
Deterministic Partitioning Techniques for Fault Diagnosis in Scan-Based BIST

Ismet Bayraktaroglu
Computer Science & Engineering Department

University of California, San Diego
La Jolla, CA 92093

ibayrakt@cs.ucsd.edu

Alex Orailoglu
Computer Science & Engineering Department

University of California, San Diego
La Jolla, CA 92093
alex@cs.ucsd.edu

Abstract
A deterministic partitioning technique for fault diagnosis

in Scan-Based BIST is proposed. Properties of high quality
partitions for improved fault diagnosis times are identified
and low cost hardware implementations of high quality de-
terministic partitions are outlined. The superiority of the
partitions generated by the proposed approach is confirmed
through mathematical analysis. Theoretical analyses, worst
case bounds, and experimental simulation data all confirm
the superiority of the proposed deterministic approaches.

1. Introduction
Built-in self-test (BIST) is currently utilized in state-of-

the-art designs both for improving test quality and for re-
ducing test development and application cost. While BIST
provides sizable benefits, a limitation in its further adop-
tion as the main test methodology is inherent fault diagnosis
challenges. While BIST reduces test application cost appre-
ciably, fault diagnosis in a BIST environment is problematic
since only limited information is available in a compact sig-
nature.

Until recently, research on diagnosis through BIST has
concentrated on identifying methods for extracting infor-
mation possibly embedded in the signatures. McAnney and
Savir have shown that through analysis of the signature con-
tents, it is possible to identify failing test vectors [6]. As
the number of failing test vectors increases, the complexity
of this scheme increases and its identification capability di-
minishes due to the aliasing effects of multiple failing vec-
tors. They have further proposed a method that is capable of
identifying increased number of failing test vectors through
utilization of cyclic registers [8]. Stroud and Damarla have
proposed a technique where the characteristic polynomial
is a factored polynomial and show that utilization of non-
primitive polynomials may reduce aliasing probability for
multiple errors [9]. Aitken and Agarwal have proposed a
method in which the quotient instead of the signature is
utilized through a fault-free sequence generator [1]. Even

though the scheme is capable of providing improved di-
agnostic capability by utilizing increased information, its
hardware requirements are substantially higher than regular
BIST. All schemes outlined above aim at identifying a set
of failing test vectors. However, the identification capability
of such schemes diminishes as the number of failing vectors
increases. Yet fault effect manifestation cannot be typically
limited to a few vectors. Excluding pseudo-random resis-
tant faults, most faults are detectable through a fairly large
number of vectors. Such schemes suffer consequently if ap-
plied in realistic test environments.

Recently, Rajski and Tyszer have proposed a scan par-
titioning based approach to the fault diagnosis problem in
scan-based BIST [7]. Therein the results of the application
of the same test are repeatedly partitioned, observed, and
compared to the corresponding fault-free signature for each
partition. A fault-free signature implies that all scan cells in
the corresponding partition are fault free. Successive parti-
tioning of the scan cells into distinct partitions helps eventu-
ally sieve all fault-free cells. By utilizing such partitioning
schemes, diagnosis time can be usually reduced to less than
a tenth of the time required by a scheme that would instead
observe the output of each cell individually. Refinements
of this partitioning technique have been proposed that uti-
lize the superposition principle to further reduce diagnosis
time [3]. Incorporation of the superposition principle into
partitioning-based diagnosis approaches further reduces di-
agnosis time to less than half of the time attained by [7].

While partitioning-based schemes provide effective fault
diagnosis in a scan-based BIST environment, generation of
the partitions using pseudo-random approaches eliminates
the predictability of the diagnosis results. Both the param-
eters of the LFSR utilized for partitioning and the location
of the faulty cells affect fault diagnosis time. Furthermore,
randomness of the partitions generated by the LFSR dimin-
ishes the possibility of incorporating design specific infor-
mation into the diagnosis procedure.

LFSR-generated sequences have been widely researched
to enable generation of test patterns that match specific test



needs of designs [2, 4, 5]. The schemes proposed though
require either mapping hardware to map generated patterns
to desired ones [2] or intractable computation in order to
determine the parameters of the LFSR [4, 5]. Since match-
ing test needs of circuits is analogous to matching partition-
ing needs of specific designs or fault models, attempting to
adopt prior research results into the partitioning problems
posed by diagnosis does not evince a significant likelihood
of yielding desirable low cost solutions.

On the other hand, deterministic partitioning of scan
cells does not similarly suffer, even though the difficulty
of identifying cost-effective hardware implementations with
superior partitioning leading to reduced diagnostic time
may be thought to doom the adoption of such methods.
Nonetheless, we explore, identify, and outline in this pa-
per the existence of deterministic partitioning schemes,
amenable to low cost hardware implementations and ex-
hibiting superior diagnostic capabilities.

