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Abstract 
In safety-critical applications it is often possible to 
exploit software techniques to increase system’s fault- 
tolerance. Common approaches are based on data 
redundancy to prevent data corruption during the 
software execution. Duplicating most critical variables 
only can significantly reduce the memory and 
performance overheads, while still guaranteeing very 
good results in terms of fault-tolerance improvement. This 
paper presents a new methodology to compute the 
criticality of variables in target software applications. 
Instead of resorting to time consuming fault injection 
experiments, the proposed solution is based on the run- 
time analysis of the variables’ behavior logged during 
the execution of the target application, under different 
workloads. 

1. Introduction 

The use of computer-based systems pervades all areas of 
our lives from common house appliances, such as 
microwave ovens and washing machines, to complex 
applications like aircrafts, trains and medical control 
systems. In many situations a very large number of new 
and powerful digital systems play a key role in critical 
tasks that require human safety and data security. 

Devices miniaturization, increasing clock frequencies and 
the introduction of microprocessors into electrically active 
environments increase the incidence of transient errors, 
consequently decreasing the dependability of digital 
systems [l]. In this scenario, high reliability becomes 
mandatory to guarantee the required level of 
dependability. Both NASA and IBM have highlighted that 
the high miniaturization and high working frequency that 
represent nowadays circuits working conditions, cause 
them to be extremely sensitive to the effects of ionizing 
radiations and noise sources. One of the most probable 

consequences of these disturbs is the Single Event Upset 
(SEU) [2][3] which consis ts in the change of the content of 
a single bit of a memory element. 

Classical approaches for dependable digital systems 
development rely on hardware redundancy. Although 
they are effective in protecting against transient faults, 
they are usually expensive. To lower costs, software 
redundancy techniques can be exploited. These 
approaches are usually referred to as Software 
Implemented Hardware Fault Tolerance (SIHFT) [4][5]. 

Different SIHFT techniques have been proposed to 
address different types of hardware error sources [6][7]. 
The basic approach consists in improving the Built-In 
Error Detection Mechanisms of the system (exceptions, 
memory protection, etc.) by a set of carefully chosen 
software error detection mechanisms [7]. These 
techniques include Algorithm Based Fault Tolerance 
(ABFT) [8], Assertions, and Variable Duplication [9-151. 

The present paper focuses on variable duplication 
techniques which proved to be flexible, general and easy 
to implement. The basic concept is the duplication of the 
variables in a program and the insertion of consistency 
checks before each variable read operation. 

In some cases, safety-critical applications have strict 
constraints in terms of memory occupation and system 
performances. If on one hand the duplication of the whole 
set of variables and the introduction of a consistency 
check before every read operation represent the optimum 
choice from the fault tolerance point of view, on the other 
hand the resulting overhead can be unacceptable. 

We consider faults appearing in the data memory of each 
variable only. With this assumption, the duplication of the 
whole set of variables guarantees 100% of faults covered 
by the software redundancy technique. On the other side, 
the duplication of a lower percentage of variables all0 ws 
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trading-off the fault coverage with the CPU time and 
memory occupation overhead. One of the problems in this 
context is how to select the most critical variables to be 
duplicated out of the whole variable set of the application. 

A previously proposed technique to measure the 
criticality of the variables in a program can be found in [9]. 
Variable Criticality is intended to be an estimation of the 
probability to get wrong program results when the variable 
itself is corrupted. It is strictly related to the harmful 
situation in which the application ends producing 
incorrect results while the application gives the impression 
to terminate correctly. This type of malfunction is called 
Fail-Silent Violation [ 16][ 171. Researches have shown the 
relationship between this type of fails and the appearance 
of a fault in memory locations [2][3]. 

In [9] the authors use empirical approaches to estimate the 
criticality of the program variables. These techniques are 
based on the researcher’s know-how and lack of a formal 
model. Another possibility is to use fault injections 
techniques, which are very accurate but extremely time 
consuming. In our approach we will use fault injection 
only for the initial formalization of a model that will allow 
us to compute the variable criticality for the variables of 
any target application. 

The paper is organized as follow: Section 2 describes the 
formal model whereas Section 3 reports experimental 
results performed on a set of benchmarks. Section 4 shows 
data about the computation time and finally Section 5 
discusses limitation and future improvements whereas 
Section 6 summarizes the main contributions of the work 
and concludes the paper. 

