
CONFIGURING FLIp·FLOPS TO BIST REGISTERS

Albrecht P. Stroele

Insti tute of Computer Design and Fault Tolerance
University of Karlsruhe

D-76128 Karlsruhe, Germany

ABSTRACT

Built-in self-test test registers must segment a circuit such
that Ihere exists a feasible lest schedule. If a register
transfer description is used for selecting the positions of
test registers, thc space for optimizations is small. In this
paper, I-bit test cells are inscncd at gate level, and an
initial tcst schedule is constructed. Based on thc infonna­
lion of this schedule, test cells that can be controlled in the
same way are assembled (0 tCSt registers. Finally, a test
schedule al RT level is constructed and a minimal set of
test control signals is dctcnnined. The prc.~enled approach
can reduce both BIST hardware overhead and test
application time. It is appl icable to control uni ts and
circuits produced by control oriented synthesis where an
RT description is not available. Considerable gains can
also be obtained if existing RT structures are reconfigured
for self-testing in the described way.

KEYWORDS: Buill-in self-test, register configuration,
test registers, tcst scheduling

1. INTRODUCTION

1.1 Test registers ro r lUST

Built-in self-test is one of the most important techniques
to test large and complex circuits. Test rcgisters arc added
at the primary inputs and outputs of the c ircuit, and some
additional test registers :Ire inserted into the c ircuit. These
multi-mode test regis ters generate p:lllerns or compact test
responses during test appl ication (e.g. 113, 17, 26J).

In the test mode, the circuit is segmented into a sel of
subcircuits that are completely bounded by test registers
(sec figure I). For testing a portion of Ihe circuit, al leasl
one test register must collect test responses. Thus the
smallest region that can be tested independently (test unit)
consists of one lest register Ihal can be configured as a
multiple input signature regi ster (MISR), the block of
logic connected to the inputs of this register, and a set of
test registers to generate test patterns for the inputs of the

* This work was supported in part by ESPRIT-project 7107
ARCHIMEDES.

Hans-Joachim Wunderlich *
Institute of Computer Struclures

University of Siegen, H5lderlinstr. 3
D-57068 Siegen, Gennany

block (cf. [8, 181). If the coll ccted signature differs from
the correct signature, the circuit is faulty.

In this way, every test unit U(Ti) is uniquely determined by
the test register Ti at its outputs. In figure I , the test uni t
u(T4) includes test registe r T4 (response compaction),
logic block I, and the tes t registers T 1 and T2 (pattern
generation). The block contained in the test unit usually
consists of combinational or pipeline structured logic. Test
units may overlap.