Not only does the proposed deterministic approach con-
sistently exhibit superior results, but furthermore it achieves
such results with high levels of predictability. Even
though diagnosis times attained by LFSRs typically clus-
ter, nonetheless, there consistently exist LFSRs which show
significant variability and consequent appreciable increase
in diagnosis time. We examine in this paper the behavior
of LFSRs and outline the mathematical formulation that ex-
plains the existence of such highly variable degradations.
Yet even if precise conclusions were to be drawn in regards
to the causes of such variable behavior, incorporating such
heightened sensitivity to LFSR selection typically falls out-
side established industrial design flows and practices. An
invaluable characteristic of the proposed deterministic par-
titioning approaches lies in their ability to incorporate de-
sign and fault information; such incorporation may further
help reduce diagnosis time and model complex emerging
fault models.

The next section of the paper reviews the fundamentals
of partitioning-based diagnosis. Section 3 motivates the ne-
cessity of exploring deterministic partitioning schemes by
examining the diagnostic quality of partitions. Section 4
illustrates mathematical and implementation challenges in-
herent in constituting a deterministic scheme and proceeds
to outline both analytic and low cost hardware implementa-
tion solutions to the problem of deterministic partitioning.
While section 5 provides a simulation-based comparison of
LFSR-based and deterministic partitioning approaches, sec-
tion 6 outlines worst case fault diagnosis analysis time for
them both. Conclusions are drawn in section 7.

2. Preliminaries
While various attempts have been made to determine

failing test vectors in a scan-based BIST environment, the
diminution of their identification capability in the face of
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Figure 1. LFSR-based scan cell selector [7]

a large number of failing vectors dooms their applicability
in current industrial designs. As the number of failing scan
cells (scan cells that receive incorrect information) tends to
be much smaller than the number of failing vectors, diag-
nosis schemes based on determination of failing scan cells
have been shown to provide economical solutions for to-
day’s typical designs [7]. A partitioning-based approach for
identification of failing scan cells provides low-overhead
hardware support for diagnosis of industrial designs with
minimal ATE intervention.

In a partitioning-based diagnosis scheme, scan cells are
successively grouped into a set of non-overlapping parti-
tions, each set constituting a partition group. The observa-
tion of the signatures corresponding to each partition can
provide valuable information in diagnosis, since each fault-
free signature indicates that all the cells in the correspond-
ing partition are fault free. Nonetheless, a single partition
group is inadequate in identifying with certainty the failing
scan cells, as all cells in a partition that exhibits a failing sig-
nature constitute a candidate set of culprits. Consequently,
additional applications of the same test set, yet with differ-
ing partition elements, need to be used to provide additional
snapshots of failing scan cells with consequent refinement
of the candidate failures. Each of these applications of the
same test set, with its repartitioning of the scan cells, con-
stitutes a partition group.

Figure 1 depicts a possible scan cell partitioning hard-
ware implemented using an LFSR and an Initial Value Reg-
ister (IVR) [7]. While the LFSR is loaded from the IVR for
generation of each partition in a particular partition group,
at the end of the generation of a partition group, the IVR is
updated with the current state of the LFSR. The test counter
value is compared to an arbitrarily selected set ofr outputs
of the LFSR; compaction of the output of the corresponding
scan cell occurs upon a match. Since the test counter has a
unique value for each partition, the partitions in each parti-
tion group are distinct. Updating the IVR with the current
state of the LFSR at the end of each partition group guaran-
tees distinctness of the partition groups as LFSR generated
sequences do not repeat.

Figure 2 provides a pseudo-code of the diagnosis pro-
cedure for LFSR-generated partitions. In this pseudo-code,



for each partition group c
for each partition b in c

shift counter = 0, LFSR = IVR
while shift counter != N

if r bits of LFSR = b
compact the current output

shift counter++
IVR = LFSR

Figure 2. LFSR-based partitioning procedure

for each partition group c
for each partition b in c

shift counter = 0, i = 0
while shift counter != N

if P(c,b,i) = shift counter
compact the current output
i++

shift counter++

Figure 3. Generic partitioning procedure

N andb correspond to the size of the scan chain and the
value of the test counter, respectively. While the pseudo-
code of figure 2 is specific to LFSR-based partitions, a
generic pseudo-code for the diagnosis procedure scheme
can be attained by modifying the cell selection logic. Such
an approach is shown in figure 3, whereP (c; b; i) denotes
the scan cell identifier of theith element of thebth par-
tition of the cth partition group. Correct functionality of
the diagnosis procedure based on the latter pseudo-code re-
quires thatP (c; b; i) be monotonic in parameteri. While
such a requirement imposes a constraint on the partitioning
scheme, an implementation that is capable of handling non-
monotonicP (c; b; i) would require significantly higher area
overheads as it would necessitate storing and subsequent re-
ordering of the elements of the partitions.

