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Abstract though the scheme is capable of providing improved di-

A deterministic partitioning technique for fault diagnosis gnostic capability by utilizing increased information, its
in Scan-Based BIST is proposed. Properties of high quality hardware requirements are substant!ally h!gher_th.an regular
partitions for improved fault diagnosis times are identified BIST. All schemes outlined above aim at identifying a set
and low cost hardware implementations of high quality de- of failing test vectors. However, the identification capability
terministic partitions are outlined. The superiority of the ©Of suchschemes diminishes as the number of failing vectors
partitions generated by the proposed approach is confirmed!NCcreases. Yet fault effect manlfe_statlon cannot be typlca_lly
through mathematical analysis. Theoretical analyses, worst limited to a few vectors. Excluding pseudo-random resis-
case bounds, and experimental simulation data all confirm tant faults, most faults are detectable through a fairly large

the superiority of the proposed deterministic approaches. nl_me_er of vectors. Such_ schemes suffer consequently if ap-
plied in realistic test environments.

Recently, Rajski and Tyszer have proposed a scan par-

1. Introduction titioning based approach to the fault diagnosis problem in

Built-in self-test (BIST) is currently utilized in state-of- Scan-based BIST [7]. Therein the results of the application
the-art designs both for improving test quality and for re- Of the same test are repeatedly partitioned, observed, and
ducing test development and application cost. While BIST compared to the corresponding fault-free signature for each
provides sizable benefits, a limitation in its further adop- partition. A fault-free signature implies that all scan cells in
tion as the main test methodology is inherent fault diagnosisthe corresponding partition are fault free. Successive parti-
challenges. While BIST reduces test application cost appre_tioning of the scan cells into distinct partitions helps eventu-
ciably, fault diagnosis in a BIST environment s problematic ally sieve all fault-free cells. By utilizing such partitioning
since only limited information is available in a compact sig- Schemes, diagnosis time can be usually reduced to less than
nature. a tenth of the time required by a scheme that would instead

Until recently, research on diagnosis through BIST has observe the output of each cell individually. Refinements
concentrated on identifying methods for extracting infor- ©Of this partitioning technique have been proposed that uti-
mation possibly embedded in the signatures. McAnney andlize the superposition principle to further reduce diagnosis
Savir have shown that through analysis of the signature con{ime [3]. Incorporation of the superposition principle into
tents, it is possible to identify failing test vectors [6]. As Partitioning-based diagnosis approaches further reduces di-
the number of failing test vectors increases, the complexity 29nosis time to less than half of the time attained by [7].
of this scheme increases and its identification capability di- ~ While partitioning-based schemes provide effective fault
minishes due to the aliasing effects of multiple failing vec- diagnosis in a scan-based BIST environment, generation of
tors. They have further proposed a method that is capable othe partitions using pseudo-random approaches eliminates
identifying increased number of failing test vectors through the predictability of the diagnosis results. Both the param-
utilization of cyclic registers [8]. Stroud and Damarla have eters of the LFSR utilized for partitioning and the location
proposed a technique where the characteristic polynomialof the faulty cells affect fault diagnosis time. Furthermore,
is a factored polynomial and show that utilization of non- randomness of the partitions generated by the LFSR dimin-
primitive polynomials may reduce aliasing probability for ishes the possibility of incorporating design specific infor-
multiple errors [9]. Aitken and Agarwal have proposed a mation into the diagnosis procedure.
method in which the quotient instead of the signature is LFSR-generated sequences have been widely researched
utilized through a fault-free sequence generator [1]. Evento enable generation of test patterns that match specific test



needs of designs [2, 4, 5]. The schemes proposed though \ Scan chain
require either mapping hardware to map generated patterns ck 7>
—
—)
)

to desired ones [2] or intractable computation in order to
determine the parameters of the LFSR [4, 5]. Since match-
ing test needs of circuits is analogous to matching partition-
ing needs of specific designs or fault models, attempting to
adopt prior research results into the partitioning problems
posed by diagnosis does not evince a significant likelihood
of yielding desirable low cost solutions.

On the other hand, deterministic partitioning of scan Figure 1. LFSR-based scan cell selector [7]
cells does not similarly suffer, even though the difficulty
of identifying cost-effective hardware implementations with
superior partitioning leading to reduced diagnostic time
may be thought to doom the adoption of such methods.

Nonetheless, we explore, identify, and outline in this pa- o ch smaller than the number of failing vectors, diag-
per the existence of deterministic partitioning schemes, s schemes based on determination of failing scan cells
a_m.e.nable to .lOW ,COSt ha_lrdware llm.plementatlons and ®X-have been shown to provide economical solutions for to-
hibiting superior diagnostic capabﬂmes_. . day’s typical designs [7]. A partitioning-based approach for

_Not only does the proposed deterministic approach con-jgangification of failing scan cells provides low-overhead
sistently exhibit superior results, but furthermore it achieves hardware support for diagnosis of industrial designs with
such results with high levels of predictability. Even i1 ATE intervention.

though diagnosis times attained by LFSRs typically clus- In a partitioning-based diagnosis scheme, scan cells are

ter, nonetheless, there consistently exist LFSRs which Showsuccessively grouped into a set of non-overlapping parti-

.Sr:g(;].;ﬂcr?gg.\ir.'rizn't\);vzns ;ﬁ?iiqziﬂt.sapgrz??ﬁéeggﬁ':asftions, each set constituting a partition group. The observa-
IfLII:SgR Indl tiin h Xm tlh rrl1 i 'pr rrFr)1 lation th th tion of the signatures corresponding to each partition can
ot s andoutine the mathematical formutation that € provide valuable information in diagnosis, since each fault-
plains the existence of such highly variable degradations.

