaic (PV) panels, wind turbines (WTs), a run-of-the-
river micro-hydro power plant (MHPP), and a Li-ion battery 
bank is considered as a test case, as shown in Fig. 1.  

 
Figure 1. Schematic of the grid-tied, DC-linked community test-case MG. 

A. PV Panels 
The power output from each PV panel at time-step  is [15]: 

( ) = ( ). . ( ),                            (1) 

( ) = + (1 ( ) , ),                     (2) 

( ) = ( ) +
20

0.8
( ),                      (3) 

where ( ) denotes the panel’s efficiency at time-step ,  
is the area of the panel (1.64 m2),  represents solar irradiance 
[kW/m2],  denotes the panel’s rated efficiency (17.4%),  
denotes the PV temperature coefficient of power (–0.48%/ C), 

 denotes the cell temperature, ,  denotes the reference 
cell temperature (25 C),  denotes the ambient temperature 
[ C], and  denotes the nominal operating cell 
temperature (43 C). 
B. Wind Turbines 

The power output from each WT at time-step  can be 
obtained from [15]: 

( ) =

0                ( )    ( )  ,               

                < ( ) ,                          (4)

,         < ( ) <  ,                                
 

=
,

( )  , ,                 (5) 

where ( ) is wind speed at time-step ,  ,  , and  
respectively denote the WT’s cut-in wind speed (3.5 m/s), cut-
out wind speed (25 m/s), and rated wind speed (14 m/s), while 

,  represents the WT’s rated power (225 kW). 

C. Micro-Hydro Power Plant 
The power output from each micro-hydro turbine at time-

step  can be calculated by the following equation [15]: 
( ) = , . . . . . ( ),                    (6) 

where ,  denotes the micro-hydro turbine’s rated power 
(100 kW),  is the micro-hydro turbine’s efficiency (78%), 

 denotes the water density (1000 kg/m3),  is the gravity 
acceleration (9.81 m/s2),  denotes the static (gross) head (10 
m), and ( ) is river streamflow at time-step  [m3/s]. 
D. Battery Bank 

The overall battery bank is modelled by its time-variant 
energy in-store level, as follows [15]: 

( ) = ( 1)(1 . ) + ( ). .
( ).

,   (7) 

where  is each battery pack’s self-discharge rate (0.3%/day), 
( ) and ( ) respectively denote the charging power and 

discharging power at time-step  [kW],  and  
respectively denote the charge and discharge efficiencies 
(97.5%), while  represents the length of each time-step (1 h). 
E. Transformer and Power Conditioning Devices 

The bi-directional transformer is modelled by a constant 
efficiency (93%), while the power factor is assumed to be 95%. 
Also, except for the bi-directional (multi-mode) inverter, the 
costs and efficiencies of the power electronics devices are 
reflected in the components they link to the DC bus. The bi-
directional inverter’s efficiency is assumed to be 98.5%. 
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F. Operational Strategy 
The rule-based cycle-charging energy scheduling strategy, 

which seeks to maximize the grid-tied MG’s self-sufficiency 
is chosen to decide the dispatch of the system [16]. Under the 
cycle-charging strategy, the onsite non-dispatchable renewable 
generation is first supplied to local loads with any excess 
power charging the storage devices before being fed back into 
the wider utility network. Also, any positive net load (local 
load minus onsite non-dispatchable generation) is served by 
discharging the storage first before importing from the grid.  

III. STOCHASTIC MG SIZING MODEL 

This section formulates the developed meta-heuristic-based 
stochastic MG sizing model that systematically quantifies any 
(reasonable) number of forecast uncertainties during the MG 
designing and capacity planning processes. In line with the 
secondary contributions of the paper, namely characterizing the 
uncertainty associated with river streamflow and ambient 
temperature forecasts – in conjunction with treating the 
uncertainty in solar irradiance, wind speed, load demand, and 
wholesale prices – the model is specifically parametrized for 
the conceptual test-case system. However, it can be readily 
adapted for application to any on- and off-grid MG 
configuration – and characterize any set of uncertain factors 
desired during the long-term MG investment planning phase. 

