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Design Rewiring Using ATPG

Andreas VenerisMember, IEEEand Magdy S. AbadjrSenior Member, IEEE

Abstract—t ogic optimization is the step of the very large scale  In general, existing techniques optimize a design through an
integration (VLSI) design cycle where the designer performs ijterative sequence of simple structudasign rewiringopera-
modifications on a design to satisfy different constraints such as {jgng. During each iteration, a singlarget wireis identified
?ﬁ%gﬁ \t/)vaesr,ecér gg's?gﬁgsv?ﬁﬂg’ taelétﬁrr]?ﬁeeg tf%fttziﬁﬁg;o%eyrjggg] for removal bgcause it violates sor.ne.optimization constraint(s).
dent logic optimization have gained increasing popularity. In Next, some simple redundant logic is added so that the target
this paper, the authors propose a new operational framework to Wire itself becomes redundant and it can be removed. Finally,
design rewiring that uses ATPG and diagnosis algorithms. They the target wire is removed as well as other newly generated re-
also examine its complexity requirements and discuss different qundancies. This process is repeated until the desired optimiza-
implementation tradeoffs. To perform this study, the authors inn constraints are satisfied. Due to the nature of their oper-

reduce the problem of design rewiring to the process of injectinga _,. .
redundant set of multiple pattern faults. This formulation arrives ations, these techniques [3]-{7], [9], [10], [15], [22], [17] are

at a new set of results with theoretical and practical applications. /S0 known asedundancy addition/removal (RARchniques.
Experiments demonstrate the competitiveness of the approach |n this work, we present a new operational framework to
and motivate future work in the area. ATPG-based design rewiring that combines existiesign
Index Terms—CAD, diagnosis, synthesis, testing, VLSI. error diagnosis and correction (DEDCiechniques [1], [23]
with advances in ATPG [11], [13], [20], [14]. The proposed
ATPG/diagnosis-based design rewiring (ADDR) methodology
works in the opposite direction to existing procedures. It first
D URING logic optimization, the gate level implementationntroduces a design error and then it corrects it with a simu-
(netlist) obtained by high-level synthesis tools is modigtion-based DEDC algorithm and ATPG. We also describe
fied to achieve different constraints such as mlnllelng the aredficient imp|ementati0ns for this method, study its Comp|exity

minimizing power consumption, satisfying timing constraintgequirements, and present experiments that demonstrate its
reducing switching noise, or improving the testability of theghustness.

final circuit. Traditionally, logic optimization is carried out in It should be noted that in this paper we do not propose an algo-
two phases. First, technology-independent optimization returlnr?]m that targets a specific optimization goal, but we introduce

an optimum logic network in terms of some general criteria such o methodology to design rewiring that adds and comple-

as gatecount, literal count, etc. In this phase, symbolic—ba§% g hni oA Iti h ol
(Boolean or algebraic) methods [2], [19] are particularly effi- gnts existing techniques [24]. It is among our research plans

%o apply the presented results to specific optimization problems
cient. Next, the netlist gates are mapped to a technology libr PRy P P P b

4 the desian is furth timized und of t ]. Also, we do not examine algorithms that identify newly

iglogyedesglr?c;]elnst cli)rnsfr;\%?slmlze under a new set of teclienerated redundancies after a series of logic transformations
: . but the work in [4]-[6], [9], [10] applies here as well.

Recently, automated test pattern generation (ATPG)-basec} [41-16]. [ ], [10] app ) )
optimization techniques [3]-[7], [9], [10], [15], [22], [17] have ADDR has several unique features thaF mqke it attr'acltlve
gained increasing popularity for technology-dependent logif€n compared to existing approaches. First, it is not limited
optimization. Their main strength lies in their performanci the amount and type of target logic it eliminates. Since
since they are memory efficient. They have good failure chdf-formulates the elimination of the target logic through the
acteristics, and, although theoretically they can be exponenifdfoduction of an error, it can perform a wide variety of
in time, in practice this is rarely the case. Due to these facl@giC transformations. In general, the approach allows one to
ATPG-driven techniques have successfully tackled problerﬁgb'tra”_ly_m‘)d'fy part of the circuit to introduce an error and
such as area minimization [5], [10], [15], power reduction [17];orrect itin a less _qrumal part of thg design. This opens a new
performance optimization [16], [22], routing [4], and desigi2nge of opportunities and applications to ATPG-based design
for testability [7] as well as aiding devise solutions to othd€WINNgY.
important problems such as logic verification [14], [15]. The next novelty lies in the fact that the setlofic (struc-

tural) transformationst returns is always a superset of the one
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transformations. This has traditionally been computationally in- ¢

tensive for existing techniques [6], [9]. Multiple logic transfor-
mations are important for target logic with no single alternatives 4
as they add to the solution space to help meet optimization goals g5)
[4], [5]. They also take further advantage of the internal don't & . g7
cares of a design since the number of pairs of corrections for a ¢ _QB% [ i
circuit corrupted with two errors, for example, is usually larger - i
than the product of single corrections when the circuit is cor-
rupted by each error independently [23].
It is of importance to notice that the unique features of this (a)
new approach come at no additional complexity cost when -
compared to traditional ATPG-based techniques. To prove this,
in Section V we reduce the problem of design rewiring to the _,—“')_9_,5\5 01
problem of multiple and simultaneous self-masking pattern q?,é)
faults [21] injection. This formulation allows us to draw the
conclusion that the complexity of the method equals to this of
existing technigues. Moreover, the presented theory leads to
the more general conclusion that the complexity of redundancy (b)
checking for a set of multiple pattern faults [21] is no hardgf,, |
than that for a single pattern fault, an interesting result tha
stands on its own. Therefore, recent advances in ATPG provide
computationally efficient implementations for the method. Example 1: Consider the circuit in Fig. 1(a) where wire
Finally, experimental data confirm the effectiveness of simula5 — ¢9, indicated by a dotted line, is not part of the original
tion-based DEDC as it helps design rewiring avoid unnecessastlist and assume that witer = g1 — g4, named target wire
redundancy checks. They also demonstrate the competitiveriegeafter, needs to be removed (Operation 1). In Operation 2,
of the approach. new redundant connectiany, = g5 — ¢9 is computed, shown
The paper is organized in seven sections. To effectively dgs a dotted line in Fig. 1(a). Under the presensev gf wire
scribe the proposed approach, we discuss existing ATPG-basgdbecomes redundant and new redundancies are introduced
design rewiring techniques and the problem of DEDC in Sesuch as wirgyjs — g7. During Operation 3jv4 is added and
tions Il and Ill, respectively. In Section IV, we present the newedundanciesy andgs — g are removed as well as logic
method and discuss its novelties. Complexity requirements @@t no longer has an influence on the primary outputs such as
examined in Section V and experiments in Section VI validatgatesgs and gy, wire g4 — gs, etc. The new optimized circuit
the theory and motivate future work. Section VII contains thig shown in Fig. 1(b) where wire has been removed and the
conclusions. gate count has been reduced.
Although a few different types of target logic have been con-
Il. PREVIOUS WORK sidered in the literature, the vast majority of existing techniques
Ae designed around the removal of a single wire ), RAR

