
Certification Trails and Software Design for Testability

Gregory F. Sullivan t Dwight'S. Wilson 2 Gerald M. Masson 3 f_] _

Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science

Johns Hopkins University Johns Hopkins University Johns Hopkins University
Baltimore, MD 21218 Baltimore, MD 21218 Baltimore, MD 21218

t_

l
I:

1
i=

!
• L

!:

Abstract

This paper investigates design techniques which may

be applied to make program testing easier. We present
methods for modifying a program to generate addi-

tional data which we refer to as a certification trail.

This additional data is designed to allow the program

output to be checked more quickly and effectively. Cer-

tification trails [14, 16] have heretofore been described

primarily from a theoretical perspective. In this paper,
we report on a comprehensive attempt to assess experi-

mentally the performance and overall value of the certi-
fication trail method. The method has been applied to

nine fundamental, well-known algorithms for the fol-

lowing problems: convex hull, sorting, huffman tree,

shortest path, closest pair, line segment intersection,

longest increasing subsequence, skyline, and voronoi di-

agram. Run-time performance data for each of these

problems is given, and selected problems are described
in more detail. Our results indicate that there are many

cases in which certification trails allow for significantly

faster overall program execution time than a 2-version

! programming approach, and also give further evidence
of the breadth of applicability of this method.

-'_[(eywords: Software design for testability, software
fault detection, certification trails, error monitoring,

design diversity, data structures.

1 Introduction

We have examined a wide variety of fundamental

algorithms to determine how they can be redesigned
to allow for easier testability. To make the problem

of testing the correctness of the output of a program
more tractable we have found it is desirable to modify

the program so that it generates additional data which
we refer to as a certification lrail. This additional data

is designed to allow the program output to be checked

1Research partially supported by NSF Grants CCR-8910569
nald CCR-8908092 nald an IBM Tedmology hltercha_nge Program
Grnnt.

2Researda partially supported by NSF Grant CCR-8910569
a_td aJi IBM Teclmology Interchange Program Gra_lt.

:_Researd_ partially supported by NASA Grant NSG 1442 and
a_! IBM Teclmo|ogy InterchaJ_ge Program Grant.

more quickly and effectively. Our previous work on cer-
tification tra_ls emphasized a theoretical perspective in

which we proved that the asymptotic time complexity

of the testing process could be reduced [14, 16]. In

this paper, we report on implementations of the cer-
tification trail method so as to assess experimentally

with run-time data the performance and overall value

of the technique. We have implemented the certifica-
tion trail method for nine fundamental and well-known

algorithms of broad importance and applicability• For

each algorithm, we have produced three implementa-
tions: a version which produces the output; a version

which produces the output and generates a certifica-

tion trail; and a version which checks the output while

utilizing the certification trail. Specifically, algorithms

for the following problems are analyzed: huffman tree,

shortest path, sorting, closest pair, line segment in-
tersection, convex hull, longest increasing subsequence,

skyline, and voronoi diagram. The scope of the algo-
rithms considered gives credibility to the overall appli-

cability of the certification trail method. Furthermore,

comparisons of run-time data for each of the three ver-
sions of each of the algorithms considered reveal many

cases in which an approach using certification trails al-

lows for significantly faster overall program execution

time than a 2-version programming approach.

2 Introduction to Certification Trails

First, let us consider a basic method which is used

to perform testing to detect software faults called N-

version programming [1, 2]. This method utilizes N

teams of programmers, each independently implement-

ing separate programs based on a problem specifica-
tion. The programs are executed on the same input and

the outputs are compared. Errors caused by software
faults are detected whenever the independently writ-

ten programs do not generate coincident errors. Thus

the technique exploits design diversity. Also, note that
the method can detect hardware faults which affect the

separate executions in distinct ways causing distinct

outputs. It is particularly valuable for detecting errors
caused by transient fault phenomena. The N-version

programming method can be used to detect faults af-

Paper 7.3 INTERNATIONAL TEST CONFERENCE 19930-7803-1429-8/93 $3.00 © 1993 IEEE
200

PR_CIlO_ P,AGE BLANK NOT FILMED

_ •/.Version
]programming'

7 "

!
o

Primary Secondary
Execution Execution

Primary Secondary

'G_ification Execution Execution

Compare

I7

Compare

iFigure 1: Timeline Comparison of the Certification

_Trail with 2-Version Programming

'.tit a system has been put into production or it can be
_atted to detect faults in a testing phase prior to produc-
"_ tlon. If two teams are used then we refer to the method

t_ 2-version programming.

