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Abstract 
A BIST diagnosis technique is presented to diagnose 
multiple errors in multiple scan chains.  An LFSR 
randomly selects outputs of multiple scan chains every 
scan cycle.  The column parity and row parity of the 
selected scan outputs are observed every scan cycle and 
every scan unload, respectively.  Compared with other 
techniques, which diagnose no more than 15% errors, 
CPRS correctly diagnoses all errors in the presence of 
1% unknowns.  The cost of this technique is area 
overhead and one additional output observed every scan 
cycle.   

   

1. Introduction 
The goal of scan-based BIST diagnosis is to precisely 
collect two pieces of information: the failing patterns (FP) 
and the failing locations (FL) [Ghosh 99].  The FP 
indicates the patterns for which errors occur.  An error is 
a mismatch between the expected circuit outputs and the 
actual circuit outputs.  The FL indicates the two 
dimensional indexes of failing scan chains and failing 
scan cells where errors are observed.  Once the FP and FL 
are available, traditional scan-based diagnosis techniques 
(such as [Waicukaiski 89]) can be applied to identify the 
faults.   

Past research in BIST diagnosis can be classified into two 
categories: the software techniques and the hardware 
techniques.  In the software category, reciprocal 
polynomial for LFSR signature analyzers [McAnney 87] 
and diagonal matrix for MISR signature analyzers [Chan 
90] have been proposed.  The above two techniques 
assume only one error at a time, which is not very 
practical because a fault usually induces many errors at 
the same time.  Observing MISR quotients or unloading 
MISR remainders provides both the FP and FL 
information [Aitken 89][Savir 97].  A compactor 

independent diagnosis technique is proposed in [Cheng 
04].  Generally speaking, pure software techniques have 
limitation in diagnosing multiple errors because of the 
aliasing and masking problems of signature analyzers 
[Rajski 91].   

In the hardware category, many error correcting code 
based techniques, such as Reed-Solomon codes 
[Karpovsky 93] and BCH codes [Darmala 95], have been 
carefully studied.  Although these techniques are 
mathematically feasible, they are too complex to be 
implemented on chips.  Two cycling registers with 
mutually primitive number of stages are presented in 
[Savir 88] [Ghosh 99].  Serially connected LFSR of 
different polynomials are proposed in [Stroud 95].  
Programmable MISR improves the diagnosis resolution 
by changing the polynomials [Wu 96, 99].  LFSR-based 
random selection techniques apply repeated BIST 
sessions with different LFSR seeds to enhance the 
probability of diagnosing multiple FL in a chain [Rajski 
97, 99] [Bayraktaroglu 00, 02].  A counter based selection 
hardware is presented to perform binary searches for the 
FL in multiple chains [Ghosh 00].   

The above-mentioned MISR-based or LFSR-based 
diagnosis techniques suffer from a common problem ⎯ 
the unknowns.  Because of the MISR/LFSR feedbacks, 
one single unknown bit corrupts the entire signature.  The 
first solution is to add bypass circuitry that dumps scan 
chain contents without compression [Wohl 02, 03] 
[Tekumalla 03].  However, the hardware overhead 
increases rapidly with the number of scan chains and is 
oftentimes too expensive for BIST.  The second solution 
is to continuously observe the output responses in a 
“streaming” way.  The X-compact compresses the outputs 
using XOR networks only (without flip-flops) [Mitra 02].  
The parity technique observes the column parity and row 
parity every scan cycle and every scan unload, 
respectively [Sinanoglu 03].  This technique is X-tolerant 
because the row parity is cleared every time the scan 
chains are unloaded.  The convolutional compactor 
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eliminates the feedback path so the unknowns disappear 
after a specified number of scan cycles [Rajski 03, 05] 
[Mrugalski 04].  The above X-tolerant techniques are very 
effective in reducing the number of output pins but their 
diagnosis resolutions may not be satisfactory.  
Specifically, if one hundred scan chains are compressed 
into one output, fewer than 15% FL are correctly 
diagnosed in the presence of 1% unknowns [Rajski 03].   