A. Objective Function 
The objective function seeks to minimize the total net 

present cost (NPC) of the modelled MG system, as follows: 

min = ( ) + ( . . ).   (8) 

In (8), the term ( ) denotes the net present cost of 
component , the term ( . . ) denotes the 
total net cost of energy exchanges with the grid over the MG 
lifespan in the present value,  and  are the importing 
power and exporting power, respectively, with  and  
respectively denoting the variable wholesale price and fixed 
feed-in-tariff. The NPC of each component incorporates the 
capital cost, the present value replacement and operation and 
maintenance costs, as well as the present salvage value. 
B. Constraints 

For a technically robust optimal solution, the objective 
function needs to adhere to a set of constraints, as [17], [18]: 

(0) = 0.5 . ,
 ,                                    (9) 

( ) (0),                                      (10) 

,                                   (11) 

,                                       (12) 

0 ,                                      (13) 

0 ( ) , . , ,                               (14) 

0 ( ) , . , .                                (15) 

To cost-efficiently handle the peaks that occur early in the 
time-series load data, (9) sets the battery bank’s initial state-
of-charge (SOC) to be half-full-charged as determined by 
multiplying the optimal number of battery packs, , which is 
obtained over the course of iterations, by the nameplate 
capacity of each battery pack, ,

 , divided by 2. Eq. (10) 
ensures that the battery bank’s terminal SOC (at the last 

iteration) equals or exceeds its initial (pre-set) SOC for a 
balanced analysis. A specifically formulated maximum loss of 
power supply probability index, , and a minimum self-
sufficiency ratio, , are relaxed using (11) and (12), 
respectively. Also, lower and upper limits are placed on the 
optimal size of the equipment in (13), while the energy trading 
with the wider network is enforced to adhere to the bi-
directional transformer’s capacity in (14) and (15).  
C. Meta-Heuristic Optimization Algorithm 

The moth-flame optimization algorithm (MFOA) [19] is 
used in the solution algorithm as it has been demonstrated to 
be a comparatively computationally efficient algorithm, and 
superior to a broad spectrum of both well-established and state-
of-the-art meta-heuristics in terms of nearing the globally 
optimum solutions in the long-term strategic MG planning 
applications [1], [2], [7], [15], [20], [21]. The MFOA, which is 
inspired by the navigation mechanism of moths at night, can 
be expressed mathematically as [19]:  

= , ,                                    (16) 

, = . . cos(2 ) + ,                    (17) 

where ,  denotes a logarithmic spiral function of the 
positions of moths ( ) and flames ( ),  is a constant that 
defines the shape of the spiral (here,  = 1),  is a pseudo-
random number in the range [–1, 1], and  is the 
Euclidean distance between the -th moth and the -th flame. 
D. Probabilistic Uncertainty Characterization 

A probabilistic dimension is added to the above-described 
deterministic MG sizing model by the following steps:   

1) PDF Construction: The best-fitting distributions of the 
associated historical data for the corresponding random 
variables (uncertain inputs) are utilized to derive the hourly 
probability distribution functions (PDFs). Specifically, the 
beta, Weibull, and gamma distributions are used to model the 
variability inherent in solar irradiance, wind speed, and river 
streamflow data streams, respectively. The wholesale 
electricity market price, power loads, and ambient temperature 
datasets are assumed to be normally distributed.  

The PDF of the beta distribution to model the behavior of 
the random variable 0 1 with shape parameters , >
0 can be expressed as follows: 

( ) =
( + )

( ) ( )
(1 ) .                  (18) 

The PDF of a Weibull random variable 0 with a shape 
parameter > 0 and a scale parameter > 0 is given by: 

( ) = .                            (19) 

The PDF of the gamma distribution for variable > 0 with 
a shape parameter  and a rate parameter  is: 

( ) =
( )

.                                 (20) 

The PDF of a normally distributed variable  with mean  
and standard deviation  can be expressed as follows: 

( ) =
1

2  

.                           (21) 
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2) PDF Discretization: The hourly uncertain parameter-
specific PDFs are then discretized into equal-width regions. 
More specifically, the equal-width regions divide the 
corresponding range of possible values into a set of mutually 
exclusive and collectively exhaustive intervals.  
The arithmetic means and the associated probabilities of 
occurrence of the resulting intervals are then determined to 
represent the equal-width regions in the following scenario 
generation processes. Accordingly, the accuracy of the 
associated approximations depends primarily on the 
granularity step size for PDF discretization.  