_ The certification-trail technique is designed to pro-
"-,Lvide similar capabilities for detecting software and

hardware faults as 2-version programming but expend
_'-fcwer resources. As mentioned above the central idea

it to modify the first algorithm so that, with modest
="additional overhead, it leaves behind a trail of data

which we call a certification trail. This data is chosen
_to that it can allow the second algorithm to execute
_more quickly and/or have a simpler structure than the

first algorithm. As above, the outputs of the two exe-

_¢utions are compared and are considered correct only
_ifthey agree. An illustration of typical execution times
='of 2-version programming versus the certification trail

method is given in Figure 1. We assume that the two

_mphmentations developed for 2-version programming
=-nave approximately equal execution times. Note, how-

ever, that we must be careful in defining this method
_r else its error detection capability might be reduced
_,y the introduction of data dependency between the

two program executions. For example, suppose the frst
_rogram execution contains an error which causes an in-

Eorrect output and an incorrect trail of data to be gen-
=ttrated. Further suppose that no error occurs during the
execution of the second program. It still appears pos-

-i_ble that the execution of the second program might
the incorrect trail to generate an incorrect output

which matches the incorrect output given by the execu-
':on of the first program. Intuitively, the second execu-

_n would be "fooled" by the data left behind by the
"frst execution. The definitions we give below exclude
this possibility. They demand that the second execu-

_m either generate a correct answer or signal that an
_or has been detected.

3 Formal Definition of a Certification
Trail

In this section we will give a formal definition of a
certification trail and discuss some aspects of its real-
izations and uses.

Definition 3.1 A problem P is formalized as a rela-
tion, i.e., a set of ordered pairs. Let D be the domain
(that is, the set of inputs) of the relation P and let S

be the range (that is, the set of possible solutions). We
say an algorithm A solves a problem P iff for all d E D
when d is input to A then an s E S is output such that
(d, s) _ p.

Definition 3.2 Let P : D -. S be a problem. A solu-
tion to this problem using a certification trailconsists of

two functions F1 and F2 with the following domains and

ranges FI : D --, S x T and F2 : D x T _ S O {error}.
T is the set of certification trails. The functions must
satisfy the following two properties:

(1) for all d E D there exists s E S and t E T such that
Fl(d) = (s,t) and Fz(d,t) = s and (d,s) 6. P

(2) for all d E D and all t E T either

(F2(d, t) = s and (d, s) E P) or F_(d, t) = error.

We also require that FI and F2 be implemented so

that they map elements which are not in their respec-
tive domains to the error symbol. Intuitively, the first
condition states that if both parts of our solution exe-
cute correctly, then their answers agree and are correct.

The second condition states that a correct secondary
execution will never produce an incorrect output, i.e.,
one that is not a solution to the problem.

The definitions above assure that the testing capabil-
ity of the certification-trail approach is similar to that
obtained with a 2-version programming approach dis-
cussed earlier. That is, if a software or hardware fault
occurs during only one of the executions then either the
fault will be detected or the output will be a correct so-

lution to the problem. The examples in this paper will
indicate that this new approach can save overall execu-
tion time.

4 Certification Trail Examples

In the remainder of this paper we evaluate the use
of certification trails for nine classic problems in com-
puter science. We have implemented algorithms for
these problems together with other algorithms which

generate and use certification trails. In addition, we

i:

O_INAL PA_ I_
OF POOR QUALITY

Paper 7.3
201

Ld

discuss a general technique for construction of certifi-

cation trails for algorithms using a wide range of data
structures. This technique is used to implement the

certification trails for several of our examples.

We provide a full description of the algorithm for the

convex hull problem which generates a certification trail

and a full description of the algorithm which uses that

trail. Because of space considerations the discussion

of the other algorithms is abbreviated. In some cases

references to previous publications or technical reports

which describe the algorithms more fully are given.

The algorithms we have chosen to implement are

not always the algorithms which have the smallest

asymptotic time complexity. Often the asymptoti-

cally fastest algorithms have large constants of pro-
portionality which make them slower on the data sizes

we examined. We modified and used some programs

from major software distributions such as quicker-sort

from a Berkeley Unix distribution. Fortune's algo-
rithm for computing the Voronoi diagram was obtained

from an lnternet site at AT&T Bell Labs. Other algo-
rithms were based on textbook discussions. It should

be stressed here that this research is continuing as

we further increase our corpus of algorithm and data-
structure implementations.

4.1 Explanation of timing data

We have collected timing data for the algorithms on
a Sun SPARCstation ELC with 16MB of RAM. The

system was run as a standalone machine in single user

mode during the timing experiments. Timing data was

obtained through the getrusage 0 system call. The user
times are reported in the data.

Much of the data presented in the timing table is
essentially self-explanatory relative to the certification

trail technique and algorithms considered. However, a

brief discussion of the table entries is appropriate.

The column labelled Basic contains timing data

which gives the execution time of the algorithm in pro-
ducing the output without the generation of the certi-

fication trail. All timing data is listed in seconds.

The Primary Execution (Prim. gzec.) column gives

the execution time of the algorithm in producing the

output with the additional overhead of generating the
certification trail.

The Secondary Execution (,.%c. Ezec.} column gives

the execution time of the algorithm in producing the

output while using the certification trail.

The Percent Savings (J_ Say.) column records

the percentage of the execution time savings which is
gained by using the certification trail method as com-

pared to 2-version programming approach. This as-

Paper 7.3
202

sumes that both versions take approximately the same
amount of time to execute.

The Speedup column is the ratio of the run times of

the Basic Algorithm and the Secondary Execution.

For the Flufman tree data, the input size for the

Fluffman tree program is the number of nodes. Each

node is given a frequency, chosen uniformly from the
integers {1, 2, ..., n}. n was also selected to be the
number of nodes.

For the shortest path table, there are two numbers

associated with the input size, the first is the number of

vertices in the graph, the second the number of edges.