3. Diagnostic Quality of Partitions
While partitions inside a partition group do not overlap,

partitions that belong to distinct partition groups overlap in
various number of scan cells depending on how the parti-
tions are generated. The overlap among partitions effects
diagnostic time as increased overlap between two partitions
reduces additional information attainable in case both par-
titions happen to be fault-free. A partitioning scheme that
is polluted by an excessive number of highly overlapping
partitions unnecessarily lengthens the diagnosis procedure.
In the following subsections, even though we analytically
show that the average overlap among partitions is constant,
variations in the number of overlapping cells effect fault di-
agnosis; the higher the variation in the overlap, the longer
the diagnosis procedure takes.

3.1. Expected Overlap Value Analysis
The expected amount of overlap for two partitions in

distinct partition groups can be analytically determined un-

der the simplifying assumptions of random generation and
equal sized partitions. Expected overlap can be obtained by
summing the index-weighted variant probabilities of over-
lap. In the case of partitioning of N cells into P groups, this
reduces to:

Eoverlap(N;P ) =

N=PX
n=0

nPoverlap(n) (1)

The probability ofn overlap,Poverlap(n), can be deter-
mined by calculating the following quantities.

� The number of possible overlaps,
�
N=P
n

�

� The number of possible non-overlaps,
�
N�N=P
N�n

�

� The number of possible partitions,
�

N
N=P

�
Multiplication of the first two quantities provides the

number of partitions that overlap inn elements. Dividing
this number by the total number of partitions results in an
expression for the probability ofn overlap. Substituting the
resultant probability,Poverlap, in equation 1 results in:

Eoverlap(N;P ) =

N=PP
n=0

n
�N
P

n

��N�N
P

N

P
�n

�
�
N
N

P

� (2)

The combinatorial formulation in equation 2 can be re-
solved by utilizing the following identity.1

mX
k=0

k

�
p

k

��
q

m� k

�
= p

�
p+ q � 1

m� 1

�
(3)

SubstitutingN
P

, n, N
P

, andN � N
P

for m, k, p, andq,
respectively, yields

Eoverlap(N;P ) =
N

P 2
(4)

The identical result is obtained even if nonrandom parti-
tions are utilized as long as partitions in a particular group
are assumed to cover all scan cells and be nonoverlapping.
This can be easily shown by observing that the expected
size of a partition isN=P . The overlap of a partition to
the union of all the sets in a distinct partition group is the
partition size, since the partition group has to cover all N
scan elements. The expected overlap to one partition in
the partition group consequently is the expected partition
size times the probability of selecting that partition, i.e.
(N=P )(1=P ) = N=P 2.

Since the expected overlap value is identical for any par-
tition group generation scheme and as a matter of fact ex-
actly equal to that of randomly generated partitions, the

1A proof of the identity in equation 3 is given in the appendix.



LFSR Chain Partitions Expected RMS
width Length Overlap deviation

14 1024 16 4 2.72
14 1024 8 16 6.15
15 1024 8 16 5.25
14 2048 8 32 11.90

Table 1. RMS deviation of partition overlaps

LFSR Chain Partitions Error Correlation
width Length Count

14 1024 16 15 0.6986
14 1024 8 7 0.4804
15 1024 8 7 0.4648
14 2048 8 7 0.5785

Table 2. Correlation between RMS deviation
and expected fault diagnosis time

cause of possibly differing partition quality needs to be
searched within higher order measures, such as overlap de-
viations. Overlap deviations can be converted into a sin-
gle quality measure by calculating the Root Mean Square
(RMS) of the deviations. While deterministic partitions can
be made to exhibit zero RMS as long as the partition over-
lap equals uniformly the expected overlap value, RMS for
LFSR-generated partitions can be shown to be non-zero and
varying. We calculate the RMS value for the partitionings
that are generated by all primitive polynomials of degree 14
and 15 (756 and 1800 primitive polynomials, respectively).
Table 1 provides parameters of the LFSRs utilized for par-
titioning, the expected overlap, and the RMS deviation in
overlap values.

The table indicates that the overlap among partitions
varies from the expected value significantly with RMS de-
viation ranging between 33% to 68% of the expected over-
lap. The RMS deviation numbers reported in table 1 con-
stitute the average value of the deviations for all primitive
polynomials of the corresponding degree. While the RMS
values indicate significant overlap deviations, it is unclear
up-front whether such deviations translate into diagnostic
time degradations. We perform correlation analysis in the
next subsection in order to validate the diagnostic quality of
the RMS measure.

3.2. Correlation Analysis
For each simulation parameter in table 1, the diagnosis

procedure is simulated in order to find the expected fault
diagnosis time for each primitive polynomial. Furthermore,
the correlation between the RMS overlap deviation and the
expected fault diagnosis time is calculated. The results are
reported in table 2.