A Column Parity and Row Selection (CPRS) BIST 
diagnosis technique is presented in this paper.  The CPRS 
uses an LFSR to randomly select the scan chains every 
scan cycle.  The outputs of the selected scan chains are 
XORed together to produce one bit of column parity (CP), 
which is observed every scan cycle.  The outputs of 
selected scan chains are also XORed with its previous 
row parity (RP).  Row parity for every scan chain is 
stored independently in a row parity register, which is 
observed after all scan chains are unloaded.   

CPRS combines the advantages of the random selection 
technique [Rajski 99] and the parity technique [Sinanoglu 
03].  First, CPRS provides fine diagnosis resolutions for 
multiple errors in multiple scan chains ⎯ that is, the 
aliasing probability of multiple errors is small.  Second, 
this technique is applicable in the presence of unknowns 
because the row parity register is cleared every time a 
new scan pattern is loaded.  Experimental results show 
that CPRS correctly diagnoses all FL even in the presence 
of 1% unknowns.  Last, the diagnosis resolution can be 
improved by adding deterministic diagnosis sessions.   

The first cost of the CPRS diagnosis technique is a 
column parity and a row parity output pins, which can be 
shared with functional output pins.  Second, the CPRS 
trades off diagnosis time for diagnosis resolutions.  To 
obtain good diagnosis resolution, circuits under diagnosis 
are tested by more than one diagnosis session.  Long 
diagnosis time is not a big concern since the number of 
circuits under diagnosis is usually small.  Last, the one-bit 
column parity has to be observed every scan cycle.  This 
requires relatively large amount of data transfer in the 
diagnosis mode than in the BIST mode.  For embedded 
cores, the column parity can be transported via the one-bit 
wrapper serial interface or the test access mechanism 
(TAM) of the SOC.     

The organization of this paper is as follows.  The second 
section introduces the CPRS hardware and its diagnosis 
flow.  The third section describes the calculation methods.  
The fourth section shows experimental results and the last 
section summarizes the paper. 

2. CPRS Diagnosis  

2.1 Hardware Architecture 

The CPRS hardware architecture is shown in figure 1.  
The scan outputs from m scan chains are randomly 
selected by the row selection LFSR (RS-LFSR) every 
scan cycle.  The row selection hardware is made up of m 
AND gates.  After the row selection hardware, the scan 
outputs are XORed together to produce one bit of CP, 
which is observed every scan cycle in the diagnosis mode.  
The selected scan outputs are also XORed with its own 
RP, which is accumulated in the row parity register.  The 
row parity register is chained into a scan chain and it is 
shifted out after all l scan cells are unloaded.  The RP 
chain is not drawn in the figure for clarity.  All the scan 
chains, RS-LFSR, and RP registers are clocked by the 
same scan clock.   

Row Selection 

Column Parity (CP)

Row Parity (RP)

DFF

DFF

DFF

RS-LFSR Scan Chains 

m 

l 

DFF

 
Figure 1.  CPRS hardware architecture  

 

2.2 Diagnosis Flow 
The overall CPRS diagnosis flow is shown in figure 2.  
The CPRS diagnosis flow can be divided into two phases:  
the random diagnosis and the deterministic diagnosis.  
The failed CUT is first diagnosed by the random 
diagnosis.  If a unique diagnosis result is obtained after 
the random diagnosis, the flow is terminated.  Otherwise, 
the failed CUT continues to the deterministic diagnosis.  
The random diagnosis and deterministic diagnosis are 
described in detail as follows. 

 

Random Diagnosis 

Deterministic Diagnosis 

Failed CUT 

End

 

EndUnique diagnosis 
result? 

yes 

no 

 
Figure 2.  Overall CPRS diagnosis flow  
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Figure 4.  Error Matrix, Selection Matrix, and Selected Error Matrix 

 

2.2.1 Random Diagnosis 
Figure 3 shows the data collection steps for the random 
diagnosis.  Every step is explained as follows. 

1.  Test CUT and observe column and row parity so that 
the failing patterns are identified.   

2.  Start BIST all over again and pause after a particular 
failing pattern is loaded.   

3.  An RS-LFSR seed is loaded and the row parity register 
is cleared.   

4.  Apply one system clock. 

5.  Unload the scan chains.  The RS-LFSR and row parity 
register are also clocked while unloading the scan chains.  
One bit of CP is observed every scan clock.   

