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Abstract

Rewiring has been used extensively for optimizing the
area, the power consumption, the delay, and the testabil-
ity of a circuit. In this work, we demonstrate how rewiring
can also be used for reducing the Soft Error Rate (SER).
We employ an ATPG-based rewiring method to generate
functionally-equivalent yet structurally-different implemen-
tations of a logic circuit based on simple transformation
rules. This rewiring capability, along with an off-the-shelf
method for assessing the SER of a circuit, enable the integra-
tion of the SER in a unified search algorithm that iteratively
evolves the design in order to satisfy a given set of objec-
tives. Experimental results on ISCAS’89 and ITC’99 bench-
mark circuits verify that rewiring can indeed be successfully
used to reduce the SER of a circuit and, thus, it facilitates
a design-space exploration framework for trading off area,
power consumption, delay, testability, and SER.

1 Introduction

Soft errors are emerging as a serious reliability threat to
the operation of logic circuits. When high-energy neutrons
or alpha particles strike a sensitive region in a semiconductor
device, they generate a Single Event Transient (SET) which
may alter the state of the system, resulting in a soft error.
Whereas soft errors have traditionally been of much greater
concern in memories, smaller feature sizes, lower voltage
levels, higher operating frequencies, and reduced logic depth
are projected to cause a dramatic increase in soft error fail-
ure rate in core combinational logic in sub-100nm technolo-
gies [1]. Thus, designers are faced with the challenging task
of implementing appropriate reliability mechanisms to shield
electronic circuits against soft errors.

To this end, various methods have been proposed in the
literature [2, 3, 4, 5, 6, 7] to reduce the Soft Error Rate (SER)
of a circuit and, thus, improve its reliability. The idea behind
most of these methods revolves around developing solutions
at the physical level, wherein individual transistor character-
istics are perturbed to reduce the sensitivity of logic gates
to SETs. While these methods are particularly effective in
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reducing the SER of a design, they are technology depen-
dent, i.e. they rely on information available only during or
after mapping of a circuit to a target technology. In contrast,
in this work we are interested in investigating technology-
independent methods, i.e. logic-level methods that select,
among the many possible gate-level implementations of a
circuit, the one that minimizes its SER. While such logic-
level methods cannot benefit from the detailed information
available at the physical level, and, thus, may not be able to
provide comparable levels of SER reduction, they offer two
unique advantages. First, they enable design modifications
for SER reduction that are equally effective independent of
the technology to which the circuit will be mapped. Second,
they provide the ability to consider SER as a design objective
much earlier in the design cycle. Moreover, the mechanisms
through which soft errors can be averted at the logic level
are typically orthogonal to those at the physical level; hence,
logic-level SER reduction methods do not intend to substi-
tute their physical-level counterparts but, rather, to provide
a better starting point. Yet the literature lacks solutions for
reducing the SER of a circuit at the logic level.

In this paper, we propose a systematic logic-level SER
reduction method through the use ofrewiring. Rewiring
methods have been extensively used for transforming a logic
circuit to meet design constraints such as minimizing area
[8, 9, 10], reducing power consumption [11], satisfying tim-
ing requirements [12, 13], and improving testability [14].
Herein, we also demonstrate how rewiring can be used to
minimize the soft error rate of a design. Thus, we advo-
cate that rewiring can be used as the cornerstone of a com-
mon framework for exploring the trade-off space between
area, power consumption, delay, testability, and SER. We
start, in Section 2, by describing an ATPG-based rewiring
method which we use to generate functionally-equivalent
yet structurally-different gate-level circuit implementations
through a set of simple transformation rules. We then illus-
trate using simple examples, in Section 3, how these trans-
formation rules may reduce the soft error rate of a circuit.
Then, in Section 4, we propose an algorithm which evolves
a design through iterative selection of rewiring operations,
in order to optimize a cost function reflecting both the soft
error rate and the rest of the design parameters of a circuit.
Finally, in Section 5, we evaluate the proposed method using
ISCAS’89 and ITC’99 benchmarks.
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2 ATPG-based Rewiring

The underlying principle of rewiring is the exploration of
the space of functionally-equivalent but structurally-different
implementations of a circuit, in order to optimize a given cost
function. Typically, rewiring methods [8, 9, 10, 11, 12, 13,
14, 15, 16, 17] target a wire that violates some constraint(s),
called thetarget wire, and delete it from the implementation.
Subsequently, they apply the transformations necessary for
correcting the functionality of the design.