Existing ATPG-based design rewiring techniques optimi ) e ] : :
a netlist through a sequence of simple logic transformatioh‘:s(:hnlques usually differ in the ATPG engine used to identify

[3]-[71, [9], [10], [15], [22], [17]. During each iteration, a target e structure and the location of the correctlons. _
wire that violates a specification constraint(s) is first identified In [3]-{6], [9], and [10], the target logic and_ the addgd Ioglp
for removal. For example, the target wire may be on the criticl® modeled as Stl.JCk'at fa_u _Its and corrections are identified
path or it may have excessively high switching activity. Next'S'"9 fault dominating qondltlons [13] and setsrpandatory

a logic transformation is performed to remove that wire. Tthygnments (MADM].' Given a fault, MAs are !og|c values on
transformation entails addition of some simple redundant log ges respected bl input vectors that test this fault.. For ex-
such as the introduction of a new gate with inputs existing |in@§nple, every test vector faf; — g, stuck-at 1 in Fig. 1(a)

in the circuit or an additional fan-in to an existing gate. The eﬂecedssn';a/ltzs a logic O_Sn I”yf? — ggband a logic 1 on Imesd_
fect of this extra redundant logic is to make the target wire r&-an /- S can provide su icient (but |_10t necessary) condi-
dundant so it can be removed. tions for redundancy checking of a faylt if the MAs of f are

In summary, RAR optimizes a design through an iterative si _consistent.thglf i.s redundant [13]. The \_/vork by Kyrm al
quence of the following operations. 15] useslogic implications[14] to add logic which is known

o tion 1- Identify t twi b d to bea priori redundant. References [22] and [17] represent the
Operat!on 2: Cen 'fyt arge VIV'rFTwT ?h f remkove ' circuit as a set of logic clauses and different theoretical results
peration 2. Lompute new logiavy that makesor re- )4,y perform redundancy identification, addition, and removal.
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Optimization through rewiring.

dundant.
» Operation 3: Check ifw 4 is redundant.
« Operation 4: If w4 is redundant, deletes; and other I1l. D ESIGN ERRORDIAGNOSIS AND CORRECTION
newly generated redundancies. Logic design errorsoccur during the design cycle of a VLSI

Example 1, taken from [10], outlines these steps for a singthip due to the human factor or bugs in CAD tools [1]. These
wire removal. errors are functional mismatches between the specification and
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Circuit

INCORRECT CORRECT
Error
Extra —Do— @7
Inverter
Missing ﬂ
BUFFER —]>0—
Inverter — Set of candidates Actual and equivalent
cat obtained with ty,1,,t3  setof candidates
ate
Replacement g 3} E :Df Fig. 3. Resolution of simulation-based DEDC.
Missing a s a_— function and rectify the design. A compendium of different sim-
Input Wire b “>—; 77777777 ?, E\*; o glation—based and symbolic-based DEDC approaches is found
¢ c in [23].
a In Section IV, we use the DEDC algorithm for single design
Extra b ?’ E g > o errors from [23] which is based on fault simulation techniques.
Input Wire - L R Theinputto the algorithm is an erroneous netlist, its specifica-
tion, and a set of input test vectors. Some vectors have failing
Incorrect a a_s output responses and some do not. The algoritlputs all
Input Wire b--»-g » b [ED - applicable corrections that rectify the design for the given test
- — - e——— vector set using a design error model which is a simple exten-

sion of the one presented in [1]. For example, with respect to
Fig. 2. Common design error types. the example in Fig. 1(a), removing target wirg: = g1 — g4

and running the DEDC algorithm described in [23], it returns
the gate level description. Most literature in the field uses a deguivalent correctiog; — go as well as the original error. The
sign error (correction) model, i.e., a small predetermined set@fistence of equivalent corrections is of paramount importance
ten possible error types, proposed by Abaatiral. [1]. A list  for the potential of the design rewiring method presented next.
of common design error types, taken from the model of [1], is
shown in Fig. 2. These errors are related to the work presented IV. DESIGN REWIRING USING ATPG

here. The gate types in Fig. 2 are indicative. Similar errors cany coser view of the two problems described in Sections Il

occur on other gate types as well. and lll shows that the process of design rewiring can be viewed

DE.DC .iS the problem _where given an erroneous dgsignf 3m a DEDC perspective as follows. To eliminatg we can
;pemﬂcaﬂon, "’T”d a design error model, we need to_ |dent|. ove it and artificially introduce a “design error.” Since the
lines in the design that are potential sources of error (dlagno§|5,§n

and suggest appropriate modifications on these lines from gation of the error is known, ATPG [11], [13], [20], [14] can
: ; . ive i - h it. Th f
design error model that rectify them (correction) [L]. DED%; rive input test-vectors that detect it. These vectors can feed a

. : . S mulation-based DEDC algorithm which is exhaustive on the
IS a well-studied problem with a s!gmflcant a”_‘oum Qf_ pu_béorrection space to get all “corrections” that rectify the design.
lished work. In. theory, test. generauon and Qe5|gn ver|f|cgt|q5]na||y’ an appropriate correction from the listazfuivalentor-
;c;)ralgfggﬁ;eei];;ﬁmglg;f&zmt tFr)nreoﬁll?rTsesrlrc])(f:(ianﬁztzt:gh:rlfo%cmns is selected and ATPG-based verification of the final de-
23] st,%gn is performed. _ o _
In the context of design optimization, an appropriate correc-

(# of errors 1) tion is one that satisfies the current optimization constraint(s).

