Fault Coverage Estimation for Non-Random Functional Input
Sequences

Soumitra Bose
Intel Corporation
Folsom, CA 95630

soumitra.bose@intel.com

Abstract

Statistical stuck-at fault coverage estimation as-
sumes that signals at primary inputs and at other
internal gates of the circuit are statistically independent.
While valid for random and pseudo-random inputs, this
causes substantial errors in coverage estimation for input
sequences that are functional and not random, as shown
by experimental data presented in this paper. At internal
gates, signal correlation due to fanout reconvergence,
even for random input sequences, contributes to errors.
A significantly improved coverage estimation algorithm
is presented in this paper. First, during logic simulation
we identify faults that are guaranteed to stay undetected
by the applied vectors. Then, after logic simulation,
we estimate the detection probabilities of the remaining
faults. Compared to Stafan, the statistics gathered during
logic simulation are modified in order to eliminate the
non-random biasing of the input sequence. Besides the
improved detection probabilities, a newly defined effective
length (Negs) of the vector sequence corrects for the
temporally correlated signals. FEzxperimental results for
ISCAS combinational benchmarks demonstrate validity
of this approach.

1 Introduction

Simulation [5, 16] of stuck-at faults is known to be a re-
source intensive task and several acceleration techniques
have been proposed [4, 7, 9, 8, 14]. Verification of indus-
trial designs often involves simulation of large number
of functional vectors that can be several million cycles
long. Typically, a million gate design with a 2% fault
sample may require several days to simulate a long input
sequence. Moreover, numerous such functional sequences
have to be simulated. It is estimated that a modern mi-
croprocessor design requires about a month to complete
fault grading, a step that needs to be repeated when rel-
atively minor changes are made during the design cycle.

Statistical fault coverage estimation [10], proposed
as an alternative to fault simulation, suffers from a lack
of accuracy when input vectors are not random. Such
estimation techniques involve logic simulation with a low
overhead for collection of relevant statistical data and a
subsequent post-processing step that evaluates the de-
tection probability of each fault. Another approximate

Paper 19.3
1-4244-0292-1/06/$20.00 (© 2006 IEEE

Vishwani D. Agrawal
Auburn University
Auburn, AL 36849

vagrawal@eng. auburn. edu

method for coverage estimation is critical path trac-
ing [1]. While critical path tracing can be more accurate
than statistical methods, its overhead over logic simula-
tion is substantially higher. A circuit traversal is required
after simulation of each clock cycle, making it impractical
for long input sequences.

We propose a two step approach that first involves
monitoring of signal conditions to help identify faults
that remain undetected, followed by a post-processing
step to evaluate the detection probabilities of the remain-
ing faults. The first step is common to another algorithm,
referred to as upper-bounding of fault coverage, that has
been reported in a recent paper [2]. While the upper-
bounding procedure finds faults that are guaranteed to
remain undetected by a sequence, the second phase of the
algorithm reported in this paper eliminates faults that
have low detection probabilities. The upper-bounding
algorithm has no faults that are incorrectly estimated to
remain undetected (hence the name “upper-bounding”).
The algorithm in this paper generates a detection proba-
bility for each fault and incurs false negative errors when
faults with low detection probabilities are removed from
the detection list. The number of false positive errors
is also lower, resulting in fault coverage estimates that
are lower than the upper bound, and hence closer to
those obtained from exact fault simulation. The detec-
tion probabilities that are generated are somewhat simi-
lar to Stafan [10]. Stafan assumes the input sequence to
be random, and is shown to cause errors for sequences
that are biased due to temporal correlations. Stafan’s
statistical data collection during logic simulation is mod-
ified to remove such biasing.

Along with relevant background on Stafan, Section 2
presents experimental data that demonstrate the effect
of signal correlation for biased input streams on fault
coverage estimation. Section 3 presents the algorithm
used for choosing signal conditions that are monitored,
as illustrated with an example. Section 4 presents the
algorithm for evaluation of fault detection probabilities.
Section 5 illustrates the algorithm of Section 4 with the
example of Section 3. Section 6 illustrates the difference
between the upper-bounding [2] and the work presented
in this paper. Section 7 presents experimental results for
ISCAS circuits, and demonstrates the speedup and ac-

INTERNATIONAL TEST CONFERENCE 1

b0=b1(G0)*(S(G6)-c0(G0))/c0(G6)

G6 000} =1/3%(2-0)/3 = 2/9
s@1

11

o7 [011]
11
G8 [110]
G2

G9 [111]

(a) Three vector sequence

b0=b1(G0)*(S(G6)—c0(G0))/c0(G6)

[00000000]
6 =1/8%(2—0)/8 = 1/32

s@1

b1=1*c0(G3)/c1(G0)=1/8

G7 MOQ] [11111111]

[11011111]

11011111 bo=t
GS [1

[00000000] ‘
G9 [11111111]

(b) Eight vector sequence with repetitions

o
[00100000]

Figure 1: Illustrating Stafan with biased inputs.

curacy obtained for a large industry design. Concluding
remarks are included in Section 8

2 Motivation

For a sQ1 fault at signal node G, Stafan [10] evalu-
ates a detection probability per vector, dO(G), which is
then used to evaluate a cumulative detection probability,
DO(G), over N vectors as

DO(G) =1 — k(1 — do(G))N (1)

where k is a biasing factor. The above formula assumes
that N vectors are statistically independent, as is obvi-
ous when k is assumed to be 1. The per vector detec-
tion probability, d0O(G) = ¢0(G) x b0(G), is a product
of two factors: (1) probability of fault excitation, c0(G),
and (2) conditional probability of fault effect propagation
to an observation point, b0(G), given that fault excita-
tion has occurred. The latter is also referred to as zero-
observability of gate G. For s@0 faults, the formula is
analogous and involves quantities like d1(G), ¢1(G) and

b1(G):