For the purpose of the work described in this paper, we
use as a starting point the ATPG-based rewiring method de-
scribed in [18]. This method first introduces a design error
based on a subset of the common design error models pro-
posed in [19]. In particular, this rewiring tool supports the
following design error models, which are illustrated in Fig. 1:

1. Missing Input Wire : This is the design error that is
commonly performed by most rewiring tools. The error
is introduced by removing the target wire.

2. Incorrect Input Wire : The target wire is replaced by
another wire that has similar logic values (i.e. a wire
that, with a probability of 0.75 or higher, obtains the
same value as the target wire).

3. Gate Replacement: The type of the gate driven by the
target wire is changed depending on the probability of
the logic values of the target wire. If the probability of a
Logic 0 (Logic 1 ) on the target wire is higher than
0.75, the gate is changed to(N)AND ((N)OR ). This
error model is novel to the work described herein.

4. Extra Input Wire : A wire with similar logic values to
the target wire is added to a gate driven by the target
wire. This error model is also novel to this work.

After the design error is introduced, the rewiring tool at-
tempts to correct the design using a simulation-basedDesign
Error Diagnosis and Correction (DEDC)algorithm, which
returns a list of corrections that rectify the design. The cor-
rections returned by the rewiring tool can only correct a de-
sign by performing a single correcting operation. Therefore,
DEDC will fail to find corrections if:

• The target wire is a stem. In this case, the error models
Missing Input Wire, Gate Replacement, andExtra In-
put Wireare not applicable since the design error will
introduce multiple errors at the branches of the stem.

• The gate driven by the target wire is an inverter or a
buffer. In this case, the error modelsGate Replacement
andExtra Input Wirecannot be applied. In both cases,
additional information is required to complete the error
injection. For example, changing a buffer to aNAND
gate requires an additional input wire to be specified.
Hence, the circuit will have two design errors.
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Figure 1. Supported Design Error Models

• The gate driven by the target wire is a 2-input gate. In
this case, theMissing Input Wireerror model cannot be
applied since the circuit will also have two design errors,
i.e. Missing Input WireandGate Replacement.

Finally, the corrections are verified using ATPG. Verifi-
cation is necessary since the DEDC algorithm ensures the
validity of a correction using a subset of the complete input
vector space and, therefore, the corrections returned are only
valid for this particular subset of vectors [21]. Details regard-
ing the implementation of the ATPG-based verification step
are beyond the scope of this paper and can be found in [18].

3 Impact of Rewiring on SER

The SER of a combinational circuit is proportional to
three factors [1, 22]: i) the rate of occurrence of an SET at a
gate (RSET ), ii) the probability of an SET reaching an out-
put based on the current inputs to the circuit (Psens), and iii)
the probability that an SET is latched in a storage element
(Platch). Among these factors, rewiring primarily impacts
Psens. The probability of an SET reaching an output,Psens,
is measured by performing fault-simulation of the circuit for
that SET and computing the percentage of times that the out-
put responses were erroneous. Since rewiring changes the
sensitization paths through which SETs may propagate to the
outputs, thePsens of any given SET may either increase or
decrease, depending on the activation likelihood of its new
sensitization paths. Thus, in order to assess the effectiveness
of a rewiring operation, its impact on thePsens of all SETs in
the circuit should be taken into account [22, 23]. Throughout
this work, computation of the SER is performed using SERA
[23], which takes into account all the aforementioned factors.
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(a) (b) (c)
1) Design Error Model: Missing Input Wire. The SER Reduces by 1.65%.