!!liI!!f<'~ T1 T2 T3

~~~T4 T5 T6 

~T7 
Figure J: Example of test un its at RT level (with test 

registers T I, ... , T7) 

In order to obtain testable subcircuits, the lest registers 
must be placed at appropriate positions. It has been shown 
independently by several authors that breaking all cycles in 
the circuit structure bounds the length of the required test 
sequeuces to the sequential depth of the circuit [4, 6, II , 
19,20[. To keep the hardware overhead low the number of 
flip-flops that arc integrated into test rcgisters in order to 
break all cycles should be as small as possible. If the 
topology of the storage elements is represented by a so­
called S·graph whose vertices correspond to flip-flops and 
whose edges indicatc combinational paths between flip­
fl ops, then this problem is equivalent to fi nding a 
"Minimum Feedback Vertex Set" {9J. Some authors also 
address extensions of this basic approach, as for example 
targeting a pipeline structure, limiting the sequential depth 
of the circuit. or considering timing constraints [4 , 6, 11 , 
14, 19,20]. 

INTERNATIONAL TEST CONFERENCE 1994 
0-7803-2102-2 /94 $4.00 0 1994 IEEE 

Paper 38.2 
939 



At RT level, the register graph GR:= (YR. ER) is the 
counterpart of the S-graph. The nodes VR represent the 
registers, and there is a directed edge between two nodes if 
there exists a path of combinational elements between the 
corresponding registers (sec fi gure 2) . The node set 
VR = VN u VT includes the registers VN without test­
abili ty features and the lest registers Vr. which can 
generate test patterns and compact test responses. 

prlrmry ir'(ll,l!S 

R5 

R6 
R5 

R6 

R1 
R4 

R. 

R2 R7 
R7 

R8 R3 

primary 00111116 

Figure 2: RT structure and corresponding register graph 
(CLB : combinational logic block, R· : register) 

The test register graph Gr:= (Vr. ET) is an abstraction 
of the register graph and describes the dataflow between the 
test registers. For each path in GR thai connects two nodes 
of VT o nly via nodes of VN there is a corresponding edge 
in ET. If for instance VT = { R),~, RS } (figure 2). then 
the test regis ter graph is as shown in figure 3 and each 
cycle of the register graph contains one test register. 

J:: 
1T3 

Figure 3: Test register graph (all cycles broken) 

However, the circuit structure obtained from breaking all 
cycles is not a priori suited to DlST since during self­
testing some registers may have to generatc patterns and 
compact tesl responses concurrently (e.g. T4). This kind of 
paTa!!e! self- leSI, where the signaLU res are used as test 
pattCf08, is on ly feasible in some cases f16, 251, but in 
general the required properties of the test patterns cannot be 
guaran teed . In most cases the sig natures arc not 

Paper 38.2 
940 

exhaustive, (weighted) random or even detemlinistic, and 
an addi tionall.est regis ter is required such that all cycles are 
broken at least twice. Hence for BIST the set VT must 
include R l, .. . , RS , and we obtain the test register graph 
of figure 4. The corresponding test units are shown in 
figure 5. 

T5 

T2 

Figure 4: Test register graph for BIST 

test unit u(T2) 

" 
test unit u(T4) 

R' L~:r--

" 

n 

" 

test unit u(T3) 

Figure 5: Test units for BIST 

1.2 Test schedule 

T> test 
unit 

u(T! ) 

" 

For test application, the order of testing all the test units 
must be determined. Generally not all tes t units can be 
tested simultaneously as they share some lest resources 
that can be used only exclusively. These restrictions are 
described in the test incompatibility graph GI;= (V], EI) 
[8]. The nodes VI of this graph represent the test units, the 
edges connect pairs of test units that can not be tested 
simultaneously ( incompatible test units). 

The test incompatibility graph depends on the test strategy 
applied \0 the circuit under tesl. For example, pseudo­
random testing requires that the output patterns of a test 



register that perfonns signature analysis are not used as 
test pauerns. Consequently, there is an edge ((u(Ti), u(Tj» 
e EJ if and only if the test register Ti is an input register 
(pattern generator) of u(Tj) or the test register Tj is an 
input register of u(Ti). 

The test schedule can be struClUred in the following way. 
A test session Si is a set of test units that are processed 
simultaneously. A test schedule S:= (Sf, 0) is described 
by a sequence of test sessions s:= (SO, sl, ... , 5d.l) , 
a repetition number r, and a subset 0 c VT of test 
registers whose contents (signatures) are evaluated at test 
end. The set 0 must include all the test registers at the 
primary outputs since the signatures in these test registers 
cannot influence any other signalUres. Sf is a short hand 
notation for the sequence where 5 is concatenated r times, 
sl = 5, s2 = ss, etc. 

In order to get a short test application time, a test schedule 
S = «SO, sl, ... , Sd-I ), 0) has to be detcnnined where d is 
minimum. The set of test units must be partitioned into 
a minimum number of test sessions. This ptoblem is 
equivalent to coloring the nodes of the test incompatibility 
graph with a minimum number of colors such that no edge 
connects two nodes of the same color [5, S, 18]. The nodes 
with the same color represent a sel of compatible lest 
uni ts. If for each color one test session is formed, the 
number of test sessions is minimum. 

1.3 Configuring flip.nops 10 test r egisters 

A gate level cin::uit corresponds to a variety of different test 
register graphs. The test register graph is uniquely 
detcnnined by the way the flip-flops are partitioned and 