DI1(G) =1 — k(1 — d1(G))N (2)

Paper 19.3

The probability of excitation of a s@1 fault at gate
G is measured by the zero-controllability at G, estimated
by counting the number of zeros and dividing by the total
number of vectors N, i.e.,

c0(G) = zero_count(G)/N (3)
and, similarly,
c1(G) = one_count(G)/N (4)

The conditional fault effect propagation probabilities,
b0(G) and b1(G), are evaluated backwards starting at
primary outputs, and are initialized to 1 at every output
that attains logic values 0 and 1, respectively. Otherwise,
these probabilities are initialized to 0. For a three input
OR gate, with inputs i1, i3 and i3, and output o, the
zero-observability at input 41, b0(é1), is estimated as

b0(i1) = b0(0) x c0(0)/c0(iy) (5)

The factor ¢0(0)/c0(i1) is a measure of the conditional
probability of the gate output having a logic value 0 given
that input ¢; has a logic value 0. The above formula
assumes that the conditional sensitization of input i1 to
output o is independent of the sensitization of the gate
output to some primary output of the circuit. Similarly,
the one-observability of input iy is approximated by

b].(ll) = b].(O) X P?"(’L'l,g,gﬁl)
= bl(0) X Pr(iy,ia,i3)/cl(i1)

By the law of total probability,
Pr(iv,iz,i3) + Pr(i1,iz,13) = Pr(is, i3)
However, Pr(iy,iz,i3) = Pr(0) = c0(0). Therefore,
Pr(iy,i2,13) = Pr(ia,iz) — c0(0) = S(i1) — c0(0)
and
b1(i1) = bl(o) x (S(i1) — c0(0))/c1(ix) (6)

where S(i1) is the sensitization probability of input i,
measured by counting the number of cycles for which
inputs i3 and 43 have non-controlling sensitizing values
and dividing by the length of the input sequence. Simi-
lar formulas can be derived for other combinational gate
types. Stafan requires such sensitization counts for each
gate input, along with controllability counts for each gate
output in the circuit.

Figure 1 shows a small circuit that illustrates the in-
accuracies encountered in Stafan when input sequences
are biased. Figure 1(a) shows all logic values for a se-
quence of three vectors. Also shown in the figure is the
observability evaluation for logic 0 at G6. Since three
vectors were applied, the detection probability for the

INTERNATIONAL TEST CONFERENCE 2

G6 s@1 fault evaluates to
D1(G6) = 1 — (1 — b0(G6) x c0(G6))* = 0.53

Assuming the traditional threshold probability of 0.5 for
detection, this fault is correctly estimated to be detected.
Figure 1(b) shows the same circuit with 8 vectors, where
the last five vectors are repetitions of the first vector.
The observability at G6 now evaluates to 1/32, and the
detection probability of the same fault is 1—(1—1/32)% =
0.22. Therefore, the fault is now incorrectly determined
not to be detected. If repetitions of the first vector are
increased, the detection probability of this fault decreases
even further.

To illustrate the errors incurred by Stafan, each of
the ISCAS combinational benchmarks was simulated for
two input sequences. For each circuit, a 100 clock cycle
long “short sequence” was generated such that the logic
values at all primary inputs were generated randomly.
A “long sequence” was synthesized from the short se-
quence by a two-step process: (1) the primary input val-
ues for the first 50 clock cycles of the long sequence were
identical to those of the short sequence and (2) each of
the remaining 50 clock cycles of the short sequence was
replicated a random number of times, varying from 1
to 100, and appended to the sequence obtained in step
(1). These two sequences were simulated for all stuck-
at faults in the circuits. Identical fault coverages were
obtained from an exact fault simulator since all circuits
used for this experiment were combinational. Coverage
estimates were also obtained from Stafan for these two
input sequences. Controllability and input sensitization
measures for each gate were obtained during logic simu-
lation, and observability measures were evaluated using
formulas similar to Equations 5 and 6. The detection
status for each fault was then estimated by using Equa-
tions 1 and 2. A fault was assumed to be detected if its
detection probability exceeded 0.5. This experimental
data is presented in Table 1.

The exact fault coverages for the two sequences are
shown in column 2 of Table 1. The lengths of the two
sequences are shown in columns 3 and 5, respectively.
For the short sequences, coverage estimates are shown in
column 4, while column 6 shows similar estimates for the
long sequences. The difference between the estimates in
columns 4 and 6 shows the sensitivity of coverage esti-
mates to the vector length parameter N in Equations 1
through 4.

As evident from Table 1, fault coverage estimates
vary significantly, even though test content is identical
for the two sequences. Stafan’s estimation algorithm
assumes primary and internal gate inputs are random.
Clearly, the second input sequence is a biased version of
the first, and controllability measures like Equations 3
and 4 do not consider the vector-to-vector autocorre-
lation of an input signal. In addition, to considering
such signal autocorrelation, a good estimation algorithm

Paper 19.3

Table 1: Identical coverage vector sets of varying lengths.

exact || short sequence || long sequence

circuit | cov % || len est % len est %
1) (2) (3) (4) (5) (6)

c432 93.13 || 100 94.85 2200 | 98.28
¢880 91.08 || 100 90.02 2280 | 91.30
c1355 87.93 100 18.74 2375 | 37.23
c1908 | 69.72 || 100 75.71 2760 | 81.73
c2670 | 77.28 | 100 63.49 2720 | 72.21
¢3540 70.79 100 76.26 2650 | 84.39
¢5315 | 91.72 || 100 76.59 2580 | 93.70
c6288 | 99.54 || 100 92.91 2410 | 98.76
c7552 84.42 100 74.54 2760 | 87.32

should consider signal correlation at inputs of internal
gates. This paper presents a new estimation technique
that accounts for signal correlation by evaluating an ef-
fective vector length (Ncsy) for each sequence by observ-
ing the input combinations at each gate of the circuit.

