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Abstract 

Control Flow Errors have been widely addressed in 
literature as a possible threat to the dependability of 
computer systems, and many clever techniques have been 
proposed to detect and tolerate them. Nevertheless, it has 
never been discussed if the overheads introduced by many 
of these techniques are justified by a reasonable probability 
of incurring Control Flow Errors. This paper presents a 
static executable code analysis methodology able to 
compute, depending on the target microprocessor platform, 
the upper-bound probability that a given application incurs 
in a Control Flow Error. 

1 Introduction 

It is accepted that large software systems cannot be 

fault-free. Some faults may be attributed to inaccuracy 

during the development, while others can come from 

external causes such as environmental stress. 

Transient faults can cause abnormal behaviors of 

computer systems. Radiations, electromagnetic interference 

and power glitches are some of the causes of transient 

faults. For example, in radiation environment, alpha-

particles, cosmic rays and solar wind flux can cause a single 
event upset (SEU), which causes the state of a memory cell 

or a sequential element (e.g., flip-flop) to change from 0 to 

1 or from 1 to 0. Recently, the problem is also concerning 

consumer products that, thanks to device geometries of 0.18 

Pm and below operating at Vdd of 1.5 volts where less 

energy is required to change the state of each flip-flop and 

memory cell, are becoming highly susceptible to transient 

faults at the ground level.  

Fault may affect both data and code of the application. 

In any case, after a fault has accidentally occurred, the 

result of a program is unpredictable: for example, a desired 

function may not be executed, functions might not be 

performed in the right order, or the program crashes. 

However, in many situations, the most deceptive event is 

when the program reaches the end producing a wrong 

answer which, unfortunately, looks reasonable; in this case, 

there is no way for the user to establish the reliability of the 

output. Unlike performance, the reliability of a computer 

system cannot be evaluated through the use of benchmark 

programs and standard test methodologies, only, but 

requires observing the system behavior when a fault 

appears into the system. Since the MTBF (Mean Time 
Between Failure) in a computer system can be of the order 

of years, fault occurrence has to be artificially accelerated 

in order to observe the system behavior under faults without 

waiting for the natural appearance of actual faults. In many 

cases, Fault Injection [1] emerged as a viable and effective 

solution, and has been deeply investigated by both 

academia and industry [2], [3], [4]. For each Fault Injection 

experiment it is necessary to select a fault location, an 

injection time, a fault duration, and the input stimuli for the 

application. A Fault Injection campaign is able to 

characterize the application reliability only for a subset of 

its possible execution flows and therefore the “space” of 

possible faults and input stimuli makes the execution of a 

statistically significant number of experiments very 

difficult. 

In this paper we present a new methodology, named 

Fault Effect Analysis (FEA), able to characterize the 

probabilities of the possible behaviors of a given 

application affected by a transient fault in the code. The 

application code is not actually executed as in Fault 

Injection experiments, but statically analyzed. This makes 

possible to analyze all the possible execution paths at once,  

and allows obtaining more general results about the 

application reliability with a computational effort 

drastically lower than Fault Injection techniques. 

The proposed technique has been designed to analyze 

only the effects of faults appearing in the code of the 

application. The extension to data faults is under way, but 

out of the scope of this paper. 



Experimental results have been obtained implementing a 

prototypical tool named FEAR (Fault Effect Analysis 

instRument), able to analyze the executable code of an 

application compiled for any platforms whose instruction 

set has been described using an ad-hoc Instruction Set 

Description Language (ISDL).  

The paper is organized as follows: Section 2 points out 

the motivations behind our technique; Section 3 introduces 

the target fault model and Section 4 details the proposed 

Fault Effect Analysis. Section 5 discusses the main 

differences with Fault Injection techniques. Our prototype 

tool and some interesting experimental results are presented 

in Sections 6 and 7. Conclusions and future activities are 

summarized in Section 8. 

2 Motivations 

A correct control flow is a fundamental part of correct 

execution of computer programs. Generally, the techniques 

used to check the correct sequencing of the instructions 

(control-flow checking techniques) are based on Signature 

Analysis, in which a signature associated with a block of 

instructions is calculated and saved during compile time; 

then, the same signature is generated during run time and 

compared with the saved one. It has to be pointed out that 

most control-flow checking techniques are designed to 

detect illegal execution flows (i.e., execution flows not 

present in the application control-flow graph), but fail in 

detecting erroneous execution flows (e.g., a legal execution 

flow in which the wrong branch of an “if” instruction is 

executed). 