Vet " : lusi 0 be d . q free signature indicates that all the cells in the correspond-
toethe(;/ingjszrseglfss?u(c;:%n\(/:al:;gIr:ast\)l\(/a irz:vi(c))r ienc:)?\pl)vgr;i;egggzczing partition are fault free. Nonetheless, a single partition
. o o roup is inadequate in identifying with certainty the failin
heightened sensitivity to LFSR selection typically falls out- group q fying y g

id tablished industrial desian fi d i A scan cells, as all cells in a partition that exhibits a failing sig-
side establisned industrial design TIows and practices. AN, o constitute a candidate set of culprits. Consequently,
invaluable characteristic of the proposed deterministic par-

titioning approaches lies in their ability to incorporate de additional applications of the same test set, yet with differ-
. 9 appros . . ytol P ing partition elements, need to be used to provide additional
sign and fault information; such incorporation may further

help red di s i d model | . _snapshots of failing scan cells with consequent refinement
faeuﬁ ;?o(;;z 1agnosis ime and model complex eémMerging ¢ ye candidate failures. Each of these applications of the

. . same test set, with its repartitioning of the scan cells, con-
The next section of the paper reviews the fundamentals

L : ) ) . stitutes a partition group.
of partitioning-based diagnosis. Section 3 motivates the ne- P group

. ) S e Figure 1 depicts a possible scan cell partitioning hard-
cessity of exploring deterministic partitioning schemes by f : L

g . : . " . ware implemented using an LFSR and an Initial Value Reg-
examining the diagnostic quality of partitions. Section 4

illustrates mathematical and implementation challenges in—ISter (IVR) [7]. While the LFSR is loaded from the IVR for

herent in constituting a deterministic scheme and proceed§eneratlon of each partition in a particular partition group,

. . . at the end of the generation of a partition group, the IVR is
to outline both analytic and low cost hardware implementa- .
) . S L updated with the current state of the LFSR. The test counter
tion solutions to the problem of deterministic partitioning.

) . . : : : value is compared to an arbitrarily selected set ofitputs
While section 5 provides a simulation-based comparison ofOf the LESR: compaction of the outout of the correspondin
LFSR-based and deterministic partitioning approaches, sec- ’ P P P 9

. : . . - scan cell occurs upon a match. Since the test counter has a
tion 6 outlines worst case fault diagnosis analysis time for

them both. Conclusions are drawn in section 7 unique value for each patrtition, the partitions in each parti-
' ' tion group are distinct. Updating the IVR with the current

R state of the LFSR at the end of each partition group guaran-

2. Preliminaries tees distinctness of the partition groups as LFSR generated
While various attempts have been made to determinesequences do not repeat.

failing test vectors in a scan-based BIST environment, the  Figure 2 provides a pseudo-code of the diagnosis pro-

diminution of their identification capability in the face of cedure for LFSR-generated patrtitions. In this pseudo-code,

Shift Pattern Test
Counter Counter Counter

a large number of failing vectors dooms their applicability
in current industrial designs. As the number of failing scan
cells (scan cells that receive incorrect information) tends to



for each partition group ¢ der the simplifying assumptions of random generation and

for each partition b in ¢ . L .
shit _counter = 0, LFSR = IVR equal sized partitions. Expected overlap can be obtained by

while shift  _counter '= N summing the index-weighted variant probabilities of over-
if r bits of LFSR = b lap. In the case of partitioning of N cells into P groups, this
compact the current output rEdUCeS to:
shift _counter++ ’
IVR = LFSR N/P
Figure 2. LFSR-based partitioning procedure Eovertap(N, P) = Z nPovertap(n) (1)
n=0
for each partition group c .
for each partition b in ¢ The probability ofn overlap, Poyeriap(n), can be deter-
shift _counter = 0, i = 0 mined by calculating the following quantities.
while shift _counter = N
it P(c,b,i) = shift _counter e The number of possible overlag@!/?)

compact the current output
i++

: B —N/P
<hift counter+s ¢ The number of possible non overla;()@fw_n )

Figure 3. Generic partitioning procedure e The number of possible partition@vyp)

Multiplication of the first two quantities provides the
N andb correspond to the size of the scan chain and the number of partitions that overlap im elements. Dividing
value of the test counter, respectively. While the pseudo-this number by the total number of partitions results in an
code of figure 2 is specific to LFSR-based partitions, a expression for the probability of overlap. Substituting the
generic pseudo-code for the diagnosis procedure schemeesultant probabilityP, 4, in €quation 1 results in:
can be attained by modifying the cell selection logic. Such

an approach is shown in figure 3, whepéc, b, i) denotes N/P Ny (N-K
the scan cell identifier of th&”" element of theb'" par- n§0 n(%) (%w)
tition of the ¢ partition group. Correct functionality of Eovertap(N, P) = (zjxvf) ()

the diagnosis procedure based on the latter pseudo-code re-
quires thatP(c, b, i) be monotonic in parametér While  The combinatorial formulation in equation 2 can be re-
scheme, an implementation that is capable of handling non-

monotonicP(c, b, i) would require significantly higher area . (p q p+q—1
D>k = ®)
= \k —k

overheads as it would necessitate storing and subsequent re- m—1
ordering of the elements of the partitions.

