
16 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Static analysis of SEU effects on software applications / Benso, Alfredo; DI CARLO, Stefano; DI NATALE, Giorgio;
Prinetto, Paolo Ernesto. - STAMPA. - (2002), pp. 500-508. (Intervento presentato al convegno IEEE International Test
Conference (ITC) tenutosi a Baltimore (MD), USA nel 7-10 Oct. 2002) [10.1109/TEST.2002.1041800].

Original

Static analysis of SEU effects on software applications

Publisher:

Published
DOI:10.1109/TEST.2002.1041800

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1499912 since:

IEEE

Static analysis of SEU effects on
software applications
Authors: Benso A., Di Carlo S., Di Natale G., Prinetto P.,

Published in the Proceedings of the IEEE International Test Conference (ITC), 7-10 Oct. 2002,
Baltimore (MD), USA.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1041800

DOI: 10.1109/TEST.2002.1041800

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

STATIC ANALYSIS OF SEU EFFECTS ON SOFTWARE APPLICATIONS

A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24, I-10129, Torino, Italy
Email: {benso, dicarlo, dinatale, prinetto}@polito.it

Webpage: www.testgroup.polito.it

Abstract

Control Flow Errors have been widely addressed in
literature as a possible threat to the dependability of
computer systems, and many clever techniques have been
proposed to detect and tolerate them. Nevertheless, it has
never been discussed if the overheads introduced by many
of these techniques are justified by a reasonable probability
of incurring Control Flow Errors. This paper presents a
static executable code analysis methodology able to
compute, depending on the target microprocessor platform,
the upper-bound probability that a given application incurs
in a Control Flow Error.

1 Introduction

It is accepted that large software systems cannot be

fault-free. Some faults may be attributed to inaccuracy

during the development, while others can come from

external causes such as environmental stress.

Transient faults can cause abnormal behaviors of

computer systems. Radiations, electromagnetic interference

and power glitches are some of the causes of transient

faults. For example, in radiation environment, alpha-

particles, cosmic rays and solar wind flux can cause a single
event upset (SEU), which causes the state of a memory cell

or a sequential element (e.g., flip-flop) to change from 0 to

1 or from 1 to 0. Recently, the problem is also concerning

consumer products that, thanks to device geometries of 0.18

Pm and below operating at Vdd of 1.5 volts where less

energy is required to change the state of each flip-flop and

memory cell, are becoming highly susceptible to transient

faults at the ground level.

Fault may affect both data and code of the application.

In any case, after a fault has accidentally occurred, the

result of a program is unpredictable: for example, a desired

function may not be executed, functions might not be

performed in the right order, or the program crashes.

However, in many situations, the most deceptive event is

when the program reaches the end producing a wrong

answer which, unfortunately, looks reasonable; in this case,

there is no way for the user to establish the reliability of the

output. Unlike performance, the reliability of a computer

system cannot be evaluated through the use of benchmark

programs and standard test methodologies, only, but

requires observing the system behavior when a fault

appears into the system. Since the MTBF (Mean Time
Between Failure) in a computer system can be of the order

of years, fault occurrence has to be artificially accelerated

in order to observe the system behavior under faults without

waiting for the natural appearance of actual faults. In many

cases, Fault Injection [1] emerged as a viable and effective

solution, and has been deeply investigated by both

academia and industry [2], [3], [4]. For each Fault Injection

experiment it is necessary to select a fault location, an

injection time, a fault duration, and the input stimuli for the

application. A Fault Injection campaign is able to

characterize the application reliability only for a subset of

its possible execution flows and therefore the “space” of

possible faults and input stimuli makes the execution of a

statistically significant number of experiments very

difficult.

In this paper we present a new methodology, named

Fault Effect Analysis (FEA), able to characterize the

probabilities of the possible behaviors of a given

application affected by a transient fault in the code. The

application code is not actually executed as in Fault

Injection experiments, but statically analyzed. This makes

possible to analyze all the possible execution paths at once,

and allows obtaining more general results about the

application reliability with a computational effort

drastically lower than Fault Injection techniques.

The proposed technique has been designed to analyze

only the effects of faults appearing in the code of the

application. The extension to data faults is under way, but

out of the scope of this paper.