assembled to test registers. Up to now. configuring flip­
Oops to test registers has not been intcnsively studied in 
literature. A top down design style has been assumed 
where the register graph is available as an intennediatc 
structure. Then some of the registers have been 
transformed to test registers [I, IS, 2 1]. If there is a self­
loop in the register graph, it is not possible to break all 
cycles twice and an additional test registcr must be included 
that is transparent in nonnal modc. These additional test 
registers may cause considerable hardware overhead. 

As new design style. .. and synthesis procedures are applied, 
the top-down approach no longer leads to optimal results 
or is not even possible: 

Control units: Control units form an increasing part of 
the circuits. Hcre the S-graph is strongly meshed, and an 
intermcdiate register transfer structure is not available. 
E;\"amples are many of the ISCAS'89 benchmark circui ts 
[2J. 

Control oriented synthesis: Some high level synthesis 
systems do not divide the system inlo data path and control 
unit (for an overview see (3]). As a consequence, the 
system contains both registers and single flip-flops that 
still need configuration to test registers. 

General register transfer j·tructllres: The register configura­
tion of the system mode is not always optimal for testing. 
As an example, figure 6 shows a carry save adder (CSA) 
and its registcr graph. Such a circuit is often used fo r 
implementing sequential multiplication [10]. 

b'!, ... , b' n.l' 0 

! C·o ..... C'1\>1 

A 

c 

Figure 6: eSA data paLh and its register graph 

The register graph contains two self-loops, and two addi­
tional transparent test registers B' and C' of length narc 
required for making it self-testable. Figure 7 shows the test 
register grdph and the corresponding test incompatibility 
graph for random testing. The test schedule needs two teSL 
sessions. 

A 

B' 

B c 

• lest session 1 o test session 2 

U(B')~U(C') 

u(8) V""b u(C) 

Figure 7: Test register graph including transparent tcst 
registers B' and C' (ieft) , colored tcst incom­
patibility graph (right) 

But looking at this circu it in more detail it is found that 
the transparent test register B' is superfluous. Aip-flop hi 
just feeds flip-flops hi-I and Cj, and flip-flop Cj feeds bi_1 
and Cj; .~o the S-graph contains sclf-loops for the flip-flops 
Ci, bUl not for the flip-Oops bj. Hcnce it is more appro­
priate to split register B into two registers of length ~ 

Paper 38.2 
941 



during testing, namely Ilo:= (bO, b2, .,., bn.2) and 
B J := (bl . b3, .. . , bn_I). The resulting register graph 
contains only one self-loop, and on ly one addi tional test 
register C' is required. The test incompatibility graph needs 
four colors (figure 8). 

A 

B, .... 0----''# C 

• lest session 1 o test session 2 
@:IIeSIsession3 
4D lest session 4 

"(BO)~"IC') 

U(Bl)~U(C) 
Figure 8: Test register graph after inserting test register C' 

and splitting register B (left). corrcsponding test 
incompatibility graph (right) 

Up to now the hardware savings arc paid by a longer test 
time. But if test rcgistcr C is also split into CO := 
(CO, cz, .0>' cn_Z) and C] := (CI, c3, .. . , cn.]), and thc 
samc is done with the transparcnttcst register C. then two 
tcst sessions are sufficient (see figure 9). 

A 

• test session 1 0 test session 2 

u(C~ u{C t ) 

Figure 9: Te.'il register graph after register reconfiguration, 
and corresponding lest incompatibil ity graph 

In this example, the hardware savings are obtained by cycle 
breaking al gate level and using this in formation for test 
register configuration. Also the tes t timc is reduced by test 
scheduling at gate level before test register configuration, 

1.4 O bjectives of optimal tes t r egister 
c onfiguratio n 

Test register configuration is subject to a variety of 
objectives. First o f all. the number of additional trans­
parent tcst registers should be minimized. The other 
objectives are strongl y related to BIST schedu ling 
technjques and aim at minimizing the teSt time and 
reducing the hardware overhead. An optimal test register 

Paper 38.2 
942 

configuration should support test sched uling in the 
following ways: 

• Minimizi!rg the number of te.ft sessions: Generally, a 
smaller number of test sessions reduces the overall test 
time. In add ition. less area is required by the BIST 
control unit (e.g. [12]). 

• Minimizing the number of differelll signals for con-
trolling the test registers.' Multi-mode test registers 
require at least two control signals: A signal TEST. 
which dist ingu ishes between normal mode and test 
mode, and a signal c , which d ist inguishes between 
pallern generat ion and signature analysis in the lest 
mode. All test registers may share the same TEST 
signal, but in general several signals c are required. The 
test contrOl unit must generate these control signals for 
all the test registers. If the total number of different 
control signals is smaller, the test control unit can be 
implemented with smaller hardware cost. The area 
requi red for routing the control signals is reduced, too 
(e.g. [ 15]). 

• Reducing the number Of signatures to be evaluated after 
testing: The test rcgisters arc init ialized only once at 
the beginning of the test. A test register that compacts 
test responses can get a faulty signature if the processed 
lest uni t contains a detectable fault , or if at least one of 
the in volved pattern gcnerating test rcgisters has got a 
faulty signature some time before, and thus produces a 
pattern sequence that diffcrs from the fault-free case, In 