2. Model 
The goal of the present work is the definition of an 
analytical model able to compute the criticality of a 
variable in a program. Using this model, designers of 
dependable systems can reduce the overhead introduced 
by software fault tolerance approaches based on data 
redundancy (i.e. variable duplication) by identifying 
critical data only. 

What we define is a Criticality Function CF(v) where v E 

{set of variables of the program). As previously 
explained the criticality of a variable is intended to be an 
estimation of the probability to get wrong program results 
when the variable itself is corrupted, i.e., to have a Fail 
Silent Violation (See Section 1) due to the corruption of 
the variable; in other words the criticality for each variable 
is a measure of how an application is sensitive to errors 
injected in its own memory location. 

The CF(v) is a global value related to a program execution 
and it represents the average criticality. At each moment it 
is possible to define an Instantaneous Criticality 
Function ICF(v,t) where v E {set of variables of the 
program), representing the criticality of a variable at a 
given time t of the program execution. The first step of the 
model definition is the identification of the ICF(v, t). 

We define Life Time (&) of a variable the time period in 
which the variable is allocated in memory. During the T,* 
of a variable, it is possible to identify different events: 

Creation (C): it represents the declaration of the 
variable in the program. This event causes the 
variable to be allocated in memory; 

Write (w): it represents an assignment statement in 
the program; 

Read (R) : it represents any instruction involving the 
use of the variable content; 

Last Read (LR) : it represent the last time the variable 
is used. From this moment on, the variable is still 
present in memory but its value is no longer used. 

Death (0) : the variable is removed from the memory. 

Each event modifies the value of the instantaneous 
criticality. The ICF for a given variable is defined only 
during the l&. When a Creation event occurs, a memory 
portion is allocated in order to store the variable’s value. 
At this moment, the ICF is equal to 0 since the variable 
exists but its content has no meaning for the program and 
an error in the variable cannot affect its behavior. A Write 
event changes the ICF value. At the Write time the 
content of the variable starts to have a meaning. We 
define K the ICF value at Write time. It is intuitive that 
after a Write event the ICF value remains constant, since 
the probability of an error in the variable is constant in 
time. At each Read event, the value of the variable is 
propagated to others variables. This event can modify the 
criticality since a corrupted value can be propagated to 
others variables. This criticality modification can be 
expressed with an increment p of the ICF. When a Last 
Read event occurs the variable content is no longer used 
in the program so its criticality drops to zero. Finally, when 
the Death event occurs, the ICF stops to be defined. 

Analytically we can define for each instant t and for each 
variable i: 

C S t S W  I: W S t S R  
/3+ZCFI,,(v,R,fl) R S t S R  
/3+ICF1,,(v,K,/3) R S t S L R  

ZCFi (v , t ,  K ,  B) = 

L R S t S  W I: L R S t S D  
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A variable can be created and killed several times during a 
program execution. Figure 1 shows an example of ICF for a 
single variable. As shown in Figure 1 the ICF is a step 
function. 

Criticillsty 

I I I I I I I 1  1 -  

C..."O" w. R..d La.. wrth writ. R..d R..d L a i t  D.a*th 
R..d R..d 

Figure 1: instantaneous Criticality Function 

The ICF has to be defined for each variable in the program. 
Considering that in a program exist different variable 
types, some considerations should be made. Pointers in 
general are more critical then normal variables. To deal 
with this aspect we introduce a parameter P that multiplies 
the ICF function in the case of pointers variables. 

From the definition ofICF(t,v,K,P,P) we can define: 

ICF(v,t, K ,  p, P).  dt 1 CF(V, K ,  p, P) = - 

The problem to be solved is the correct definition of the 
parameters K, pand P to have global values not 
dependent from the application. The definition of K, p and 
P will be possible through fault injection experiments, but 
once defined the calculation of the CF and ICFfunctions 
will be very fast and precise for any application. 

The computation of the model's parameters is performed 
through a statistical analysis on a golden application. The 
chosen application is a programmable Fast Fourier 
Transfer (FFT) calculation routine. The correctness of the 
obtained values of K, p and P will be proven to be general 
on a set of different benchmarks. 

The steps executed to set-up the model (i.e., to calculate 
the parameters K, p and P) are listed below and explained 
in details in the next subparagraphs: 

1. Parametric CF computation: the parametric 
criticality function CF,(v,K,P,P) is built for the 
golden application; 

Fault Injection Campaign: an experimental CFe(v) is 
calculated resorting to fault injection experiments; 

2. 