The preliminary benchmark tests revealed that approximating 
the continuous PDFs by seven equal-width regions offers the 
best compromise between solution quality and computational 
intensity. 

3) Scenario Vector Generation: A set of 76 = 117,649 
scenario vectors were generated for each hour of the MG 
operation in accordance with all possible combinations of the 
six uncertain inputs represented by seven equal segments of 
the associated PDFs.  

4) Scenario Vector Reduction: To alleviate the 
computational burden, the scenario vectors were then clustered 
to seven for each hour of the MG operation using a MILP-
based scenario reduction algorithm [22].  
The algorithm guarantees that the overall probability of a 
particular realisation of each uncertain parameter at time-step 
 in the final scenario set is equal to the probability of the 

uncertain parameter taking on that value.  
It has been demonstrated that the scenario reduction 
algorithm’s efficacy in representing the original scenarios lies 
in the 0.5% to 2% range [22]. The validity of this claim in the 
stochastic MG planning applications has been statistically 
verified based on a number of small-scale benchmark 
probabilistic MG sizing case studies.  

5) Model Evaluation: The deterministic model is then 
solved for each reduced scenario vector, and the modelling 
results, as well as the corresponding posterior probabilities of 
the multi-dimensional scenarios, are recorded.  

6) Outcome Analysis: Finally, the cumulative normal 
distributions that provide the best fit to the output histograms 
are produced in accordance with the posterior probabilities 
assigned by the scenario reduction algorithm.  
Then, to provide tailored support to the associated MG 
planning decision-making processes – and designing cost-
efficient MGs under different uncertainty budgets – the 
expected values, as well as the 5th and 95th percentiles of the 
cumulative distributions of the model outputs, are determined, 
which respectively represent the most likely, best-case, and 
worst-case projection energy planning scenarios.  
E. Overview of the Model 

Fig. 2 illustrates the structure of the meta-heuristic-based 
solution algorithm for the proposed stochastic MG capacity 
optimization model. 

 
Figure 2. Meta-heuristic-based probabilistic MG sizing solution algorithm. 

IV. INPUT DATA: THE CASE OF OHAKUNE, NEW ZEALAND 

The developed model was populated for the case of the 
town of Ohakune (latitude 39.4180 S, longitude 175.3985 E) 
to provide a reliable, affordable, sustainable local electricity 
generation solution that addresses the existing transmission 
congestion issues [23]. Located in the center of New Zealand’s 
North Island, the town has a permanent population of around 
1,200 people, according to the most recent census (Stats New 
Zealand, 2018). The permanent population of the town live in 
detached and semi-detached houses, and the most dominant 
household size is 2 persons according to the census. Table II 
summarizes the techno-economic specifications of the selected 
product models of the generation, storage, and conversion 
technologies for implementation in Ohakune. The associated 
main components are available off the shelf; they were chosen 
based on the primary author’s experience – on the trade-off 
between technical performance and economic viability – from 
the options available in the New Zealand and Australian 
renewable energy asset markets. In this paper, costs are always 
cited in 2019 NZ$ (the 2019 annual average exchange rate: 
NZ$1 = US$0.69). Also, the project lifespan and real interest 
rate were respectively assumed to be 20 years and 3.7%. 