A graph with the required edges is selected uniformly
from the set of all such graphs, then tested for connect-

edness in order to assure that paths exist to all vertices.

For the geometric algorithms, the input size is the

number of points (or lines) in the original data set.

Point set input was generated by choosing points with

integer coordinates uniformly over a large square (typ-

ically 1,000,000 by 1,000,000 or larger square). For the
Line Segment Intersection problem, lines were gener-

ated by picking a line segment start point uniformly

from a large square and picking ofsets for • and y-

coordinates from a smaller range to give the end point
of the line segment. This was done to bound the line

length and avoid data sets resulting in a quadratic num-
ber of intersections.

Data for the longest increasing subsequence problem

was produced by generating a random permutation of
[I..N] for input size N.

Sorting was performed on an array of pointers to

structures. It was assumed that each structure con-

tains an extra integer field for use in generating the
certification trail. Sorting was performed on integer

keys, though the technique can be used with a more

complex key (in fact, using complex keys is very likely

to increase the speedup achieved). Integers were chosen

uniformly from interval [l.. l, 000,000, 0013].

4.2 Convex Hull Example

The convex hull problem is fundamental in the field

of computational geometry. Our certification trail so-

lution is based on a convex hull algorithm due to Gra-
ham [6] called Graham's Scan. For basic definitions in

computational geometry see the text of Preparata and
Shamos[l 1]. For simplicity in the discussion which fol-

lows we will assume the points are in general position,

e.g., no three points are collinear. It is not hard to
remove this restriction.

Definition 4.1 The convex hull of a set of points, T,
in the Euclidean plane is defined as the smallest convex

polygon enclosing all the points. This polygon is unique

its vertices are a subset of the points in T. It is

wecified by a counterclockwise sequence of its vertices.

The algorithm given below constructs the convex

bull incrementally in a counterclockwise fashion. The

ltrst step of the algorithm selects an "extreme" point
and calls it Pl. The next two steps sort the remaining

points. The order of the points is determined by the
dopes of the line segments formed by joining each point

lop1. It is not hard to show that after these three steps

the points when taken in order, pl, P2,-.-,Pn, form a

dmple polygon; although this polygon may not be con-
vex. The Graham Scan algorithm traverses this poly-

iI_n, removing points until the resulting polygon is con-
vex. The main FOR loop iteration adds vertices to the

polygon under construction and the inner WHILE loop
mnoves vertices from the construction. A point is re-

moved when the angle test performed at line 6 reveals

_at the angle at that vertex is obtuse. It is easy to
demonstrate that when a point is removed, it must fall

within the triangle defined by three other points, Pl and

the two points that were adjacent to the point removed.
When the main FOR loop is complete the convex hull

been constructed. The execution of this algorithm

demonstrated in Figure 2. For each removed point,

the associated triangle is indicated in bold lines, and in
Ule text below the diagram. Our certification trail relies

the fact that that these triangles can be determined

quickly.

Algorithm CONVEXHULL(T)

lmput: Set of points, T, in R 2
01tput: Counterclockwise sequence of points in

R 2 which define the convex hull of T

} Let pl be the point with the largest

z coordinate (and smallest y to break ties)
2 For each point p (except Pl) calculate

L the slope of the line through p] and p

Sort the points (except px) from smallest

slope to largest. Call them P2,..-,P,
qx :=pl; q2:=P2; q3:=P3; m=3
FOR. k=4tonDO

WHILE the angle formed by

" q,n-l,q,n,Pk is > 180 degrees
" DOm:=m-I END

fl. m:=m+l

qm := Pt
END FOR-

10 FOR- i = I to m DO, OUTPUT(q_)

END FOR
END CONVEXHULL

First execution: In this execution the code CON-

VEXHULL is used. The certification trial is generated

9 /
! p7/"
! ?:-.psr_
i=C:.s..... pl _p4

p8 _ p8 p6

pl p1

Figure 2: Convex hull example.

Point not on Three surrounding points

convex hull

P3 pl , P2, P4

P5 Pl, P4, P6

P7 Pl ,p6 , ps

by adding an output statement within the WHILE loop.

Specifically, if an angle of less than 180 degrees is found
in the WHILE loop test then the four tuple consisting

of qm, q,,_-I,Pl,PJ: is output to the certification trail.
The final convex hull points ql,..-, qm are also output

to the certification trail. Strictly speaking the trail out-

put does not consist of the actual points in R 2. Instead,
it consists of indices to the original input data. This

means if the original data consists of Pl, P2,.-., P, then
rather than output the element in R 2 corresponding to

pi the number i is output.
Second execution: Let the certification trail con-

sist of a set of four tuples, (zl, al, hi, cl), (z2, a2, b2, c2),

..., (z,, a,, b,, c_) followed by the supposed convex hull,

ql, q2, .--, q,,_. The code for CONVEXRULL is not used
in this execution. Indeed, the algorithm is dramatically

different than CONVEXHULL.

It consists of five checks on the trail data.

• First, it checks that there is a one to one correspon-
dence between the input points and the points in

u {q,,... ,qm}.

• Second, it checks that for each i E {l,...,r}, ai,

bi, and ci are among the input points.