6.  After unloading all scan cells, the row parity register is 
shifted out and observed.   

7.  If there are still unused RS-LFSR seeds, the procedure 
goes back to step 2; otherwise, the random diagnosis data 
collection is finished.   

1. Run BIST observe CP/RP 

2. Restart BIST, pause at failing pattern 

3. Load RS-LFSR seed, reset RP 

4. System clock 

5. Shift out scan chains, observe CP 

6. Shift out RP 

8. Solving Error Bits 

7. Next session ? 

No 

Yes 

one 
diagnosis
session 

 

Figure 3.  Random diagnosis – data collection 
 

A diagnosis session consists of steps 2 to 6.  Every 
diagnosis session has a distinct RS-LFSR seed.  Note that 
the RS-LFSR seeds are randomly generated in advance 

because no FL information is available at this time.  More 
diagnosis sessions provide finer diagnosis results at the 
cost of more diagnosis time.   

2.2.2 Deterministic Diagnosis 
The deterministic diagnosis data collection flow is 
essentially the same as what is shown in Figure 3.  The 
major difference is that the RS-LFSR seed in 
deterministic diagnosis is calculated based on the random 
diagnosis results.  If one deterministic diagnosis does not 
produce satisfactory results, additional deterministic 
diagnosis can be performed iteratively.  A minor 
difference between the deterministic and the random 
diagnosis is that the former does not have to determine 
failing patterns, which are already known after the 
random diagnosis.   

3. Calculation Methods 

3.1 Calculate Error Bits 
The failing scan chains and failing scan cells are 
represented by error bits in an error matrix.  In the error 
matrix, every row corresponds to a scan chain and every 
element corresponds to a scan cell.  A one in error bit Ei,j  
means that the jth scan cell of the ith scan chain has a 
mismatch between the expected good value and the actual 
value; a zero in Ei,j means no mismatch between the 
expected good value and the actual value.  Suppose the 
CUT has m scan chains of length l, the error matrix is of 
size m x l.  Figure 4 shows an error matrix in which m 
equals to four and l equals to five.   

 
The selection matrix is of the same size as the error matrix 
(m x l).  A one in the selection matrix means the 
corresponding scan cell is selected by the row selection 
hardware; a zero in the selection matrix means the 
corresponding scan cell is masked.  Figure 4 shows an 
example of the selection matrix of size 4 x 5.  The 
selected error matrix, SEM, is obtained by multiplying 
the error matrix with the selection matrix.  Note that the 
multiplication is performed in a bit-by-bit way so the 
SEM is also of the size m x l.   

The error row parity (ERP) is a column vector of size m.  
The ERP represents the difference of the expected row 
parity and the observed row parity.  A one in the xth row 
of ERP means that the row parity of the xth scan chain is 
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different from its expected value.  Similarly, the error 
column parity (ECP) is a row vector of size l, which 
represents the difference between the expected column 
parity and the observed column parity.  The number r is 
the row weight of the ERP and c is the column weight of 
the ECP.  The number r represents the total number of 
mismatches observed in the row parity while c represents 
the total number of mismatches observed in the column 
parity.  For the Fig. 4 example, if two errors (E1,3 E3,4) are 
injected, the ECP and the ERP are [0 0 1 1 0] and [1 0 1 
0 ]T, respectively.  The weight of ECP (c) and the weight 
of ERP (r) are both 2.  Note that, in the presence of 
unknown scan outputs, the corresponding ERP and ECP 
bits are regarded as zeros when calculating the r and c 
parameters.   

)(ERPweightr =    (1) 
)(ECPweightc =    (2) 

The reduced SEM (RSEM) is obtained from SEM by 
deleting the rows for which the corresponding ERP equal 
to zero and deleting the columns for which the ECP equal 
to zero.  The RSEM is therefore of size r x c.  The ith row 
equation is obtained by summing all elements in the ith 
row of the RSEM (eq. 3).  The jth column equation is 
obtained by summing every element in the jth column of 
the RSEM (eq. 4).  A total of r row equations and a total 
of c column equations can be derived from a RSEM.  The 
row equations and column equations form a system of 
linear equations, which can be written as Ax=B.  A is 
called the coefficient matrix (CM).  The column vector x 
represents all error bits to be solved and the column 
vector B is all ones.  In the presence of unknowns, the 
rows and columns with unknown ERP and ECP are 
deleted from the SEM because they contain no 
information for solving the error bits.   