(a) (b) (c)
2) Design Error Model: Incorrect Input Wire. The SER Reduces by 3.13%.

(a) (b) (c)
3) Design Error Model: Replace Gate. The SER Reduces by 3.13%.

(a) (b) (c)
4) Design Error Model: Extra Input Wire. The SER Reduces by 1.65%.

Figure 2. Examples of Rewiring Operations that Reduce the SER Using the 4 Design Error Models ((a) Target of
Error, (b) Circuit After Error, and (c) Circuit After DEDC).

In the following, we provide simple examples to demon-
strate that each of the four error models supported by the
rewiring tool may result in corrections that reduce the SER.

3.1 Missing Input Wire Error Model

In themissing input wireerror model, the target wire is re-
moved from the circuit and the DEDC algorithm rectifies the
design using a single correcting operation. ThePsens of any
wire may either increase or decrease in the corrected circuit
and, thus, the aggregate impact might be favorable, reducing
the SER of the circuit. For example, in the circuit shown in
Fig. 2.1.a, rewiring deletesG3 → G5, which results in the
incorrect implementation in Fig. 2.1.b. During the DEDC
stage,a → G5 is identified as a possible correction and is
added to the circuit, as illustrated in Fig. 2.1.c. The SER of

the corrected circuit in Fig. 2.1.c, reduces by 1.65% over the
initial circuit in Fig. 2.1.a.

3.2 Incorrect Input Wire Error Model

In the incorrect input wireerror model, the target wire
is replaced by another wire in the circuit and the DEDC al-
gorithm rectifies the design using a single correcting opera-
tion. Thus, the arbitrary impact on thePsens of the wires in
the corrected circuit may result in an overall reduction of the
SER. For example, in the circuit shown in Fig. 2.2.a, rewiring
substitutesG2 → G5 with c → G5, resulting in the circuit
shown in Fig. 2.2.b. DEDC identifiesa → G5 as a possible
correction and adds it to the circuit, as shown in Fig. 2.2.c.
The SER of the corrected circuit in Fig. 2.2.c, reduces by
3.13% over the SER of the initial circuit in Fig. 2.2.a.
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Figure 3. Example Illustrating the Intuition Behind
the Gate Replacement Error Model.

3.3 Gate Replacement Error Model

The gate replacementerror model, which was added to
the rewiring tool implementation of [18] for the purpose of
this work, changes the type of the gate driven by the target
wire. This, in turn, reduces thePsens of one of the two pos-
sible SETs (i.e.0 → 1 and1 → 0 ) that can affect the target
wire for the following reason. If the target wire has a high
probability of obtaining a non-controlling value of the gate
that it drives, then an SET that flips the target wire to the
controlling value of the gate has a high probability of propa-
gating to its output. Consequently,Psens will be high for that
particular SET. By introducing an error that changes the type
of the gate, the target wire will now have a high probability
of obtaining a controlling value of this gate. Therefore, the
same SET will now flip the target wire to the non-controlling
value of the gate and, hence, has a low probability of propa-
gating to its output. By extension,Psens will now be reduced
for this particular SET.

The intuition behind the gate replacement error model is
illustrated using the example in Fig. 3, which shows part of a
logic circuit. Letf be the output function of this sub-circuit
andg1, g2 andg3 be the input functions, expressed in terms
of the primary inputsx1, x2 andx3, as illustrated in the Kar-
naugh maps of Fig. 3.c, and assume thatg2 is the target wire
for rewiring. Sinceg2 has a high probability of obtaining a
logic value of0 (a non-controlling value of theORgate that it
drives), a0 → 1 SET ong2 has a high probability of propa-
gating to the output of theORgate. Conversely, a1 → 0 SET
ong2 has a low probability of propagating to the output of the

Figure 4. Example Illustrating the Intuition Behind
the Extra Input Wire Error Model.