Correlation results reported in table 2 exclude the prim-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 1920 21 22 23 24
0 6 12 18 245 11 17 234 10 16 223 9 15 21 2 8 1420 1 7 13 19
011 22 8 195 16 2 13 2410 21 7 184 15 1 12 23 9 20 6 17 3 14
016 7 23 145 21 12 3 1910 1 17 8 2415 6 22 134 20 11 2 18 9
021 17 13 95 1 22 18 1410 6 2 23 1915 11 7 3 2420 16 12 8 4

Table 3. Deterministic partitioning of 25 cells

itive polynomials that result in extremely high diagnosis
times; including such polynomials would have only in-
creased correlation levels. Example cases of anomalous di-
agnosis times and their associated analyses are provided in
section 6. The results indicate that there indeed exists a
significant, positive correlation between the expected fault
diagnosis time and the RMS partition quality measure pro-
posed. As reduction of overlap between partitions evidently
results in reduced diagnosis time and as overlap variation
can be minimized through deterministic approaches only,
we examine in the next section the generation of determinis-
tic partitions that achieve an RMS value of zero and thus ex-
hibit superior diagnostic power over LFSR-based schemes.

4. Construction of Deterministic Partitions
A partitioning with zero RMS overlap deviation has to

have uniformly minimal overlap with all partitions, impos-
ing a strict constraint on the structure of the partitions. In
the case of number of partitions equaling partition size, a
partition has to have a single overlap toeachpartition inside
every otherpartition group. This constraint limits sharply
the number of attainable partition groups, and makes their
identification and construction nontrivial.

A deterministic partitioning that satisfies the aforemen-
tioned constraints for a scan chain size of25 is provided in
table 3. The scan chain is partitioned into 5 partition groups;
each row in the table corresponds to a partition group with
5 partitions. It can easily be verified that the number of
overlapping cells for the partitions in table 3 is consistently
equal to1 for partitions in distinct partition groups and to
0 for partitions in the same group. The minimal overlap
property can be traced at least for a single partition by ob-
serving in bold all the elements of the first partition in the
first partition group in this table.

Even though such partitions have the minimum possi-
ble overlap, their hardware generation is highly challeng-
ing. Examination of the relationships across groups yields
the recurrence relation in equation 5, while equation 6 can
be used to denote a simple definition of the initial partition
group. In these and the following equations,c, b, i, andS
(equal to 5 in the example of table 3) correspond to the parti-
tion group number, the partition number, the location inside
a partition, and partition size, respectively. A numbering
convention whereinc, b, andi are assumed to vary between
0 andS � 1 inclusive is utilized throughout.P (c; b; i) in-
dicates the numeric identifier of a scan cell in locationi of
partitionb in partition groupc, as noted in section 2.



P (c+ 1; b; i) = P (c; (b+ i)mod S; i) (5)

P (0; b; i) = bS + i (6)

While these equations are straightforward, generation of
the partitions directly through these equations requires high
area overhead due to recursion; a direct implementation of
a recurrence relation requires storage of the previous re-
sult. In the following subsections, alternative recurrence
relations amenable to nonrecursive solutions are derived
for these partitions. Various hardware implementations for
such formulations are provided as well.

4.1. Implementation Issues
A simple hardware implementation for the partition

groups in table 3 requires a solution of the recurrence re-
lations in equations 5 and 6. Examination of the stride char-
acteristics within partitions provides equation 7, while ex-
amination of the stride across partitions provides equation 8.

P (c; b; i+ 1) = (P (c; b; i) + cS + 1)mod S2 (7)

P (c; b+ 1; i) = (P (c; b; i) + S)mod S2 (8)

Now that inductive relationships are established for all
three arguments ofP , a nonrecursive solution can be es-
tablished by embedding the induction effects, resulting in
equation 9.

P (c; b; i) = ((ci+ b)S + i)mod S2 (9)

The existence of partitions with minimal overlap, as
shown in table 3, is not coincidental. The following the-
orem shows that partition groups generated by equation 9
always exhibit the minimal overlap of 1 for any prime num-
berS.

Theorem: Partitions generated by equation 9 have an over-
lap of 1 whenever they are in distinct partition groups and
have no overlap whenever they are in the same partition
group, forS prime andc, b, andi < S.

Proof: In order for the elements of two partitions,
P (c1; b1; i1) and P (c2; b2; i2), to overlap, the following
equality has to be satisfied:

P (c1; b1; i1) = P (c2; b2; i2) (10)

SinceS > ji1 � i2j, equation 10 holds iffi1 = i2 = i.
Therefore, the overlap condition reduces to:

(c1i+ b1)S
mod S2

= (c2i+ b2)S (11)

which can be simplified by dividing byS to:

(c1 � c2)i
mod S
= b2 � b1 (12)

For partitions in different partition groups, i.e.c1 6= c2,
only two cases need to be analyzed:

0 1 2 3 4

0 0 1 2 3 4
1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19
4 20 21 22 23 24

Table 4. Remainder and quotient groups

� b1 = b2: has a unique solution,i = 0.

� b1 6= b2: a unique solution exists forS prime.

For partitions inside the same partition group, i.e.c1 = c2,
overlap necessitates equality ofb1 and b2; a partition can
only overlap with itself inside a partition group.