3 Analysis for Signal Monitoring

We briefly present some definitions before proceeding
with the analysis. Most of the contents of this section
are included here for completeness, otherwise the reader
may find its details in a recent paper [2].

The checkpoints of a circuit consist of primary in-
puts and fanout signals [6]. A circuit is modeled as a
directed graph where nodes of the graph represent gates,
and edges correspond to signals in the circuit. Hence,
ideas and concepts from graph theory are used exten-
sively for structural analysis of circuits. In a directed
graph, node A is a dominator of node B if every path
from B to any output passes through A [3]. The set of
nodes that dominates a given node is called a dominator
set. Our definition of dominators differs from this clas-
sical graph theory definition. Even though every node
is a dominator of itself in the classical sense, we exclude
such consideration. In addition, we require that a domi-
nator must have at least one input that is not reachable
from the dominated gate. This eliminates single-input
gate dominators and those that exist due to reconver-
gent fanouts only. If node A has a single fanout node
B then B may dominate A only if B has other inputs
not from A. A node is said to have a trivial dominator
set if its immediate fanout is the only dominator. For
a given node, a non-trivial dominator set necessarily in-
cludes at least one dominator that is not an immediate
fanout point of the given node.

The output sensitizing condition for a gate and its
dominator set denotes the condition that the gate out-
put is at a specified value and all other off-path sensi-
tizing values for its dominators have appropriate non-
controlling values. The input sensitizing condition with
respect to a specific input pin of a gate and its domina-
tor set consists of the specified input having a given value

INTERNATIONAL TEST CONFERENCE 3

Cone of G5
(a) Vector 1
o e dom1(G6)[1]
Coneof G4 Tl dom1(G12)[1]
G6 -t e splG10)[1]

“~o_spl(GD)[2]
1

Cone of G5

(b) Vector 2

Figure 2: Simulation of ¢17 circuit for two vectors.

with all other inputs to the gate and off-path inputs to
its dominators having non-controlling sensitizing values.
We consider a small circuit (c17) and a sequence of
two vectors to illustrate how the algorithm determines
signal conditions to monitor. There are three distinct
steps to finding fault detection probability: (1) a pre-
processing step consisting of structural analysis, (2) mon-
itoring of signal conditions during simulation and (3)
post-processing of results and evaluation of fault detec-
tion probability. The first two stages are outlined in this
section. The final step for this example is presented in
Section 5 after the algorithm is given in Section 4.

3.1 Structural Analysis

Structural graph analysis for finding dominators [11] and
reconvergence points [12, 13, 15] has been used in test
generation systems. We use a similar analysis to monitor
signal conditions at the end of each cycle in a vector
sequence. These conditions are derived for single output
circuits. For multi-output circuits, the conditions are
obtained separately from each cone of logic that drives a
primary output. These signal conditions are necessary,
but not sufficient, for fault detection.

For each gate, all input value combinations are
stored in a table. These input combinations are analyzed
once simulation of the entire sequence is complete. Along
with gate input combinations, each logic cone is analyzed
separately and dominators for each non-fanout gate to
the cone output are obtained. Such dominators found
for non-fanout gates are either trivial or non-trivial. For

Paper 19.3

Table 2: Sensitizing conditions for dominators in ¢17.

dom0(G6)[1] = {G6=0,G10=1, G2=1}
dom0(G12)[1] = {G12=0, G1=1, G2=1}
dom0(G9)[1] = {G9=0,G1=1, G3=1}
dom0(G9)[2] = {G9=0, G1=1, GO=1}
dom0(G1)[1] = {G1=0, G9=1, Go=1}
dom0(G10)[1] = {G10=0, G11=1, G9=1, G3=1}
dom1(G6)[1] = {G6=1,G10=1, G2=1}
dom1(G12)[1] = {Gl2=1, G1=1, G2=1}
dom1(G9)[1] = {G9=1,G1=1, G3=1}
dom1(G9)[2] = {G9=1, Gl=1, GO=1}
dom1(G1)[1] = {Gl=1, G9=1, G0=1}
dom1(G10)[1] = {G10=1, G11=1, G9=1, G3=1}

the circuit of Figure 2, gate GO has a trivial dominator set
{G4}, while G6 has a non-trivial dominator set {G0, G4}.
The other dominated gates are G3 and G'12, with domi-
nator sets {G5} (trivial) and {G3, G5} (non-trivial), re-
spectively. Since this dominator analysis is performed for
each cone, additional dominators are found for gates G1
and G2. For the cone of G4, G2 has a trivial domina-
tor set {G4}, while G1 has a non-trivial dominator set
{G2,G4}. In the cone of G5, G2 has a trivial dominator
set {G5}.

For gates with trivial dominator sets, input sensitiz-
ing conditions are monitored explicitly, unless an input
is a checkpoint. For non-trivial dominators, only output
sensitizing conditions are monitored. Output sensitiz-
ing conditions from trivial dominators are ignored be-
cause they are obtained automatically by monitoring in-
put states for the dominating gate. For the circuit of Fig-
ure 2, all inputs of both gates GO and G3 are checkpoints
and are skipped. For G6, the output sensitizing condi-
tion is the simultaneous occurrence of {G6=v, G10=1,
G2=1} for v € {0,1}. For G12, the non-trivial condition
consists of {G12=v, G1=1, G2=1} for v € {0,1}. In the
cone of G4, the trivial dominator set for G2 yields two
conditions for its second input: {Gl=v, G9=1, GO=1}
for v € {0,1}. These conditions are considered because
(1 is not a checkpoint in this cone. The non-trivial domi-
nator condition for G9 yields {G9=v, G1=1, G0O=1}. For
the cone of G5, gates G2 and G9 have dominator sets
{G5} and {G2,G5}. Both inputs for G2 are checkpoints
for the cone and are ignored. The output sensitizing con-
ditions for G9 and its dominator set are {G9=v, G1=1,
G3=1}, for both v € {0,1}. Table 2 lists the conditions
that are obtained for both signal values at each gate.
Multiple conditions at a gate are shown with an index in
square brackets ([]).