Experimental results have been obtained implementing a

prototypical tool named FEAR (Fault Effect Analysis

instRument), able to analyze the executable code of an

application compiled for any platforms whose instruction

set has been described using an ad-hoc Instruction Set

Description Language (ISDL).

The paper is organized as follows: Section 2 points out

the motivations behind our technique; Section 3 introduces

the target fault model and Section 4 details the proposed

Fault Effect Analysis. Section 5 discusses the main

differences with Fault Injection techniques. Our prototype

tool and some interesting experimental results are presented

in Sections 6 and 7. Conclusions and future activities are

summarized in Section 8.

2 Motivations

A correct control flow is a fundamental part of correct

execution of computer programs. Generally, the techniques

used to check the correct sequencing of the instructions

(control-flow checking techniques) are based on Signature

Analysis, in which a signature associated with a block of

instructions is calculated and saved during compile time;

then, the same signature is generated during run time and

compared with the saved one. It has to be pointed out that

most control-flow checking techniques are designed to

detect illegal execution flows (i.e., execution flows not

present in the application control-flow graph), but fail in

detecting erroneous execution flows (e.g., a legal execution

flow in which the wrong branch of an “if” instruction is

executed).

When the hardware design is fixed and cannot be

changed, as in Commercial-Off-The-Shelf (COTS) based

systems, control-flow error detection can only be achieved

by pure software methods. Software Implemented

Hardware Fault Tolerance (SIHFT) exploits pure software

techniques to detect and/or tolerate faults appearing in the

hardware. The main benefit of SIHFT is that it allows for

improving the availability of the system without

introducing any hardware overhead. Examples of software

methods include assertions [5][6], watchdog task [6], Block

Signature Self-Checking (BSSC) [7], Error Capturing

Instructions (ECI) [7], timers [8], regular-expressions [9],

Available Resource-driven Control-flow monitoring (ARC)

[10], temporal redundancy methods [11], and System Level

Checks [12].

Both hardware- and software-based approaches usually

introduce considerable overheads, especially in the system’s

performances, that often make control flow checking

techniques very difficult to be applied in real applications.

Nevertheless, it has never been carefully discussed if the

overheads introduced by control flow checking techniques

are justified by a reasonable probability of incurring

Control Flow Errors (CFE).

We addressed this problem defining a new Fault Effect

Analysis (FEA) methodology able to characterize,

depending on the target microprocessor platform, the

probabilities of the possible behaviors of a given

application affected by a transient fault in the code. The

proposed FEA is performed exhaustively considering SEU

faults in every bit of the application code and of those data

that may affect the application flow. The application code is

not actually executed as in Fault Injection experiments, but

statically analyzed in order to compute the probabilities of

the application’s possible behaviors. The goal of the

presented technique is therefore to allow the software

engineer to more deeply understand the possible behaviors

and weaknesses of a software application whose code has

been affected by a fault in the system hardware.

3 Fault Model

In this research we analyze errors caused by a single bit-

flip, or SEU, appearing in the code of the target application.

It is important to point out that we are interested only in the

effect of the fault (i.e., the corruption of one or more

instructions in the execution flow), and not in the physical

location of the fault itself. Therefore, faults appearing in the

code segment of the memory, in the system or internal

buses, in the cache, or in the microprocessor fetch or

decoding unit, are in our research functionally equivalent.

The possible scenarios generated by a fault appearing in

the code of an application can be formalized as follows:

x Misinterpretation of an instruction operand: the hit
instruction is correctly interpreted, its length is
unchanged, but the value of one of the instruction
operands (e.g., Immediate Data, Register,
Addressing mode, …) is different. Figure 1a shows
an example of the consequences of an error
affecting the interpretation of an instruction
operand;

x Misinterpretation of a single instruction: the fault
transforms an instruction into another one of the
same length; the following instructions remain
untouched (Figure 1b) and are correctly interpreted;

x Misinterpretation of a set of instructions: if the fault
modifies a bit of a field whose value affects the
instruction type and length, the error propagates
along the following lines of code, causing a new
and different sequence of instructions to be
executed.

In the following, we will refer to the sequence of

misinterpreted instructions as Realignment Sequence. The

Realignment Sequence can terminate either because one of

its instructions is illegal and therefore triggers an exception,

or because, after a certain number of instructions, the

Instruction Pointer re-aligns to a legal instruction sequence.