SubstitutingX, n, &, andN — & for m, k, p, andg,
3. Diagnostic Quality of Partitions respectively, yields
While partitions inside a partition group do not overlap, N
partitions that belong to distinct partition groups overlap in Eovertap(N, P) = =5 (4)

. - . P2
various number of scan cells depending on how the parti-
tions are generated. The overlap among partitions effects The identical result is obtained even if nonrandom parti-
diagnostic time as increased overlap between two partitionstions are utilized as long as partitions in a particular group
reduces additional information attainable in case both par-are assumed to cover all scan cells and be nonoverlapping.
titions happen to be fault-free. A partitioning scheme that This can be easily shown by observing that the expected
is polluted by an excessive number of highly overlapping size of a partition isN/P. The overlap of a partition to
partitions unnecessarily lengthens the diagnosis procedurethe union of all the sets in a distinct partition group is the
In the following subsections, even though we analytically partition size, since the partition group has to cover all N
show that the average overlap among partitions is constantscan elements. The expected overlap to one partition in
variations in the number of overlapping cells effect fault di- the partition group consequently is the expected partition
agnosis; the higher the variation in the overlap, the longer size times the probability of selecting that partition, i.e.

the diagnosis procedure takes. (N/P)(1/P) = N/P2.
Since the expected overlap value is identical for any par-
3.1. Expected Overlap Value Analysis tition group generation scheme and as a matter of fact ex-

The expected amount of overlap for two partitions in actly equal to that of randomly generated partitions, the
distinct partition groups can be analytically determined un- A proof of the identity in equation 3 is given in the appendix.




LFSR| Chain | Partitions| Expected RMS 01 2 3 456 7 8 9101112131516 17 18 12021222324
width | Length Overlap | deviation 06 12182451117234|1016223 9|15212 8 1420 1 7 1314
01122 8 19616 2 13241021 7 184|151 1223 920 6 173 14
14 1024 16 4 2.72 016 7 2314521123 1910 1 17 8 2415 6 22134[20112 18 9
14 1024 8 16 6.15 0211713 95 1 22181410 6 2 23191511 7 3 24201612 8 4
15 | 1024 8 16 5.25 . o
14 5048 5 37 11.90 Table 3. Deterministic partitioning of 25 cells

itive polynomials that result in extremely high diagnosis
times; including such polynomials would have only in-
creased correlation levels. Example cases of anomalous di-

Table 1. RMS deviation of partition overlaps

\%Stﬁ If:e P:%Th Partitions CE(;:JOr:t Correlation agnosis times and their associated analyses are provided in
section 6. The results indicate that there indeed exists a
14 1024 16 15 0.6986 significant, positive correlation between the expected fault
14 1024 8 l 0.4804 diagnosis time and the RMS partition quality measure pro-
15 1024 8 ! 0.4648 posed. As reduction of overlap between partitions evidently
14 2048 8 ’ 0.5785 results in reduced diagnosis time and as overlap variation

can be minimized through deterministic approaches only,
we examine in the next section the generation of determinis-
tic partitions that achieve an RMS value of zero and thus ex-
hibit superior diagnostic power over LFSR-based schemes.
cause of possibly differing partition quality needs to be

searched within higher order measures, such as overlap deg Construction of Deterministic Partitions

viations. Overlap deviations can be converted into a sin-
gle quality measure by calculating the Root Mean Square
(RMS) of the deviations. While deterministic partitions can
be made to exhibit zero RMS as long as the partition over- . X - _
lap equals uniformly the expected overlap value, RMS for (€ €ase of number of partitions equaling partition size, a
LFSR-generated partitions can be shown to be non-zero andartition has to _h_ave asingle oyerla;ﬁmhpart_ltlc_)n inside
varying. We calculate the RMS value for the partitionings EVETY Othempartition group. This constraint limits sharply
that are generated by all primitive polynomials of degree 14 Fhe n.u_mb_er of attainable pgrtmon groups, and makes their
and 15 (756 and 1800 primitive polynomials, respectively). |dent|f|cat|oq "’_‘”‘?' cons_tr_uct_lon ”°””'V'f""-.