We have shown that partitions within distinct partition
groups have an overlap of1 and those within the same par-
tition group do not overlap. While partitions generated by
equation 9 fulfill the minimal overlap requirement and have
an RMS overlap deviation ofzero, they do not fulfill the
monotonicity requirement discussed in section 2.

Since there exists no restriction on the order of the nu-
meric identifiers inside a partition, they can easily be re-
ordered to satisfy the monotonicity requirement. However,
reordering these identifiers inside partitions destroys the
regular recurrence relations. In order to generate partitions
with low cost hardware implementation, we investigate the
structure of the construction of the partitions that are gener-
ated by equation 9 and utilizing the structure we provide an
alternative partitioning for which the increasing order prop-
erty holds. Determination of the structure of partitions gen-
erated by equation 9 requires grouping the scan cell identi-
fiers in terms of their remainder and quotient toS. Table 4
provides such a grouping ofS2 identifiers whenS equals 5.
In this table, columns and rows correspond to the remainder
and to the quotient groups, respectively.

Notice that all the partitions in table 3, except the ones
in the first row, include 1 element from each of the remain-
der and quotient group. The elements in each partition are
always composed of the elements of the remainder groups
0; 1; 2; � � � ; S�1. The elements of the first partition of each
partition group can be generated by visiting the quotient
groups in increments of0; 1; 2; � � � ; S� 1. Finding the quo-
tient groups for higher numbered partitions is trivial as the
recurrence relation in equation 8 implies that the quotient
groups of the elements in partitionb+ 1 exceed by one the
elements in partitionb. Not only the partition in table 3,
but also all such partitions that are generated by equation 9,
for S prime, exhibit the same regular structure. We denote
the class of partitions that are generated by equation 9 as
Remainder Uniform Partitions.

The observations in the previous paragraph enable the
construction of partitions with the monotonically increasing



0 5 10 15 201 6 11 16 212 7 12 17 223 8 13 18 234 9 14 19 24
0 6 12 18 241 7 13 19 202 8 14 15 213 9 10 16 224 5 11 17 23
0 7 14 16 231 8 10 17 242 9 11 18 203 5 12 19 214 6 13 15 22
0 8 11 19 221 9 12 15 232 5 13 16 243 6 14 17 204 7 10 18 21
0 9 13 17 211 5 14 18 222 6 10 19 233 7 11 15 244 8 12 16 20

Table 5. Quotient Uniform Deterministic parti-
tioning of 25-cell scan cells

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
0 5 10 15 1 4 11 14 2 7 8 13 3 6 9 12
0 6 11 13 1 7 10 12 2 4 9 15 3 5 8 14
0 7 9 14 1 6 8 15 2 5 11 12 3 4 10 13

Table 6. Deterministic partitioning of 16 cells

order property by interchanging the quotient for the remain-
der in the previous paragraph. The new class of partitions
are denoted analogously asQuotient Uniform Partitions. A
consequent partitioning, in the case ofS = 5, is provided
in table 5. A comparison of tables 3 and 5 reveals that ex-
cept for the first group, both partitionings are identical, yet
utilize different orderings of partition groups and partitions.
Consequently, the total number of partition groups in both
tables that satisfy the minimal overlap property is 6. In-
deed, exhaustive computer simulations forS up to 7 indi-
cate that for a scan size ofS2 there exists a maximum of
S + 1 partition groups satisfying the minimal overlap crite-
rion. The same number of minimally overlapping partition
groups also exists for non-prime partition sizes. However,
no simple recurrence relation that yields low cost hardware
implementations can be identified for non-prime partitions.
Table 6 provides 5 minimally overlapping partition groups
for S = 4.

The solution of the recurrence relation for Quotient Uni-
form Partitions provides the following result:

P (c; b; i) = (ci+ b)mod S + iS (13)

Equation 13 can be utilized in the pseudo-code in fig-
ure 3 for hardware implementation. The result of such
an implementation is shown in figure 4. However, such
an implementation still requires significant hardware over-
head, especially for the implementation ofP (c; b; i); two
multipliers, two adders and a modulo operator are required
for the implementation ofP (c; b; i). An alternative, im-
proved implementation is shown in figure 5, which is based
on the pseudo-code of figure 6, utilizing the difference of
D = P (c; b; i+1)�P (c; b; i), whereP (c; b; i) is defined
by equation 13. The difference,D, reduces toc+ S unless
(c(i + 1) + b) mod S < (ci + b) mod S, in which case
it reduces toc. This implementation requires significantly
fewer hardware components compared to the implementa-
tion in figure 4.