ORgate. When the error is introduced by changing the gate
type to anANDgate, and after correcting the design error in
the modified circuit of Fig. 3.b1, the probability of a0 → 1
SET ong2 propagating to the output of theANDgate reduces,
while the probability of a1 → 0 SET propagating to the out-
put increases. Yet, it is possible that the aggregate impact
will be favorable, reducing the SER of the circuit. For exam-
ple, consider the circuit shown in Fig. 2.3.a, wherein theAND
gateG3 is replaced by anORgate, resulting in the incorrect
circuit of Fig. 2.3.b. Then, the DEDC algorithm corrects the
design by replacingb → G3 with b → G3, as shown in Fig.
2.3.c and the SER of the corrected circuit reduces by 3.13%
over the SER of the initial circuit.

3.4 Extra Input Wire Error Model

The extra input wireerror model adds a similar wire to
the gate driven by the target wire. This, in turn, reduces the
Psens of one of the two possible SETs on the target wire for
the following reason. If the target wire has a high probability
of obtaining a controlling value of the gate, an SET that flips
the target wire to the opposite (non-controlling) value will
propagate to the output of the gate, unless another input of the
gate also has a controlling value. Thus, by adding a similar
wire as an extra input to the gate, we increase the probability
that such a controlling value will exist and, by extension, the
probability that the SET will be masked.

1The output of the circuit in the example is not affected by the change in
the gate type and, thus, no correction is necessary.
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The intuition behind the extra input wire error model is
illustrated using the example in Fig. 4. Letg2 be the target
wire for rewiring and letg1 - g4 be defined as illustrated in
Fig. 4.c. The functionality ofg4 is similar tog2 (identical
for 75% of the possible input combinations) and is added as
an input to theORgate in the modified circuit in Fig. 4.b.
Sinceg2 has a high probability of obtaining a logic value of
1 (a controlling value of theORgate that it drives), a1 → 0
SET ong2 has a high probability of propagating to the out-
put of theORgate. Wheng4 is added in the modified circuit,
however, the probability of a1 → 0 SET propagating to the
output of theORgate is reduced sinceg4 will have a control-
ling value of theORgate with high probability. While the
addition ofg4 introduces a new location where SETs might
appear, the1 → 0 SET ong4 will often be masked at the out-
put of theORgate asg2 will also have the controlling value
of the gate with high probability. On the other hand, a0 → 1
SET ong4 might propagate to the output of theORgate with
high probability. Yet, it is possible that the overall effect will
be a reduction in the SER of the circuit. For example, con-
sider the target wireG2 → G5 in the circuit of Fig. 2.4.a.
Wire a → G5, which is similar toG2 → G5 since it obtains
the same value in 75% of the input combinations, is added
in the implementation of Fig. 2.4.b. The DEDC algorithm
corrects the circuit by deletingG2 → G5, as shown in Fig.
2.4.c, thus reducing the SER by 1.65%.

4 Rewiring-Based Optimization Algorithm

As demonstrated in the previous section, rewiring oper-
ations may, indeed, reduce the SER of a circuit. Further-
more, rewiring operations have previously also been shown
to significantly improve area, power consumption, delay, and
testability [9, 10, 11, 12, 13]. Based on these observations,
in this section we devise an algorithm that iteratively selects
effective rewiring operations and evolves the circuit imple-
mentation in order to optimize a cost function reflecting a
given set of design objectives.