When the hardware design is fixed and cannot be 

changed, as in Commercial-Off-The-Shelf (COTS) based 

systems, control-flow error detection can only be achieved 

by pure software methods. Software Implemented 

Hardware Fault Tolerance (SIHFT) exploits pure software 

techniques to detect and/or tolerate faults appearing in the 

hardware. The main benefit of SIHFT is that it allows for 

improving the availability of the system without 

introducing any hardware overhead. Examples of software 

methods include assertions [5][6], watchdog task [6], Block 

Signature Self-Checking (BSSC) [7], Error Capturing 

Instructions (ECI) [7], timers [8], regular-expressions [9], 

Available Resource-driven Control-flow monitoring (ARC) 

[10], temporal redundancy methods [11], and System Level 

Checks [12]. 

Both hardware- and software-based approaches usually 

introduce considerable overheads, especially in the system’s 

performances, that often make control flow checking 

techniques very difficult to be applied in real applications. 

Nevertheless, it has never been carefully discussed if the 

overheads introduced by control flow checking techniques 

are justified by a reasonable probability of incurring 

Control Flow Errors (CFE).  

We addressed this problem defining a new Fault Effect 

Analysis (FEA) methodology able to characterize, 

depending on the target microprocessor platform, the 

probabilities of the possible behaviors of a given 

application affected by a transient fault in the code. The 

proposed FEA is performed exhaustively considering SEU 

faults in every bit of the application code and of those data 

that may affect the application flow. The application code is 

not actually executed as in Fault Injection experiments, but 

statically analyzed in order to compute the probabilities of 

the application’s possible behaviors. The goal of the 

presented technique is therefore to allow the software 

engineer to more deeply understand the possible behaviors 

and weaknesses of a software application whose code has 

been affected by a fault in the system hardware. 

3 Fault Model 

In this research we analyze errors caused by a single bit-

flip, or SEU, appearing in the code of the target application. 

It is important to point out that we are interested only in the 

effect of the fault (i.e., the corruption of one or more 

instructions in the execution flow), and not in the physical 

location of the fault itself. Therefore, faults appearing in the 

code segment of the memory, in the system or internal 

buses, in the cache, or in the microprocessor fetch or 

decoding unit, are in our research functionally equivalent.  

The possible scenarios generated by a fault appearing in 

the code of an application can be formalized as follows: 

x Misinterpretation of an instruction operand: the hit 
instruction is correctly interpreted, its length is 
unchanged, but the value of one of the instruction 
operands (e.g., Immediate Data, Register, 
Addressing mode, …) is different. Figure 1a shows 
an example of the consequences of an error 
affecting the interpretation of an instruction 
operand; 

x Misinterpretation of a single instruction: the fault 
transforms an instruction into another one of the 
same length; the following instructions remain 
untouched (Figure 1b) and are correctly interpreted; 

x Misinterpretation of a set of instructions: if the fault 
modifies a bit of a field whose value affects the 
instruction type and length, the error propagates 
along the following lines of code, causing a new 
and different sequence of instructions to be 
executed.  

In the following, we will refer to the sequence of 

misinterpreted instructions as Realignment Sequence. The 

Realignment Sequence can terminate either because one of 



its instructions is illegal and therefore triggers an exception, 

or because, after a certain number of instructions, the 

Instruction Pointer re-aligns to a legal instruction sequence. 

Figure 1c shows an example of a Realignment Sequence 

caused by a single bit error.  

Considering the mentioned scenarios, the possible fault 

effects can be grouped in the following termination events: 

x Illegal Instruction: the hit instruction or one 
instruction in the Realignment Sequence is illegal. 
The program is terminated by an Illegal Instruction 
Exception; 

x System Exception: the hit instruction and all the 
instructions in the Realignment Sequence are legal, 
but one of them tries to perform an illegal operation 
(e.g., a division by zero, or an illegal memory 
reference). The program is terminated by a System 
Exception; 

x Normal Termination (Undefined result): the hit 
instruction and all the instructions in the 
Realignment Sequence are legal, the Instruction 
Pointer re-aligns to the original sequence, and the 
program terminates normally.  

Whereas the first two cases are less critical since the 

error is detected by the system, the last case is in many 

cases the most feared one, since the error is not detected 

and there is no way of guaranteeing the correctness of the 

results. If the result is faulty, the situation is usually referred 

to as Fail Silent Violation, otherwise the fault is said to be 

Fail Silent. 