∑
=

==
c

j

jiRSEMiequationsrow
1

, 1)(_   (3) 

∑
=

==
r

i

jiRSEMjequationscolumn
1

, 1)(_
  (4) 

Figure 5 shows an example of finding row and column 
equations.  The first, second, and fifth columns are 
deleted from the SEM because the ECP is [0 0 1 1 0].  
The second and fourth rows are also deleted because the 
ERP is [1 0 1 0 ]T.  The 2 x 2 RSEM produces two row 
equations and two column equations.  The coefficient 
matrix is of the size 4 x 3.  Solving the system of linear 
equations produces a unique solution － E1,3 =1, E3,3=0, 
and E3,4=1 － which is the same as what we assumed 
earlier.  This is a unique and correct diagnosis.  Note that 
the previous row/column parity technique cannot tell a 
pair of errors from its diagonal counterpart because the 
technique does not have the row selection hardware 
[Sinanoglu 03].   

 RSEM

E3,4E3,3

0E1,3 E1,3=1 
E3,3  E3,4=1 

E1,3  E3,3=1
E3,4=1 

RE 

CE
E1,3 
E3,3 
E3,4 

1 0 0 
0 1 1 
1 1 0 
0 0 1 

1
1
1
1

* =

CM  
Figure 5.  Derivation of Row and Column Equations 

 
The preceding example demonstrates how the error bits 
are solved for a particular diagnosis session.  If there is 
more than one diagnosis session, the above process is 
repeated with a distinct selection matrix for each 
diagnosis session.  A row is deleted from the SEM if no 
mismatch ever occurs in any session ⎯ that is, a row is 
included in the RSEM only if its row parity fails one or 
more diagnosis session.  Finally, the row and column 
equations of different diagnosis sessions are added to the 
final linear equation system.  Figure 6 summarizes the 
whole flow to solve the error bits.   

Generate SMsFind all ECPs and ERPs 

Generate RSEMs 

Solve linear equation system 

All bits uniquely 
solved ? 

Finish Deterministic
diagnosis 

Yes No 

Generate RE and CE 

data from ATE RS-LFSR seed

 
Figure 6.  Flow to Solve Error Bits 

 
It is not always the case that every error bit can be solved 
in the random diagnosis.  If an error bits is uniquely 
solved, its diagnosis result is unique; otherwise, its 
diagnosis result is ambiguous.  Figure 7 shows an 
example of ambiguous diagnosis.  The number of error 
bits is seven but only six equations are available.  After 
the Gauss-Jordan elimination, the CM is converted to a 
form of (D|U).  The upper part of D is an identity matrix 
and the lower part of D, if any, is all zeros.  If the U 
matrix is free of ones, a unique solution is obtained; 
otherwise the diagnosis result is ambiguous.  In this 
example, only one error bit E1,3 is uniquely solved and the 
other error bits remain ambiguous.  To diagnose the 
ambiguous error bits, at least one deterministic diagnosis 
is needed. 
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1
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CM(after G-J) 
 

Figure 7.  Example of ambiguous diagnosis 
 

3.2 RS-LFSR Seed Calculation  
The deterministic diagnosis is very similar to the random 
diagnosis except that the RS-LFSR seed of the former is 
calculated based on the diagnosis results of the latter.  By 
applying a deterministic RS-LFSR seed, new row 
equations and column equations that are linearly 
independent of the existing equations are added to solve 
the ambiguous error bits.  To find a deterministic RS-
LFSR seed is equivalent to finding a desired selection 
matrix (DSM), which represents the specific scan cells to 
select.  The DSM is of the same size (m x l) as the 
selection matrix.  A one in DSMi,j represents that the scan 
output of the jth scan cell of the ith scan chain is required 
to be selected; a zero represents that the corresponding 
scan cell is required to be masked.  Figure 8 shows the 
flow to find a DSM.  To find a DSM is similar to a 
covering problem.  We use the following greedy 
algorithm to solve this problem.  Note that the greedy 
algorithm presented here is not the only way to find the 
DSM; other implementations are possible.   