The selection of an optimal set of rewiring operations is
NP-complete and, thus, computationally infeasible. In the
proposed algorithm, we follow a simple greedy heuristic,
wherein, at each step, rewiring is attempted for the wire with
the highestPsens in the circuit that has not been tried so far.
In order to identify the most susceptible wire, we employ
fault simulation of random patterns and compute thePsens

for each wire by taking the ratio of the number of times that
faults on the wire are sensitized to an output over the number
of simulated input patterns. Then, the list of wires is sorted
(SortWires()) in decreasing order of theirPsens and the
first wire in the list is selected as a target wire (TargetWire).
Once the target wire is selected, we perform rewiring using
the four design error models of Fig. 1 and the DEDC algo-
rithm generates a list ofki corrections to fix the design. For
each candidate correctionj, we construct the corrected cir-

Figure 5. Flowchart of the Proposed Algorithm

cuit (Designi,j), evaluate the cost function (CFi,j), and keep
the design (Designbest) that has the best improvement to the
cost function (CFbest) over the previous design (Designold).
The process is iteratively repeated until all the wires have
been tried without improvement to the cost function. The
algorithm is summarized in Fig. 5.

5 Experimental Results

In this section, we evaluate experimentally the SER re-
duction and associated overheads for the proposed rewiring-
based design space exploration method. First, in section 5.1,
we describe the setup of the experiments. Next, in section
5.2, we discuss four cost functions that we used to drive the
optimization algorithm in our experiments. Then, in section
5.3, we present, analyze, and compare the results for these
cost functions. Finally, in section 5.4, we discuss the short-
comings of existing SER estimation tools, eluding to the fact
that the effectiveness and scalability of rewiring-based SER
reduction will drastically improve as these tools mature.
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5.1 Experimental Setup

We experiment with a set of ISCAS’89 and ITC’99 bench-
mark circuits. The SER is computed using SERA [23], which
accounts for the rewiring effect onRSET , Psens andPlatch,
and reports the SER for each output of the circuit. The area
overhead is computed based on transistor counts of the origi-
nal and final circuits. Power and delay overhead computation
is performed using SIS [24]. The internal BDD-based power
simulator in SIS is used to compute the power overhead as-
suming a zero-delay model. The circuit is, then, mapped to
the standardlib2.genlib library, and the delay of the most
critical path is used for computing the delay overhead. Fi-
nally, ATALANTA [25] is used to perform Automatic Test
Pattern Generation (ATPG) and compute any loss in fault
coverage during production testing.

5.2 Optimization Cost Functions

Rewiring has already been shown to be effective in opti-
mizing area, power, delay and testability [9, 10, 11, 12, 13].
Therefore, we mainly focus on cost functions that reduce the
SER while varying the constraints placed on the other design
parameters. Thus, the first cost function we consider aims
at minimizing the soft error rate, regardless of the impact of
rewiring on the other design parameters such as area, delay,
power and testability. Letimprov(x) be a function that re-
turns the ratio between parameterx of the initial circuit over
the same parameter of the circuit after the rewiring opera-
tion. Then, the first cost function, calledOnlySER, can be
expressed as:

OnlySER = max{improv(SER)} (1)

The second cost function, calledSERandTest, aims
at reducing the SER of the circuit as long as no addi-
tional untestable faults are introduced in the circuit after the
rewiring operation. Hence, theSERandTest cost function
can be represented as:

SERandTest = max{improv(SER)}, (2)

Subject to : improv(Testability) ≥ 0

The third cost function, calledSERandAll, reduces the
SER as long as all the design parameters of the modified cir-
cuit after the rewiring operation are better than or equal to
the design parameters of the initial circuit. TheSERandAll
cost function is defined as:

SERandAll = max{improv(SER)}, (3)

Subject to : improv(Area) ≥ 0
improv(Delay) ≥ 0
improv(Power) ≥ 0
improv(Testability) ≥ 0

Finally, the functionJointOptimization enables the
joint optimization of all the design parameters, with the abil-
ity to prioritize the various optimization objectives using
different weights for the corresponding design parameters.
Thus, it enables the designer to optimize the overhead of the
design based on the target application of the product. The
JointOptimization cost function is defined as:

JointOptimization = max{w1 · improv(SER) (4)

+ w2 · improv(Area)
+ w3 · improv(Delay)
+ w4 · improv(Power)
+ w5 · improv(Testability)}

where0 ≤ wi ≤ 1 and
i=5∑
i=1

wi = 1. The weights were set in

these experiments tow1 = 0.5, w2 = w3 = w4 = 0.1, and
w5 = 0.2, giving higher priority to the SER reduction and the
improvement in testability of a circuit implementation over
the reduction in area, delay and power consumption. While
we only present results using the above four cost functions,
any other cost function can be used to drive the search algo-
rithm reflecting the constraints placed by the designer on the
overhead of the final design.