Figure 1c shows an example of a Realignment Sequence

caused by a single bit error.

Considering the mentioned scenarios, the possible fault

effects can be grouped in the following termination events:

x Illegal Instruction: the hit instruction or one
instruction in the Realignment Sequence is illegal.
The program is terminated by an Illegal Instruction
Exception;

x System Exception: the hit instruction and all the
instructions in the Realignment Sequence are legal,
but one of them tries to perform an illegal operation
(e.g., a division by zero, or an illegal memory
reference). The program is terminated by a System
Exception;

x Normal Termination (Undefined result): the hit
instruction and all the instructions in the
Realignment Sequence are legal, the Instruction
Pointer re-aligns to the original sequence, and the
program terminates normally.

Whereas the first two cases are less critical since the

error is detected by the system, the last case is in many

cases the most feared one, since the error is not detected

and there is no way of guaranteeing the correctness of the

results. If the result is faulty, the situation is usually referred

to as Fail Silent Violation, otherwise the fault is said to be

Fail Silent.

The main goal of the fault effect analysis presented in

this paper is to analytically study the behavior of the target

application when a fault appearing in the code does not lead

to the triggering of an exception.

b) A single instruction is misinterpreted

c) A set of instructions is misinterpreted: creation of a Realignment Sequence

Inc CX CLC Pop CX In AL,DX Cmp DI,SP Call EFE5

a) An instruction operand is misinterpreted

SEU

Original code.

Misinterpreted code (Realignment Sequence).

Inc BX CLC Pop CX In AL,DX Cmp DI,SP

Inc CX CLC Pop CX In AL,DX Cmp DI,SP

SEU

Inc CX STC Pop CX In AL,DX Cmp DI,SP

Inc CX CLC Pop CX In AL,DX Cmp DI,SP

SEU

Inc CX MOV [B817], AX OUT 59,AX

CLC Pop CX

Call EFE5CLC Pop CX

Call EFE5CLC Pop CX

Call EFE5Pop CX

Call EFE5Pop CX

Call EFE5Pop CX

Realignment Sequence

CLC

CLC

Figure 1: Consequences of a single bit error on the instruction decoding.

4 Fault Effect Analysis

Before detailing the proposed Fault Effect Analysis we

introduce some basic definitions needed to clarify the

following concepts.

A program can be considered as a sequence of

instructions, and the execution of the program can be

viewed as executing instructions in a desired sequence.

Inside this sequence a basic block can be defined as a set of

instructions without any branching inside or outside except

for the last one. Using the concept of basic blocks, a

program can be therefore associated to a Control Flow
Graph, which consists of basic blocks and directed edges

connecting basic blocks, and which represents all the

possible and legal execution flows of the target application.

Each execution of the program can be mapped in one visit

of the graph. A Control Flow Error (CFE) occurs when the

execution flow does not match any legal traversing of the

control flow graph. We call Control Block Errors (CBE),

those errors that modify one instruction either into another

instruction or into a Realignment Sequence without

modifying the program control flow. All Control Flow

checking techniques mentioned in the introduction aim at

reducing the number of Fail Silent Violations caused by

Control Flow Errors (i.e., the execution flows that reach the

Normal Termination following an illegal flow of operations

and producing incorrect results).

To assess the probability of a Fail Silent Violation

caused by a CFE, we have to deeply analyze the

consequences an error can have on the program flow. To do

so, we statically perform an FEA on the application

executable code.

The execution flow of an application is determined by

control flow instructions like jump, call, or rets. From now

on we will refer to this type of instructions as jump
instructions. There are direct jumps, where the destination

address is fixed and expressed as immediate data, and

indirect jumps, where the destination address is contained

in a register, in the data memory, or in the stack.

The jump instructions determine the program flow and,

in general, if an error involves a jump instruction we have a

CFE and, potentially, a Fail Silent Violation. There are in

fact two possibilities:

x The error causes the misinterpretation of a jump
instruction in the original code sequence.

x A new jump instruction is erroneously interpreted in
the hit instruction or in the Realignment Sequence.

Figure 2 presents the Control Flow Analysis performed

to obtain the results that will be presented in Section 7.