In the modified implementation, both the registerAdd
and the counterShiftIncrementare set to the first element

P(c,b,i)

=

Pattern
Counter
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Counter Counter

Partition Test Group
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clk Scan chain

Figure 4. Absolute value based partitioning
hardware

S
hi

ft 
In

cr
em

en
t

>

A
dd

+

+/−

S

S

Counter
Pattern

Counter
PartitionShift

Counter
Test Group

Counter

clk Scan chain

Figure 5. Successor difference based parti-
tioning hardware

of the current partition, which is always equal to the parti-
tion number. RegisterAdd continuously holds the current
remainder group of the current element in the partition sub-
sequently; the current remainder group is updated when-
ever that element is reached in the scan chain. TheShift-
Incrementcounter is reloaded with the difference between
P (c; b; i + 1) andP (c; b; i) upon reaching zero. After the
whole scan chain is shifted, the process restarts from the
beginning. At the end of the test application session, the
signature is shifted out, the partition count is incremented,
and the process repeated.

The deterministic partitioning hardware depicted in fig-
ure 5 requires onelog(S) bit register, twolog(S) + 1 bit
adders and comparators, onelog(S) + 1 bit counter, and 3
multiplexers in addition to the hardware requirements of the
BIST hardware. The hardware requirement for determinis-

for each partition group c
for each partition b in c

ShiftCounter = 0
Add = b, ShiftIncrement = b
while ShiftCounter != N

Until ShiftIncrement = 0
ShiftIncrement--, ShiftCounter--

compact the output of the current cell
Add = Add + c
If Add >= S

Add = Add -S
ShiftIncrement = c

Else
ShiftIncrement = c + S

Figure 6. Successor difference based parti-
tioning procedure
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tic partitioning is slightly higher than that of LFSR-based
partitioning, which requires one LFSR, one register and one
log(S) bit comparator. Even though the size of the LFSR
and of the register are typically user defined, LFSRs of size
16 provide satisfactory results [7].

An alternative, tapped implementation strategy for parti-
tioning is shown in figure 7. This implementation requires
access to internal points of the scan chains and therefore
introduces routing overhead. This implementation directly
mimics the structure of the partitions. Access to the internal
points of the scan chain provides direct access to the quo-
tient groups and the shifting process provides access to the
remainder groups. Since partitions have a single element
from each remainder group, the output multiplexer can se-
lect the correct quotient group whenever necessary. For ex-
ample, for the second partition of the third partition group,
the multiplexer receives the select signals 3,1,4,2,5. At the
first cycle, scan cell 10 is selected. After the shift opera-
tion, the content of scan cell 1 is shifted into scan cell 0
and is consequently selected for compaction by the multi-
plexer. Another shift operation shifts the content of scan
cell 17 into scan cell 15 which is consequently selected by
the multiplexer. At the end of 5 cycles, all necessary scan
cell outputs for the partition are compacted at the output.

If extra signature compactors are available, signatures
for all partitions in a test group can be produced in parallel
by connecting the output of the last scan cell to the input of
the first scan cell. Diagnosis time can be sharply increased
thereupon, albeit at the expense of some hardware overhead.
While it would seem at first sight that diagnosis time is re-
duced by a further factor ofS, the actual reduction is only
a factor ofS=2, as the connection from the last scan cell to
the first scan cell during diagnosis eliminates the capability
of shifting in new patterns while shifting out results.

4.2. Arbitrary Partitioning of Scan Cells
For the partitions generated so far, the number of ele-

ments in the partitions is assumed to equal the number of
partitions. Yet it is known [7] that the optimal partitioning
requires the number of partitions to be one more than the
number of error presumed and thus optimality necessitates

0 1 2 3

0 0 5 10 15
1 1 6 11 16
2 2 7 12 17
3 3 8 13 18
4 4 9 14 19

Table 7. Remainder and quotient groups for
S = 5 and P = 4

0 6 12 18 45 11 17 3 910 16 2 8 1415 1 7 13 19
0 7 14 16 35 12 19 1 810 17 4 6 1315 2 4 11 18
0 8 11 19 25 13 16 4 710 18 1 9 1215 3 6 14 17
0 9 13 17 15 14 18 2 610 19 3 7 1115 4 8 12 16

Table 8. Deterministic partitioning of 20 cells

the ability to handle arbitrary partitionings of the scan cells.
In this subsection, we show that the properties developed in
the previous subsection can be utilized to generate arbitrary
sized partitions as long as the size of the partitions is chosen
to be prime during partition generation.

In order to generateP partitions of sizeS, we generate
the quotient and remainder group with respect toS for all
P � S elements in the scan chains. Table 7 provides such a
partitioning forP = 4 andS = 5. In this table, rows and
columns correspond to the remainder and quotient groups,
respectively.

The partitions are generated by choosing one element
from each row and column. The columns are traversed in
increments of 1 and the rows are traversed in increments of
1; 2; 3; and4, generating4 distinct partition groups. The
first partition of the first partition group is constructed as
0; 6; 12; 18; and4. The second partition of the first group
is generated as5; 11; 17; 3; 9. The first partition of the sec-
ond group is generated as0; 7; 14; 16; 3. Notice that for all
of the partitions in table 8 the columns are traversed in in-
crements of 1, and the rows are traversed in increments of
1; 2; � � � ; S � 1.