5.3 Analysis and Comparison

The results are presented in Table 1 for theOnlySER
and SERandTest cost functions, and in Table 2 for the
SERandAll and JointOptimization cost functions, re-
spectively. Under the first major heading, we provide details
about the circuits that were used: name, number of primary
inputs, number of primary outputs, and gate count. Under
the next two major columns, we report the percentile SER
reduction2, area overhead, power overhead, delay overhead,
and fault coverage loss for theOnlySER andSERandTest
cost functions (SERandAll andJointOptimization cost
functions) in Table 1 (Table 2), respectively. The key points
revealed by these results are summarized below:

• The results forOnlySER indicate that rewiring can re-
duce substantially the SER of the circuit. For example,
the SER ofb01, b06 ands510 is reduced by more than
25%. However, when the search is driven by the sole
objective of reducing SER, the impact of rewiring on
other design parameters such as area, power, delay, and
testability can be significant. For example, the delay of
b06 ands510 increases by more than40%.

2We note that the computation of SER reduction takes into account all
possible SET locations, including the ones in the additional area incurred by
the rewiring method, if any.
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Original Circuit OnlySER SERandTest
Name PI PO Gates SER Area Delay Power F. C. Loss SER Area Delay Power F. C. Loss
b01 7 7 51 26.62% 18.29% 4.92% -5.92% 4.35% 17.74% 7.32% -21.78% -3.27% 0.00%
b02 5 5 27 5.63% 9.30% 29.53% -6.52% 3.57% 1.66% 6.98% 0.00% -2.69% 0.00%
b03 34 34 153 0.19% 0.40% 3.02% 0.05% 0.00% 0.19% 0.40% 3.02% 0.05% 0.00%
b06 11 15 55 26.79% 22.35% 50.60% -11.93% 9.77% 19.84% 10.59% -16.77% -28.70% 0.00%
b08 30 25 171 9.94% 20.21% 62.99% 10.94% 10.25% 2.01% 0.34% 3.61% -7.68% 0.00%
b09 29 29 160 11.47% 2.59% 14.86% -1.63% 2.8% 10.76% -1.48% -2.24% -8.89% 0.00%
b10 28 23 180 21.42% 11.24% 48.01% 5.07% 7.13% 11.44% 5.92% 22.23% -1.67% 0.00%
s298 17 20 119 20.41% -3.69% 16.13% 6.78% 11.81% 14.91% -10.39% -10.99% -24.31% 0.00%
s382 24 27 158 19.53% 8.52% 3.60% -9.42% 7.71% 14.77% 0.00% -12.89% -17.06% 0.00%
s344 24 26 160 7.14% 2.60% 10.62% 29.51% 6.02% 3.12% 1.86% -0.98% 0.10% 0.00%
s349 26 26 161 7.17% 6.96% -0.51% 5.07% 7.21% 5.81% 0.00% 2.02% 5.36% 0.00%
s526 24 27 173 11.71% 1.57% -18.49% -18.07% 3.10% 8.22% -3.52% 0.74% -22.29% 0.00%
s444 24 27 181 14.52% 1.99% -9.85% -10.18% 6.29% 12.91% -0.28% -0.13% -11.79% 0.00%
s510 25 13 211 25.39% 12.74% 48.01% 5.07% 7.13% 15.03% 2.80% 18.20% 1.42% 0.00%

Table 1. Experimental Results on ISCAS89 & ITC99 Benchmark Circuits ( OnlySER and SERandTest)