A dominator set {G1, G2, G4} exists for gate G11
in the cone of G4. However, no dominator exists for this
gate in the cone of G5. If no conditions are obtained for
a gate from a cone, all conditions for that gate obtained
from other cones are also dropped from further considera-
tion. A fault that appears in multiple cones is considered
to have zero detection probability if the relevant condi-

INTERNATIONAL TEST CONFERENCE 4

Step 2:

is not a checkpoint of the cone
Step 3:
Step 4:

Step 5:

considered undetectable.

Step 1: Partition circuit into cones, one for each output. In each cone, for each gate G,

initialize dom0(G), dom1(G), sp0(G), sp1(G), mp0(G) and mpl(G) to 1.

For each non-fanout gate in a cone, classify dominators as trivial and non-trivial:

(a) For trivial dominators, list input sensitizing conditions for both logic values if input

(b) For non-trivial dominators, list output sensitizing conditions for both logic values.
For fanout gates that have reconvergent paths with same parity, list multiple

path activation conditions for both logic values.

For fanout gates that have reconvergent paths with different parity, list single

path activation conditions for both logic values.

If Steps (2)-(4) yield no condition for G in a given cone, drop all conditions for G
from all other cones. Initialization in Step (1) guarantees faults local to G are not

Figure 3: Algorithm for selection of conditions.

Table 3: Different parity sensitizing conditions for G10.
sp0(G10)[1] = {G10=0,G6 = 1,G2 = 1,G9 = 0|G11 = 0}
sp0(G10)[2] = {G10=0,G11 =1,G9=1,G0=1,G6 = 0}
spl(GI0)[1] = {G10=1,G6 =1,G2 =1,G9 = 0]|G11 = 0}
spl(G10)[2] = {G10=1,G11 = 1,G9 =1,G0 = 1,G6 = 0}

tions in all cones remain unsatisfied during simulation.
Gates G10 and G1 also have conditions from one cone
only. However, these are not dropped because they are
fanout points in other cones, and additional conditions
due to reconvergence in the other cone are generated, as
explained below.

Fanout gates are analyzed specific to each output
cone that contains them. These fanout gates in a cone are
origination points for reconvergent paths. Some fanout
gates in the circuit may have no reconvergent fanout in
any cone and are not considered in this step, e.g., G2.
Different reconvergent paths may have different parity
and fault propagation requires that paths with different
parity be not simultaneously sensitized. However, along
paths that have the same parity, simultaneous fault effect
propagation may occur.

For the cone of G4, G10 has reconvergent paths
with different parity. We denote the two sensitizing
conditions for paths originating at G10 by sp0(G10)[1]
(sp1(G10)[1]) and sp0(G10)[2] (spl(G10)[2]) for logic
value 0 (1). These are shown in Table 3. The nota-
tion “sp” is used for single paths, while “mp” denotes
multiple paths, as explained in the following paragraph.

For sp0(G10)[1], {G9 = 0||G11 = 0} represents the
disabling condition for propagation paths with same par-
ity. For the cone of G5, there are reconvergent paths with
the same parity from G1. Considering that it is possi-
ble to activate any subset of these paths, including all
of them simultaneously, Table 4 shows the conditions for
G1.

For a given gate G, if none of the conditions
dom0(G), sp0(G) or mpO(G) (doml(G), spl(G) or
mpl(G)) is ever satisfied during simulation, the sal (sa0)
fault at the output of G will remain undetected. In addi-
tion, all faults whose propagation requires gate G to have

Paper 19.3

Table 4: Same parity sensitizing conditions for G1.

spO(GD[I] = {G1=0,G9=1,G3=1}
spO(GD[2] = {G1=0,G12=1,G2=1}
mpO(G)[1] = {G1=0,G9=1,G12=1}
spl(GD[1] = {G1=1,G9=1,G3=1}
spl(GD)[2] = {G1=1,G12=1,G2=1}
mpl(G1)[1] = {G1=1,G9=1G12=1}

a value 0 (1) also remain undetected. The algorithm for
selection of conditions to be monitored is summarized in
Figure 3.

3.2 Signal Monitoring in Example

Figure 2 shows a two vector simulation sequence of
the example circuit, along with specific vectors where
these conditions are first satisfied. Also shown in the
figure are the gate input combinations that are observed
after simulation of each vector. Once simulation of a
subsequence is complete, the set of input value combi-
nations for each gate and the conditions of Section 3.1
that are satisfied are analyzed. Table 5 shows the values
of conditions after simulation of the second vector is
complete. For fanout points, the sp0 and spl entries
in the table show a list of entries, one for each fanout
branch. The algorithm for fault detection prediction
using these satisfied logic conditions is presented in
Section 4, following which we revisit this example in
Section 5.

4 Post-Processing

There are three main differences between our algorithm
and Stafan: (1) The sequence length, N, in Equations 1
and 2 is modified and a new value, Ny, is used instead.
(2) The measurement of controllability measures, c0 and
cl in Equations 3 and 4, is modified and (3) Results of
signal monitoring are used for observability evaluation,
which is performed separately for each cone in the circuit.
These differences are outlined in this section.