TABLE II. TECHNO-ECONOMIC SPECIFICATIONS OF THE EQUIPMENT 

Component Capital cost Replacement 
cost 

O&M cost Lifetime 

PV panel $1,135/kW N/A $4.2/kW/yr 20 years 
WT $1,290/kW N/A $21/kW/yr 20 years 

MHPP $840/kW N/A $15/kW/yr 20 years 
Battery $901/kWh $553/kWh $5.5/kWh/yr 15 years 
Inverter $760/kW $580/kW $1.1/kW/yr 15 years 

Transformer $65/kVA N/A $0.3/kVA/yr 20 years 

The historical meteorological data are based on 10 years’ 
(2010 to 2019) worth of data retrieved from the New Zealand’s 
National Institute of Water and Atmospheric Research’s 
‘CliFLO’ database [24] with an hourly resolution. The hourly-
resolved, year-long load demand data were specifically 
synthesized based on the findings of the New Zealand GREEN 
grid household electricity demand study [25], in accordance 
with the town’s household size distribution.  
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To achieve the statistical representativeness necessary to 
ensure the quality of the associated PDF generation process, 
the synthetic power data stream was then augmented using an 
unreported Markov chain model. Specifically, the derived 
power load dataset was regenerated 9 times. Furthermore, the 
10-year (2010 to 2019) historical locational marginal price 
data were retrieved from the New Zealand’s Electricity Market 
database [26]. Moreover, the feed-in-tariff was considered to 
be $0.08/kWh.  

V. SIMULATION RESULTS AND DISCUSSION 

This section presents the simulation results. The developed 
model was coded in MATLAB and executed on a desktop 
computer with a Core i7 3.20 GHz CPU and 16 GB RAM. As 
an example of the hourly input scenario vectors, Table III 
presents the posterior probabilities of the reduced multi-
dimensional scenarios obtained by solving the MILP scenario 
reduction algorithm – using the built-in ‘intlinprog’ MATLAB 
function – for the annual morning peak net load demand hour 
of the MG operation, namely 10 a.m. July 21st. The 
corresponding deterministic values are as follows: irradiance = 
161 W/m2, temperature = 2.2 C, wind speed = 4.1 m/s, 
streamflow = 4,129 L/s, load = 988 kWh, and wholesale price 
= $0.11/kWh.  Fig. 3 displays the convergence curve of the 
MFOA-optimized method applied to the deterministic case and 
the seven probabilistic cases, each addressing a year-long, 
hourly-basis reduced scenario vector. The figure reveals the 
adequacy of the optimizer’s parameter settings and stopping 
criteria – a maximum of 200 iterations with 100 individuals – 
to yield a stable solution to the grid-tied MG sizing problem. 

TABLE III. VALUE-PROBABILITY PAIRS FOR 10 A.M. JULY 21ST SCENARIOS 

S Prob. Irrad. 
[W/m2] 

Temp. 
[ C] 

Wind speed 
[m/s] 

Flow 
[L/s] 

Load 
[kWh] 

Price 
[$/kWh] 

1 0.230 149 1.9 4.4 4,125 1,027 0.13 
2 0.197 171 2.4 3.9 3,962 972 0.11 
3 0.163 159 2.0 4.0 4,077 1,013 0.09 
4 0.155 151 1.9 3.6 4,574 904 0.08 
5 0.119 175 2.4 2.9 4,117 1,098 0.11 
6 0.092 189 3.8 4.7 3,716 821 0.07 
7 0.044 117 0.8 6.8 4,428 1,110 0.16 

 
Figure 3. Convergence process of the MFOA embedded within the method. 

Table IV provides a direct comparison of the deterministic 
and stochastic modelling results with the stochastic results 
detailing the middle-case (most likely case) and extreme-case 
(best-case and worst-case) scenarios – which are tailored to 
different uncertainty budgets. The table also compares the 
associated CPU usage times; the CPU execution time of the 
overall stochastic simulations is equal to the sum of the 
running times associated with the seven reduced year-long 
scenario vectors. Also, Fig. 4 shows the cumulative normal 
distribution function fit to the total discounted system cost data 

with overlaid deterministic, expected (most likely), 5th 
percentile (best-case), and 95th percentile (worst-case) values. 

TABLE IV. COMPARATIVE DETERMINISTIC AND PROBABILISTIC RESULTS 

Output Simulation case 
Determ. Stochastic 

BC ML WC 
Total NPC [$m] 3.95 3.29 4.25 5.12 
LCOE [$/kWh] 0.05 0.04 0.06 0.07 
PV size [kW] 318 273 351 406 
WT size [kW] 450 450 450 675 

MHPP size [kW] 500 400 600 800 
Battery size [kWh] 923 799 1,066 1,289 
Inverter size [kW] 1,032 886 1,044 1,091 
Trans. size [kVA] 389 371 417 433 

Total annual net energy 
purchased [MWh] 

–166.4 –191.3 –172.3 –218.3 

Total annual net electricity 
exchange costs [$k]  

–9.98 –12.75 –11.3 –15.3 

CPU usage time [s] 8,251 67,158 

 
Figure 4. Fitting a cumulative normal distribution to the total NPC data. 