Table 1 provides parameters of the LFSRs utilized for par- A deterministic partitioning that satisfies the aforemen-

titioning, the expected overlap, and the RMS deviation in 10N€d constraints for a scan chain size5fis provided in
overlap values. table 3. The scan chain is partitioned into 5 partition groups;

The table indicates that the overlap among partitions each row in the table corresponds to a partition group with

varies from the expected value significantly with RMS de- o partmolns. It can easily be. vernjed that the ”“”.‘ber of
viation ranging between 33% to 68% of the expected over- overlapping cells f(_)r the_ par_tm_ons n te_lt_)le 3 is consistently
lap. The RMS deviation humbers reported in table 1 con- equal tol_f_or pa_rtltlons in distinct partition groups and to
stitute the average value of the deviations for all primitive 0 for partitions in the same group. T_he m|n|m_a_l overlap
polynomials of the corresponding degree. While the RMS prop.erty. can be traced at least for a smgle part.|t.|on 'by ob-
values indicate significant overlap deviations, it is unclear Serving in bold al the e_Iements of the first partition in the
up-front whether such deviations translate into diagnosticfIrSt partition group in this t_a_ble. - .
time degradations. We perform correlation analysis in the Even though_such partitions hav_e th_e Minimum possi-
next subsection in order to validate the diagnostic quality of _ble overlap, th_e" hardware gener_atlon is highly challt_'-_\ng—
the RMS measure. ing. Examination of the relationships across groups yields
the recurrence relation in equation 5, while equation 6 can
. . be used to denote a simple definition of the initial partition
3.2. Correlation Analysis group. In these and the following equationsb, 7, andS

For each simulation parameter in table 1, the diagnosis(equalto 5 in the example of table 3) correspond to the parti-
procedure is simulated in order to find the expected fault tion group number, the partition number, the location inside
diagnosis time for each primitive polynomial. Furthermore, a partition, and partition size, respectively. A numbering
the correlation between the RMS overlap deviation and theconvention whereie, b, and: are assumed to vary between
expected fault diagnosis time is calculated. The results are) andS — 1 inclusive is utilized throughoutP(c, b, 7) in-
reported in table 2. dicates the numeric identifier of a scan cell in locatiaf

Correlation results reported in table 2 exclude the prim- partitiond in partition groupe, as noted in section 2.

Table 2. Correlation between RMS deviation
and expected fault diagnosis time

A partitioning with zero RMS overlap deviation has to
have uniformly minimal overlap with all partitions, impos-
ing a strict constraint on the structure of the partitions. In



P(c+1,bi) = P(c,(b+i)modS,i) (5 [0[1]2[3[4]

P(0,b,i) = bS+i (6) 0112134
5 6 7 8 9
10| 11| 12| 13| 14
15116 | 17| 18 | 19
201 21| 22| 23| 24

While these equations are straightforward, generation of
the partitions directly through these equations requires high
area overhead due to recursion; a direct implementation of
a recurrence relation requires storage of the previous re-
sult. In the following subsections, alternative recurrence Table 4. Remainder and quotient groups
relations amenable to nonrecursive solutions are derived
for these partitions. Various hardware implementations for ® b: = b»: has a unique solution,= 0.
such formulations are provided as well.

AWV RO

e by # by: @ unique solution exists fd§ prime.

4.1. Implementation Issues For partitions inside the same partition group, te= cs,

A simple hardware implementation for the partition overlap necessitates equality af and b,; a partition can
groups in table 3 requires a solution of the recurrence re-only overlap with itself inside a partition group.
lations in equations 5 and 6. Examination of the stride char- . o -
acteristics within partitions provides equation 7, while ex- W& have shown that partitions within distinct partition

amination of the stride across partitions provides equation 8.9roups have an overlap éfand those Wif[hin the same par-
tition group do not overlap. While partitions generated by

P(e,byi+1) = (P(c,b,i)+cS+1)mod S?* (7) equation 9 fulfill the minimal overlap requirement and have
P(e,b+1,i) = (P(e,b,i)+ S) mod S? (8) an RMS overlap deviation aterq they do not fulfill the
monotonicity requirement discussed in section 2.
Now that inductive relationships are established for all  Since there exists no restriction on the order of the nu-
three arguments aP, a nonrecursive solution can be es- meric identifiers inside a partition, they can easily be re-
tablished by embedding the induction effects, resulting in ordered to satisfy the monotonicity requirement. However,

equation 9. reordering these identifiers inside partitions destroys the
regular recurrence relations. In order to generate partitions
P(c,b,i) = ((ci + b)S + i) mod S* 9) with low cost hardware implementation, we investigate the

The existence of partitions with minimal overlap, as Structure of the construction of the partitions that are gener-
shown in table 3, is not coincidental. The following the- ated by equation 9 and utilizing the structure we provide an

orem shows that partition groups generated by equation galternative partition_ing_forwhich the increasing o_r_der prop-
always exhibit the minimal overlap of 1 for any prime num- €y holds. Determination of the structure of partitions gen-
bersS. erated by equation 9 requires grouping the scan cell identi-

fiers in terms of their remainder and quotientdo Table 4
Theorem: Partitions generated by equation 9 have an over- provides such a grouping 6 identifiers whers equals 5.
lap of 1 whenever they are in distinct partition groups and |n this table, columns and rows correspond to the remainder
have no overlap whenever they are in the same partitionand to the quotient groups, respectively.
group, forS prime ande, b, andi < S. Notice that all the partitions in table 3, except the ones
in the first row, include 1 element from each of the remain-
der and quotient group. The elements in each partition are
always composed of the elements of the remainder groups
0,1,2,---,5—1. The elements of the first partition of each
partition group can be generated by visiting the quotient