• Third, the algorithm checks that for each i E

{1,...,r}, zi lies within the triangle defined by
ai,bi, and ci.

Paper 7.3
203

ORIGINAL PAGE fS

OF POOR QUALITY

-m

w

E :

w

Fourth, the algorithm checks that for each triple
of counterclockwise consecutive points on the sup-

posed convex hull, the angle formed by the points

is less than or equal to 180 degrees.

Fifth, it checks that there is a unique point among

the points on the supposed convex hull which is a
local maxima. We say a point q on the hull is a local

maxima if its predecessor in the counterclockwise

ordering has a strictly smaller y coordinate and its
successor in the ordering has a smaller or equal y

coordinate.

If any of these checks fail then execution halts and

"error" is output. Otherwise the convex hull read from

the trail is output. As mentioned above, the trail data

actually consists of indices into the input data. This
does not unduly complicate the checks above; instead

it makes them easier. The correctness and adequacy of

these checks must be proven. A complete formal proof

is beyond the scope of this paper, instead a brief outline

of the proof will be given.

Using our formal definition of certification trails, let
D be the set of all finite planar point sets T. Let S

be the set of convex polygons, with vertices in coun-

terclockwise order (the restriction to counterclockwise

ordering makes the convex hull unique). Then the

problem we are considering is HULL : D ---* S where

HULL(T) is the polygon in S that forms the convex
hull of T.

The description of the algorithms above defines func-

tions/'1 and F2. We must show that both conditions of

Definition 3.2 hold. The following two lemmas, which

we state without proof, are required.

Lemma 4.2 Let P be a polygon on n points

PI,I_,..-,P,_. P is a convex polygon iff P is simple
and each angle pipjPk is less than or equal to 180 de-

grees, where i is in 1,2,...n, j = (i+ 1) modn, and

k = (i + 2) mod n.

Lemma 4.3 If P is a non-simple polygon, then either
P has more than one local maxima, or the interior angle

at some ve_ex is greater than 180 degrees.

These are deceptively simple statements. Though

they are intuitively obvious, a formal proof is difficult.
It is interesting to note that some computer graphics

texts give an incorrect test for determing convexity of

a polygon by omitting the check for simplicity required

by Lemma 4.2.
Recall that the first condition is:

For all d E D there exists s E S and t E T such that

fi(d) = (s,t) and F2(d,t)= s and (d,s) e P.

Intuitively, this means that if both executions per-

form correctly then they will both output the convex

hull of the input, which is unique. Note that genera-
tion of the certification trail does not affect the output

of the Graham Scan algorithm. Thus the condition

on Fi(d) is satisfied by the correctness of the Graham

Scan algorithm, the proof of which is well known [1 l].
To show that F2(d, t) = s, note that a copy of s is con-
tained on the trail t. Our description of F2(d, t) states

that s is output unless one of the five checks above
fails. It is trivial to verify that the first three of these

checks must be satisfied. The fourth check cannot fail,

since the polygon described by s is convex (because

(d, s) E P). Similarly, if the fifth check fails, then the

polygon described by s has two local maxima, and this

is not possible for a convex polygon.

The second condition is:

For all d E D all t E T either (F2(d,t) = s and

(d, s) e P) or F2(d, t) = error.

Intuitively, this means that given an input and arbi-

trary trail, F2(d, t) produces a solution to the problem

or flags an error.

Our definition of F2(d, t) states that the polygon Q

stored on the trail is output unless one of the five checks

fails. We must therefore demonstrate that if all five

checks succeed, then Q is the convex hull of the input

points d. Let H be the convex hull of the points d,
The first condition guarantees that every point in d

is classified as a hull point or an interior point. The

second condition guarantees that the triangles used to

identify interior points are formed from input points,
and the third check verifies that the interior points are

indeed inside their respective triangles. Note that we

do not attempt to verify that the triangles used are the
ones that would be produced by Fl(d). In general, for

a given interior point, there may be several triangles of

input points in which it is contained. Together, the first
three conditions imply that all points in H are also in Q,

since it is impossible for a hull point to be contained in

a triangle. Note that these three checks do not exclude

the possibility that interior points are present in Q, nor
do they guarantee that the ordering of the hull points in

Q is correct. The final two checks will accomplish this.
If the last two checks are satisfied, Lemma 4.3 stateS

that Q is simple, and therefore it must he convex by

Lemma 4.2.

Thus, Q is a convex polygon whose vertex set is a

superset of the vertices of H, i.e., H is contained in
T. This implies that no other point from the input

set may be a vertex of Q, since any input point that
is not a hull point is interior to H and therefore inte-

rior to Q. Finally, it is clear that the ordering of the

vertices of Q and H must be the same (although there

Paper 7.3
204

L.might appear to be two possible orderings, clockwise
and counterclockwise, a clockwise ordering will fail the

fourth check). Therefore if all five checks succeed, then

_the output of F2(d, £) will be the convex hull of d.