this way the signatures can influence one another, and 
the effccts of a fault . namely faulty signatures, can 
propagate through the circuit [231. This can be utilized 
to rcduce the amount of self-test hardware. as for many 
circuits scanning and evalualion of signatures can be 
restricted to a subset of thc test registers provided that 
the tcst schedule is constructed appropriately. Moreover, 
it is suffi cient to scan the signatures only at the end of 
the test since any di fference between the actual contents 
of a tcst register and the contents corresponding to the 
fault-free case will remain unchanged in the pattern 
generation mode. 

The rest of the paper is organized as follows: In section 2, 
the cireui! is made self-teslable by placing test cells in the 
S-graph. and a test schedule is constructed at gate level. 
The information of this schedule is then exploitcd to 
detenninc maximal sets of test cells thai can be controlled 
in the same way. and test registers arc assembled from 
thesc sets (section 3). Allother result of this step is a 
minimal set of control signals. In section 4, the schedule 
obtained at gate level is translated to a preliminary 
schedule at RT level, which is optimized such thai the 
number of signatures to be evaluated at tcst cnd is 



minimal. In section 5, all things are put together and the 
complcte procedurc is described, section 6 gives experi­
mental results. 

2. TEST SCHE DULING AT GATE LEVEL 

At the gate level, the counterparts of the register graph GR 
and test register graph err arc the S-graph GR t and the test 
cell or I-bit test register graph GT!. In order to have at 
least two test registers in each cycle of the register graph 
GR, it is necessary to have at least two test register cells 
in each cycle of the underlying S-graph GRI. Selecting the 
nodes of OR I where test cclls have 10 be inserted is 
similar to the problem of selecting the flip-flops of a 
partial scan path such that all cycles of the S-graph arc 
broken twice. Therefore a sligthly modified version of the 
partial scan algorithms proposed in (I I, 19J can be used. 
First an additional node is inserted into each self-loop of 
GR I. then all the elementary cycles of GR I are determined. 
A subset of nodes is chosen that con tains at least two 
nodes of each cycle and is as small as possible. The nodes 
of this subset become test cells. In addition, test cells arc 
inserted at all the primary inputs and outputs. 

Figure 10 shows a simple example. which will be used 
throughout the paper to explain the proposed approach. 
Since the S-graph contains two self-loops, two storage 
elements that arc transparen! in the normal mode. rIO and 
q I, have 10 be inserted. The storage elements r), r4, r6, 
rIO, and TJ I arc selected to become test register cells (e.g. 
I-bit clements of a BILBO or a cel lular automaton). Then 
each cycle of the S-graph contains two test cells. Further 
test cells are added at the primary inputs (rt , r2) and 
outputs (rg, r9). 

" " 11 12 

" 13 16 14 

(r10) rl 1 ) 110 111 
,5 ,7 18 19 

'" '" u(13} u(14} 
• I U(r6) I U(~1 ) u(ll0) 

U(18) 

Figure /0: Example: S-graph GRI (top left), 
tes t register graph errl (top right), 

u(19) 

test incompatibility graph Gil assuming 
a pseudo-random lest strategy (bottom) 

The nolion of test units can also be transferred to the gale 
level. Every "I-bit lest uni t" is defined by the tc.~t cell at 
its output. Moreover. similar to the test incompatibility 

graph 01 at RT level, a test incompatibility graph Gil at 
gate level can be established. which represents the I-bit 
test units and the pairs of I-bit test units that must not be 
tested simultaneously . 

Using these concepts, a test schedule based on I-bit test 
units is constructed by graph coloring. For the example, 
one gets two lest sessions, s<J) '" (u(t), U(t4») and 
s(l) '" {U(t6), U(lg), U(19), u(t[O), u(l[ 1)1. 

During a test session, a test cell operates in the pattern 
generation mode or in Ihe response compaction mode, or it 
is not used for testing. Thus. for a given sequence of test 
sc.~sions, the operation of a tes t cell t has to be controlled 
according 10 a specific mode vector 
mt :'" (mt(O), ml(l), ... , ml(d- I)) where 

° if test cell t generates patterns 
in session j 

if test cell t compacts lest responses 
in session j 

2 else (test cell I not used in session j) 

for j=O, I .... ,d-I 

The mode vector of a test cell at a primary input contains 
at least one component of value 0 and possibly some 
components of value 2. The mode vector of a tcst cell al a 
primary output consists of d-I components of value 2 and 
one componen t o f value I since the I-bit test unit 
corresponding 10 this lest edl is tested in exactly one test 
session. Finally, the mode vector of every other test cell 
contains at least one component of value 0, exactly one 
component of value I , and possibly some components of 
value 2. 

The mode vectors of the example are m il'" mil = (0, 2), 
m il == m t4 = (I. 0), tnt, = (0, I). m tS '" m t9 '" (2, I). 
mtU) = mill == (0, I). 

3. SYNTHESIS OF TEST REG ISTERS 

In order to simplify test control, the operation of as many 
tes t cells as possible should be controlled by the same 
signals c that distinguish between pattern generation and 
signalUrc analysis (sec section 1.4). Test cells that arc 
controlled by the same signal c can be included in (he 
same test regi!>ter. 

The test cells at the primary inputs never have to compact 
test responses. Thus they can always operate in pattern 
generation mode, corresponding to the constant control 
signal c == (0, 0, ...• 0). Similarly, all the test cells at the 