Since the algorithm operates on a (structural) gate level rep-

This difficulty stems from the fact that the error location(sjesentation of the design, technology libraries are available to
is not known. On the other hand, it has been theoreticaltpmpute optimization tradeoffs and tune the process flow to-
proven by Abadiret al. [1] and experimentally confirmed in ward an optimum level of performance.

[23] that a complete test set for stuck-at faults for the erroneousHere, simulation-based DEDC is used to efficiently compute
design detects the majority of design errors in Fig. 2 and it hall possible corrections. However, since it bases its results on a
a good chance to detect the remaining ones. For this reassuyset of the complete test vector space, these corrections rectify
most DEDC techniques simulate test vectors for stuck-at fautte design only for this set of vectors and not necessarily for the
and random test vectors to diagnose and correct a desigomplete input test vector space [23]. To alleviate this problem,
Provided vectors with erroneous responses, these methimdSection IV-A we propose an ATPG-based [14] technique to
can be exhaustive on the solution space yet remain efficigutarantee the correctness of the final design. In Section V, we
especially for single errors where the solution space growsamine its complexity and we show that it equals that of ex-
linearly to the number of circuit lines [see (1)]. isting ATPG-based methods.

Intuitively, simulation-based DEDC methods obtain a solu- In a sense, the design rewiring procedure described above (re-
tion by intersectingthe solution space offered by each vectomove/add logic) works in the opposite direction from existing
as shown in Fig. 3. This solution space consists of the actw@thniques (add/remove logic). However, as we discuss in Sec-
andequivalentorrections, thatis, alternate ways to synthesizeian IV-C, when it operates in this new direction it can take full

error space= (# of circuit lines
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advantage of the internal don't cares of the design and provide ,— Target Wire
a more systematic platform for ATPG-based logic resynthesis. % §1 ) \EZ\% 02

A. Method Overview

In the remaining section, for the sake of simplicity, we dis-
cuss the implementation of the method in terms of a simple c -
logic transformation where we remove a target wire (“design g—@ R | “{g8 — o3
error”) and attempt to rectify the design by adding some other g -
wire (“correction”). The method can be tailored to perform arbi-
trary amounts of logic resynthesis during error introduction angly 4. original circuit.
during correction.

ADDR performs the following four steps. S

 Step 1:introduce design error by removing target logic. a *’ 1 M
* Step 2:derive test vectors for this design error. b ol — 1o u \q7 02
 Step 3:use a DEDC algorithm to search for corrections. X

 Step 4:verify the correctness of the final design. 5:.
The first step artificially introduces a design error by re- 2_ B 01

moving target wirew. In this discussion, we assume that a —
nonredundant target wirer is an input to gate7; and G’ 8 m
r - - 03
:
e

is that gate whemwr is removed. We also assume th@y is
a gate where we can add an input wirg, resulting in gate
G’,. Next, a two-input multiplexer is added in the circuit with (@
gatesGr andG/. connected at its inputs and select lifieTo
derive vectors that detect the design error for the second step |
we run ATPG forS stuck-at 11 Since, by hypothesispr is z
nonredundant, the ATPG process is guaranteed to return with
a set of vectors. Each of these vectors will also distinguish  _
between the old (correct) and new (erroneous) circuit since, %—
by construction, the output of the multiplexer implements the ¢
function atGr whenS = v and the function atz/, when z
S=wv(@w=0o0rl). d
c
e

«
|
E «
‘ »
ot (=)
xc=

In the third step, simulation-based DEDC returns all equiva-
lent corrections. The inputto DEDC is the correct and erroneous
circuit along with the test vectors from ATPG (Step 2) and a S
small number of random test vectors. The output of DEDC is a (b)
list of all (actual and equivalent) corrections that rectify the d('e:—_ 5 . on. (b Gircuit verificat
sign for the test vectors used. Let wire, which is a missing F9- 3 (8 Testgeneration. (b) Circuit verification.
input wire to gate7 4 be an equivalent correction proposed bY’ i
the algorithm. ine ¢, an input to gaté&’r = g1,

Finally, we need to verify the correctness of the final desigfe€ds to be removed. _ o
whenw., is added in the circuit. To perform this verification DUring the firsttwo steps of the algorithm, shown in Fig. 5(a),

P i . 4
process in Step 4, we attach a second two-input multiplexer48t€CG'r = 90 is introduced, that is, a gate similar go with
the fan-outs of7 4 andG’, with the same select lin€ so that wr NOt present in its inputs. A muIFlpIex.eMUX W'th Inputs
whensS = v we select the old circuit and wheh= v we select the o_utpu_ts_ Ofg_l ar_1dgg and select line5'is also mtroducgd.
the new circuit. As a special case, if both the error and correctibl” SIMPIicity, in Fig. 5(a) we usg, to represent the circuitry
are on the same gate, thatdg; = G4, we simply letGy and that implements the respective Boolean function in Fig. 4. As
G', be the two inputs of the original multiplexer. It is clear thafXPlained in Section IV-A, an input test vector $&that detects

if ATPG for S stuck-at 1 returns with a nonempty test-vector séf€ fault S stuck-at 1 is alsck: a set of vectgrfs W|thherrpnep us
it also indicates that the new circuib{ removedsw 4 added) is primary outputresponses wher Is removed from the circuit

incorrect. However, if the test set is empty (i.&stuck-at 1is N Fig- 4. _ _
in the third step, DEDC is performed. The input to the

redundant) then it guarantees the correctness of the new desliqu. ) ; - S

DC algorithm is the original circuit (Fig. 4), the erroneous
one (Fig. 4 withwy removed), and vector sét. The DEDC
algorithm returns with the actual error (missing input wire

We give an example to illustrate the algorithm described {8 ;,) and a set of equivalent corrections that includes missing
Section IV-A. With respect to the circuit in Fig. 4 assume thqﬁput wirew, = go — ge.