First, the DSM is initialized to all X’s, which stand for 
don’t cares.  (Please note that the X’s here have different 
meaning from the unknowns.)  For all unsolved error bits 
Ei,j, fill in zeros in the ith row and the jth column of the 
DSM.  A column flag (CF) vector and a row flag (RF) 
vector are initialized to zeros.  The CF row vector is of 
size l and the RF column vector is of size m.  A one in the 
CF vector indicates that the corresponding column parity 
is used in a column equation; a one in the RF vector 
indicates that the corresponding row parity is used in a 
row equation.   

Second, find a row with the smallest non-zero weight 
from the U matrix and pick an unsolved error bit Ei,j from  
 

that row.  Third, check the RF vector and the CF vector of 
that selected error bit Ei,j.  If both the CF(j) and the RF(i) 
are ones, which means both the ith row parity and the jth 
column parity have been used by some previous error bits, 
then the error bit Ei,j is marked as unsolvable in this 
deterministic diagnosis.  Note that an unsolvable error bit 
does not mean that it is unsolvable forever.  It may 
become solvable in the future deterministic diagnosis.   

1. Initialize DSM, CF, RF 

2. Pick an Ei,j from U 

3. RF(i) == 1 && CF(j) ==1? 

4.  Ei,j unsolvable

4. Ei,j solvable 
Set RF(i) or CF(j) 

Set DSMi,j=1 

5. Reset column in U 

6. any more ones in U? 

Yes 

End 

No 

No 

Yes 

 
Figure 8.  Finding DSM  

 

If the CF(j) and the RF(i) are not both ones, the error bits 
Ei,j is then solvable.  The corresponding element DSMi,j is 
set to one.  Either the CF(j) or the RF(i) is flipped from 
zero to one.  Setting the RF or the CF to one prevents the 
observation of the ith row parity or the jth column parity 
for the subsequent unsolved error bits, respectively.  Fifth, 
reset the bits in the Ei,j column of the U matrix  to zeros.  
Finally, if there is still any one in the U matrix, go back to 
step 2; otherwise, the greedy algorithm finishes with a 
DSM.   

Figure 9 demonstrates an example to find DSM.  Initially, 
all the six unsolved error bits are initialized to zero in the 
DSM.  The error bit E3,4 is first picked because the third 
row of U has the smallest non-zero row weight.  Since 
none of RF(3) and CF(4) is one, this error bit is solvable.  
The corresponding DSM3,4 is set to one and the RF(3) is 
also set to one.  The whole column six in the U matrix is 
cleared to zeros.  The second error bit picked is E3,5.  
Since the RF(3) is already set, the CF(5) is now set to one.  
The whole column seven in the U matrix is cleared.  After 
two iterations, there is no more one in the U matrix and 
the final DSM is obtained.   

Once the DSM is obtained, the corresponding RS-LFSR 
seed can be solved.  Solving seeds for LFSR has been 
published in previous papers, such as [Koenemann 
91][Al-Yamani 03], and therefore is not described here.   



Paper 42.3                                  INTERNATIONAL TEST CONFERENCE  
 

6

 
 
 
 
 
 
 

 
D 

x x x x x 
0 0 0 x x 
0 0 0 x x 
x x x x x 

 DSM 

1 0 0 1 0 0 0 
0 1 0 0 1 0 0 

0 
1 

1 
0 

0 0 0 0 0 0 
1 1 0 0 0 0 

1 
0 

0 0 0 1 0 
0 0 0 0 1  

 
 
 
 
 
 

 
U 

(a)  Initial  

0 
0 
0 
0 

RF 

0 0 0 0 0 
CF 

E3,4 E3,5 E3,3 E2,5 E2,4 E2,3 E1,3 

 

DSM

xxxxx
010xx
000xx
xxxxx

1001000
0000100

0
0

0
0

000000
110000

1
0

00010
00001

0
1
0
0

RF

00000
CF 

(b) after 1st iteration

DSM 

x xxxx
1 10xx
0 00xx
x xxxx

0 0 01000
0 0 00100

0 
0 

0 
0 

0 00000
0 10000

0 
0 

00010
00001

0 
1 
0 
0 

RF 

1 0000
CF

( c ) after 2nd iteration 
 

Figure 9.  Example to find DSM 
 

4. Experimental Results 
Experimental results are shown to demonstrate the 
effectiveness of our proposed CPRS technique.  Each of 
the following experiment is performed on 10,000 
randomly generated error matrices with various error 
multiplicities.  Error multiplicity is the number of ones 
injected in the error matrix.  The errors are assumed to be 
uniformly distributed in the error matrices.   