primary outputs can be conlrolled by the constant signal e 
= (I, I, ... , I). These cells arc assembled to separate {cst 
registers. The constant control signal makes it possible to 
reduce the hardware costs of these test registers. 

Paper 38.2 
943 



In the foll owing, only the remaining tes t cells are consid­
ered. Two test cells ta and tb can be controlled by the same 
signal if their mode vectors mt.:= (ml.(O), ... , mt.(d- l») 
and mtb := (mtb(O) ..... mtb(d. l » satisfy the condition 

'r/ je{O. I ..... d-I) {mt.(j)+m",(j)¢ I] 

i.e. there is no test session where one of the test cells 
must operate in pattern generation mode and the other in 
response compaction mode. Then the mode vectors mt. 
and mtb are said to be compatible. 

A minimal number of different conlrol signals is required 
if the mode vectors of the test cells are partitioned inlo 
maximal subsets of mutually compatible mode vectors and 
for each subset one control signal c is detennined. Hence a 
graph OM is constructed whose nodes represent the mode 
vectors and whose edges describe pairs of incompatible 
mode vectors. A minimal coloring of OM gives the desired 
panition {1l0. Ill , ... , Ilk-l} of the mode vectors. where 
all mode vectors of a subset Ili are mutually compatible. 
Since each mode vector has ellactly one component of 
value I and all mode vectors having the value 1 in the 
same position are compatible. k S d aJways holds. 

Let Ili = {mtl' ... , mIn } be one of these subsets. The 
values of the control signal c(J.it) during the d sessions are 
computed by c(~i):= mil Ell mil Ell ... Ell min where 
the operator Ell is associative and defined by 

(ao, a" "', lid-I) Ell (bo, bl, .... bd_l) = (CO, q, .... Cd.l) 

c. '- J { , J'- (aj + bj) mod 2 
fo r j = O. I, ... , d·1. 

i faj =bj 
else 

The partition (110, Ii], .. ,' Ilk-I) of the mode vectors 
induces a panition \'to, 'tl , "', 'tk_l } of the test cells 
where every test cell tE'tj has a mode vector rotE Ili. Now 
from each subset 'ti we ronn one or more test registers that 
are controlled by C(~I). 

The synthesized test registers should achieve low aliasing 
probabilities when they are used for test response 
compaction. Thus the size of the test registers must be 
sufficiently large. e.g. al least 16 or 20 bit. If a subset ti 
is smaller, sometimes Ihe coloring of Ihe graph GM and 
thus the partition lila, Il l ..... Ilk.l} can be modified 
such that the number of cells in 'ti is increased, or 
additional flip-flops must be included for test purposes. On 
Ihe other side, if a subset 'ti is very large. several test 
registers can be built. Considering the hardware costs of 
configuring test cells, it is usually advantageous 10 group 
all the cells of 'ti that correspond 10 the same nonnal 
register into the same test register. 

Paper 38.2 
9 44 

For the ellample. the mall imal sets of compatible mode 
vectors arc Ilo :::; (mil' mLl ), III = {ml" mho, mtll}, 

and the control s ignals are c(IlO) = ( I, 0), C(~I ) = (0. I ). 
We get the test regislers T2 = 'to = (t3, 14). T3 = 't l = 
{t6, tlO, I] I), T[ = {tl, t21 at the primary inputs, and 
T4 = (t8.191 at the primary outpulS. Figure 11 shows 
how the lest control unit and the test regis ters are 
connected. 

test 
control 

--+ 

c {jJ.Oj 

c{jJ.1) 

o 
.. 

t1 , t2 

13. \4 

16, tl0, 111 

t8, t9 

• 
data llow through combinational 
logic and registers 
controllne 

~ test register contaning test cels Ii, .'" tj 

4
T1 

T3 T2 

T4 

test registe r graph 

Figure 11: Synthesized tesl registers and lest control unit 
for the eumple of figure 10 

4. TEST SCHEDULING AT RT LEVEL 

After test registers have been synthesized. the test sessions 
s~), S(ll l ..... sd(~1 constructed using I-bit test units are 
Iranslated to tesl sessions SO. Sl, ...• sd_1 thai are based 
on the test unilS al RT level. For each I-bit test unit U(ti ) 
tested in session s<p. the test uni t u(Th) with tiE Th has to 
be included in the session Sj. A test unil at RT level may 
be included in more than one test session. This is a 
consequence of ellploiting don't cares when the number of 
control signals is minimized. The test sessions SO. sl, .... 
Sd_ 1 and the control signals c(~o). C(~I), ... , C(~d.l) 
together with the tCSI lenglhs of the test sessions and the 
set of signatures to be evaluated give a behavioral 
specifi cation of the test control unit. For the ellample. we 
get the lest sessions SO '" {u(T2)1. 51 = {u(T3), U(T4»)· 
A complete schedule is 
((\u(T2)J. (u(T3). u(T4)J ), (T2. T3, T4J). 



Up to this point. we aimed at a minimal number of test 
sessions. In the following. the BIST hardware overhead is 
reduced by minimizing the number of signatures that have 
10 be scanned and eval uated. The mutual innuence of 
signatures is utilized in order to drive the lest response 
information to the test regis ters at the primary outputs. 
and these can be accessed very easily. 

Of course the signatures collected in the test registers at 
the primary outputs must always be evaluated since they 
cannot innuence any otller signatures. Only if some test 
registers at the primary outputs have a relatively high 
aliasing probability. other test registers should be added to 
the minimal set of test registers. 0min. whose contents 
have to be evaluated at test end. The test session sequence 
(sQ. Sl, ...• sd_lY must be composed such that with 
repetition number r as small as possible the faults of all 
test units can innuence the signatures in the test registers 
of Om in· 

Each fault located in a nonredundant part of a test unit 
u(Til) can cause a faulty signature in the corresponding 