Proof: In order for the elements of two partitions,
P(cy,b1,41) and P(eq, be,i2), to overlap, the following
equality has to be satisfied:

P(ey, byyin) = Pez, by, iz) (10) groups in increments @, 1,2, - - -, S — 1. Finding the quo-
SinceS > [i1 —i»|, equation 10 holds iff; = iy = i. tient groups for higher numbered partitions is trivial as the
Therefore, the overlap condition reduces to: recurrence relation in equation 8 implies that the quotient
_ od S _ groups of the elements in partitiért 1 exceed by one the
(c1i+01)S =" (e2i+b2)S (11) elements in partitioh. Not only the partition in table 3,

but also all such partitions that are generated by equation 9,

which can be simplified by dividing by to: for S prime, exhibit the same regular structure. We denote

(e1 — e2)i mod S by — by (12) the clgss of pe_lrtitions tha}t are generated by equation 9 as
Remainder Uniform Partitions
For partitions in different partition groups, i.ey # co, The observations in the previous paragraph enable the

only two cases need to be analyzed: construction of partitions with the monotonically increasing



0510152
061218 24
0714162
081119 21
0913172

1611162
11713192
81 8 10 17 24
P1912152
11514 18 2%

12712172
2814152
12911182
B2 513 16 24
P2 610192

3813182
13 9 10 16 21
13512192
13614172
B3 7 11 15 24

B4 9 14 19 24
4511172
14613152
M 710182
14812162

Table 5. Quotient Uniform Deterministic parti-
tioning of 25-cell scan cells

012 3456 7|891011| 12 13 1415
048 12|15 9 13| 261014 3 7 1115
051015141114 27 8 13| 3 6 9 12
061113171012 24 9 15| 3 5 8 14
07 9 14|16 8 15| 251112 3 4 1013

Table 6. Deterministic partitioning of 16 cells

order property by interchanging the quotient for the remain-
der in the previous paragraph. The new class of partitions

are denoted analogously @siotient Uniform PartitionsA
consequent partitioning, in the case®f= 5, is provided
in table 5. A comparison of tables 3 and 5 reveals that ex
cept for the first group, both partitionings are identical, yet
utilize different orderings of partition groups and partitions.

clk

Pattern
Counter

Shift
Counter

Partition

Test Group
Counter

Counter

B

Figure 4. Absolute value based partitioning
hardware

clk =7 Scan chain

Shift Increment

t
Test Grou
Counter

f
Partition
Counter

Shift
Counter

Pattern
Counter

T

Figure 5. Successor difference based parti-
tioning hardware

Consequently, the total number of partition groups in both

tables that satisfy the minimal overlap property is 6. In-
deed, exhaustive computer simulations $oup to 7 indi-
cate that for a scan size 6 there exists a maximum of
S + 1 partition groups satisfying the minimal overlap crite-
rion. The same number of minimally overlapping partition
groups also exists for non-prime partition sizes. However

no simple recurrence relation that yields low cost hardware

implementations can be identified for non-prime partitions.
Table 6 provides 5 minimally overlapping partition groups
forS = 4.

The solution of the recurrence relation for Quotient Uni-
form Partitions provides the following result:

P(e,b,i) = (ci +b) mod S +iS (13)

Equation 13 can be utilized in the pseudo-code in fig-
ure 3 for hardware implementation. The result of such
an implementation is shown in figure 4. However, such

an implementation still requires significant hardware over-

head, especially for the implementation Bfc, b, ); two

multipliers, two adders and a modulo operator are required

for the implementation ofP(c,b,i). An alternative, im-

proved implementation is shown in figure 5, which is based

on the pseudo-code of figure 6, utilizing the difference of
D = P(e,b,i+1) — P(c,b,1), whereP(c, b, i) is defined

by equation 13. The differencé®, reduces t@ + S unless
(c(t +1) 4+ b) mod S < (ci +b) mod S, in which case

it reduces tac. This implementation requires significantly

fewer hardware components compared to the implementa-

tion in figure 4.
In the modified implementation, both the regisfsitd
and the counteShiftincrementre set to the first element

of the current partition, which is always equal to the parti-
tion number. RegisteAdd continuously holds the current
remainder group of the current element in the partition sub-
sequently; the current remainder group is updated when-
ever that element is reached in the scan chain. Jti-
' Incrementcounter is reloaded with the difference between
P(e,b,i + 1) and P(c, b, i) upon reaching zero. After the
whole scan chain is shifted, the process restarts from the
beginning. At the end of the test application session, the
signature is shifted out, the partition count is incremented,
and the process repeated.