In order to be able to partitionN elements intoP parti-
tions, the partition sizeS needs to be the minimum prime
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Figure 8. Multiple scan chain partitioning
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Figure 9. Improvements for S = P = 31

10%

15%

20%

25%

30%

8 9 10 11 12 13 14 15

Full Resolution
0.1*Error Count Resolution

10%

15%

20%

25%

30%

8 9 10 11 12 13 14 15

Full Resolution
0.1*Error Count Resolution

Without superposition With superposition

Figure 10. Improvements for S = P = 17

number satisfying the conditionP�S � N . While a simple
recurrence relation can be found for the partitions in table 8,
its implementation is not straightforward since the scan cell
identifiers inside a partition do not consistently increase.
Fortunately, the tapped implementation shown in figure 7
can be used in this case as well. The tapped implementa-
tion is especially useful in the case of multiple scan chains.
Instead of using internal taps, multiple scan chains can be
considered as a single chain for partitioning purposes, and
each output can be utilized as an internal tap point to the
scan chain. Figure 8 depicts such an implementation.

5. Simulation Results
In order to determine the effect of the deterministic par-

titioning schemes on the expected fault diagnosis time, we
perform a set of simulation experiments. We compare our
results to ones obtained by the LFSR-based fault diagnosis
procedure suggested in [7]. We also compare our results to
the ones obtained by utilization of the superposition princi-
ple as suggested in [3].

Simulations are performed on two prime number of par-
titions, 17 and 31, due to their proximity to 16 and 32;
LFSR-based partitioning forces the number of partitions to
be powers of two. For a fair comparison the number of par-
titions needs to be identical, yet the two schemes display
conflicting requirements in this matter. The primes 17 and
31 are selected not only because they are adjacent to the
corresponding powers of 2, but also because they end up
bestowing a slight advantage on alternating schemes.

Figure 9 shows the improvement in diagnosis time for
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Figure 11. Improvements for S = 67, P = 16
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Figure 12. Improvements for S = 127, P = 16

a deterministic partitioning of 31 partitions compared to
a pseudo-random partitioning of 32 partitions. Similarly,
figure 10 shows the improvement in diagnosis time for a
deterministic partitioning of 17 partitions compared to a
pseudo-random partitioning of 16 partitions. The figures
show improvement for both full diagnostic resolution in
which all failing cells are exactly identified and diagnos-
tic resolution of0:1 � Error Count2. The results of [7]
have been utilized whenever available, as in the case of
some of the diagnosis results for the resolution metric of
0:1�Error Count; results have been generated otherwise
by implementing the procedure outlined.

The results indicate that deterministic partitioning im-
proves diagnosis time consistently. A few parameters ef-
fect the level of improvement: the improvement is high
for full diagnostic resolution, without superposition, and
for smaller partition sizes. While pseudo-random parti-
tioning exhibits good diagnostic resolution up to a point
easily, full resolution benefits significantly from determin-
istic techniques. Utilization of the superposition princi-
ple effectively removes the overlap between the partitions
that are superposed and therefore reduces the improvement
due to the minimal overlap property of deterministic parti-
tions. However, the superposition principle is only useful
for faults that do not create sequential behavior [3].

Additional simulation experiments were performed on
non-prime number of partitions with results shown in fig-
ures 11 and 12. In this case, the number of partitions can be

2The diagnosis resolution metric of0:1 � Error Count originally
suggested in [7] is defined as the time at which that many fault-free scan
cells remain unsieved and still reside in the candidate failing scan cell set.



arbitrarily chosen, affording us the ability to undertake a set
of comparisons using identical parameters.

While the simulation results indicate that in general de-
terministic partitions are better than the pseudo-random
counterparts, the improvement in the case of non-prime par-
titions is attenuated. Results of the non-prime partitions, as
was earlier observed in the case of prime partitions, indi-
cate that as partition size increases, the effect of the varying
overlap of LFSR-based partitions is reduced.

6. Worst Case Behavior Comparison
In this section, we perform a worst case diagnosis time

analysis for both deterministic and LFSR-based partition-
ing, for the case of partition sizes equaling the number of
partitions. In this case, as shown in section 3, there ex-
ists only one overlap between any two partitions in distinct
partition groups, and no overlap within the partitions in the
same partition group. Therefore, any pair of elements can
cohabit in a partition only once.

Assume that there aren faults. Each fault-free cell has
to reside in a partition that excludes alln faulty cells at least
once in order to be able to achieve full diagnostic resolution.
The fault free cell and a particular faulty cell can reside in
the same partition only once; otherwise, the single overlap
property between partitions would be violated. Since there
aren faults in the system, a fault-free cell can reside within
the same partition of a faulty cell at mostn times. There-
fore, at the worst case, achieving full diagnosis ofn faults
necessitates utilization ofn+ 1 partition groups.