This demonstrates that the algorithms described

meet the conditions of Definition 3.2, and are therefore

_:_a certification trail solution to the convex hull problem.
Thne complexity: In the first execution the sort-

ing of the input points takes O(n log(n)) time where n is

_f;he number of input points. One can show that this cost

_dominates and the overall complexity is O(n log(n)).
It is possible to implement the second execution so

_ hat all five checks are done in O(n) time. The first two

=_becks may be done in linear time since the certification

trail contains indices into the input data. The third

.nd fourth checks require a constant time calculation at

ach point. Finally, the uniqueness of the local maxima
"_ clearly checkable in linear time.

Order-of-Magnitude Testing Speedup: It

hould be noted that for the convex hull problem, we

•_e seeing an order of magnitude speedup for reason-
able sized problems. We believe this offers a dramatic

_ emonstration of the efficiency of our proposed software

- _ting technique using certification trails in compari-

son with the 2-version programming technique.

Size Basic Prim. Exec. Se¢. % Speedup

F (Also Gem Exec. Say.

woo 0.s4 o.6r 0.08 41.4i 8.00
= 10oo0 1.38 1.40 0.1r 43.12 8.12
--25000 3.89 3.84 0.46 44.73 8.46

5oo0o s.44 8.50 0.85 44.Sl 9.93
"00000 17.36 17.68 1.65 44.33 10.52

'-- Table 1: Convex Hull

qtv3 Sorting Example

This important problem has a massive literature. In

tins section we will discuss how to apply the certifi-

cation trail approach to the sorting problem. Let us

ume that the sorting algorithm takes as input an ar-
r__. of n elements and outputs an array of n elements.

The algorithm is supposed to place the data in non-
dA'reasing order.

L ro design a certification trail algorithm we must dis-
c_er the nature of the data that should be included

in the certification trail to allow quick computation

o! he final output sorted array. Suppose that we de-
cL__. to use the output array itself as the certification

trail. We note that it is easy to check that this array is

in- on-decreasing order by simply performing a single

pass over the array. Unfortunately, it is considerably
more difficult to make sure that this array contains ex-

actly the same elements as the original input array. In-

deed, this problem has a lower bound time complexity
of f_(n log(n)) in a comparison based model.

Because of this difficulty we use the permutation of

the elements defined by the input and output data ar-

rays as the certification trail. This permutation is com-
puted by attaching an Item Number field to the data

elements before sorting. The i-th item receives item

number i. After the elements are sorted, the permu-

tation from input to output is obtained by reading the
Item Numbers from the elements in their new order.

The second execution reads the permutation from

the trail and verifies that it is a permutation on n el-

ements, i.e., that no numbers are repeated or omitted.

This permutation is used to rearrange the input ele-
ments in linear time. Finally the algorithm checks that

these elements are now in non-decreasing order.

Size

100O0

50OOO

100000

5O0OO0

1000000

Basic

0.28

1.80

3.96

23.95

50.23

Prim. Exec. Sec. %

(Also Gen. Exec. Say.

Trail)
0.30 0.04 39.29

1.90 0.19 41.94

4.08 0.41 43.31

24.69 2.14 43.99

51.57 4.38 44.31

Speedup

7.00 --

9.47

9.66

11.19

11.47

Table 2: Sort

4.4 Certification Trails For Abstract Data
Types

Before we present the rest of our example algorithms
we discuss a general technique applicable to many al-
gorithms and data structures.

An abstract dala lype is a data object or set of data

objects together with a group of operations for manip-

ulating the object(s). Each operation takes a (possibly

empty) set of arguments, and some, but not necessarily
all, operations return answers. Many algorithms make

extensive use of abstract data types.

We describe a method for automatically generating
a certification trail for an algorithm which uses an ab-

stract data type. This is done by modifying the ab-

stract data type operations, so that during the first
execution they generate a certification trail, and dur-

ing the second execution they use the certification trail.

Otherwise, these operations are identical to the original
abstract data type operations, i.e., they take the same

type of arguments and have the same return types. The
object of creating and using the certification trail is to

ORIGINAL PAC_EIS
OF POOR QUALITY

Paper 7.3
205

m

n

L_

u

g

allow a more efficient implementation of the abstract

data type during the second execution.
We illustrate this technique for the following ab-

stract data type which we call Ordered Collection. An
Ordered Collection will contain a set of pairs (i,z)

where i is an item number, and x is a real number value.

(This selection is made for simplicity of description, the
elements being stored could be more complex). No two
elements of the set may have the same item number,

though several items may have a common value. We
define a total ordering on pairs by (i, z) < (i',z') iff

z<x'orz=x'andi<i'

The following operations are defined on an Ordered

Collection:

INSERT(/,x) Add the element (i, x) to the set.

DELETE(i) Delete the element with item number i

from the set.

PREDECESSOR(i) Let (i, x) be the element in the
set with item number i. This operation returns

its predecessor, that is, the largest pair less than

(i, z). A special value SMALLEST is returned if

(i, r) is the smallest element in the set.

MIN Return the smallest element in set.

NEAREST(z) Return the element from the set with
value closest to x. If there is a tie, return the

element with the smallest item number.

This small set of operations is being chosen for con-

creteness, several additional operations could be easily
defined. If an error occurs during any of these opera-

tions, for example, inserting pairs with duplicate item
numbers or attempting to delete a non-existent item,

then the program terminates indicating an error.