signature register Til ' Propagating this faulty signature 
along a path (Ti I' Ti2' ...• Ti.) of the test register graph 
GT requires the tcst units u(Til)' u(Ti2), ... , u(Ti.) to be 
processed in the same order. and the test session sequence 
must look like ( ...• (U(Ti I)' ... J, .... (u(Td, ... ), ...•...• 
{u(Ti.), ... J •... ). Thus each required propagation path 
imposes a condition on the test session sequence. For each 
test registcr that is used as a signature analyzer. olle path 
to a test register of Omin needs to be considered. If there 
arc multiple paths from a test register to test registers of 
Omin, a shortest path is selected. 

The resulting conditions are summarized by a directed tree 
(precedellce tree) where the nodes represent the test units 
and an edge (u(Ti), u(Tj» means that the test unit u(Ti) 
must be processed before the test unit u(Tj). A dummy 
node "end" is added to indicate the end of the test, and edges 
are inserted from all the nodes u(Th), ThE Omin, to the 
node "end". Figure 12 stlows the test register graph, the 
precedence tree. and the test incompatibility graph for the 
example of figure 10. 

4
T1 

T3 T2 

T4 

U(T3) 

u(T2) 

u(T4) 

eod 

u(T3) 
.,"[T2) 

L u(T4) 

Figure 12: Example: Test register graph Gr (left), 
precedence tree P (center), 
and test incompatibility graph 01 (right) 

The procedure CONSTRUCT_SEQ implements this 
scheduling approach (for a detailed description d . [22]). As 
inputs it takes the precedence tree P, the test 
incompatibility graph 01, and the period d of the test 
session sequence to construct. The results are the tesl 
session sequence s of length d'Sd and the number r of 
repetitions necessary to propagate the effects of all faults 
to the test registers of Omin' For the example circuit 
described in figure 10 and figure II , the resulting test 
schedules are «{u(Tz»), [U([3), u(T4»)2, {T4J) ford=2, 
and «{u(T3)J, {u(T2)), {u(T4»), {T4)) ford=3.lfthe 
test lengths of the test units are not extremely short and 
the test registers are sufficiently large (e.g. 20 bits or 
more). the probability of aliasing is very small and can be 
neglected even if faulty signatures are propagated through 
several test uni ts (23]. 

In order to control the test registers according to the sched­
uling of CONSTRUCT_SEQ, a new set of control Signals 
is required. The mode vectors of the test registers, maximal 
sets of compatible mode vec tors and finally the control 
signals cWo), C(~I), ... , C(~d·.I) can be determined in the 
same way as at gate level (see sections 2 and 3). 

5. THE COMPLETE APPROACH 

In this section, the ideas developed above are put together. 
and the complete approach is described. 

Input: • S-graph, CiRI = (VRl> ERI) 
• minimum size of test registers. nmin 
• average size of test registers. navg 

Output: • Setoftestregislers, VT 
• test schedule, S 

(\) forallself-loopsofGRI: 
insert an additional (transparent) storage cell and 
modify OR] accordingly; 

" result: 0Rl =(VR1 , ERI ) " 

(2) determine a minimal subset of nodes VTI c VR] 
that contains all primary inputs and outputs and at 
least 2 nodes of each cycle of OR I; 

/* test register cells '/ 

(3) construct the I-bit test register graph 
Grl = (VTl. ETI); 

(4) build the test incompatibility graph 011 based on 
Grl and the chosen test strategy; 

(5) ORAPHCOLOR (in: 011, out: Is(~), s(ll), ... , sj~ l »; 
'* test sessions based on "I-bit test units" */ 

Paper 38.2 
945 



(6) 

(7) 

(8) 

(9) 

(10) 

(II ) 

for each test register cell t: 

determine the mode vector m, according to the 
test session sequence (stJ), 51: ), ... , sJ~l ); 

build (he mode incompatibility graph OM; 

GRAPHCOLOR (in: OM. out: 1110. !.lj , ... , Ilk-I}); 
It< maximal sets of compatible mode vectors "'I 

for each set Ili: 
compute the control signal c(ll i ); 

1* control of lest register cells */ 

partilion the SCI of test register cells into k subsets 
'to, 'tl, .... tk-l such that the mode vectors of the 
test register cells of subset 1:j are the mode vectors of 
).1i, i = 0, ... , k-l; 

for each sct tj: 
if Itil < 200min 

ronn one lest register including alilhe cells of 
'(i; 

else 

fo= LJ!i!..J or I J!.L 1 lest regislers that 
navg nays 

each contain about navg cells of 'ti; 

1* result: scI of test registers VT *1 

(123) translate the test sessions s~l, sill ), ... , sJ~l to test 
sessions sO, SI, ... , Sd_1 at RT level; 

S ::: «50_ St .... , Sd_t}, T); 1* lest schedule 
with minimal number of test sessions "I 

or alternalively 

(12b) build the test register graph OT, the precedence tree 
p, and the lest incompatibility graph 01; 

CONSTRUCT_ SEQ (in: P, GI, d; out: 5, d'. r); 

S:= «SO, 51, .... Sd_ l )r, Omin); 
1* test schedule where only the signatures 

of Omin c T have to be evaluated "I 

compute new control signals /1-10), c(I-II) , ... , 

e(J.ld·. I) f" control of test registers "I 

The grnph coloring problems that have to be solved in step 
(5) and step (8) are NP-complete problems [9]. But many 
efficient heuristics arc known that give good (suboptimal) 
solutions. We applied the algorithm o f [7, pp. 70-71)' 
TIlis a lgorithm first determines an initial coloring using a 
greedy strategy and thcn tries to improve this solution by 
recoloring some nodes. All possible sol ut ions arc 
implicitly enumeraled. Solutions with 1,2. or 3 colors are 
guaranteed to be a minimum coloring. 

Paper 38.2 
946 

6. EXPERIMENTAL RESULTS 

The described procedures have been appl ied to the large 
circuits of the ISCAS'89 benchmark set [21. For BIST, 
test cells were added at the primary inputs and outputs, and 