The main goal of the fault effect analysis presented in 

this paper is to analytically study the behavior of the target 

application when a fault appearing in the code does not lead 

to the triggering of an exception. 

b) A single instruction is misinterpreted

c) A set of  instructions is misinterpreted: creation of a Realignment Sequence

Inc CX CLC Pop CX In AL,DX Cmp DI,SP Call EFE5

a) An instruction operand is misinterpreted

SEU

Original code.

Misinterpreted code (Realignment Sequence).

Inc BX CLC Pop CX In AL,DX Cmp DI,SP

Inc CX CLC Pop CX In AL,DX Cmp DI,SP

SEU

Inc CX STC Pop CX In AL,DX Cmp DI,SP

Inc CX CLC Pop CX In AL,DX Cmp DI,SP

SEU

Inc CX MOV [B817], AX   OUT 59,AX

CLC Pop CX

Call EFE5CLC Pop CX

Call EFE5CLC Pop CX

Call EFE5Pop CX

Call EFE5Pop CX

Call EFE5Pop CX

Realignment Sequence

CLC

CLC

 

Figure 1: Consequences of a single bit error on the instruction decoding. 

 

4 Fault Effect Analysis 

Before detailing the proposed Fault Effect Analysis we 

introduce some basic definitions needed to clarify the 

following concepts. 

A program can be considered as a sequence of 

instructions, and the execution of the program can be 

viewed as executing instructions in a desired sequence. 

Inside this sequence a basic block can be defined as a set of 

instructions without any branching inside or outside except 



for the last one. Using the concept of basic blocks, a 

program can be therefore associated to a Control Flow 
Graph, which consists of basic blocks and directed edges 

connecting basic blocks, and which represents all the 

possible and legal execution flows of the target application. 

Each execution of the program can be mapped in one visit 

of the graph. A Control Flow Error (CFE) occurs when the 

execution flow does not match any legal traversing of the 

control flow graph. We call Control Block Errors (CBE), 

those errors that modify one instruction either into another 

instruction or into a Realignment Sequence without 

modifying the program control flow. All Control Flow 

checking techniques mentioned in the introduction aim at 

reducing the number of Fail Silent Violations caused by 

Control Flow Errors (i.e., the execution flows that reach the 

Normal Termination following an illegal flow of operations 

and producing incorrect results). 

To assess the probability of a Fail Silent Violation 

caused by a CFE, we have to deeply analyze the 

consequences an error can have on the program flow. To do 

so, we statically perform an FEA on the application 

executable code.  

The execution flow of an application is determined by 

control flow instructions like jump, call, or rets. From now 

on we will refer to this type of instructions as jump 
instructions. There are direct jumps, where the destination 

address is fixed and expressed as immediate data, and 

indirect jumps, where the destination address is contained 

in a register, in the data memory, or in the stack. 

The jump instructions determine the program flow and, 

in general, if an error involves a jump instruction we have a 

CFE and, potentially, a Fail Silent Violation. There are in 

fact two possibilities: 

x The error causes the misinterpretation of a jump 
instruction in the original code sequence. 

x A new jump instruction is erroneously interpreted in 
the hit instruction or in the Realignment Sequence. 

Figure 2 presents the Control Flow Analysis performed 

to obtain the results that will be presented in Section 7.  
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Figure 2: FEA on the program flow. 

 

In the analysis tree showed in Figure 2, the effect of a 

SEU can evolve into one of the termination events 

described before in Section 3. After its appearance, a SEU 

can transform the affected instruction in an illegal 

instruction (1), a legal misinterpretation of the current 

instruction (2), or the same instruction, due to don’t care 

bits in the instruction opcode. In the latter case, the 

behavior is classified as a Fail Silent (FS) (T5). Whereas 



the first case will trigger an illegal exception (T1), in the 

second case, if the hit instruction is interpreted as a jump 

(3), it can cause a direct jump (4) or an indirect one (5). In 

the first case (4), since the destination address is contained 

in the code as an immediate field, it is possible to follow the 

program flow. There are two possibilities: 

x The destination address points to a byte internal to 
the program code (6): in this case, it is possible to 
continue the analysis starting from the destination 
address. Since the destination address not 
necessarily points to the first byte of an instruction, 
a Realignment Sequence could be started (7). 

x The destination address points to a byte external to 
the program code (8): in this case, the Instruction 
Pointer will be driven in a portion of the memory 
outside the program, and it is not possible to 
continue the analysis. Usually the access to the 
external memory address is detected and a 
processor exception occurs (T2). 