4.1 Diagnosis without X 
In the first experiment, a total of one thousand scan cells 
are partitioned into 10 scan chains (i.e., m = 10 and l = 
100).  Table 1 shows the average number of correctly 
diagnosed bits, wrong bits, and ambiguous bits.  If a bit is 
uniquely solved, its diagnosis result is either correct or 
wrong, depending on whether the solution is the same as 
the original error matrix.  If a bit is not uniquely solved, 
its diagnosis result is ambiguous.  The numbers in table 1 
are obtained from a specified number of random diagnosis 
sessions followed by one deterministic diagnosis session.  
After fifteen random diagnosis sessions and one 
deterministic diagnosis, every bit is correctly diagnosed 
even in the presence of 15 errors (1.5% of total scan cells).  
The same experiments are performed using the previous 
technique [Sinanoglu 03].  The results show that only 993 
and 928 bits are correctly diagnosed for 2 and 15 errors, 
respectively.  In comparison, the CPRS is more effective 
because of the random row selection mechanism.   

Table 1.  Diagnosis Results of 100x10  (no X) 
# of 

random 
sessions 

error 
multiplicity

correct wrong ambiguous

2 998.1  1.2 0.7 1 
15 955.4  11.9 32.7 
2 998.8  0.8 0.5 

2 
15 930.3  7.8 62.0 
2 999.3  0.4 0.2 

3 
15 915.5  6.1 78.4 
2 999.8  0.1 0.1 

5 
15 956.7  14.2 29.1 
2 1000.0  0.0 0.0 

10 
15 998.8  1.1 0.1 
2 1000.0  0.0 0.0 

15 
15 1000.0  0.0 0.0 

 

For the 15 error cases note that the number of correctly 
diagnosed bits decreases by a small amount in the first 
few sessions.  This is because the number of variables 
increases faster than the number of equations at the 
beginning of the diagnosis.  This phenomenon disappears 
when the number of diagnosis sessions is larger than three. 

Table 2 shows the diagnosis results of ten thousand scan 
cells, which are partitioned into 10 scan chains (i.e., m = 
10 and l = 1,000).  The number of total bits and injected 
errors are ten times higher than those of the last 
experiment.  Again, after fifteen random diagnosis 
sessions, all ten thousand bits are correctly diagnosed.  
This experiment shows that CPRS is applicable to at least 
ten thousand scan cells.   
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Table 2.  Diagnosis Results of 1,000x10 (no X) 
# of 

random 
sessions 

error 
multiplicity 

correct wrong ambiguous

20 9527.1  9.1  463.8 
1 

150 7673.0  108.5  2218.5 
20 9540.2  10.4  449.4 

2 
150 7734.8  119.3  2145.9 
20 9552.3  12.4  435.3 

3 
150 7922.6  132.5  1944.9 
20 9254.3  9.6  736.2 

5 
150 8135.4  146.3  1718.3 
20 9978.0  0.0  22.0 

10 
150 9940.0  0.0  60.0 
20 9999.0  0.0  1.0 

15 
150 9999.0  0.0  1.0 
20 10000.0  0.0  0.0 

20 
150 10000.0  0.0  0.0 

4.2 Diagnosis with X 
Table 3 shows the diagnosis results with fifteen errors and 
various unknown multiplicities, which are the number of 
unknowns (X’s).  The locations of X’s are randomly 
generated, assuming a uniform distribution.  The number 
of scan cells is one thousand, which are partitioned into 
10 chains (i.e., m = 10 and l = 100), and the error 
multiplicity is 15.  It can be seen that approximately 99% 
of the one thousand scan cells are correctly diagnosed, 
even in the presence of 10 unknowns.   

One notable point in Table 3 is that, at the beginning of 
the diagnosis, the number of ambiguous bits for one X is 
more than that of ten X’s.  This is because more row 
equations of the latter than that of the former are 
discarded due to the presence of more unknowns.  
Therefore, the number of variables involved in the former 
is larger than that of the latter in the first few diagnosis 
sessions.  This phenomenon disappears when the number 
of diagnosis sessions is larger than eight. 