1An alternative approach that returns the same results runs ATPG for To verify the final des_ign, gatglo_ is introduced V_Vith _input
stuck-at 0. lines g3, g4, andgo, that is, the equivalent to gatg in Fig. 4

is the target wire, i.ewr = ¢

B. Example
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subset of them is identified efficiently using structural, ATPG,
and problem-specific observations [3]-[6], [9], [10]. By con-
struction, these techniques perform a redundancy checking for
everycandidate correction. Since redundancy checking domi-
nates the run-time, the work in [3]—[5], [9] aims to reduce the
total number of unnecessary redundancy checks.

ADDR uses ATPG to return a few test vectors with erroneous
output responses in Step 2 of the algorithm. ATPG is NP-com-
plete and there exist tools that derive such test vectors efficiently.
DEDC in Step 3 uses these vectors, as well as precomputed vec-
tors for stuck at faults and random vectors, to retltpossible
corrections idinear timeg according to (1). Finally, Step 4 ver-
ifies each correction in terms of a single redundancy checking
on the common select ling.

In Section V, we show that, in theory, the complexity of Step
4 equals that of existing techniques. This complexity seems to
be inherent to the problem of design rewiring. Experiments in
Section VI suggest that, in practice, simulation-based DEDC

(b) screens most invalid candidates to help avoid unnecessary re-

Fig. 6. (a) Final design. (b) An erroneous design. dundancy checks and improve performance.

with w4 added as an input. A second multiplexer with the same V. COMPLEXITY ANALYSIS

select lineS' as the first one and inputs andgio, as shownin 5 hig section we discuss complexity requirements and effi-

Fig. 5(b), is also attached in the circuit. An ATPG procedure fQfia ¢ jmplementations of the method presented in Section IV-A

fault S stuck-at 1 indicates that the fault is redundant. Therefor@sing ATPG. This study concludes with a new set of interesting

the circuits in Figs. 4 and 6(a) have the same logic functionalifyg,its. puring this presentation, we assume that any test pattern

Observe that the solution returned by ADDR cannot be foundy,, occur at the primary inputs of the design, i.e., there are no

by a conventional single wire RAR procedure. This is demoRsernal don't care constraintsn Section V-D, we relax this
strated in Fig. 6(b) where both, andw are presentin the cir- assumption and discuss its implications.

cuit. However, this circuit does notimplement the same Boolean, 11is complexity analysis, we model the process of error and

function at the primary outputs with the original one (Fig. 4) e ction introduction with the injection of multiple (simulta-
as input test vectofa, b, ¢, d, ¢) = (0,0,1,0,0), for example, 5.5 self-masking pattern faults. leébe a circuit and le€”
causes a failing response@;. Therefore,, is notredundant o the circuit after a number of logic (structural) transforma-
in the presense of the target wirer. tions on a gaté’ of C. We define gattern faultf in C’ to be a
combination of logic values on a set of circuit lines such that, if
these logic values can be consistently justified, the logic value
At this point, it is of interest to discuss the characteristics @ft the fan-out ofG in C andC” are complementary. We also
the method and compare it with existing techniques. allow a pattern fault to be any set of pattern faults on possibly
A significant advantage of the proposed method is found fifferent gates irC' by recursive application of the definition.
its ease and flexibility in handling different types of target logic Observe that a pattern fault associates a semnajue logic
and corrections (Fig. 2) because it uses DEDC. For exampleyéflue condition®n lines of the circuit such that the output of the
a wire removal does not have a single correction, the target wissynthesized gateé becomes incorrect i@”. These conditions
may be replaced with some other wire to introduce an error. Asrsy be satisfied by a possibly nonempty set of input test vectors
result, the Boolean function at the primary outputs of the circuhatexcitethe fault. Some of these vectors may also propagate
may be altered differently and equivalent corrections may exitite discrepancy a¥ to some primary output, that is, thegtect
In general, the method allows one to arbitrarily resynthesitiee fault.
the function of a line(s) and correct this discrepancy somewherd_et C' be a design and” be the design after the introduction
else. It also makes the process of multiple logic transformaf n pattern faultsf, fo, ..., f» on m different gates (lines)
tions a straightforward extension of the four step process in Se¢-C'. We say that pattern fault = {f1, f2,..., fn} is self-
tion IV-A, provided the use of an efficient multiple DEDC al-maskedf and only if C andC” are functionally equivalent. For
gorithm. Theoretical and experimental results, presented latebirevity, in the remaining discussion, we use the téamlt to
this paper, emphasize the importance and motivate the develager to a pattern fault, unless otherwise stated. We also use the
ment of such algorithms. terms self-masking fault(s) and redundant fault(s) interchange-
Existing techniques identify corrections using mandatory aably.
signments (MA) [14]. The more MAs available, the more cor- Different logic transformation types can be modeled by a set
rections they return, but computing MAs is NP-hard and naf faults. Recall the various error (correction) types introduced
method performs such an exhaustive computation. Insteadndig. 2. A missing input wire error can be modeled by a fault

C. Discussion
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Fig. 7. Fault modeling of gate replacement error.

f1 with set of excitation conditiong; = {a = 0,b=0,c = 1}.
These logic values give a logic 1 at the output of the gate in the
original circuitC and a logic 0 in the new on€@’. The reverse
situation occurs for extra input wire error where the same set of
conditions give a logic 0 i’ and a logic 1 inC". Fig. 8. Implication-based RAR.