If the hit instruction is misinterpreted as an indirect jump 

(5), it is impossible to discover the destination address, 

since it will depend on data related to the program 

execution in the moment of the error. In this case, if the size 

of the register containing the destination address (MD) and 

the dimension of the program code (CD) are known, it is 

possible to calculate the probability of jumping inside the 

code (Internal Jumping Probability, IJP). The IJP is given 

by the following expression: 

MD
CDIJP
2

  

Given the IJP, it is possible to continue the analysis. 

Nevertheless, in this case it is not possible to know the 

destination address and it is therefore not possible to 

continue the analysis on a particular Realignment 

Sequence. We analyze the entire application code and 

decode all the possible Realignment Sequences starting 

from each byte of the code. With this information we can 

compute a general probability of reaching the termination 

events T1 and T4 for an indirect jump instruction inside the 

code segment.  

When the hit instruction is not reinterpreted as a jump 

instruction, a Realignment Sequence is started (9); the 

following four situations are possible: 

x The Realignment Sequence ends because the 
Instruction Pointer realigned to the original code 
(11): in this case the program flow returns on a 
valid sequence, but a different set of instructions 
(the Realignment Sequence) has been executed 
instead of the expected one: the program result is 
unpredictable (T3). This is the termination event 
that includes the CFEs that might cause a Fail Silent 

Violation (T4) and that are the real target of the 
Control Flow Checking techniques referred to in the 
introduction. The proposed control flow analysis 
distinguish the upper-bound probability of incurring 
in CFEs and CBEs, thus giving the software 
engineer a mean to evaluate the trade-off between 
overheads introduced by Control-Flow-Checking 
techniques and the gained dependability of the 
system; 

x A jump instruction is found before the end of the 
Realignment Sequence (12). In this case, the 
behavior depends on the type of jump, and the 
analysis continues as described before; 

x An illegal instruction is detected before either the 
realignment of the Realignment Sequence or the 
decoding of a “jump” instruction (13). In this case 
the system triggers an illegal exception (T1); 

x An illegal operation is performed by one legal 
instruction of the Realignment Sequence (14) (e.g., 
a division by zero, or an instruction addressing 
memory areas outside the application scope); a 
System exception is triggered (T2). 

The analysis also takes into account that a jump 

instruction may be unconditioned (the jump always occurs), 

or conditioned (the value of a flag determines if the jump is 

taken). In the first case the analysis has to simply follow the 

appropriate arrow of Figure 2. In the second case, where the 

jump is taken depending on run-time data not directly 

obtainable in the code, a jumping probability is computed. 

Since the jump condition is usually determined by binary 

flags, we considered a 50% probability of taking the jump 

when a conditional jump is encountered. In this case, the 

analysis continues following both branches and considering 

their execution with a halved probability. We know that this 

might be a limitation of our approach, because during the 

application execution the probabilities of each branch are 

likely not to be the same. 

5 A-FEA vs Fault Injection 

The results calculated by the proposed analysis can be 

very different from the ones obtained using traditional 

dependability evaluation techniques. In Fault Injection, 

each experiment requires to select a fault model (location, 

injection time, duration), and a set of input data for the 

application. It is not obvious that the chosen input data will 

traverse all the possible application execution flows. 

Therefore a Fault Injection campaign is able to characterize 

the application reliability only for a subset of its possible 

execution flows and therefore the “space” of possible faults 

and input stimuli makes the execution of a statistically 

significant number of experiments very difficult. 



We can explain the difference with the following 

example. Let’s consider an application with the control flow 

graph presented in Figure 3, and let’s assume to define a 

Fault Injection campaign injecting 1,000 random faults in 

the code segment of the application with a set of input 

stimuli that will cause the application to execute the 

following flow: Begin-A-End. Since the block B of 

instructions is never executed, at the end of the campaign 

we can expect all the faults injected in B (~50%) to be Fail 

Silent. 

On the contrary, the proposed A-FEA will analyze all the 

possible execution flows, providing at the end of the 

analysis a probabilistic figure of the possible behaviors of 

the application considering the probability of executing 

each of the branches equal to 0,5. 

AB

Begin

End

 

Figure 3: FEA on the program flow 

6 Tool 

The fault effect analysis methodology presented in the 

previous section is being automated in FEAR (Fault Effect 

Analysis instRument). As shown in Figure 4, FEAR reads 

the application executable code, and an ISDL file 

containing the detailed description of the instruction set of 

the target processor. The ISDL file is divided in two parts, 

one describing the instruction’s general format, and the 

other listing all the instructions implemented in the target 

microprocessor. The executable file has to be compiled for 

the same processor described in the ISDL file. This feature 

will allow us to evaluate whether or not the FEA is affected 

by the instruction set format. We currently described in our 

ISDL the Intel IA-32 (CISC) instruction set, which includes 

all the instructions from the Intel 286 to the Pentium III 

processor, and the SPARC V (RISC) instruction set.  