STOP Realignment
Sequence

SEU

Jump
Instruction

RealignedIndirect
Jump

Direct
Jump

Illegal
Instruction

Legal
Instruction

UNDEF

Illegal
Instruction

Jump
Instruction

STOP
Outside the

Program
Inside the
Program

STOP CFE

System
Exception

STOP

1 2

93

4 5

7

8 6

11

T4

T1

T2

T1 T2

T3

12

13 14

STOP

FS
T5

Figure 2: FEA on the program flow.

In the analysis tree showed in Figure 2, the effect of a

SEU can evolve into one of the termination events

described before in Section 3. After its appearance, a SEU

can transform the affected instruction in an illegal

instruction (1), a legal misinterpretation of the current

instruction (2), or the same instruction, due to don’t care

bits in the instruction opcode. In the latter case, the

behavior is classified as a Fail Silent (FS) (T5). Whereas

the first case will trigger an illegal exception (T1), in the

second case, if the hit instruction is interpreted as a jump

(3), it can cause a direct jump (4) or an indirect one (5). In

the first case (4), since the destination address is contained

in the code as an immediate field, it is possible to follow the

program flow. There are two possibilities:

x The destination address points to a byte internal to
the program code (6): in this case, it is possible to
continue the analysis starting from the destination
address. Since the destination address not
necessarily points to the first byte of an instruction,
a Realignment Sequence could be started (7).

x The destination address points to a byte external to
the program code (8): in this case, the Instruction
Pointer will be driven in a portion of the memory
outside the program, and it is not possible to
continue the analysis. Usually the access to the
external memory address is detected and a
processor exception occurs (T2).

If the hit instruction is misinterpreted as an indirect jump

(5), it is impossible to discover the destination address,

since it will depend on data related to the program

execution in the moment of the error. In this case, if the size

of the register containing the destination address (MD) and

the dimension of the program code (CD) are known, it is

possible to calculate the probability of jumping inside the

code (Internal Jumping Probability, IJP). The IJP is given

by the following expression:

MD
CDIJP
2

Given the IJP, it is possible to continue the analysis.

Nevertheless, in this case it is not possible to know the

destination address and it is therefore not possible to

continue the analysis on a particular Realignment

Sequence. We analyze the entire application code and

decode all the possible Realignment Sequences starting

from each byte of the code. With this information we can

compute a general probability of reaching the termination

events T1 and T4 for an indirect jump instruction inside the

code segment.

When the hit instruction is not reinterpreted as a jump

instruction, a Realignment Sequence is started (9); the

following four situations are possible:

x The Realignment Sequence ends because the
Instruction Pointer realigned to the original code
(11): in this case the program flow returns on a
valid sequence, but a different set of instructions
(the Realignment Sequence) has been executed
instead of the expected one: the program result is
unpredictable (T3). This is the termination event
that includes the CFEs that might cause a Fail Silent

Violation (T4) and that are the real target of the
Control Flow Checking techniques referred to in the
introduction. The proposed control flow analysis
distinguish the upper-bound probability of incurring
in CFEs and CBEs, thus giving the software
engineer a mean to evaluate the trade-off between
overheads introduced by Control-Flow-Checking
techniques and the gained dependability of the
system;

x A jump instruction is found before the end of the
Realignment Sequence (12). In this case, the
behavior depends on the type of jump, and the
analysis continues as described before;

x An illegal instruction is detected before either the
realignment of the Realignment Sequence or the
decoding of a “jump” instruction (13). In this case
the system triggers an illegal exception (T1);

x An illegal operation is performed by one legal
instruction of the Realignment Sequence (14) (e.g.,
a division by zero, or an instruction addressing
memory areas outside the application scope); a
System exception is triggered (T2).

The analysis also takes into account that a jump

instruction may be unconditioned (the jump always occurs),

or conditioned (the value of a flag determines if the jump is

taken). In the first case the analysis has to simply follow the

appropriate arrow of Figure 2. In the second case, where the

jump is taken depending on run-time data not directly

obtainable in the code, a jumping probability is computed.

Since the jump condition is usually determined by binary

flags, we considered a 50% probability of taking the jump

when a conditional jump is encountered. In this case, the

analysis continues following both branches and considering

their execution with a halved probability. We know that this

might be a limitation of our approach, because during the

application execution the probabilities of each branch are

likely not to be the same.