These operations may be modified to produce a cer-
tification trail during the first execution by modifying

the INSERT(i,z) and NEAREST(r) operations to do

the following (in addition to their normal function):

INSERT(i,x) After adding this element to the set,

perform a PREDECESSOR(i) operation and write
the item number of the answer to the certification

trail.

NEAREST(z) Write the item number of the answer
to the certification trail.

A typical implementation of an abstract data

type supporting the above operations would require

f_(n log(n)) time to process a sequence of n operations.

By using the certification trail, we can achieve linear
time for n operations during the second execution. This

Paper 7.3
206

includes the time necessary to check the trail for cor-

rectness as well as use it.

The implementation of the Ordered Collection for
the second execution will be a structure called an in-

dexed linked list. This is a doubly linked list, along

with an array Items of pointers, indexed by item num-
ber. The i-th element in this array points to the list

node for the element with item number i (or is NULL if

no element in the list has item number i). This allows

us to find an element in constant time given its item

number. The elements themselves are maintained in

ascending order (according to the pair ordering given

above) on a doubly linked list, i.e., each element has

pointers to its successor and predecessor. In addition
to the array, we maintain a variable Start, which stores

the item number of the first element in the list.

The abstract data type operations for the second

execution are defined as follows:

INSERT(i,x) Read the item number p from the trail.

p is the item number that would be the predecessor

of (i,z) if it were in the set. Items[p] points to
the list node for the element with index p, call

this element (p, xp). We can insert (i, z) after this
node using ordinary list operations. Before doing

so, however, we make three checks:

i. Check that Items[i] is currently NULL, i.e.,

there is not currently an element with item

number i in the set.

ii. Check that (i, x) is greater than (p, zp).

iii. Check that (i, z) is less than the successor of

(p,

If these checks are satisfied, then (i, x) may be in-

serted after (p, zp). Set Items[i] pointing to the

list node for (i, z).

Note that special cases occur at the beginning and
end of the list. We omit the specifics of these cases,

,. tart mustmentioning only that q be updated for
insertions at the front of the list.

DELETE(i) Check that Items[i] is not NULL, i.e.,
there is an element with item number i currently

in the set. If so, remove it from the linked list,

and set Items[i] to NULL. If we remove the first
element of the list we must also update Start.

PREDECESSOR(i) ltems[,] points to the element

with item number i, and its predecessor may be

found by following the appropriate pointer.

MIN The variable Star_ indicates the item number of
the first element on the list, i.e., the minimum el-

ement. Items[Start] therefore points to this ele-

ment.

NEAREST(z) Read the index i from the trail.
Items[i] points to the element having this item
number, call it (i, v). To verify that this is the cor-

rect answer we will have to check one of its neigh-

bors. If v < x, then only the successor of (i,z)

could have a value closer to v. Otherwise, only the

predecessor is a candidate. Check the appropriate

neighbor.

Although our example uses elements that contain

item numbers, it is not necessary that the abstract data

_ype be defined in this way. The insert operation of an
_bstract data type may be modified to tag elements

with item numbers as they are inserted.

t _ Variations on this scheme are possible. For exam-
)le, by modifying DELETE(i) and NEAREST(x) op-

"=_rations so that they also write the item numbers of

_ 9redecessors to the trail, it is possible to use a singly
_ inked list during the second execution. More sophis-

ticated schemes, involving marking list nodes for dele-

tion and delayed checks, allow the use of singly linked

"---ists without requiring DELETE(i) and NEAREST(z)

=- produce predecessor information.
The technique in this example generalizes to other

__-Lbstract data types supporting a predecessor operation.

_:=in fact, a somewhat weaker condition often suffices; it

"=Is sufficient that the specific implementation of the ab-

stract data type allow the predecessor of an element

=_._) be found at the time the element is inserted. The

_bstract data type itself need not support a predeces-

sor operation. This technique is used in four of our

_:: ;xample algorithms.

Using this technique, it is possible to reuse the first

"_xecution code, except for the code implementing the

_ abstract data type operations. One advantage of this
_s that it may be possible to add extra checking to such

_ode, such as bounds checking and checks on pointer
references, that may be too expensive to include in the

irst execution. Of course, the two programs may be

_'leveloped separately as long as the specifications agree

on the use of the abstract data type.

_, Space does not permit a full proof of correctness of
Lhis scheme. A proof proceeds by establishing the fol-
-'towing invariants on the indexed linked list used in the

second execution.

__ i. The pairs in the linked list are in order from small-

est to largest.

_- ii. Each element of the Items array is either NULL or

w points to one of the nodes in the linked list.

_)ii. If Items[s] is not NULL, then the list node pointed

L to by it stores an element with item number i.

(Note that this implies that each list node is

pointed to at most once).

iv. Every node in the list is pointed to by some item

in Items[i].

v. Start is the item of the first element in the list.

These conditions are clearly satisfied by an indexed

linked list containing no elements (i.e., before any oper-

ations have been performed). Inspection of operations

that query the list (MIN and NEAREST for example)
shows that they function correctly if the above condi-

tions are met. It is easy to prove correctness of the

certification trail by demonstrating that the operations

maintain a one to one corresponce between the pairs
in the linked list and the elements in the abstract data

type and that the above invariants are preserved.