 

FEAR (Fault Effect Analysis instRument)

Executable CODEExecutable CODE

ISDL

Critical Fault List
(CFL)

Critical Fault List
(CFL)

Application Fault Effect 
Analysis (A-FEA)

Application Fault Effect 
Analysis (A-FEA)

 

Figure 4: FEAR Input/Output files 

FEAR generates two output files: 

x The A-FEA is the most important file and stores the 
SEU effect analysis performed on the application 
executable code. This file stores the probabilities of 
each termination event for the considered 
application. 

x The CFL file contains the list of locations in the 
program code or variables where a SEU produces 
an undefined effect w.r.t. the program flow. This 
list can be used to generate a reduced fault list to be 
used in a Fault Injection aiming at more deeply 
understanding the behavior of the application under 
the occurrence of SEU faults. 

In the current version of FEAR, we are not able to deal 

with dynamic libraries like dlls. To perform the following 

experiments we solved the problem by generating 

executables files including all the required libraries. 

7 Experimental Results 

The experimental results presented in this Section have 

been obtained by running FEAR on two SPEC benchmarks 

(www.spec.org).  The first, Dryston, is a mathematical 

benchmark working on integer numbers. The second, EON, 

is a 3D studio rendering engine. 

We present two sets of experimental results. The first 

reports the results of the A-FEA on the two benchmarks 

compiled for the Intel Pentium instruction set. The second 

highlights the differences between RISC and CISC 

instruction sets by comparing the A-FEA run on the two 

benchmarks compiled for both Intel Pentium and Sun Sparc 

architectures.  

In analyzing the presented results, some additional 

considerations have to be done: 

x The analysis assumes that the SEU occurrence 
probability is equal to 100%. In a real case, this 
probability depends on the technology, on the 
working environment (space, ground level, etc), and 
on the ratio between the code size and the overall 
system memory. 



x The analysis also assumes that each SEU is always 
activated; nevertheless, in a real execution, many 
parts of the program are never be executed or are 
executed for the last time before the SEU 
appearance. Therefore, a SEU in one of these parts 
does not affect the correctness of the program. 

7.1 A-FEA for Intel Pentium 

The first set of experimental results concerns the 

probabilistic distribution of the termination events, 

computed applying the A-FEA described in Section 4. 

Besides the termination events previously introduced, the 

tool stops the analysis when the SEU effect causes an 

infinite loop in the application flow. The termination event 

probabilities for the two benchmarks compiled for the Intel 

Pentium instruction set are reported in Table 1 (the 

termination event code introduced in Section 4 is reported 

in brackets). 

 Drystone EON 
Illegal (T1) 1,4% 1,6% 
Data fault (T2) 35,3% 43,9% 
Jump Outside (T2) 2,2% 2,6% 
Fail Silent (T3) 26,0% 7% 
CBE (T3) 33,49% 43,39% 
CFE (T4) 1,7% 1,6% 
Loops 0,01% 0,01% 

Table 1: Termination Events Probability 

Let’s comment separately the result of each termination 

event: 

x Illegal (T1): the percentage of illegal instructions is 
quite low. This result strongly depends on the used 
instruction set. The Intel Pentium instruction set has 
many don’t care bits in the instruction opcodes, and 
therefore many SEUs are Fail Silent. 

x Data fault (T2): both benchmarks showed a high 
percentage of data faults, i.e., possible accesses to 
memory locations outside the data segment. The 
result is particularly high because the probability of 
having into a Realignment Sequence an instruction 
accessing the memory is very high. Being in a 
Realignment Sequence, the memory address is 
unknown (or random). We computed the probability 

of having a legal memory access as MD
DS
2

 where 

MD is the size of the register containing the 
memory address and DS the dimension of the data 
segment. This probability depends on the target 
processor, the application itself, and the operating 
system. In our experiment setup the probability is 
very low and therefore the Data fault probability 
very high. 

x Jump Outside (T2): the probability of having a jump 
instruction in a Realignment Sequence is much 
lower than the probability of having a random 
memory access. Therefore, the probability of 
jumping outside is quite low. 