The deterministic partitioning hardware depicted in fig-
ure 5 requires onéog(S) bit register, twolog(S) + 1 bit
adders and comparators, ofag(S) + 1 bit counter, and 3
multiplexers in addition to the hardware requirements of the
BIST hardware. The hardware requirement for determinis-

for each partition group c
for each partition b in ¢
ShiftCounter = 0
Add = b, Shiftincrement = b
while ShiftCounter = N
Until Shiftincrement = 0
Shiftincrement--, ShiftCounter--
compact the output of the current cell
Add = Add + ¢
If Add >= S
Add = Add -S
Shiftincrement
Else
Shiftincrement

c

c+S

Figure 6. Successor difference based parti-
tioning procedure
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tic p_artit@oning i_s slightly higher than that of LFSR—based 8 g ﬂ i? ;g 1‘31 ig ‘21 618 18 ; ? 13 ig i g 1‘21 ie
partitioning, which requires one LFSR, one register and one
log(S) bit comparator. Even though the size of the LFSR ~ Table 8. Deterministic partitioning of 20 cells

and of the register are typically user defined, LFSRs of size

16 provide satisfactory results [7]. the ability to handle arbitrary partitionings of the scan cells.

_ An alternative, tapped implementation strategy for parti- |, ¢his subsection, we show that the properties developed in
tioning is shown in figure 7. This implementation requires e hrevious subsection can be utilized to generate arbitrary

access to internal points of the scan chains and thereforej; o4 hartitions as long as the size of the partitions is chosen
introduces routing overhead. This implementation directly to be prime during partition generation.

mimics the structure of the partitions. Access to the internal

ints of th hai ides direct to th In order to generat® partitions of sizeS, we generate
points ot the scan chain provides direct access 10 the quoy,q guotient and remainder group with respectttor all

tient groups and the s_hifting process provides_ access to theP x S elements in the scan chains. Table 7 provides such a
remainder groups. Since partitions have a single elemen[partitioning forP = 4 andS = 5. In this table, rows and

from each remalnde_r group, the output multiplexer can S€ columns correspond to the remainder and quotient groups,
lect the correct quotient group whenever necessary. For ex'respectively

ample, f_or the second partition of thg third partition group, The partitions are generated by choosing one element
the multiplexer receives the select signals 3,1,4,2,5. At thefrom each row and column. The columns are traversed in

first cycle, scan cell 10 is selected. After the shift opera- increments of 1 and the rows are traversed in increments of

e o o o 245 1.2 and, genraingl distict partion grops. The
q y P y first partition of the first partition group is constructed as

e e Cone of S, D1, 1215, . Th Second paion of e st gruy
the multiplexer. At the end of 5 cycles, all necessary scan 'S generatgd 8, 11,17,3,9. The first part|t_|on of the sec-
cell outputs for.the partition are compaéted at the output ond group 1S geqerated 857, 14, 16, 3. Notice that for a_ll .

" of the partitions in table 8 the columns are traversed in in-

If extra_s_|gna_ture compactars are available, .S'gnaturescrements of 1, and the rows are traversed in increments of
for all partitions in a test group can be produced in parallel 192....6_1
) ) .

ing th fthe llto thei f’ " . .
by cgnnectlngt € ogtput ° .t c astscan cellto t © Input 0 In order to be able to partitiov elements inta? parti-
the first scan cell. Diagnosis time can be sharply increased. " : - .

: ions, the partition siz& needs to be the minimum prime
thereupon, albeit at the expense of some hardware overhea&.
While it would seem at first sight that diagnosis time is re-
duced by a further factor o, the actual reduction is only
a factor ofS/2, as the connection from the last scan cell to
the first scan cell during diagnosis eliminates the capability

of shifting in new patterns while shifting out results. oY s
" :
4.2. Arbitrary Partitioning of Scan Cells
For the partitions generated so far, the number of ele- S | |
ments in the partitions is assumed to equal the number of ‘ Shift M pattern HpanmonH Test Gmuﬁ
partitions. Yet it is known [7] that the optimal partitioning Counter | | Counter | | Counter] | Counter

requires the number of partitions to be one more than the _ _ _ o
number of error presumed and thus optimality necessitates ~ Figure 8. Multiple scan chain partitioning
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number satisfying the conditiaRx S > N. Whileasimple @ deterministic partitio_n_ing_ of 31 partitio_n_s comp_argd to
recurrence relation can be found for the partitions in table 8,2 PSeudo-random partitioning of 32 partitions. Similarly,
its implementation is not straightforward since the scan cell figure 10 shows the improvement in diagnosis time for a
identifiers inside a partition do not consistently increase. deterministic partitioning of 17 partitions compared to a
Fortunately, the tapped implementation shown in figure 7 PS€udo-random partitioning of 16 partitions. The figures
can be used in this case as well. The tapped implementaShow improvement for both full diagnostic resolution in
tion is especially useful in the case of multiple scan chains. Which all failing cells are exactly identified and diagnos-
Instead of using internal taps, multiple scan chains can befiC resolution of0.1 x Error Count?®. The results of 7]
considered as a single chain for partitioning purposes, andhave been utilized whenever available, as in the case of

each output can be utilized as an internal tap point to theSOme of the diagnosis results for the resolution metric of
scan chain. Figure 8 depicts such an implementation. 0.1 x Error Count, results have been generated otherwise