Table IV and Fig. 4 are revealing in several ways, namely: 

 The stochastic variant of the model is able to provide tailored 
decision support for effective investment planning of MGs, 
whilst accounting for various problem-inherent uncertainties 
– in accordance with the uncertainty budget of interest. 
Specifically, the most likely whole-life cost of the test-case 
MG indicates an 8% (equating to NZ$0.3m) uncertainty 
cost premium above the deterministic cost estimates. Also, 
at the lower and upper extremes, which respectively 
represent the risk-seeking and risk-averse cases, the life-
cycle cost of the system is found to be 17% lower and 30% 
higher than the deterministic case, respectively. The above 
asymmetry in the distribution of the investment cost data 
associated with different stochastic sub-models – where the 
mean of the population is greater than its median and 
therefore, the corresponding density function is positively-
skewed – indicates that the additional cost incurred by a 
robust planning strategy is approximately double the savings 
of the corresponding opportunistic strategy with the same 
absolute value for the degree of conservatism. 

 The percentage of the battery storage capacity to the total 
non-dispatchable power generation capacity in the cost-
optimal solution set is found to be 71%, 76%, and 68% 
in the best-case, most likely case, and worst-case scenarios, 
respectively. This observation suggests that the robust and 
opportunistic MG planning attitudes return mutually 
opposed solution sets in terms of the storage-to-generation 
ratio. Accordingly, at the current cost and technical 
performance of Li-ion battery storage for MG applications, 
the contribution of the storage capacity to narrowing the 
associated uncertainty bounds is found to be a concave-down 
quadratic function of the degree of conservatism – with the 
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vertex of the corresponding parabola located at the point 
associated with the risk-neutral (most likely) stochastic case. 

 The overall running time of the stochastic model is 67,158 s, 
which is 8.1 times higher than that of the deterministic 
model. More specifically, simulating the deterministic model 
for the seven year-long hourly reduced scenario vectors is 
responsible for a significant portion of the CPU time, taking 
55,804 seconds of computational time. The remainder of the 
CPU usage time (11,354 s) was in clustering the hourly 
scenarios using the MILP-based scenario reduction 
algorithm, which takes less than 2 seconds of computational 
time to solve each hourly scenario reduction problem. While 
the stochastic model may be relatively computationally 
intensive, the decisions it is intended to support involve the 
planning of capital-intensive generation and storage assets.  

VI. CONCLUSIONS 

A computationally tractable model for meta-heuristic-
based MG sizing that systematically and comprehensively 
accounts for probabilistic uncertainty associated with multiple 
input data – based on a heuristic scenario reduction algorithm 
– has been developed for the first time – towards improving 
the accuracy of the stochastic modelling results. A case study 
has been carried out to demonstrate the computational 
tractability of the proposed stochastic model for long-term MG 
investment planning in concurrently characterizing at least six 
sources of parametric uncertainty whilst retaining the 
statistical properties of the original scenario tree within an 
acceptable level. More specifically, the numeric results 
obtained from the application of the model to the test-case MG 
system populated for the town of Ohakune, New Zealand, have 
provided in-depth, accurate, and robust strategic capacity 
allocation and investment planning decision-making support in 
accordance with various uncertainty budgets. In particular, it 
is shown that the stochastic approach to MG designing incurs 
an (added) uncertainty treatment cost of 8% (equating to 

NZ$0.3m) and 30% ( NZ$1.17m) respectively in the most 
likely and worst-case scenarios compared to the deterministic 
MG investment planning results. In contrast, a strongly 
opportunistic designer who selects the least theoretically 
feasible infrastructure mix for the site of interest could expect 
a 17% ( NZ$0.66m) reduction in total discounted MG costs.    
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