x Fail Silent (T3): a fault is Fail Silent if it doesn’t 
cause any error. This can happen when injecting a 
fault into a don’t care bit, or into padding bytes, 
never executed by the application. 

x CBE (T3): a fault causes a CBE when the flow 
within a basic block is affected, but the global 
execution flow is still legal. This class of errors is 
very difficult to detect using traditional control-flow 
error techniques. The results in Table 1 show that 
this is a very critical class of errors that can lead to 
unpredictable results. 

x CFE (T4): one of the most interesting results is the 
low percentage of CFE (1,7% and 1,6%). This 
result seems to point out that CFEs have to be 
targeted only when very high reliability is required. 
In all other cases, other classes of errors should be 
addressed first. 

7.2 A-FEA in RISC and CISC 

Table 2 and 3 present a comparison obtained running the 

A-FEA on the two benchmarks compiled for CISC and 

RISC (Sun Sparc) instruction sets. Results show that the 

application behavior (and therefore dependability) is 

strongly related to the instruction set implemented by the 

target platform. The most interesting difference in the A-

FEA analysis is that a fault into a RISC application never 
produces a Realignment Sequence. 

 

 CISC 
(Intel) 

RISC 
(Sparc)

Illegal (T1) 1,4% 8,0% 
Data fault (T2) 35,3% 9,4% 
Jump Outside (T2) 2,2% 8,75% 
Fail Silent (T3) 26,0% 8,74% 
CBE (T3) 33,49% 63,0% 
CFE (T4) 1,7% 1,65% 
Loops 0,01% 0,46% 

Table 2: Termination Events Probabilities in CISC and 
RISC architectures for the Drystone benchmark 

 



 CISC 
(Intel) 

RISC 
(Sparc)

Illegal (T1) 1,6% 9,3% 
Data fault (T2) 43,9% 11,5% 
Jump Outside (T2) 2,6% 8,2% 
Fail Silent (T3) 7% 6,06% 
CBE (T3) 43,39% 62,06% 
CFE (T4) 1,6% 2,24% 
Loops 0,01% 0,64% 

Table 3: Termination Events Probabilities in CISC and 
RISC architectures for the EON benchmark 

In the following we analyze each class separately: 

x Illegal (T1): the number of faults generating an 
illegal instruction exception is higher in the RISC 
architecture because of the different coding scheme 
of the instruction set. 

x Data fault (T2): the number of Data faults is lower 
in the RISC architecture because the RISC 
instruction set privileges the use of registers instead 
of memory locations. Moreover, realignment 
sequences are never generated in a RISC 
architecture, and therefore the probability of having 
a fault generating a memory access instruction is 
lower than for the CISC architecture.  

x Jump Outside (T2): as for the CISC, also for the 
RISC Instruction set the percentage of Jump 
Outside seems more related to the instruction set 
structure than to the application itself. 

x Fail Silent (T3): the results suggest that the number 
of Fail Silent faults is independent from the 
application and is more a property of the instruction 
set itself. 

x CBE (T3): the fact that in a RISC architecture we do 
not have Realignment Sequences increases the 
number of CBEs. 

x CFE (T4): the results show that the selected 
instruction set does not influenced the percentage of 
CFEs. This consideration is quite interesting 
because it seems to suggest that results obtained 
using control-flow checking techniques are 
independent from the target microprocessor. 

x Loops: in this case the difference between the two 
architectures is of two orders of magnitude. This 
suggests that the probability of incurring in a loop is 
strongly related to the structure of the instruction 
set. 

 

8 Conclusions and future work  

In this paper we presented a Fault Effect Analysis (FEA) 

methodology aimed at characterizing the behavior of a 

target application when a SEU occurs in its code segment. 

The FEA works statically on the application code without 

actually executing the application, but only probabilistically 

following all its possible flows. This and other significant 

differences between the proposed technique and other 

dependability evaluation techniques like Fault Injection 

have been discussed. We presented several experimental 

results obtained running FEA on two complex benchmarks 

compiled for a CISC and a RISC instruction set. Some 

results showed a considerable difference between RISC and 

CISC machines, suggesting that the choice of the target 

instruction set can be an important parameter that can 

contribute to the overall system dependability. 

Our future activities are focused on the refinement of the 

technique and in particular in: 

x defining a method to evaluate the different 
execution flows, in order to weight our results with 
their actual execution probability. 

x extending the analysis to other instruction sets in 
order to more deeply investigate their correlation 
with the system overall dependability and, in the 
long run, to propose a new dependability-oriented 
instruction set. 
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