5 A-FEA vs Fault Injection

The results calculated by the proposed analysis can be

very different from the ones obtained using traditional

dependability evaluation techniques. In Fault Injection,

each experiment requires to select a fault model (location,

injection time, duration), and a set of input data for the

application. It is not obvious that the chosen input data will

traverse all the possible application execution flows.

Therefore a Fault Injection campaign is able to characterize

the application reliability only for a subset of its possible

execution flows and therefore the “space” of possible faults

and input stimuli makes the execution of a statistically

significant number of experiments very difficult.

We can explain the difference with the following

example. Let’s consider an application with the control flow

graph presented in Figure 3, and let’s assume to define a

Fault Injection campaign injecting 1,000 random faults in

the code segment of the application with a set of input

stimuli that will cause the application to execute the

following flow: Begin-A-End. Since the block B of

instructions is never executed, at the end of the campaign

we can expect all the faults injected in B (~50%) to be Fail

Silent.

On the contrary, the proposed A-FEA will analyze all the

possible execution flows, providing at the end of the

analysis a probabilistic figure of the possible behaviors of

the application considering the probability of executing

each of the branches equal to 0,5.

AB

Begin

End

Figure 3: FEA on the program flow

6 Tool

The fault effect analysis methodology presented in the

previous section is being automated in FEAR (Fault Effect

Analysis instRument). As shown in Figure 4, FEAR reads

the application executable code, and an ISDL file

containing the detailed description of the instruction set of

the target processor. The ISDL file is divided in two parts,

one describing the instruction’s general format, and the

other listing all the instructions implemented in the target

microprocessor. The executable file has to be compiled for

the same processor described in the ISDL file. This feature

will allow us to evaluate whether or not the FEA is affected

by the instruction set format. We currently described in our

ISDL the Intel IA-32 (CISC) instruction set, which includes

all the instructions from the Intel 286 to the Pentium III

processor, and the SPARC V (RISC) instruction set.

FEAR (Fault Effect Analysis instRument)

Executable CODEExecutable CODE

ISDL

Critical Fault List
(CFL)

Critical Fault List
(CFL)

Application Fault Effect
Analysis (A-FEA)

Application Fault Effect
Analysis (A-FEA)

Figure 4: FEAR Input/Output files

FEAR generates two output files:

x The A-FEA is the most important file and stores the
SEU effect analysis performed on the application
executable code. This file stores the probabilities of
each termination event for the considered
application.

x The CFL file contains the list of locations in the
program code or variables where a SEU produces
an undefined effect w.r.t. the program flow. This
list can be used to generate a reduced fault list to be
used in a Fault Injection aiming at more deeply
understanding the behavior of the application under
the occurrence of SEU faults.

In the current version of FEAR, we are not able to deal

with dynamic libraries like dlls. To perform the following

experiments we solved the problem by generating

executables files including all the required libraries.

7 Experimental Results

The experimental results presented in this Section have

been obtained by running FEAR on two SPEC benchmarks

(www.spec.org). The first, Dryston, is a mathematical

benchmark working on integer numbers. The second, EON,

is a 3D studio rendering engine.

We present two sets of experimental results. The first

reports the results of the A-FEA on the two benchmarks

compiled for the Intel Pentium instruction set. The second

highlights the differences between RISC and CISC

instruction sets by comparing the A-FEA run on the two

benchmarks compiled for both Intel Pentium and Sun Sparc

architectures.

In analyzing the presented results, some additional

considerations have to be done:

x The analysis assumes that the SEU occurrence
probability is equal to 100%. In a real case, this
probability depends on the technology, on the
working environment (space, ground level, etc), and
on the ratio between the code size and the overall
system memory.

x The analysis also assumes that each SEU is always
activated; nevertheless, in a real execution, many
parts of the program are never be executed or are
executed for the last time before the SEU
appearance. Therefore, a SEU in one of these parts
does not affect the correctness of the program.

7.1 A-FEA for Intel Pentium

The first set of experimental results concerns the

probabilistic distribution of the termination events,

computed applying the A-FEA described in Section 4.

Besides the termination events previously introduced, the

tool stops the analysis when the SEU effect causes an

infinite loop in the application flow. The termination event

probabilities for the two benchmarks compiled for the Intel

Pentium instruction set are reported in Table 1 (the

termination event code introduced in Section 4 is reported

in brackets).