INTERNATIONAL TEST CONFERENCE)

Table 5: Signal monitoring result after second vector.

cone of G4 cone of G5
signal || dom0 [sp0 [mp0 [doml [spl [mpl || dom0 [sp0 [mp0 [doml [spl [mpl
G4 1 1 1 1 1 1 - - - - - -
G5 - - - - - - 1 1 1 1 1 1
GO 1 1 1 1 1 1 - - - - - -
G2 1 1 1 1 1 1 1 1 1 1 1 1
G3 - - - - - - 1 1 1 1 1 1
G1 0 1 1 0 1 1 1 0,0 0 1 0,1 1
G9 0 1 1 0 1 1 0 1 1 0 1 1
G11 1 1 1 1 1 1 1 1 1 1 1 1
G10 1 0,0 1 1 1,0 1 0 1 1 0 1 1
G6 0 1 1 1 1 1 - - - -
G12 - - - - - - 0 1 1 1 1 1

4.1 Effective Vector Lengths (N.)

As demonstrated by the results of Table 1 in Section 2,
the fault detection probabilities evaluated by Equations 1
and 2 may vary substantially for non-random input se-
quences. The input combinations at every internal gate
are monitored during logic simulation. This can be
implemented efficiently by monitoring events that are
processed by the signal scheduler in any logic simulator,
and updating a table of previously seen input combina-
tions at each fanout of the scheduled gate. Since fanout
processing is an inherent function of the signal sched-
uler, this additional code does not increase the runtime
complexity of the scheduler. The effective length of a
sequence, Ny is increased whenever a new input com-
bination is observed at any gate in the circuit.

Once Ny is obtained, Equations 1 and 2 are mod-
ified to

DO(G)
D1(G)

k(1 — do(G))Ners
k(1 — d1(G))Ners

(7)
(8)
where dO(G) and d1(G) are obtained from controllabil-

ities and observabilities that are evaluated as explained
in Sections 4.2 and 4.3.

1—
1—

4.2 Controllability Evaluation

Controllability measures are implemented by counters,
one for each gate in the circuit. For a given gate, this
counter counts the number of ones seen during all clock
cycles that results in an increment of Ncsr. As short-
hand notation, we denote this counter as x(G) for gate
G. Similarly, x(G) eff — Kk(G). For clock cycles
that do not result in any new input state at any gate, all
controllability counters are kept unchanged. Equations 3
and 4 are replaced by

c0(G) = zero_count(G)/Ness = ((G)/Ness
c1(G) = one_count(G)/Nesr =1 — c0(G)

9)
(10)

Paper 19.3

INTERNATIONAL TEST CONFERENCE

4.3 Observability Evaluation

For each gate in the circuit, the set of input combinations
that is observed is stored in a table, along with a count
for each combination. This table and the counts for each
input state are updated whenever the parameter Ny
is incremented. For an OR gate G with output o, and
inputs 41, i2 and i3, the notation (i1, 42,43) denotes the
counter for the input combination i1 = 1,475 = 1,43 = 1.
Also, note that k(i1,42,43) = £(0). In terms of these
counters, the sensitization probability used in Equation 6
can be simplified as

S(i1) = Pr(iz, i) = (k(i1, i2,3) + K(i1, 12, 83)) /Negs
Similarly, for a three input AND gate,
S(Zl) = Pr(ig, i3) = (K(H, ig,ig) + H(il,ig, i3))/Neff

The observability measures, b0(G) and b1(G), are eval-
uated backwards starting at primary outputs. How-
ever, unlike Stafan, these probabilities are evaluated sep-
arately for each cone in the circuit, as explained in the
following subsections.

4.3.1 Propagation at Non-Fanout Inputs

If input 4; of OR gate, with output o, is not a fanout
stem, b0(i1) is evaluated as

b0(i1) = b0(0) x (k(0)/k(i1)) X domO(i1) (11)
This equation is similar to Equation 5, except for the ad-
ditional multiplication factor dom0(i1). This factor re-
sets b0(41) if dominator condition for this input remains
unsatisfied. The observability for logic value 1 is evalu-
ated as follows:

b1(i) = bl(0) x ((S(ir) — k(D)) /k(i1)) x dom1(iy) (12)

Similar formulas can be derived for an AND gate.

4.3.2 Propagation at Stem Inputs

Fanout stems can vary depending on the inversion par-
ity of reconvergent paths. If reconvergent paths have
different parity, fault propagation cannot occur simulta-
neously because such fault effects cancel out at the point
of reconvergence. For paths that have the same parity, si-
multaneous fault effect propagation along multiple paths
is possible and needs to be modeled.

Before proceeding further, we introduce some nota-
tion. Assume F;,1 < i < M are independent events, and
E is the composite event defined by set union, i.e.,

M
E:U&
=1

We denote the probability of event E by the notation
Pr(E) = Ind{Pr(E;), 1 <i< M}

where Ind{} is the joint probability of independent
events. For M = 2,

Ind{Pr(Ey),Pr(Es)} = Pr(Ey)+ Pr(Es)

7P’I"(E1) X PT’(EQ)

Assume stem s has fanout branches f;,1 < i < M, all
reconverging to gate r with the same parity. At stem s,

b0(s) = Ind{b0(r) x mp0(s),b0(f;),1 <i < M}
bl(s) = Ind{bl(r) x mpl(s),b1(f;),1 <i < M}

(13)
(14)

If all fanout branches reconverge at r with a different
parity than that of s, the above formulas are modified to

b0(s) = Ind{bl(r) x mp0(s),b0(f;),1 <i< M}
bl(s) = Ind{b0(r) x mpl(s),b1(f;),1 <i< M}

(15)
(16)

If reconvergence occurs at gate r with different par-
ity, the single path propagation predicates for each fanout
are used instead.

b0(s) = Ind{(b0(f;) x sp0(fi)),1 <i< M}
b1(s) = Ind{(b1(f:) x sp1(fi)),

4.4 Statistical Coverage and Bounds

Suppose that among the N.;; vectors that can possibly
contribute to detection of a fault, exactly one vector ac-
tually detects certain fault under consideration. Then
the per-vector detection probability (dO or d1) for that
fault will be 1/N¢¢s. Using Equation 7 or 8, this will
give the cumulative detection probability (DO or D1) for
Neyy vectors as,

Table 6: Observabilities after second vector.