Notice that this pattern fault formulation implies the stuck-é?t
fault formulation for logic transformations adopted by RARY/0, 1/1’0/1’_ 1/0,0/X, X/O’ 1_/X’ X/LX/X} fo  rep-
ent the logic value of a line in tleiginal/newcircuit C'/C’,

Therefore, it comes as no surprise that similar conditions df&€M " ! ) .
presented for these two error types in [3]-[7], [9], [10]. More[espe_ctlvely_. _U_smg Roth s alphabet, the redundancy require-
over, the presented formulation can map any piece of arbitrdRgNt in Definition 1 implies that no 0/1 or 1/0 propagates to a
logic resynthesis to a set of pattern fault(s) by enumerating B ||rr;1ar)f/ cl)lutppt under tr}e p_rltasense%g

necessary excitation conditions on the error injected linegin e following examples illustrate the above concepts.

In fact, ATPG at Steps 2 and 4 of the design rewiring algorithm Example_Z: The_W(_)rk by K_unz_et al._ [15] presen_ts_ an RAR
performs such an enumeration. method which optimizes a circuit usirBpolean divisionop-

erations. In this example, borrowed from [15], we review the

. Unlike the above error types which can _be mod_eled byrﬁethod and formulate it within the framework presented here.
single fault, there are error types that require multiple faults With recursive learning [14], one finds that logic 0 gnim-
(conditions) to completely justify all error effects. ConsiderthﬁIies alogic 0 oryy, that is,g; : 0 = g, = 0in Fig. 8(). This
NOR to AND gate replacement error from Fig. 2, for instance. gic implicationis7equiva|,ent tos = 1= g, = 1 by contra-
the truth table for two-input gates in Fig. 7 reveals, there are Asiti - : : f
) . : _ o sition which allows [15] for, to be replaced by} =
instances that this error is excited, each of which is modelegliS [15] fow. P Ya = 9491

RTPG-based Boolean division). This redundant transformation
terms of a distinct faultfs and f3. Other (honnegated) gate type% vision). Thi N I

correction), shown in Fig. 8(b), makes connectigps— g3

nda — g5 redundant (errors). Removing these connections in

?g. 8(b) leads to an optimized design with three gates.

We now translate this sequence of operations into the present

goperational framework. The addition ¢f is equivalent to the

can b © fsfcated as foII(_)ws. . . injection of fault f; (= F¢) with excitation conditions §, =
Definition 1: Design rewiring is the problem wherel g1 = 0} that cannot be simultaneously met in Fig. 8(a), thus,

given an (artificially introduced) error(s) modeled by faulh7is redundant. The two errors are represented with failts
Fr = {fi,f2..-,fi} at m lines of C we seek a cor- fc=1g =0}andfs = {a=0b=0} (Fp = {fo. fs}),

rection(s) modeled by faultFe = {fit1, fit2,- -, fn} respectively.
at p lines of the erroneous” (p,m > 1) so that fla_ult Observe that faulF = {fi, f2, fs} is redundant since no
F = {fi,fo;.... fu} = Fp U Fc in the new circuitC” is test vector propagates a 0/1 and/or a 1/0 value at a primary
redundant. output(s) for any combinations of faults froffi [21]. To see
As a side note, Definition 1 gives rise to a similar definitionhjs, in Fig. 8(b) we attach the logic values on lines@fc’
for brute-force DEDC with the exception th&}; and the set of \when f, is excited and: = 1. The case when = 0 is similar.
m lines are not known, thus its inherent complexity during tesl simplify the presentation, the dotted wires are pseudo-inputs
generation and verification. Addltlonally, the introduction OtNIth stable noncontro”ing |ogic value 1. Notice that Whﬁns
fault 7 in the circuit may make more faulis, 11, fu+2.- .-, fc  excited, faultsf, and f; are excited. The reader can verify that
redundant [8], [21], that iSF U { fu41, fat2,.-., fc} remains  the excitation off; excitesf; and the excitation of» excites
redundant. Algorithms to identify such new redundancies, |ﬂ In all cases, the multiple faults are redundant.
favor of design optimization, have been developed in [4]-[6], Example 3: We re-examine the example in Section IV-B, re-
[9], and [10] and apply to the presented work as well. drawn in Fig. 9 for convenience. In that circuit, there are two
Under the presense of faults that model the error afaults involved, the errot — g1 = Fg = {fi} = {c=1,a =
the correction, the simulation of a test vector @ and 0,b = 0} and the corrections — g10 = Fo = {f2} = {92 =
C’ may give different logic values at corresponding,gs = 0,94 = 0}.
lines. To aid our presentation, we use Roth’s nine-valuedFig. 9(a) contains the situation where both the error and the
alphabet [18] with logic values taken from the setorrection are present in the final circuit. Similar reasoning to

replacements are modeled similarly. An incorrect input wir,

also requires two faults. With respect to Fig. 2, these faults 3

fa={a=0,b=1,c=0}andf; = {a=0,b=0,c=1}.
With this formulation in mind, the problem of design rewirin
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c 170, 1/0 : initi d
E 1 02 The:orem 1: I__et faultsFg andF¢ from Definition 1 andF’ g
/0 i andF’ ¢ as defined above. Test vectatetects some faults from
1/1 Fponasetoflined.® in C! if and only if ¢t detects some faults

Kom from F'g on a set of lined.© in C.