 Drystone EON
Illegal (T1) 1,4% 1,6%
Data fault (T2) 35,3% 43,9%
Jump Outside (T2) 2,2% 2,6%
Fail Silent (T3) 26,0% 7%
CBE (T3) 33,49% 43,39%
CFE (T4) 1,7% 1,6%
Loops 0,01% 0,01%

Table 1: Termination Events Probability

Let’s comment separately the result of each termination

event:

x Illegal (T1): the percentage of illegal instructions is
quite low. This result strongly depends on the used
instruction set. The Intel Pentium instruction set has
many don’t care bits in the instruction opcodes, and
therefore many SEUs are Fail Silent.

x Data fault (T2): both benchmarks showed a high
percentage of data faults, i.e., possible accesses to
memory locations outside the data segment. The
result is particularly high because the probability of
having into a Realignment Sequence an instruction
accessing the memory is very high. Being in a
Realignment Sequence, the memory address is
unknown (or random). We computed the probability

of having a legal memory access as MD
DS
2

 where

MD is the size of the register containing the
memory address and DS the dimension of the data
segment. This probability depends on the target
processor, the application itself, and the operating
system. In our experiment setup the probability is
very low and therefore the Data fault probability
very high.

x Jump Outside (T2): the probability of having a jump
instruction in a Realignment Sequence is much
lower than the probability of having a random
memory access. Therefore, the probability of
jumping outside is quite low.

x Fail Silent (T3): a fault is Fail Silent if it doesn’t
cause any error. This can happen when injecting a
fault into a don’t care bit, or into padding bytes,
never executed by the application.

x CBE (T3): a fault causes a CBE when the flow
within a basic block is affected, but the global
execution flow is still legal. This class of errors is
very difficult to detect using traditional control-flow
error techniques. The results in Table 1 show that
this is a very critical class of errors that can lead to
unpredictable results.

x CFE (T4): one of the most interesting results is the
low percentage of CFE (1,7% and 1,6%). This
result seems to point out that CFEs have to be
targeted only when very high reliability is required.
In all other cases, other classes of errors should be
addressed first.

7.2 A-FEA in RISC and CISC

Table 2 and 3 present a comparison obtained running the

A-FEA on the two benchmarks compiled for CISC and

RISC (Sun Sparc) instruction sets. Results show that the

application behavior (and therefore dependability) is

strongly related to the instruction set implemented by the

target platform. The most interesting difference in the A-

FEA analysis is that a fault into a RISC application never
produces a Realignment Sequence.

 CISC
(Intel)

RISC
(Sparc)

Illegal (T1) 1,4% 8,0%
Data fault (T2) 35,3% 9,4%
Jump Outside (T2) 2,2% 8,75%
Fail Silent (T3) 26,0% 8,74%
CBE (T3) 33,49% 63,0%
CFE (T4) 1,7% 1,65%
Loops 0,01% 0,46%

Table 2: Termination Events Probabilities in CISC and
RISC architectures for the Drystone benchmark

 CISC
(Intel)

RISC
(Sparc)

Illegal (T1) 1,6% 9,3%
Data fault (T2) 43,9% 11,5%
Jump Outside (T2) 2,6% 8,2%
Fail Silent (T3) 7% 6,06%
CBE (T3) 43,39% 62,06%
CFE (T4) 1,6% 2,24%
Loops 0,01% 0,64%

Table 3: Termination Events Probabilities in CISC and
RISC architectures for the EON benchmark

In the following we analyze each class separately:

x Illegal (T1): the number of faults generating an
illegal instruction exception is higher in the RISC
architecture because of the different coding scheme
of the instruction set.

x Data fault (T2): the number of Data faults is lower
in the RISC architecture because the RISC
instruction set privileges the use of registers instead
of memory locations. Moreover, realignment
sequences are never generated in a RISC
architecture, and therefore the probability of having
a fault generating a memory access instruction is
lower than for the CISC architecture.

x Jump Outside (T2): as for the CISC, also for the
RISC Instruction set the percentage of Jump
Outside seems more related to the instruction set
structure than to the application itself.

x Fail Silent (T3): the results suggest that the number
of Fail Silent faults is independent from the
application and is more a property of the instruction
set itself.

x CBE (T3): the fact that in a RISC architecture we do
not have Realignment Sequences increases the
number of CBEs.

x CFE (T4): the results show that the selected
instruction set does not influenced the percentage of
CFEs. This consideration is quite interesting
because it seems to suggest that results obtained
using control-flow checking techniques are
independent from the target microprocessor.

x Loops: in this case the difference between the two
architectures is of two orders of magnitude. This
suggests that the probability of incurring in a loop is
strongly related to the structure of the instruction
set.