3. Parameters computation: the parameters are 
computed trying to minimize the difference between 
the CF, and the CF,, 

2.1 Parametric CF Computation 
An ad-hoc C++ template library has been designed with 
the main function of logging the behavior of the variables 
of a target software application. The library records all the 
events creation, write, read, last read and death of a 
variable) occurred during a program execution together 
with their happening time. The library is based on the 
concept of C++ templates [18]. Each variable declaration is 
replaced with an instance of an ad-hoc C++ class able to 
automatically log the previously described events. 

The resulting program is functionally equivalent to the 
original but it generates, at the end of the execution, an 
event log file useful for our analysis. Starting from the 
obtained log files a parametric ICF function is calculated 
according to what defined in Section 2. 

The ICF computation is critical in the proposed approach. 
The accuracy of the results strongly depends on the input 
stimuli of the target application. To obtain best results 
during the computation of the ICF the target application 
should reach all the possible paths. For this reason the 
golden application'has been executed on a set of 16 
different input stimuli to be sure to excite all the possible 
control paths of the application. The log of the different 
program executions has been chained to obtain an average 
value for the resulting CF. 

As described in Section 2 using the parametric ICF it is 
possible to obtain the parametric CF as: 

2.2 Fault Injection Campaign 
As mentioned in the introduction, the criticality of a 
variable is strictly related to the number of Fail Silent 
Violations occurring in a program. Using a fault injection 
tool able to measure the number of this type of errors it is 
possible to obtain an experimental criticality function 
CFe (v) 

A fault injector tool developed in Politecnico di Torino has 
been used for this purpose. The fault injector is able to 
deal with the SEU (Single Event Upset) fault model, which 
consists of a bit flip in a memory locatiodvariable of the 
program. 

Each variable in the golden application has been injected 
1000 times. The fault injection campaign allows the 
classification of the program behavior into three 
categories: 
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Fail silent violation : the application ends producing 
incorrect results; 

Crash: the program does not finish; 

No Effect: the program produces the correct results. 

As mentioned before we consider the number of FSV as 
the experimental criticality. 

2.3 Parameters computation 
The computation of the parameters K, p, P i s  performed in 
order to minimize the difference between CF, and the CF,. 
We define a function h@,K,P) as the sum of all the 
squares deviation (CF,- CFJ2. 

The problem is now the definition of K ,  p, and P able to 
minimize the function h@,K,P). This problem can be 
expressed in a formal way as follow: 

= O  

The problem has been solved using DeriveTM software by 
Texas Instruments [19] and the resulting values are listed 
below: 

p* = 4.46*10-’ 

K *  =89.14 i P* =1.14 

The values appear to be reasonable. The Pparameter 
confirms our hypothesis that an error into a pointer is 
more catastrophic than an error into others variables. The 
value of K shows that the main contribution to the 
criticality is given by the time elapsed between write and 
last-read operations whereas the low value for pmeans 
that the criticality is only slightly influenced by the 
number of read operations to the variable. This is an 
interesting result since it is in contrast with the empirical 
approach proposed in [9]. 

Figure 2 shows a graph containing the CF,(v) and the 
CF,(V,K*,~*,P> ordered by variable criticality. As 
previously explained, CF,(v) is obtained by performing 
fault injection campaign on the target application whereas 
CF,(V,K*,~*,P*) is analytically computed using the 
proposed model. As expected the two values are similar. 

K 2 0  

The two constraints are introduced to avoid negative 
values for the resulting criticality. 

40 
35 
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Figure 2: CFe(v) and the CFp(v,K*$*,P*) for the FFT application 
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What we have to demonstrate in the next section is that 
the same parameters are valid if used to compute the 
CF,(V,K',P:P') for a different application, so that the 
criticality of a variable can be obtained without resorting 
to fault injection experiments. 

3. Experimental Results 
A collection of experiments has been set up to prove the 
effectiveness of the approach and to show that the values 
of p, K and P are application independent. 

Four programs have been used to validate the model: the 
Dhrystone benchmark, two custom idf loat  performance 
benchmarks and the jpeg-2000 compression algorithm The 
performance benchmarks have been designed to stress the 
model to a maximum extent: the former (Performance 
Benchmark 1) is composed of variables having very 
different criticalities, i.e., some variables are read much 
more then others; the second (Speed Benchmark 2) is 
composed of variables with the same access rate, i.e., all 
the variables are read and written with the same frequency. 