é;é Example 4: In Fig. 8, gatgy), is added (correction) and wires

g XX 0/0 1570 o g1 — gg_anda — g» are removed (errors). In Example 2,
c o0 70 >g10) v | 9 these Io_g|c transformations are modeled by fgﬁl_lt% an_d I3,
e X/—X.J ﬂ) 1 respectively. Assume that faulfs and f; are injected in the
g2 circuit of Fig. 8(a). Depending on the value gfevery vector
(a) . )
with erroneous responses detects eitherf;1and f5 or 2) fs.
¢ 1/1. " T Theorem 1 suggests that these are also all the vectors that detect
g QLL) g) \g7 02 correction “replacey by ¢4” in Fig. 8(b), which is the case
- g; (1) indeed.
b —. 1/1 0/0 Example 5: Consider the circuit under
c @ o1 verification in Fig. 5(b) where F consists of
~ 0/0 faults  f; = “missing input wire ¢ to go” and
c
d ?:;—EW _@ﬂl 03 fo = “extrainputwiregy to gi0”. According to [21], the
c — 0709 0/1 redundancy of stuck-at 1 fault is equivalent to the redundancy
€ % 0/1 of: 1) f1; 2) fo; and 3) f1 U fo. Theorem 1 implies that any
g2 (b) ATPG tool that attempts to prove redundancy of 1) will excite

2) to cancel the error effects of 1) and vice versa. The reader
can verify this effect. Due to the containment property, the tool
will not attempt 3). In other words, proving the redundancy of
pattern faultZ equals proving the redundancy of two single
the one in Example 2 shows that fadit = Fg U F¢ is re- single stuck-at faultg; and f> independently.
dundant. Observe that meeting the excitation conditions of oneTheorem 1 establishes a relation between the test vector(s)
fault excites the other. Section V-B shows that this is not a coitirat detect the error(s) and the ones that detect the correction(s)
cidence and it prompts toward design rewiring specific DED@a the sets of pattern faults and their associated locatiéns
algorithms. On the other hand, fallt = {f2} is notredun- andL¢. We view the merits of this theorem first for DEDC and
dant, as illustrated in Fig. 9(b). then for ATPG.
In brute-force DEDC, the error locatiaff is not known and
no such test vector classification is possible, as discussed pre-
A. ATPG and DEDC (Steps 2 and 3) viously. DEDC for single errors remains efficient because all
) ) ] error effects originate from a single line and linear-time fault
The focus is on the complexity requirements of ATPG (Stefmylation algorithms are applicable [23]. On the other hand,
2) and DEDC (Step 3) of the algorithm in Section IV-A. Wet erors/corrections are present in multiple locations, the solu-
perform this study in terms of the set of test vectors that detgg, space explodes exponentially with the number of distinct
faults Fg and F¢ in Definition 1. error locations according to (1). When DEDC is used in de-
Consider a single execution of the proposed design rewiriggn rewiring the case is different. Since the error location(s)
algorithm. DesignC' is first corrupted with some error(s)is known, for every test vectorthe setl.® can be computed and
modeled by faultF. Let C' denote theintermediate circuit DEDC is presented with the additional information of Theorem
after this error introduction operation, thatds! is functionally 1. Although there is little to gain for the single error case, in light
equivalent toC' under thepresenseof fault effects fromFg.  of this information, we believe that efficiemtesign rewiring
Next, a correction(s) is applied on some lines(sf to give specific DEDCalgorithms can be designed to tackle the mul-
circuit C’ such that”' = C’. This correction(s) is modeled bytiple error/correction case.
fault 7c. Theorem 1 also suggests that ATPG should target every fault
Observe thaC! can be similarly defined a§” prior to the from F5 in the care set of the respective line(s) independently
correction(s), that is(” is functionally equivalent t@”’ under to aid DEDC resolution. Traditionally, ATPG is carried in two
the absenceof fault effects fromF. This dual definition for steps. The first step excites the fault and the second step propa-
CT is due to the symmetric nature of DEDC: Any error/correqates the fault effects to some primary output. Since all faults in
tion solution inC' is a correction/error solution i6”. The lo- Fg have unique excitation conditions, one can easily modify an
cations and excitation conditions of the pattern faits /7' ATPG engine to enumerate all required excitation conditions.
associated with this correction/errorGt are in one-to-one cor- However, this is not necessary and tradeoffs can be considered.
respondence to the onesiiy / Fr with complementary logic We discuss some tradeoffs here and we conclude in Section VI.
values at the respective gates. Since the error effects of some faults fraf may origi-
Motivated by these observations, Theorem 1 classifies testte from a single line, one may run ATPG only on a subset
vectors that detecFg and F¢. The proof of this theorem is of them to aid diagnosis. Next, a DEDC algorithm can return
a straightforward extension of the discussion above. all corrections. The net effect is that some corrections may not

Fig. 9. Example of Section IV-B, revisited.
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verify during simulation-based verification by DEDC (Step 3 Circuit INCORRECT CORRECT

or during Step 4 that perform such an exhaustive fault enum_E°r

ation. If more time is spent in ATPG at Step 2, less time is e g <
pected to be spentin DEDC/verification and vice versa. In bo Missing g - ?)
cases, the set of corrections obtained is the same. Input Gate T c_g

B. Multiple Fault Redundancy Checking (Step 4)

Step 4 of the algorithm verifies the correctness of the neMissing a a 2 D_
designC” in terms of a redundancy checking for the stuck-at Output Gate - i
fault on the common select line of all multiplexers. According
to Definition 1,C" is structurally produced fror¥ through a set _ g g
of logic transformations represented by fa@lt As such, Step Missing ab z)jf f, ﬂ _f
4 checks the redundancy of underlying fafit Gate [ i

Proving the redundancy of multiple and simultaneous faul d d
has been a well-examined problem of prominentimportance due
to its implications in logic testability [8], [21]. The following Fig- 10. Additional correction types.
theorem, a simple restatement of the result by Smith [21], gives
a necessary and sufficient condition for multiple fault undet) avoids generating input test patterns that belong in these
tectability. sets or if DEDC ignores such test patterns when generating a

Theorem 2: A fault 7 = {f1, f,..., f»} onm lines,n > solution. The discussion in the previous paragraph implies that
m, in a circuit is redundant if and only if for each nonempty segnoring test sets may increase the correction space in favor of
F; C F there exists nonempty se} C F such thatt; U F; is  optimization.
redundant.