Cone of G4 || Cone of G5

signal k(G) b0 [bl b0 [bl
G4 2 0.0 1.0 — —
G5 2 - - 0.0 1.0
GO 0 0.5 0.0 - -
G2 1 0.0 0.0 0.0 0.0
G3 0 - - 0.5 0.0
G1-G2 2 - - 0.0 0.0
G1-G3 2 — — 0.0 0.5
G1 2 0.0 0.0 0.0 1.0
G6 2 0.0 0.5 - -
G10-GO 2 0.0 0.5 — —
G10-G1 2 0.0 0.0 - -
G10 2 0.0 0.5 0.0 0.0
G9 1 0.0 0.0 0.0 0.0
Gl11 0 0.0 0.0 1.0 0.0
G12 2 - - 0.0 0.5

This is a valid approximation for large values of N.y.
Here as well as in the next section, we have assumed
k = 1.0 for the biasing factor in Equations 1, 2, 7 and 8.
Thus, we will use 0.63 as a threshold to decide whether or
not a fault should be counted as detected. When the cu-
mulative detection probability of a fault equals or exceeds
0.63, we will assume that the fault has been detected by
one or more vectors and we count it as detected while
computing the statistical coverage.

We determine statistical bounds on coverage by us-
ing a threshold close to 0.0 (any fault with non-zero prob-
ability can be potentially detected) for an upper bound,
and a threshold close to 1.0 for a lower bound. We
have used a threshold of 0.01 for statistical upper bound
and found it to be almost the same as the exact upper
bound [2]. For lower bound estimate, we used a threshold
of 0.99.

5 Post-Processing of Example

For the example of Figure 2, the gate input states seen
after the second vector are shown in Figure 2(b). The
gate dominator and path activation conditions that are
satisfied are shown in Table 5. Since new input combi-
nations are observed in the second vector, the value of
the N.y; parameter is 2. Table 6 shows the observability
measures that are obtained for each gate in the two logic
cones of the circuit.

For the 22 equivalence collapsed faults in the circuit,
Table 7 lists the controllabilities and observabilities of
fault sites in columns 4 and 5, respectively. For a signal
that is common to both logic cones, the higher value of
observability is shown in Column 5. Using Nes¢ = 2 and
biasing factor kK = 1 in Equations 7 and 8, the detection
probabilities obtained are shown in Column 6. Using

. IR A 1 a detection probability threshold of 63% the first seven
Ne}clfniool - (1= Neff) r=1- P 0.63 (19) faults are estimated to be detected by this two-vector
Paper 19.3 INTERNATIONAL TEST CONFERENCE 7

Table 7: Detectability of individual faults.

id location type | cont | obs | det
(1) (2) B3) | (@4 | 6| (6
1 G4 s@0 1.0 1.0 1.0
2 G5 s@0 1.0 1.0 1.0
3 G1 s@0 1.0 1.0 1.0
4 G11 s@1 1.0 1.0 1.0
5 GO sQ1 1.0 | 0.5 | 0.75
6 G3 sQ1 1.0 | 0.5 | 0.75
7 G10 s@0 1.0 0.5 | 0.75
8 G4 sQ1 0 0 0
9 G6 sQ1 0 0 0
10 G5 s@1 0 0 0
11 G2 s@Q0 | 0.5 0 0
12 G9 sQ1 0.5 0 0
13 | G10 — GO | s@1l 0 0 0
14 | G10 - G1 | s@1 0 0 0
15 G10 sQ1 0 0 0
16 G2 - G4 s@1 0.5 0 0
17 | G2—-G5 | sQ@Q1 0.5 0 0
18 G2 sQ1 0.5 0 0
19 Gl —-G2 s@1 0 0 0
20 Gl1-G3 | sQ1 0 0 0
21 G1 s@1 0 0 0
22 G12 s@1 0 0 0

sequence. This matches with exact fault simulation.

6 Upper-Bounding Comparison

We illustrate the difference between coverage estimation
and upper-bounding [2] using the circuit of Figure 4.
This circuit is the logic cone of gate G5 in circuit c17
of Figure 2. Logic values for a three vector sequence are
shown in that figure. As explained in Section 3.1, this
circuit has two reconvergent paths with the same par-
ity and originating at G1. The multiple path activation
conditions for both logic values 0 and 1 remain unsatis-
fied in these three vectors. Since new input states are
observed during each of these vectors, N.ss is set to 3
for the sequence. Furthermore, the value of N.;y will
stay unchanged should any of these vectors were to be
repeated. The figure also shows the zero-observabilities
at gates G11 and G3, and one-observabilities at gates
G1 and G5. These observabilities are required to eval-
uate the detection probability of the s@Q1 fault at G11.
Since zero-controllability at this gate is 1, the detection
probability of the fault is 1 — (1 — 1/9)% = 0.22. Using a
detection threshold of 0.63, this fault is estimated to be
undetected, which matches with exact fault simulation.

For a given gate G, upper-bounding [2] evaluates
propagation predicates, oneProp(G) and zeroProp(G),
that denote the possibility of logic values 1 and 0, respec-
tively, to propagate from G to a primary output [2]. For
an output that attains logic value 1 (0) sometime dur-
ing simulation, oneProp(G) (zeroProp(G)) is assigned a

Paper 19.3

[000]

G9
G2
[001] [b0=0

G10
b1=0 [111] o0
. iy g oy | 65 B
[000] =
b1=1/3
bO(G11) b0(G3)
s@1 |=1/3*(1-0)/3=1/9 =1*3-2)=1
o o)
G3
cL2 [010]

Figure 4: Upper-bounding comparison.

value 1. Otherwise, this value is set to 0. Using backward
traversal from the outputs, these predicates are evalu-
ated at gate inputs. Unlike observability values that are
probabilities, these predicates denote the possibility of
logic value propagation through the circuit. For this cir-
cuit, zeroProp evaluates to 1 (0) at gate G3 (G2). Us-
ing stem analysis, oneProp evaluates to 1 at stem G1.
At gate G11, zeroProp evaluates to 1 because the in-
put combination (G10 = 1, G11 = 0) is observed at gate
G1. Hence, upper-bounding would consider this fault as
a potentially detected fault.