For example, consider the partitioning in table 5. If the
faulty cells are 5, 6, 7, and 8, detecting that cell 0 is fault-
free will require five partition groups since cell 0 resides
within the same partition as faulty cell 5, 6, 7, and 8 in the
first partitions of partition groups 0, 1, 2, and 3, respectively.
In the first partition of partition group 4, no faulty cell exists
and therefore cell 0 can be then pronounced to be fault free.

The worst case analysis would become considerably
more complicated if we allow the partition size to exceed
the number of partitions. In this case, the number of over-
lapping elements between partitions can be greater than one
and a faulty and fault-free cell can reside within the same
partition multiple times.

In the case of LFSR-based partitioning, even if the num-
ber of partitions is equal to the size of the partitions, there
can still be more than one overlap among the partitions. If
two cells, one fault-free and one faulty, continuously re-
side in the same partitions, the fault-free cell cannot be pro-
nounced fault-free, and full resolution can take indefinitely.

In LFSR-based partitioning, the least significantlog b
bits of the LFSR are compared to the current partition num-
ber, and upon equality, the current scan cell output is com-
pacted. Assuming that the initial value of the LFSR isI ,
and the state transition matrix for the LFSR isA, the con-

dition for two scan cellsi andj to be on the same partition
can be written as:

(Ai �Aj)I =

2
666666664

0
...
0

9>=
>; log b

x
...
x

3
777777775

(14)

At the end of the partition group, the initial value of the
LFSR is updated toANS whereN is the length of the scan
chain. Therefore, two scan cells reside in the same partition
forM test partition groups, if the following condition holds.

AkN (Ai �Aj)I =

2
666666664

0
...
0

9>=
>; log b

x
...
x

3
777777775

0 � k < M (15)

While the condition in equation 15 identifies a worst
case scenario, simulation over all primitive polynomials in-
dicates that this condition effects a limited number of scan
cell pairs and does not significantly contribute to the ex-
pected diagnosis time. As simulation results discussed in
section 2 indicate that certain polynomials produce appre-
ciably longer diagnosis times, the cause of the anomalous
behavior needs to be sought elsewhere. Examination of the
distribution of the overlap amount between the partitions
indicates that the anomalous behavior is due to the lack of
overlap among certain partitions. Lack of overlap among
certain partitions implies a larger overlap among other par-
titions. A cell resides in theith partition if the value in
the LFSR’s least significantlog(b) bits at timeT equalsi.
The partition that the same cell resides in the next partition
group is determined by the state of the LFSR at timeT+N .
The problem arises whenever no cells of a partition can re-
side in a partition of a subsequent partition group. The states
of an LFSR at timeT andT +N are correlated and the re-
lation between them depends on the value of theN th power
of the state transition matrix as shown in equation 16. The
anomalous behavior can be shown to be a function of the
structure ofAN , consequently.

S(T +N) = ANS(T ) (16)

The matrixAN shown in figure 13 is obtained for a scan
chain length of128 and the primitive polynomial7EABhex

of degree 14. Assuming that the number of partitions is 4,
i.e. log(b) = 2, an analysis of the matrixAN indicates that



2
66666666666666666666664

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0

3
77777777777777777777775

Figure 13. A state transition matrix raised to
the scan chain length

0 and 2 at timeT cannot be followed by 2 and 3 at time
T + 128. Similarly, 1 and 3 at timeT cannot be followed
by 0 and 1 at timeT + 128. Therefore, partitions 0 and 2
in a partition group do not overlap with partitions 2 and 3
in the subsequent partition group. A similar argument for
partitions 1 and 3 also applies.

7. Conclusion
A deterministic partitioning technique for diagnosis of

designs with scan-based BIST is proposed in this work.
The deterministic technique is compared to that of LFSR-
based techniques and the superiority of the deterministic
technique is proven through both analysis of the partition
overlaps and fault diagnosis simulations.

Though hardware generation of deterministic partition-
ing is highly challenging especially within low area over-
head, the regular partition structures identified in this work
enable such low cost hardware implementations. Further,
the superior properties of the deterministic partition struc-
tures outlined in this work are proven analytically. The de-
terministic nature of the partitions also enables a straight-
forward worst case analysis, thus obtaining a strict upper
bound on the diagnostic time. A corresponding analysis for
LFSR-based partitions indicates that the worst case diag-
nosis time can be significantly longer, though such cases
rarely occur, and that certain LFSRs exhibit appreciable di-
agnostic time degradation. The implementation regularity,
the associated reduction in hardware overhead, the average
diagnostic time superiority, and the imperviousness to diag-
nostic time deviations, all shown in this work, introduce de-
terministic partitioning as a powerful new BIST-based diag-
nosis tool, one whose importance is only bound to increase
as its potential to incorporate design and fault effect infor-
mation gets subsequently to be exploited.
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Appendix
In section 3, the following identity was utilized in order

to derive the expected overlap among the partitions.

mX
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A proof for this can be given as follows.
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Matching the coefficients of thexm terms in the final
equation by utilizing the binomial expansion yields the de-
sired identity.