by implementing the procedure outlined.
. . The results indicate that deterministic partitioning im-
5. Simulation Results proves diagnosis time consistently. A few parameters ef-
In order to determine the effect of the deterministic par- fect the level of improvement: the improvement is high
titioning schemes on the expected fault diagnosis time, wefor full diagnostic resolution, without superposition, and
perform a set of simulation experiments. We compare ourfor smaller partition sizes. While pseudo-random parti-
results to ones obtained by the LFSR-based fault diagnosigioning exhibits good diagnostic resolution up to a point
procedure suggested in [7]. We also compare our results teeasily, full resolution benefits significantly from determin-
the ones obtained by utilization of the superposition princi- istic techniques. Utilization of the superposition princi-
ple as suggested in [3]. ple effectively removes the overlap between the partitions
Simulations are performed on two prime number of par- that are superposed and therefore reduces the improvement
titions, 17 and 31, due to their proximity to 16 and 32; due to the minimal overlap property of deterministic parti-
LFSR-based partitioning forces the number of partitions to tions. However, the superposition principle is only useful
be powers of two. For a fair comparison the number of par- for faults that do not create sequential behavior [3].
titions needs to be identical, yet the two schemes display Additional simulation experiments were performed on
conflicting requirements in this matter. The primes 17 and non-prime number of partitions with results shown in fig-
31 are selected not only because they are adjacent to theires 11 and 12. In this case, the number of partitions can be
correspondmg powers of 2, but also be.cause they end up 2The diagnosis resolution metric 6f1 x Error Count originally
bestowing a slight advantage on alternating schemes. suggested in [7] is defined as the time at which that many fault-free scan
Figure 9 shows the improvement in diagnosis time for cells remain unsieved and still reside in the candidate failing scan cell set.




arbitrarily chosen, affording us the ability to undertake a set dition for two scan cellg andj to be on the same partition
of comparisons using identical parameters. can be written as:
While the simulation results indicate that in general de- _ -

terministic partitions are better than the pseudo-random 0
counterparts, the improvementin the case of non-prime par- - plogh
titions is attenuated. Results of the non-prime partitions, as ; ) 0
was earlier observed in the case of prime partitions, indi- (A* = AT = xr (14)
cate that as partition size increases, the effect of the varying
overlap of LFSR-based partitions is reduced.
T
6. Worst Case Behavior Comparison At the end of the partition group, the initial value of the

In this section, we perform a worst case diagnosis time LFSR is updated tet"V .S whereN is the length of the scan
analysis for both deterministic and LFSR-based partition- chain. Therefore, two scan cells reside in the same partition
ing, for the case of partition sizes equaling the number of for M test partition groups, if the following condition holds.
partitions. In this case, as shown in section 3, there ex-
ists only one overlap between any two partitions in distinct - -

partition groups, and no overlap within the partitions in the 0
same partition group. Therefore, any pair of elements can : logb
cohabit in a partition only once. EN/ Ad |0
Assume that there ane faults. Each fault-free cell has AT(AT AN = x 0<k<M (15
to reside in a partition that excludes alfaulty cells at least
once in orderto be able to achieve full diagnostic resolution.
X

The fault free cell and a particular faulty cell can reside in L .

the same partition only.once; otherwisg, the singlle overlap While the condition in equation 15 identifies a worst
property between partitions would be violated. Since there . sq scanario, simulation over all primitive polynomials in-

aren faults in the system, a fault-free cell can reside within ica4e5 that this condition effects a limited number of scan
the same partition of a faulty cell at masttimes. There- o hairs and does not significantly contribute to the ex-
fore, at_the wor_s_t case, ach|evmg_ f.u” diagnosis:dBults pected diagnosis time. As simulation results discussed in
necessitates utilization of + 1 partition groups. section 2 indicate that certain polynomials produce appre-
For example, consider the partitioning in table 5. If the ;5 |onger diagnosis times, the cause of the anomalous
faulty cells are 5, 6, 7, and 8, detecting that cell 0'is fault- poayior needs to be sought elsewhere. Examination of the
free will require five partition groups since cell 0 resides yigyiption of the overlap amount between the partitions
within the same partition as faulty cell 5, 6, 7, and 8 in the ;i ates that the anomalous behavior is due to the lack of
first partitions of partition groups 0, 1, 2, and 3, respectively. overlap among certain partitions. Lack of overlap among

In the first partition of partition group 4, no faulty cell exists certain partitions implies a larger overlap among other par-
and therefore cell 0 can be then pronounced to be fault freetitions A cell resides in the!” partition if the value in
The worst case analysis would become considerablyy,o | FsR's least significaribg(b) bits at timeT” equals.
more complicated if we allow the partition size to exceed 1 nanition that the same cell resides in the next partition
the number of partitions. In this case, the number of over- roup is determined by the state of the LFSR at tifne V.
lapping elements between partitions can be greater than 0ng e prohlem arises whenever no cells of a partition can re-
and a faulty and fault-free cell can reside within the same gjye i a partition of a subsequent partition group. The states
partition multiple imes. _— , of an LFSR at timg" andT" + N are correlated and the re-
In the case of LFSR-based partitioning, even if the nUM- |54ion petween them depends on the value ofthé power
ber of partitions is equal to the size of the partitions, there ¢, state transition matrix as shown in equation 16. The

can still be more than one overlap among the_partmons. If anomalous behavior can be shown to be a function of the
two cells, one fault-free and one faulty, continuously re- ¢\ ~tre ofAN, consequently.