additional test cel ls were inserted such that each cyele of 
thc circuit structure contained at least two of them. The 
test incompatibility graph for the I-bit test un its, 011, 
was constructed assuming pseudo-random testing. Then the 
nodes of this graph were colored using a minimal number 
of colors. In those cases where exhausti ve search for a 
minimum coloring took too much time, we stOpped the 
recoloring process after 10000 trials to improve the 
solution and used the best solution found so far. 

The result of these lirst steps is a minimal number of test 
sessions that arc based on I -bit test units (see table I). The 
number of different mode vectors and the minimized 
number of signals necessary to control the test cells arc 
also given in table I. (Here and in the following tables we 
count only the nonconstam mode vectors and control sig­
nals that arc required for switching the test cells between 
pattern generation mode and rcsponsecompaction mode.) 

circuit # test # test # mode # control 
cells sessions vectors signals 

composed 
of "I-bit 

test units" 

s9234 346 2 2 2 
sl3207 784 3 7 3 
sl5850 986 3 5 3 
535932 967 3 6 3 
s38417 23 17 3 6 3 
s38584 2521 6 33 5 

Table 1: Test scheduling at gate level and minimization 
of control signals 

Subsequently, test registers wcre asscmbled by combining 
lest cells that arc controlled by the same signal (table 2). 

circuit # test width of test regis tcrs (bit) 
registers 
(optimal) min imal avemge maximal 

• 
s9234 12 22 28.8 31 

s l3207 24 30 32.7 34 
sl5850 32 29 30.8 33 
s35932 30 31 32.2 40 
s38417 72 31 32.2 36 
s38584 80 30 3 1.5 39 

Table 2: Optimally syntheSized test registers 
(* cllcepl test registers al the primary inputs) 

For comparison. we omitted tcst scheduli ng at gate Icvel 
and combined randomly chosen test cells to test registers. 



In this casc only the compatibility conditions represented 
by the graph Gil were taken into account. Again, the test 
cells at the primary inputs and outputs were assembled to 
separate test regi.~ters. Table 3 shows the statistics of the 
randomly assembled test registers. They have about the 
same sizes as the test registers of table 2. 

circuit # tcst width of test registers (bit) 
registers 
(random) minimal average maximal , 

s9234 12 22 28.8 32 
s l3207 25 21 31.4 34 
sl5850 32 22 30.8 33 
535932 30 27 32.2 35 
s38417 72 24 32.2 36 
s38584 8J 30 31.1 33 

Table 3: Test registers fonned randomly 
(* excepllest registers at the primary inputs) 

Based on the assembled test registers and the test units 
defined by them, test schedules can be constructed in two 
ilifferent ways. One objective is minimizing the number of 
test sessions. the other objective is a minimal number of 
signatures to be evaluated. 

In order to get a minimal number of test sessions the well­
known method of [8] can be applied to the circuit at RT 
level. With our approach, however, we have already got a 
test schedule based on I-bit test units (see table I) that 
optimally malches with the synthesized test registers. This 
gate level test schedule can be translated to a RT level test 
schedule with the same minimal number of lest sessions 
and control signals. in table 4, the results of the presented 
algorithm (column "optimal") are compared with test 
sehedules that were obtained by applying the method of [8J 
to the circuits with randomly assembled test registers 
(column "random"). 

cireuit 1# test sessions (d) # control signals 
nuxIom optimal nuxIom optimal 

s9234 II 2 10 2 
sl3207 21 3 20 3 
s l 5850 27 3 26 3 
s35932 20 3 19 3 

s38417 64 3 64 3 

s38584 67 6 66 5 .. Table 4: Test schedules wllh minImal number of test 
sessions 

Test registers that are synthesized optimally for BIST give 
significant advantages both in terms of silicon area and test 
length. Built-in self-tcst requires additional hardware for 

• test registers 
• test control unit 
• distribution of test control signals 

The presented approach achieves benefits at all three of 
these points. It minimizes the number of test cells and 
needs at most as many test cells as the approaches that 
insert BiLBO-like tcst registers at RT level. It minimizes 
the number of test control signals and the number of test 
sessions. This si mplifies test control since the control unit 
must generate the specified values of the control signals 
for a tl tcst sessions. The small number of control signals 
also reduces the area overhead for distributing these signals 
to the test registers. 

Moreover, reducing the number of test sessions usually 
leads to a shorter overall test length. Of course, the test 
length also dcpends on the Iype of the tcst registcrs and on 
the fault coverage value that has 10 be achieved. The 
mcthod presented is compatible with diffcrent kinds of test 
registers [24]. For example, using test registers that can 
produce weighted random patterns generally results in a 
shorter test length for the considered test unit than using 
unbiased random patterns. 

As an alternative to test schedules with minimal number 
oftest sessions, the procedure CONSTRUCT_SEQ gives 
schedu les where all the test response infoonation is driven 
to the primary outputs, and as a consequence only the few 
signatures al the primary outputs have to be evaluated (see 
table 5). 

cireuit 1# executed test 1# control 
sessions (r*d) , ; nals 
nuxIom opt. rnnd. opt. 

s9234 1 '" II 2' 2 10 2 
sl3207 I '" 21 I • 4 20 3 
s15850 1 * 27 I '4 26 3 
s35932 I * 20 1'4 19 3 
s38417 1 '" 65 I '6 64 5 
s38584 1 '" 67 I ' 7 66 6 

Table 5: Test schedules constructed by 
CONSTRUCT_SEQ 

# evaluated 
signatures 