As Smith’s theorem [21] indicates, the complexity of redun- VI. EXPERIMENTS
dancy checl_<|ng for a_set of faults necessitates a cqmputa_tlon We implemented the algorithm in Section IV-Adhand ran
of exponentialin n) size for modern ATPG tools as it requires . ,

: . it on an Ultra 10 SUN workstation for ISCAS’85 benchmark

enumeration and redundancy checking for every fault Comt();li_r uits optimized for area using script.rugged in SIS [19]. The
nation. Nevertheless, the presented fault-based formulation aj ' )

the construction in Section IV-A allows us to capture nicely thl%euilcljsir?f[;hl? ?152123?2[;']5[:;2?;;\?:{;3 we employed can be

complexity in the redundancy checking o$imglefault. . : i

Theorem 3 that follows formalizes this idea which, to therilzeE dDg tlra]zlsveesctl(t)srsrre;lal:ﬁe%nba;%tj(o;f (Igfe ut Zt)es; ;/ri(zl(l)fu;ot;g ;
best of our knowledge, is the first result to allow efficient mul? y P <), .
tiple fault redundancy checking. Since ATPG [11], [13] [20]01‘ random vectors, and vectors for stuck-at faults [12]. Prior to

[14] is very efficient when verifying single fault redundancies i?xecuuon., D.EDC S|muI§tes 2000_.3090 rapdom test vectors to
reate a bit-list on each line of the circuit as in [23]. Ttreentry

also makes it a robust platform to implement the proposed Cﬁ?_this list for line ! contains the logic value dfwhen theith

. o . 0
sign rewiring approach. Theorem 3 can also provide a proof tr{/"jtlatctor is simulated. Intuitively, the logic values maintained in
these bit-lists behave as an approximation of the Boolean func-

checking the redundancy effaults is NP-complete.
Theorem 3: A fault F = {f1, fa...., yonmlines,n > . . L .
neore 3 ] ault {_f1,f2, '.f } onum lines,n > tion implemented at the respective line. We say that two lines
m, in a circuit is redundant if and only if the stuck-at 1 fault on L . ; . . -~
. . havesimilar logic values if most of their respective bit-list en-
the common select line for the multiplexers of the construc- _ . ; . .
L . ) tries are the same. Using this setup, we run two different exper-
tion in Section IV-A is redundant. . :
iments and report the average values of the results obtained.
C. Design Rewiring With Constraints In the first experiment, for every wire in the circuit, we
ject one error to eliminate it and we count the number of equiv-

nt corrections. We consider three error types.
* Type Aremovewr.

Consider the assumption at the beginning of the section ﬂi:;
every test may occur at the primary inputs of the design. This
assumption can be relaxed in favor of design optimization as , - - .
follows. » Type B:replacewr with an existing 75% similar wire.

Assume desigrC’ with » number of primary inputs and a Type C:replz_;\cewT with an existing 59% similar wire.
structurally identical desigfi- operating under a set of external/Vith respect to Figs. 2 and 10, the correction types DEDC uses
don't care constraints. In other words, the complete input te¥€ as follows:
vector set forCc has strictly less than"2members. Given an  * Type l:gate replacement;
error, Fig. 3 implies that an input test vector may reduce the * Type 2:incorrect input wire;
solution (error location and/or correction) space for simulation- * Type 3:extra input wire;
based DEDC but it never increases it. Therefore, for a fixed * Type 4:missing input wire;
error, C is expected to havat leastas many corrections as  * Type 5:missing input gate;

C. » Type 6:missing output gate and missing gate.

Sets of external constraints can be taken into account @prrections with two wires, such as missing input gate and

the presented design rewiring method if ATPG (Step 2 amdissing gate, require quadratic time for DEDC. Heuristics to
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TABLE |
PERFORMANCE CHARACTERISTICS

ckt # of | avg. # of corrections per type % of correction types CPU
name | lines | type A | type B type C type 1 | type 2 | type 3 | type 4 | type 5 | type 6 | (sec)
C432 | 412 7.4 2.7 2.6 0 57 0 15 6 22 0.2
C499 | 1249 | 8.2 3.0 2.1 0 26 0 4 39 31 0.3
C880 | 915 5.3 2.2 1.7 0 44 0 8 20 28 0.2
C1355 | 1238 | 8.1 2.2 1.7 0 23 0 6 41 30 0.3
C1908 | 859 7.6 3.8 3.6 1 25 0 7 30 37 0.6
C2670 | 1377 11.6 15.3 14.0 1 8 1 3 9 78 0.5
C3540 | 2282 | 18.7 4.0 3.6 1 42 0 11 34 12 0.6
C5315 | 3697 | 7.2 3.7 2.5 0 36 0 10 30 24 0.7
C6288 | 6319 | 12.1 21.7 16.1 1 15 0 2 8 74 0.8
C7552 | 5262 | 10.3 7.1 9.1 1 53 1 2 2 41 0.9

TABLE I

COMPARISON OFRESULTS AND OTHER STATISTICS

ckt # corrections % hit-ratio ADDR total | % same | % dom. | RAR # redund. | % with pair
name | ADDR | RAR | ADDR | RAR | # corrections | gate gate check. per corr | corrections
C432 1204 | 1011 70 63 1989 75 42 18.2 0
C499 4989 886 68 52 12112 85 11 432.5 24
C880 2299 945 65 61 3801 90 26 72.8 19
C1355 | 5515 | 1022 69 54 7311 67 6 371.6 21
C1908 | 3174 643 65 56 6711 83 3 102.2 12
C2670 | 14922 | 2247 76 51 17311 61 49 47.3 62
C3540 | 8478 | 7801 68 62 16197 88 22 120.2 24
C5315 | 10665 | 3077 70 45 17833 72 6 110.0 17
C6288 | 18683 | 1615 52 23 35918 60 31 62.3 19
C7552 | 20349 | 12234 80 56 31766 67 22 58.8 41