side in the same partitions, the fault-free cell cannot be pro-
nounced fault-free, and full resolution can take indefinitely. S(T + N) = ANS(T) (16)

In LFSR-based partitioning, the least significdog b
bits of the LFSR are compared to the current partition num-  The matrixA” shown in figure 13 is obtained for a scan
ber, and upon equality, the current scan cell output is com-chain length ofl 28 and the primitive polynomiad EA B,
pacted. Assuming that the initial value of the LFSRIjs  of degree 14. Assuming that the number of partitions is 4,
and the state transition matrix for the LFSRAs the con- i.e. log(b) = 2, an analysis of the matrix” indicates that



1 1111111111111 References
1 0000O0O0O0O0O0O0OO0O0O0 [1] R. C. Aitken and V. K. Agarwal. A diagnosis method using
1'100000O00O0O0O0O0O0 pseudo-random vectors without intermediate signatures. In
0600011111 111111 International Conference on Computer-Aided Desigages
0ooo001111111111 574-580, 1989.
1 1 111 0 0 O0OUOUO0OUO0OTUO0DTGO0ODDO [2] S. Akers and W. Jansz. Test set embedding in a built-in self-
1111 110000UO0O0O0O0 test environment. Irinternational Test Conferencepages
0000000111 1111 257-263, 1989. _ S
000000O0O0T1T1T1111 [3] I Bayraktaroglu and A Oralloglu._ _Improve_d fault dlagr_105|s
1 1111111100000 in scan-based BIST via superposition.Dasign Automation
Conferencepages 55-58, 2000.
00000O0O0OO0CO0OO0OT1T111 [4] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and
1111111111100 0 B. Courtois. Built-in test for circuits with scan based on
0 00O0OOOOOOOO0O©O0T1TT1 reseeding of multiple-polynomial linear feedback shift regis-
;11 1111111111110 | ters.IEEE Transactions on Computes:223-233, February
1995.
Figure 13. A state transition matrix raised to [5] M. Lempel, S. Gupta, and M. Breuer. Test embedding with

discrete logarithmdEEE Transactions on CAD of Integrated
Circuits and Systemd44:554-566, May 1995.

[6] W. H. McAnney and J. Savir. There is information in faulty
signatures. Iinternational Test Conferencpages 630-636,
1987.

[7] J. Rajski and J. Tyszer. Diagnosis of scan cells in BIST envi-

the scan chain length

0 and 2 at timel' cannot be followed by 2 and 3 at time
T + 128. Similarly, 1 and 3 at tim&" cannot be followed

by 0 and 1 at timé” + 128. Therefore, partitions 0 and 2 ronment. IEEE Transactions on Computerd8(7):724-731,
in a partition group do not overlap with partitions 2 and 3 July 1999.

in the subsequent partition group. A similar argument for [8] J. Savir and W. H. McAnney. Identification of failing tests
partitions 1 and 3 also applies. with cycling registers. Ininternational Test Conference

pages 322-328, 1988.
. [9] C. E. Stroud and T. R. Damarla. Improving the efficiency of
7. Conclusion error identification via signature analysis. WWSI Test Sym-
A deterministic partitioning technique for diagnosis of posium pages 244-249, 1995.
designs with scan-based BIST is proposed in this work.
The deterministic technique is compared to that of LFSR- Appendix
based techniques and the superiority of the deterministic |, section 3, the following identity was utilized in order

technique is proven through both analysis of the partition {4 qerive the expected overlap among the partitions.
overlaps and fault diagnosis simulations.

Though hardware generation of deterministic partition- " [p q p+qg—1
ing is highly challenging especially within low area over- Z k )\m—k) ~ m—1 (3)
head, the regular partition structures identified in this work k=0

enable such low cost hardware implementations. Further, A proof for this can be given as follows.

the superior properties of the deterministic partition struc-

tures outlined in this work are proven analytically. The de-

terministic nature of the partitions also enables a straight- (1+2)P = Ep: <P> 2

forward worst case analysis, thus obtaining a strict upper k

bound on the diagnostic time. A corresponding analysis for »

LFSR-based partitions indicates that the worst case diag- xdi(l +a)P = Zk<z> ok
k=0

k=0

nosis time can be significantly longer, though such cases

rarely occur, and that certain LFSRs exhibit appreciable di- d

agnostic time degradation. The implementation regularity, z—-—(1+2)"(1+2)* = pz(l+ )Prat

the associated reduction in hardware overhead, the average , q prg—1

d|agno§t|c time superiority, and the imperviousness to diag- Z k <P> 2 Z <Q> R Z p(p +q- 1) L
nostic time deviations, all shown in this work, introduce de- k l n

terministic partitioning as a powerful new BIST-based diag-

nosis tool, one whose importance is only bound to increase  Matching the coefficients of the™ terms in the final
as its potential to incorporate design and fault effect infor- €quation by utilizing the binomial expansion yields the de-
mation gets subsequently to be exploited. sired identity.

k=0 =0 n=0