For each benchmark we obtained the experimental 
criticality of the variables using fault injection. Each 
variable has been injected one thousand times to obtain 
its criticality value. In a second step the parametric 
criticality CF,(K,P,P) has been computed using the 
proposed model where the values of K, p and P are the 
ones shown in Section 3. 

The following figures show, for each benchmark and for 
each variable, the two criticalities and the standard 
deviations between the two values. It is evident that, the 
values of CF, are very close to the values of CF, obtained 
by fault injection. Since the two performance benchmarks 
have been designed to stress the model the standard 
deviations are higher w.r.t. a general application like the 
Dhrystone but anyway their values are acceptable. These 
results allow us to state that the values of K ,  p and P 
obtained in Section 3 are general enough to be reused with 
others applications. Obviously to be more confident in the 
obtained results the model should be applied to a more 
significant number of test cases in order to obtain 
statistical results and to refine the model's parameters. 

Standard Deviation 1.29 

25 

20 
> 
= 15 m 
0 
U lo 

U 

.- .- 
6 5  

0 

Variable Name 

-1 
Figure 3: CFe(v) and the CFp(v,K*,P*,P*) for the Dhrystone 
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Standard Deviation 4.82 
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Figure 4: CFe(v) and the CFp(v,K*$*,P*) for the Performance Benchmark 1 

Standard Deviation 6.11 

14 CFe(v) CFp(v) I 
Figure 5: CFe(v) and the CFp(v,K*,B*,P*) for the Performance Benchmark 2 
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Standard Deviation 3.90 
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Figure 6: CFe(v) and the CFp(v,K*,P *,P*) for the JPEG-2000 compression 

To underline the accuracy in evaluating variable criticality variables. It is clear that with our new, methodology it is 
we compare the results obtained by our experiments with possible to reach higher dependability levels using a lower 
the ones obtained by the empirical method presented in [9] amount of redundancy (i.e., number of duplicated 
(ReCCo). Figure 7 shows, for the golden application, the variables). 
FSV reduction related to the percentage of duplicated 

100.00% 
90.00% 

= 80.00% 
g 70.00% 
2 60.00% 

? 40.00% 
50.00% 

"I V V . V V , "  

20.00% I ,</ LL 

1 10.00% I ;i/ 

I I I+ Our Model --b ReCCo I 
Figure 7: Reduction of Fail-Silent Violations (FSV) via Variable Duplication 

4. Timings 
executions depends on the set of inputs needed to excite 
all the control paths of the application under test. 

One of the goals of our approach is to reduce the time 
To demonstrate why it is more convenient to compute the needed to estimate the criticality of the variables. Whereas 

fault injection experiments are always very time criticality using our methodology instead of fault injection, 
we compared the time required for the four presented consuming, the proposed approach is based on few injection campaigns with the time required to compute the executions of the target application only. The number of criticality using the proposed approach. 
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Table 1 shows the time needed to compute the CF, (using 
fault injection campaign) and the related time needed to 

obtain the CF, (using the proposed model). It can be seen 
in all the test cases reduction ranges from 94% to 98%. 

Table 1: CFe and CFp timings 

5. Limitation and Future Work 
One of the main limitations in the proposed approach is in 
the computation of the ICF. This critical task requires the 
execution of the target application under a set of input 
stimuli able to excite all the possible control flow paths. 

A non-complete set of input stimuli can lead to an 
erroneous value of the criticality. Until now, the task of 
generating the input stimuli has been performed by hand. 
This approach is feasible for small application only. To 
extend the approach to larger applications this task has to 
be automated. 

Similar problems are common in the field of Software 
Testing. Future works can investigate the use of formal 
approach for the generation of the input stimuli of the 
application. 

6. Conclusion 
This paper proposed a formal methodology to compute 
the criticality of the set of variable of a program. In 
contrast with the previously proposed techniques, which 
are based on empirical approaches and on fault injections 
experiments, the proposed methodology uses fault 
injection only for the initial formalization of a model that 
allows computing the criticality for the variables of any 
target application. The main advantages of the model are 
formalization, accuracy of the results and low computation 
time. The methodology has been applied on a set of 
different benchmarks with results always comparable to 
the ones obtained using fault injection. The experimental 
results show also that the computed criticality allows 
higher dependability level with lower percentage of 
duplicated variables with respect to the previously 
proposed approaches. 
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