8 Conclusions and future work

In this paper we presented a Fault Effect Analysis (FEA)

methodology aimed at characterizing the behavior of a

target application when a SEU occurs in its code segment.

The FEA works statically on the application code without

actually executing the application, but only probabilistically

following all its possible flows. This and other significant

differences between the proposed technique and other

dependability evaluation techniques like Fault Injection

have been discussed. We presented several experimental

results obtained running FEA on two complex benchmarks

compiled for a CISC and a RISC instruction set. Some

results showed a considerable difference between RISC and

CISC machines, suggesting that the choice of the target

instruction set can be an important parameter that can

contribute to the overall system dependability.

Our future activities are focused on the refinement of the

technique and in particular in:

x defining a method to evaluate the different
execution flows, in order to weight our results with
their actual execution probability.

x extending the analysis to other instruction sets in
order to more deeply investigate their correlation
with the system overall dependability and, in the
long run, to propose a new dependability-oriented
instruction set.

9 References

[1] J. Clark, D. Pradhan, Fault Injection: A method for

Validating Computer-System Dependability, IEEE

Computer, June 1995, pp. 47-56

[2] T.A. Delong, B.W. Johnson, J.A. Profeta III, A Fault

Injection Technique for VHDL Behavioral-Level Models,

IEEE Design & Test of Computers, Winter 1996, pp. 24-

33

[3] G.A. Kanawati, N.A. Kanawati, J.A. Abraham,

FERRARI: A Flexible Software-Based Fault and Error

Injection System, IEEE Trans. on Computers, Vol 44, N.

2, February 1995, pp. 248-260

[4] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.C. Fabre, J.-

C. Laprie, E. Martins, D. Powell, Fault Injection for

Dependability Validation: A Methodology and some

Applications, IEEE Transactions on Software

Engineering, Vol. 16, No. 2, February 1990

[5] Andrews, D., "Using executable assertions for testing and

fault tolerance," 9th Fault-Tolerance Computing Symp.,

Madison, WI, June 20-22, 1979.

[6] Ersoz, A., D. M. Andrews, and E. J. McCluskey, "The

Watchdog Task: Concurrent Error Detection Using

Assertions," Stanford University, Center for Reliable

Computing, TR 85-8.

[7] Madeira, H. and J. G. Silvia, "On-line Signature Learning

and Checking," Dependable Computing for Critical

Applications 2, Springer-Verlag, J. F. and R. D.

Schlichting (eds), pp. 395-420, 1992.

[8] Madeira, H., M. Rela, and J. G. Silvia, "Time Behavior

Monitoring as an Error Detection Mechanism,"

Dependable Computing for Critical Applications 2,

Springer-Verlag, J. F. and R. D. Schlichting (eds), pp.

395-420, Feb. 1993.

[9] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L.

Tagliaferri, Control-Flow Checking Via Regular

Expressions, IEEE Asian Test Symposium (ATS 2001),

Kyoto (J), November 2001

[10] Schuette, M. A., J. P. Shen, "Exploiting Instruction-Level

Parallelism for Integrated Control-Flow Monitoring,"

IEEE Trans. on Computers, Vol. 43, No. 2, pp.129-140,

Feb. 1994

[11] Ignatushchenko, V. V., et al., "Effectiveness of temporal

redundancy of parallel computational processes,"

Automation and Remote Control, Vol. 55, No. 6, pt. 2, pp.

900-911, June 1994.

[12] Z. Alkhalifa, V.S.S. Nair, N. Krishnamurthy, J.A.

Abraham, Design and Evaluation of System-Level Checks

for On-Line Control Flow Error Detection, IEEE

Transactions on Parallel and Distributed Systems, Vol. 10,

N. 6, June 1999, pp. 627-641