Original Circuit SERandAll JointOptimization
Name PI PO Gates SER Area Delay Power F. C. Loss SER Area Delay Power F. C. Loss
b01 7 7 51 15.65% 0.00% -18.85% -6.72% 0.00% 9.93% 1.22% -4.40% -7.22% 0.00%
b02 5 5 27 0.00% 0.00% 0.00% 0.00% 0.00% 1.44% 0.00% -9.17% -12.63% 0.00%
b03 34 34 153 0.17% 0.00% -2.53% -1.32% 0.00% 3.84% 0.79% 1.81% -0.08% 0.00%
b06 11 15 55 15.15% -1.18% -7.93% -13.40% 0.00% 9.90% 0.00% -7.49% -12.35% 0.00%
b08 30 25 171 3.76% 0.00% -4.46% -9.33% 0.00% 2.68% 1.03% -25.25% -11.84% 0.92%
b09 29 29 160 6.46% -0.74% -30.51% -2.16% 0.00% 11.28% 6.54% -26.43% -12.94% 0.94%
b10 28 23 180 11.32% -0.59% -7.11% -3.09% 0.00% 7.88% 3.25% -8.48% 1.38% 0.84%
s298 17 20 119 12.15% -5.77% -18.27% -26.36% 0.00% 7.17% -6.15% -30.17% -19.87% 0.96%
s382 24 27 158 17.05% -0.63% -4.03% -12.24% 0.00% 11.45% -0.32% -3.31% -9.73% 0.00%
s344 24 26 160 1.07% 0.00% -7.84% -1.65% 0.00% 1.49% 1.49% -0.65% 2.64% 0.29%
s349 26 26 161 3.12% 0.00% -2.53% -1.64% 0.00% 2.79% 1.47% 0.00% -6.69% 0.87%
s526 24 27 173 6.35% -1.86% -4.02% -14.59% 0.00% 5.52% 2.86% -13.97% -7.65% 0.00%
s444 24 27 181 7.62% -4.68% -7.48% -10.18% 0.00% 9.05% 1.65% -6.84% -2.68% 0.40%
s510 25 13 211 8.98% -0.70% -4.60% -3.71% 0.00% 10.37% 4.21% -25.72% -00.89% 2.18%

Table 2. Experimental Results on ISCAS89 & ITC99 Benchmark Circuits ( SERandAll and JointOptimization)

• By monitoring the impact on other design parameters
during the search algorithm, we can moderate its ef-
fect. The results forSERandTest indicate that when
no fault coverage loss is allowed during rewiring, the
SER of the circuit can still be significantly reduced. For
example, this is the case forb06 ands298. While this
reduction is smaller than in theOnlySER case, the im-
pact on the remaining design parameters, i.e. area, de-
lay, and power, is also less severe.

• Even when the search algorithm is constrained to only
allow rewiring operations that do not cause a negative
impact toanyof the design parameters, the SER of the
circuit is still reduced, as indicated by the results for
theSERandAll cost function. As expected, however,
the additional constraints placed on the search algorithm
diminish the attained SER reduction. Nevertheless, this
reduction is overhead-free and, as such, highly desir-
able. Moreover, this constrained design-space explo-

ration often results in significant reduction in one or
more of these design parameters. For example, the de-
lay of b09 is reduced by more than20%, and the area
overhead ofb06 is reduced by10%.

• When design parameters are used as an inherent part of
the cost function, rather than constraints, logic rewiring
enables a more efficient exploration of the design space
of the circuit under optimization. This is demonstrated
through the results forJointOptimization, where
SER is given the highest weight during the search, testa-
bility is given the next highest weight, and area, power,
and delay are given the smallest weight. As a result,
the final rewired circuit exhibits high SER reduction and
minimal loss in fault coverage, while moderate impact
-either positive or negative- is effected on area, power,
and delay. For example, the SER of circuitsb09, s382
ands510 is reduced by more than10% while the over-
head of other design parameters is also reduced.
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5.4 Discussion