speed the search process for such corrections are developeghishredundancy checking dominates the overall time which con-
[4], [5], and [25]. For wire related corrections, wires that ddéirms the robustness of DEDC in design rewiring.
not create loops in the combinational circuitry are considered.To demonstrate the potential of ADDR, it is of interest to
We allow adding an inverter if it increases the potential to findompare its performance with the one of RAR. Table Il contains
a correction. information on the number of corrections returned by a recent
General information on the performance of the algorithm ca®AR procedure [3] and by our method for wire removal error
be found in Table I. The first two columns contain circuit chartype (type A) and the same correction types (a subset of types
acteristics. The next three columns show the average number. 6). Compared to previous approaches, the work in [3] usu-
of equivalent corrections returned for each error type indepeadly returns more alternatives because it considers adding logic
dently. These average values are a conservative estimate aneteonly at dominating gates but also at gates that have implied
set a user-defined limit on the maximum number of missingandatory assignments.
input gate (Type 5) and missing gate (Type 6) corrections thatColumns 2 and 3 in Table Il show the number of corrections
we consider. returned by ADDR and RAR [3] for the same set of error/cor-
We observe that removal af7 returns more corrections, onrection type experiments. It is seen that the proposed method
the average, compared to the other two error types. This maydwgperforms RAR as it returns more corrections. In fact, it re-
explained because the number of conditions involved with therns all corrections since it uses a DEDC method exhaustive
set of pattern faults for incorrect input wire is more than that fan the correction space. Moreover, columns 4 and 5 contain the
missing input wire, as explained in Section V; thus, it is hard@ercentage of target logic with alternative corrections (success
to correct it. In the experiments, we also observed that therenis-ratio) for the complete set of wire removal experiments. We
little overlap between the sets of corrections returned for difbserve that ADDR can find alternatives for target logic removal
ferent error types on the samg-. This confirms the flexibility cases that RAR cannot in favor of design optimization. Our ex-
of ADDR since the designer is presented with more opportuniperiments also indicate that more than 99% of the corrections
to eliminate the target logiand correct it. found by ADDR are redundant in presense of the error.
Columns 6-11 in Table | contain detailed information on the Due to the flexibility of DEDC to handle a wide variety of
correction types used. It can be seen that certain types of correarrection types, the total number of corrections returned by the
tions are more useful. The last column of the table contains theethod for error type A and correction typés. . 6 is much
average run-time, in seconds, to find one equivalent correctidarger (Column 6). This competitiveness is additionally justi-
This number equals the CPU time for all four steps of the algfied if we consider the locations of the proposed corrections.
rithm in Section IV-A. On the average, the time spent in ATP@olumn 7 contains the percentage of corrections on theugate
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Fig. 11. Simulation-based verification.

drives. For the remaining ones, column 8 shows the percentag&ince the success of design rewiring during optimization de-

of corrections on a dominator af;. These numbers suggesipends on its ability to eliminate target logic, it is evident that

that many corrections exist on nondominating gates. multiple corrections will increase the solution space and may re-
To further demonstrate the effectiveness of simulation-bastuin further gains. This suggests the development of efficient de-

DEDC in design rewiring, Fig. 11 depicts the setfalsecor- sign rewiring specific multiple DEDC algorithms that will offer

rections returned by DEDC for two benchmarks. Since simulezore alternatives to meet optimization goals, as discussed in

tion-based DEDC bases its results on a subset of the complgeetion V-B.

input test vector space, it is of interest to know the quality of

these corrections for the complete input test vector space. This VII. CONCLUSION

is because the fewer false corrections returned, the less time d

signrewiring spen(_jsmAT_PG-based redundancy checking (StiﬁBgy and discussed efficient implementation tradeoffs. This
4), as pomted outin Sgctpn I.V'C' method injects an error to eliminate the target logic and uses
In. thatfigure, a bold line indicates the percentage of false QY simulation-based design error diagnosis and correction algo-
rections retumed when DEDC (Step 3) uses random Vectors ahiiy, to correct it. ATPG performs test generation and design
a do_tted one When stuck-at vectors [12] are included. The pl ification. We also study the complexity requirements of this
cpnﬂrm rgsglts in [1] aqd [23] as a small number of vectors pr?ipproach by reducing the process of error/correction injection to
\{|des suff.|c:|ent resolution to DEDC. As a result, most corre he process of injecting a set of multiple redundant pattern faults.
tions qualify Step 4 and ADDR performs 1.1 redundancy che his study arrives at a new set of interesting results and shows

INgs per dnonfalse cor':ecg[?]ntrl]t finds. Tct)' appreciate tfh's re.st' fat ATPG-based design rewiring is efficient. Experiments con-
one nheeds compare 1t wi € respective average for existigig, e theory and motivate future work in the field.
techniques [3], shown in column 9 in Table Il. We conclude,
that, in practice, ADDR performs far less redundancy check-
ings, an important computational saving. Fig. 11 also suggests _ _ N
that Step 2 of design rewiring may be occasionally omitted sinceThe authors would like to thank 1. Ting, M. Amiri, and R.
vectors for stuck-at faults give sufficient resolution to DEDC. Chang for contributions to portions of the work described here.
In the second experiment, we randomly select and remove
a target wirewr to introduce an error and we try to correct it REFERENCES
with a single correction. If no single correction exists, we are [1] M. S. Abadir, J. Ferguson, and T. E. Kirkland, “Logic verification via test
interested in having DEDC find two corrections that rectify it. ge”egg‘v"EEE Trans. Computer-Aided Desigrol. 7, pp. 138-148,
. an. .
The average Vall_JeS of the results are found in Table II. [2] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
Column 4 of this table shows the percentage of errors that can  tion,” IEEE Trans. Computvol. C-35, pp. 677-691, Aug. 1986.
be corrected with a single correction, as explained earlier. Fort3] rsép(li-cgnfg‘]?"?ESEZ-Tfén‘éVch‘gmhgggraA”igeZth”ess'gsolof zsénglprIre
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