As can be seen by the preceding example, the algo-
rithm in this paper eliminates some false positive errors
that arise during the upper-bounding process. However,
some false negative errors also result due to faults that
have low probability of detection. When compared to the
upper-bounding estimates [2], fewer false positive errors
and slightly higher false negative errors result in aggre-
gate coverage estimates that are now closer to exact fault
simulation. This effect is more pronounced in circuits
with high combinational depth.

7 Results

The experimental setup chosen for verification of the al-
gorithm is identical to that described in Section 2. Each
of the ISCAS combinational benchmarks was simulated
for a randomly input “short sequence” 100 cycles long. A
“long sequence” was obtained by concatenating the first
50 vectors, and repeating each of the remaining 50 vec-
tors randomly 1 to 100 times. The two sequences thus
have identical fault coverages. The results of these sim-
ulation are presented in Table 8. Column 2 shows the
exact coverage obtained from a fault simulator. For the
short sequence, columns 3 and 4 show sequence length
and coverage estimates obtained from Stafan. Similar
data for the long sequence is presented in columns 5
and 6. The numbers in columns 3 through 6 are identi-
cal to those of Table 1. Columns 7 through 10 show re-
sults obtained by the algorithm of this paper. Column 7
shows the effective length obtained for these sequences.
Column 8 shows the coverage estimates obtained, while
the false positive and false negative errors are shown in

INTERNATIONAL TEST CONFERENCE 8

Table 8: Improved coverage estimates for combinational benchmarks.

exact cov. (%) || Stafan (short) Stafan (long) new algorithm (both sequences)

circuit | both sequences || len | est (%) len | est (%) || Ness | est (%) | pos | neg | CPU time over logic sim.

(1) (2) (3) (4) (5) (6) (7) (8) (9) | (10) (11)
c432 93.15 100 94.85 2200 98.28 89 92.94 1.34 | 1.15 33%
c880 91.08 100 90.02 2280 91.30 63 90.13 1.70 | 2.65 20%
cl355 87.93 100 18.74 2375 37.23 50 88.37 0.89 | 0.44 22%
c1908 69.79 100 75.71 2760 81.73 82 72.94 3.36 | 0.21 31%
c2670 77.28 100 63.49 2720 72.21 74 77.28 1.57 | 1.57 37%
c3540 70.79 100 76.26 2650 84.39 100 69.53 1.20 | 2.49 31%
cb315 91.74 100 76.59 2580 93.70 100 92.24 2.92 | 2.41 35%
c6288 99.74 100 92.91 2410 98.76 46 99.74 0.00 | 0.00 16%
c7552 84.47 100 74.54 2760 87.32 89 86.19 2.73 | 1.00 52%

columns 9 and 10, respectively. The CPU time increase
over “plain” logic simulation is shown in column 11. This
is mainly due to the signal monitoring [2]. In addition,
preprocessing and postprocessing, both of which are in-
dependent of the vector length are negligible.

An additional experiment was performed to verify
that estimates obtained by this algorithm closely track
exact fault coverages at all intermediate vectors in a se-
quence. Both Stafan and upper bound estimates were
also obtained and compared to the new statistical esti-
mate. Additionally, two other statistical estimates were
obtained by taking the detection probability thresholds
as 1% and 99% instead of the default value of 63%. A
long sequence was constructed by repeatedly concatenat-
ing identical copies of the short random sequence of 100
cycles described in the previous paragraph. The results
obtained from this experiment are shown for ¢2670 in
Figure 5. Since the new sequence obtained is long, the x-
axis of the graph is plotted using a logarithmic scale (base
10). After 100 vectors, the coverage from exact simula-
tion remains constant at 77.28%. The upper bound cov-
erage was found to be 79.94%. All statistical estimates,
using 1%, 63% and 99% detection probability thresh-
olds, and the upper bound estimate also stay constant
beyond 100 vectors at their respective values attained at
the 100th vector. The Stafan estimate reaches 63.49% at
vector 100, but continues to rise to 72.3% at vector 8000.
Statistical estimates using 1%, 63% and 99% thresholds
attained final values of 79.94%, 77.28% and 62.14%, re-
spectively. The statistical estimates by the algorithms
presented in this paper correct Stafan’s error that causes
the coverage to increase as the short sequence of 100 vec-
tors is repeated.

Evident in the above graph is the difference between
the statistical (63% threshold) estimate and the upper
bound estimates (1% threshold or [2]). This difference
as a function of vector length is labeled as “upper bound
—new estimate” in Figure 5. Even though this difference
after 100 vectors was only 1.38% (= 79.94 — 78.56%), its
highest value 12.43% was attained after 8 vectors when
the exact coverage was 53.1%. At this point, the statis-
tical estimate was 53.54%, while the upper bound esti-

Paper 19.3

mate was 65.97%. The Stafan coverage underestimates
the true coverage at all intermediate points of the se-
quence, even though it continues to increase gradually
after 100 vectors.