Table 4 compares the percentage of correctly diagnosed 
bits as a function of unknown multiplicity.  The numbers 
of CPRS are obtained from our simulations and the other 
numbers are obtained from [Rajski 03].  For a fair 
comparison, all techniques have one hundred times 
compression ratio (i.e. one hundred scan outputs 
compressed into one output).  The CPRS simulations are 
performed on 10,000 scan cells, which are partitioned into 
100 scan chains.  In the presence of 1% unknowns, the 
CPRS correctly diagnoses all single errors and 99.8% of 
fifteen errors.  The performance of CPRS is better than 
previous techniques. 

Table 5 compares the diagnosis circuitry area overhead of 
several techniques.  The number of flip-flops, XORs, and  

Table 3.  Diagnosis results of 100x10 (15 errors, plus X) 
# of 

random 
sessions 

unknown 
multiplicity

correct wrong ambiguous

1 933.7 8.0 58.3
5 943.6 10.6 45.82 
10 954.8 13.7 31.5
1 912.2 6.3 81.5
5 924.3 10.5 65.24 
10 941.1 16.3 42.7
1 992.7 6.8 0.5
5 986.5 13.0 0.58 
10 977.7 21.2 1.0
1 998.6 1.3 0.1
5 993.2 6.3 0.516 
10 987.5 11.7 0.8
1 998.7 1.2 0.1
5 993.8 5.8 0.532 
10 988.8 10.2 0.9
1 998.7 1.2 0.1
5 993.8 5.7 0.564 
10 989.1 9.9 1.0
1 998.7 1.2 0.1
5 993.8 5.7 0.5128 
10 989.2 9.8 1.0
1 998.7 1.2 0.1
5 993.8 5.7 0.5256 
10 989.2 9.8 1.0

Table 4.  Percentage of Correctly Diagnosed Bits 
Technique 0.10% X 0.50% X 1.00% X

XC [Mitra 02] 92.0 % 15.7 % 0.06 %
CC3 [Rajski 03] 97.1 % 18.7 % 0.08 %
CC7 [Rajski 03] 97.7 % 52.4 % 14.3 %
CPRS – 1 error 100.0 % 100.0 % 100.0 %

CPRS – 15 errors 100.0 % 99.9 % 99.8 %

AND gates are derived from the original papers.  The 
total area is expressed in the number of equivalent NAND 
gates as a function of m (number of scan chains).  The 
conversion of cell area is based on the numbers in the 
TSMC 0.18 µm standard cell library.  The CPRS costs 
about 20 NAND gates per scan chain, which is 
approximately in the same order as the other techniques.  
(For the convenience of comparison, some typical 
numbers are assumed for [Rajski 97].)   

To reduce the CPRS area overhead, the row parity can be 
shared with the MISR.  Figure 10 shows the proposed 
structure of the integrated MISR/RP hardware.  In 
diagnosis mode, the circuit is a row parity register.  In 
BIST mode, the circuit becomes a MISR.  The RS-LFSR 
is filled with all ones in BIST mode so all scan outputs 
pass through the row selection hardware without being 
masked.   
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Table 5.  Gate Count Comparison 
methods FF XOR NAND Total Area (NAND) 

[Rajski 97] log2b+m+k klog2b+m+k m(log2b+1) 32.3m+22.7*
CC3 [Rajski 03] 32 3m 1 182.3+8m
CC7 [Rajski 03] 32 7m 1 182.3+18.7m
[Sinanoglu 03] m 2m 0 11m

CPRS 2m 3m m 20.3m
*assume k=m,  b=16 
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Figure 10.  Integrated MISR/RP   
 

5. Summary 
The CPRS is an effective BIST diagnosis technique for 
multiple errors in multiple scan chains.  The row selection 
LFSR randomly selects scan outputs from multiple scan 
chains.  The column parity and row parity of the selected 
scan outputs are observed after every scan cycle and 
every scan unload, respectively.  Experimental data show 
that CPRS correctly diagnoses all scan cells in the 
presence of 1% unknowns.  The area overhead of CPRS is 
in the same order as the other techniques.   
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