rnnd. opt. 

I I 
4 4 
3 3 

10 JO 
3 3 
9 9 

Compared to the schedules with minimal number of test 
sessions (cf. table 4, T= I ), the number of executcd tcst 
sessions (r"'d) is larger. But further hardware savings can 
be achieved since the number of signatures that have to be 
evaluated is cut down. As all Ihe test registers used as 
signature analyzers have at least 21 bits, the probability of 
aliasing can be neglected and fault coverage is (practically) 
not affected by reducing the number of evaluated signa­
tures. Moreover, we see that with the randomly assembled 
test registers the number of different test sessions (d) and 
the number of executed test sessions (r "'d) grow by a factor 

Paper 38.2 
947 



of 3 10 I I. The required number of control signals is 5 to 
13 limes larger. This agni n underlines the advantages of 
lest registers that are optimally synthesized for BIST. 

7, CONCLUSIONS 

Usually test register insertion and lest scheduling lire 
considered separatcly. In Ihis paper, bOlh problems arc 
tackled together in order to find a global optimum. A 
method has been presented that groups nip-flops of the 
origi nal des ign to test registers. The number of additional 
test cells that are needed to hreak self-loops is minimized. 
The proposed test register configuration minimizes the 
number of different test sessions and the number of control 
signals required to control the test registers. The effects arc 
reduced area of the test control unit, reduced area for 
routing the control lines, and shorter test application time. 
The final test scheduling process at RT level can cut down 
the number of signatures that have to be evaluated at test , ... , 

8, REFERENCES 

[11 M. S. Abadir, M. A. Breuer: ~A Knowledge-Based 
System for Designing Testable VLS I Chips". IEEE 
Design&Test, Aug. 1985. pp. 56-68 

r21 F. Brglez, D. Bryan. K. Kozminski: "Combina­
tional Profiles of Sequential Benchmark Circuits~. 
Int. Symposium on Circuits and Systems, 1989, 
pp. 1929-1934 

[3J R. Camposano, R. A. Wnl ker: "A Survey of High­
Level Syn thes is Systems", Kluwer Academic 
Publishers. Norwell MA. 1991 

141 K.-T . Cheng, V. D. Agrawal: "A Partial Scan 
Method fo r Sequentia l Ci rcuits with Feedback". 
IEEE Trans. on Computers, Vol. 39. No.4, April 
1990. pp. 544- 547 

IS) C.-I. H. Chen: "Graph Partitioning for Concurrent 
Test Scheduling in VLS I Circuit", Design Automa­
tion Conference. San Francisco. 199 1. pp. 287·290 

[61 Y. Chickermane, J . H. Patel: "An Optimization 
Based Approach to the Partial Scan Problem", Int. 
Test Conference. Washington D.C., 1990, pp. 377· 
386 

(7J N. Christofi des: "Graph Theory - An Algorithmic 
Approach", Academic Press, London, 1975 

18] G. L. Craig. C. R. Kime. K. K. Saluja: "Test 
Scheduling and Control for VLSI Built-In Self­
Test", IEEE Transactions on Computers. Vol. 37. 
No.9, Sept. 1988. pp. 1099-1109 

191 M. R. Garey, D. S. John son: "Computers and 
Inlractability", Freeman, New York. 1979 

Paper 38.2 
948 

1101 

IllJ 

1121 

113) 

JI4J 

liS] 

1161 

[17J 

118J 

1191 

[20J 

12i1 

122] 

1231 

124] 

1251 

126] 

D. Goldberg: "Compu ter Arithmetic". in: 
1. L. Hennessy, D. A. PatleTson: "Com pu ter 
Architecture; A Quantitative Approach". Morgan 
Kaufmann, San Mateo CA, 1990 
R. Gupta, R. Gupta, M. A. Breuer: "The BALLAST 
Methodology for Structured Partial Scan Design", 
IEEE Transactions on Computcrs, Vol. 39, No. 4. 
April 1990. pp. 538·544 
O. F. Haberl , H.·J. Wunderl ich: "The Synthesis of 
Self-Test Control Logic". COMPEURO, Hamburg. 
1989. pp. 5. 134-5. 136 
P. D. Hortensi us et ill.: "Cellu lilr Automata-Based 
Pscudomndom Number Generators for Built-In Self­
Test". IEEE Trans. on CAD, 1989, pp. 842·859 
1.-Y. lou. K.-T. Cheng: "Timing Driven Partial 
Scan", Int. Conference on Computer-Aided Design, 
Silnta Clara CA, 199), pp. 404407 
1. Kalinowski , A. Albicki, J. Beausang: "Test 
Control Signal Distribu tion in Self-Testing VLSI 
Circuits", Int. Conf. on CAD, 1986, pp. 60-63 
K. Kim. D. Ha, J. Tront: "On Using Signature 
Registers as Pseudorandom Pattern Generators in 
Built-in Sel f Testing", IEEE Trans. on CAD, 1988, 
pp. 919·928. 
B. Koenemann, J . Mucha, G. Zwiehoff: "Buil t-In 
Logic Block Observation Techniq ues" , Test 
Con ference, Cherry Hill NJ. 1979, pp. 37-41 
A. Krasniewski. A. Albicki: "Automatic Design of 
Exhaustively Self-Testing Chips with BILBO 
Modules~, Int. Test Conference, Washington D.C., 
1985. pp. 362·37 1 
A. Kunzmann, H.-J. Wunderlich: ~An analytical 
approach to the partial scan problem", Journal of 
Electronic Testing: Theory and Applications. 1990, 
pp. [63-174 
D. H. Lee. S. M. Rcddy: "On Determin ing Scan 
Flip-Flops in Partial·Scan Designs", Int. Confe rence 
on CAD, 1990, pp. 322·325 
S.- P. Lin, C. A. Njinda, M. A. Breuer: "A 
Systematic Approach for Designing Testable YLS I 
Circuits", Inl. Conference on CAD, Santa Clara 
CA, 1991. pp. 496-499 
A. P. Strocle. "Self·Test Scheduli ng With Bou nded 
Test Execu tion Time", Int. Test Confere nce, 
Baltimore MD, 1992. pp. 13().. 139 
A. P. Stroc!e, H.·I. Wunderlich: "Error Masking in 
Self-Testable Circuits", Int. Test Confere nce. 
Washington D.C., 1990. pp. 544-552 
A. P. Slroele, H.·J. Wunderlich: "A Unified Method 
for Assembling Global Test Schedules", Third Asian 
Test Symposium. Nara, Japan. 1994 
L.·T. Wang. E. J . McCluskey: "Concurrent Built-i n 
Logic Block Obscrver (CBl LBO)". Int. Symposium 
on Circuits and Systems, 1986, pp. 1054·1057 
H.-J. Wunderlich: "Sc!fTcst Using Uncquiprobable 
Random Patterns". Int. Symp. on Fault-Tolerant 
Computing, PittSburgh. 1987. pp. 258-263 