4.5 Shortest Path Example

This is another classic problem which has been ex-

amined extensively in the literature. Our approach is

applied to a variant of the Dijkstra algorithm [3] as

explicated in [17]. We are concerned with the single

source problem, i.e., given a graph and a vertex s, find

the shortest path from s to v for every vertex v.

The algorithm for this problem which has the fastest

asymptotic time complexity uses fusion trees and is

given in [5]. This algorithm however appears to have

a large constant of proportionality and therefore we do
not use it.

We use the techniques just discussed to implement

the certification trail for this problem. A full descrip-

tion may be found in a technical report [15].

Size Basic Prim. Exec. Se¢. % Speedup
(Also Gen, Exec. Say.

Trail)
Ioo3ooo 0.04 o0s oo2 1_so 200
250,2500 0.15 0.16 0.06 26.67 2.50

500,5000 0.31= 0.33 0.1 i 29.03 282
1000,10000 0.70 0.76 0.23 29:9 304

_ooo,_oooo 1.ss 1._ o_4s -_T_-- _-sjs__
2sOO,2SOOO2.0s 2.IS O.SS 134.47 a'ZS

Table 3: Shortest Path

4.6 Huffman Tree Example

This is another classic algorithmic problem and one

of the original solutions was found by Iluffman[7]. It
has been used extensively to perform data compression

through the design and use of so called Huffman codes.

These codes are prefix codes which are based on the

ORIOINAL PAGE I_

OF POOR QUALITY

Paper 7.3
207

Huffman tree and which yield excellent data compres-
sion ratios. The tree structure and the code design are

based on the frequencies of individual characters in the

data to be compressed. Here we are concerned exclu-

sively with the Fluffman tree. See [7] for information

about the coding application.

Definition 4.4 The Huffman tree problem is the fol-

lowing: Given a sequence of frequencies (positive inte-

gers) /[1], f[2],..., fin], construct a tree with n leaves
and with one frequency value assigned to each leaf so

that the weighted path length is minimized. Specif-

ically, the tree should minimize the following sum:

_I,et, EAF len(i)f[i] where LEAF is the set of leaves,
len(i) is the length of the path from the root of the tree
to the leaf li, f[l'] is the frequency assigned to the leaf

li.

A full description of the method we employ to gener-
ate and use a certification trail is detailed in a technical

report [15].

Site Basic Prim. Exe¢. Sec. _ Speedup

(Alto Gen. Exec. Say.

Trail)
5000 0.81 0.87 0.16 36.42 5.06

10000 1.76 1.86 0.33 37.78 5.33

25000 6.01 6.30 1.02 39.10 5.89

50000 10.62 11.14 1.70 39.55 6.25

Table 4: Huffman tree

4.7 Other problems

We report timing data for five other problems, the
"Manhattan skyline" problem, computation of Voronoi

diagrams, longest increasing subsequence, the closest

pair problem, and line segment intersection. Space per-
mits only a brief description of these problems, rather
than a full exposition of the certification trail tech-

niques used.
The "Manhattan skyline" problem is: Given a set

of rectangles with collinear bottom edges, compute the

polygonal outline of the union of the rectangles [9].

The Voronoi diagram is a fundamental concept in

computational geometry [11]. Given a set of points P
in the plane, the Voronoi diagram is a partition of the

plane into regions such that each region consists of all

points closer to a given p E P than to any other other

point in P. Computation of the Voronoi diagram is

an important step in many problems involving point

location.
The next problem we consider is, given a sequence

of integers, find the longest (not necessarily unique)

strictly increasing subsequence.

Site

1000

500O

1OO00

15OOO

2OOOO

Basic

0.27

1.69

3.91

6.08

8.53

Prim. Exec. Sec.

(Also Gen. Exec.

Trail)
0.26 0.12

1.65 0.57

3.72 1.14

5.78 1.77

8.27 2.33

Table 5: Skyline

%
S&V.

29.63

34.32

37.85

37.91

37.87

Speedup

2.25

2.96

3.43

3.44

3.66

IrSize

100

500

I000

5000

_oo00
5o000

Basic

0.04

0.24

0.51

2.75

5.79

40.15

Prim. Exec.

(Also G en.

TraD
0.04

0.26

0.51

2.82

5.89

4O.63

S¢'.c.

Exec.

0.03

0.19

0.39

2.03

4.06

22.00

Speedup
Sav.

12.50 1.33

6.25 1.26

I 1.76 1.31

I 1.82 1.35

14.08 1.43

22.00 1.83

Table 6: Voronoi Diagram

Size Basic Prim. Exec. Sec. %

(Also Gen. Exec. Say.

Trail)
10000 0,13 0.14 0.04 30.77

50000 0.78 0.81 0.22 33.97

- 100000 1.61 1.70 0.44 33.54

t 500000 9.17 9.32 2.22 37.081000000 ' 18.66 19.58 4.46 35.58

Speedup

3.25

3.55

3.66

4.13

4.18

Table 7: Longest Increasing Subsequence

Given a set of points P in the plane, the Closest

Pair problem is that of finding the pair of points with

minimum distance over all pairs in the set.

Size Basic Prim. Exec. S¢c. % Speedup

(Also Gen. Exec. Say.