An industry example: As mentioned in Section 1,
fault simulation can be very resource intensive. Figure 6
shows simulation data for a design with 180K gates that
was fault simulated with 42 functional sequences. The
vertical lines on the x-axis show fault coverages for in-
dividual sequences, while the cumulative exact coverage
is shown as a curve. Also included in the figure are cu-
mulative upper bound [2] and the statistical estimate.
The time required to fault simulate the longest sequence
was about 7 days. Assuming the availability of multiple
machines, it takes a week to compute the cumulative cov-
erage of all input sequences. Both upper bound and sta-
tistical estimates were obtained within 3 hours for each
sequence, about the time required for logic simulation.
The exact cumulative coverage of the 42 functional se-
quences was 58.76%, while upper bound and statistical
estimates were 69.38% and 63.09%, respectively.

To attain acceptable fault coverage, many more
functional sequences are required. Our experiment
was designed to complete in acceptable time. Many
designers like to experiment with different sets of scan
elements either to maximize fault coverage or remove
scan elements from critical timing paths. Experiments
to change the list of observable points are virtually
impossible if one has to rely solely on fault simulation.

8 Conclusion

This paper clearly illustrates the improvement in stuck
fault coverage estimation when the proposed algorithm
is used for non-random and functional input vectors. In
combinational circuits, inputs to a gate may be corre-
lated due to internal fanout reconvergence. In sequential
circuits, even for random inputs, latch outputs that
drive combinational logic are often correlated. The
ideas presented in this paper improve fault coverage
estimation in all of these cases. However, sequential
circuit coverage estimation still remains an area for

INTERNATIONAL TEST CONFERENCE 9

and T. M. Sarfert,

80 upper bound [2] and b,
stat. upper bound
70 L (1% det. threshold) |
60 -
g 50 new estimate (63% detection threshold) 7
©
% 40 stat. lower bound (99% detection threshold)
%
L 30 exact E
20 | stafan 7]
10 + upper bound - new estimate -
O 1 1 1 1 1 1 1 1
1 10 100 1000 10000
Number of vectors
Figure 5: Exact, upper bound [2], and statistical coverages of ¢2670 by a long deterministic sequence.
80 [5] D. B. Armstrong, “A Deductive Method of Simulat-
new estimate ing Faults in Logic Circuits,” IEEE Trans. Computers,
70 + upper bound 1 vol. C-21, pp. 464-471, May 1972.
[6] M. L. Bushnell and V. D. Agrawal, Essentials of Elec-
60 1] tronic Testing for Digital, Memory and Mized-Signal
5 VLSI Clircuits. Boston: Springer, 2000.

7 1 [7] W. T. Cheng and M. L. Yu, “Differential Fault Simula-

& sl] tion for Sequential Circuits ,” Jour. Electronic Testing:

g individual exact coverages ‘ 17;;56007“3/ and Applications, vol. 1, no. 1, pp. 7-13, Feb.

© 80 N R i 1 e] ’

T EERE R ' ‘ [8] S. Gai and P. L. Montessoro, “CREATOR: New Ad-
20 || ‘] vanced Concept in Concurrent Simulation,” IEEE Trans.
3 Loobb o CAD, vol. 13, no. 6, pp. 786-795, June 1994.
10 ‘ . [9] S. Gai, P. L. Montessoro, and F. Somenzi, “MOZART: A
i 1 ARRRE R : Concurrent Multilevel Simulator ,” IEEE Trans. CAD,
o5 5 0 15 20 25 30 85 40 15 vol. 7, no. 9, pp. 1005-1016, Se;:t. 19.88..
functional sequence (10] S. K. Jain and V. D. Agrawal, “Statistical Fault Analy-
sis,” IEEFE Design € Test of Computers, vol. 2, no. 1,
Figure 6: Example estimation for large design. pp- 3,8740’ Feb. 1985. .

[11] T. Kirkland and M. R. Mercer, “A Topological Search
active research. Some algorithms that further improve Algorithm for ATPG,” in Proc. 24th Design Automation
coverage estimation in sequential designs will be pre- Conf., June 1987, pp. 502-508.
sented in the future. (12] W. Kunz and D. K. Pradhan, “Accelerated Dynamic

Learning for Test Pattern Generation in Combinational
Circuits,” IEEE Trans. CAD, vol. 12, pp. 684-694, May

References 1993.
o) .. [13] W. Kunz and D. K. Pradhan, “Recursive Learning: A

[1] M. Abramovici, P. R. Menon, and D. T. Miller, “Criti- New Implication Technique for Efficient Solutions to
cal Path Tracing: An Alternative to Fault Simulation,” CAD Problems - Test, Verification and Optimization,”
IEEE Design & Test of Computers, vol. 1, no. 1, pp. IEEE Trans. CAD, vol. 13, pp. 1143-1158, Sept. 1994.
83-93, Feb. 1984. [14] T. M. Niermann, W. T. Cheng, and J. H. Patel,

[2] V. D. Agrawal, S. Bose, and V. Gangaram, “Upper “PROOFS: A Fast Memory Efficient Sequential Circuit
Bounding Fault Coverage by Structural Analysis and Fault Simulator,” IEEE Trans. CAD, vol. 11, no. 2, pp.
Signal Monitoring,” in Proc. 24th IEEE VLSI Test 198-207, Feb. 1992.

Symp., 2006, pp. 88-93. [15] M. H. Schulz, E. Trischler,

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Design “SOCRATES: A Highly Efficient Automatic Test Pat-
and Analysis of Computer Algorithms. Reading, Massa- tern Generation System,” IFEE Trans. CAD, vol. 7, pp.
chusetts: Addison-Wesley, 1974. 126-37, Jan. 1988.

[4] K. J. Antriech and M. Schulz, “Accelerated Fault Sim- [16]

Paper 19.3

ulation and Fault Grading in Combinational Circuits,”
IEEFE Trans. CAD, vol. 6, no. 9, pp. 704-712, Sept. 1987.

INTERNATIONAL TEST CONFERENCE

E. G. Ulrich and T. Baker, “Concurrent Simulation of
Nearly Identical Digital Networks,” Computer, vol. 7,
pp. 39-44, Apr. 1974.

10