Tr,,n)
10000 0.26 0.27 0.07 34.62 3.71 _

50000 1.45 1.55 0.36 34.14 4.03

IO(X)(X) 3.06 3.26 0.72 34.97 4.25

--'5"---00_ 16.84 18.02 3.62 35.75 4.65

Table 8: Closest Pair

Given a set of line segments in the plane, the line

intersection problem is the problem of determining all

intersections of line segments in this set.

For the first four problems, algorithms running in

O(n log(n)) time were implemented for the first execu-
tion. The second execution, using certification trails,

runs in linear time. The first execution algorithm used

for line intersection runs in (O((k + n) log(n)) time

where k is the number of intersections and n the num-

ber of points. The second execution runs in O(k + n)

time. Note that k may be quadratic in n.

Paper 7.3
208 :,

"-Si_

-i-00oo
-y-sooo

Basic Prim. Exec. Sec.

(Aho Geu. Exec.

Trail)
0.47 0.49 0.O4

1.45 1.53 0.12

3.33 3.4"g 0.26

7.72 7.88 0.60

24.00 24.12 1.75

Speedup
Say.

43.62 11.75 -

43.10 12.08

43.99 12.81

45.08 12.87

46.10 13.71

Table 9: Line Segment Intersection

: '5 Concluding Discussion

Certification trails have heretofore been discussed

- principally from a theoretical perspective. In this pa-
_per we have presented experimental timing data which

illustrates the advantages of the certification trail tech-

z .aique for software testing over the 2-version program-

Lining technique. We have further presented techniques
"_d analytical results for several new algorithms which

further support the significance of the certification trail

_technique by demonstrating its broadening applicabil-
ity. It should be appreciated that the scope of our

: experimental investigation is not limited to the algo-
rithms considered here; numerous other algorithms we
_lave considered could have been discussed, and we con-

tinue to work on new applications. It should also be

_ nointed out that in addition to the timing experiments
_?eported here, software fault injection experiments have

"-also been conducted which verify the detection capabil-
ities of the certification trail method. The breadth of

__ pplicability of the certification trail technique contin-

,es to expand along with the credibility of its advan-
tages. Increasingly, the certification trail method can

_'e viewed as a competitive software testing alternative.

References

_1] Avizienis, A., "The N-version approach to fault toler-

ant software," IEEE Trans. on Software Engineering,
vol. II, pp. 1491-1501, Dec., 1985.

___'2]Chert, L., and Avizienis A., "N-version programming:

a fault tolerant approach to reliability of software op-
= eration,* 1978 Fault Tol. Comp. Syrup., pp. 3-9, IEEE
-!_ Computer Society Press, 1978.

_] Dijkstra, E. W., "A note on two problems in connexion

- with graphs," Numer. Math. I, pp. 269-271, 1959.
--w==_

_] Fortune, S. _A Sweepline Algorithm for Voronoi Dia-

grams," Algorithmica, pp. 153-174, 2, 1987.

] Fredman, M. L., and Willard, D. E., "Traas-
dichotomous algorithms for minimum spanning trees

and shortest paths," Proc. 3Ist IEEE Foundations of
_oo Computer Science, pp. 719-725,1990.

[6] Graham, R. L., "An efficient algorithm for determining
the convex hull of a planar set", ln/ormation Process-
ing Letters, pp. 132-133, I, 1972.

[7] Huff.man, D., "A method for the construction of min-

imum redundancy codes", Proc. IRE, pp I098-II01,
40, 1952.

[8] Johnson, B., Design and analysis of fault tolerant dig-
ital systems Addison-Wesley, Reading, MA, 1989.

[9] Manber U., Introduction to Algorithms Addison-
Wesley, Reading, MA, 1989.

[10] Nievergelt, J., and Hinrichs, K. H., Algorithms and

Data Structures With Applications to Graphics and
Geometry, Prentice Hall, NJ 1993

[11] Preparata F. P., and Shamos M. I., Computationalge.
ometry, Springer-Verlag, New York, NY, 1985.

[12] Sedgewick, R., "Implementing quicksort programs,"
Comm. of the ACM, pp. 847-857, 21(10), 1978.

[13] Siewiorek, D., and Swarz, R., The theory and practice
of reliable design, Digital Press, Bedford, MA, 1982.

[14] Sullivan, G.F., and Masson, G.M., "Using certification

trails to achieve software fault tolerance," Digest of the
1990 Fault Tolerant Computing Symposium, pp. 423-
431, IEEE Computer Society Press, 1990.

[15] Sullivan, G.F., and Masson, G.M., "Using certifica-
tion trails to achieve software fault tolerance," De-
partment of Computer Science Technical Report JHU

8g/_6, Johns Hopkins University, Baltimore, Mary-
land, 1989.

[16] Sullivan, G.F., and Masson, G.M., "Certification trails
for data structures," Digest of the 1991 Fault Tolerant

Computing Symposium, pp. 240-247, IEEE Computer
Society Press, 1991.

[17] Tarjan, R. E., Data Structures and Network Algo-
rithms, Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, 1983.

J

i

p

ONQiNAL PA_E PS
OF POOR QUALITY

Paper 7.3
"_ 209