The above results demonstrate that rewiring can indeed
be used to reduce the SER of a logic circuit and to facilitate
a common optimization framework for logic-level design-
space exploration. While the attained SER reduction is sig-
nificant, we would like to point out that it is a very conserva-
tive and pessimistic indication of what rewiring can achieve.
The underlying reason for this has to do with limitations re-
lated to SERA, the SER assessment tool that we used in our
experiments. To the best of our knowledge, SERA is the only
public-domain SER estimation tool, which is the reason for
using it. SERA supports a generic0.18um CMOS library
composed of standard gates that have a maximum ofthree
inputs. Therefore, in order to assess the SER of a circuit
that utilizes gates with more than three inputs, we need to
split these gates into an equivalent structure that only uses
gates with a maximum of three inputs. Such decomposition,
however, has a very negative effect. First, the number of lo-
cations where SETs may occur in the circuit increases. Sec-
ond, a gate withk inputs has, in general, a lower probability
of masking SETs on its inputs than the same type of gate with
n inputs, wheren > k. Thus, gate decomposition increases
thePsens and, by extension, the SER of a circuit.

To make things even worse, the limited number of gate
inputs results in fewer rewiring opportunities. This happens
because the number of inputs to a gate after rewiring cannot
exceed three, therefore preventing a large number of potential
corrections from being considered. Overall, the potential of
rewiring in reducingPsens is precluded by the input width of
the available gates. Hence, the results reported herein reflect
very conservatively the SER reduction that rewiring would
achieve on the benchmark circuits, should a library of gates
with more than three inputs be supported by SERA.

Our conjecture is that the SER reduction achieved by
rewiring on a logic circuit constructed out of gates with up
to n inputs is higher than the SER reduction of rewiring on
a logic circuit constructed out of gates with up tok inputs,
wherek < n. To support this claim, we plot in Fig. 6 the
SER reduction obtained when the library is restricted to 2-
input gates only, along with the SER reduction when the li-
brary is restricted to all of the supported gates in the library
of SERA (i.e. both 2-input and 3-input gates), for several
benchmark circuits. As can be seen from the figure, the
SER reduction obtained using 2-input gates only is, on av-
erage,56.46% of the SER reduction obtained using 2-input
and 3-input gates. This result corroborates the conjecture that
rewiring-based SER reduction is expected to increase if the
supported library contains wider gates.

As a final note, we would like to comment on the accuracy
and scalability of our method to address the concerns of the
observant reader who may have noticed that results for the
larger of the ISCAS’89 and ITC’99 benchmarks are not in-
cluded in the experiments. The optimization algorithm relies

Figure 6. Comparison Between the SER Reduction
Achieved by Rewiring Using 2-input Gates Only v.s.
Using 2-Input and 3-Input Gates.

on two distinct tools, a rewiring tool and an SER estimation
tool. In its present form, the algorithm employs the ATPG-
based method described in [18] for rewiring and SERA [23]
for SER estimation. The accuracy of the SER reduction re-
sults depends on the approximation and estimation methods
of the underlying SER estimation tool. In terms of scalabil-
ity, ATPG-based rewiring has been shown to require less than
a second to perform rewiring for circuits with more than3K
gates [18], so scalability is not a concern. SERA, on the other
hand, requires a significant amount of time for larger circuits,
hence the lack of results for such benchmarks. However, de-
velopment of SER estimation tools has been a very active re-
search area in recent years [3, 4, 5, 6]. As these tools mature
and become more efficient, methods employing them, such
as the rewiring-based SER reduction described in this paper,
will also be positively affected.

6 Conclusion

In addition to the various design parameters that rewiring
has been shown to improve in the past, this work demon-
strated that rewiring can also be used to reduce the SER of
a circuit. Thus, rewiring provides an excellent basis for con-
structing a unified optimization framework for exploring the
trade-offs between area, power consumption, delay, testa-
bility, and SER. To this end, we described an ATPG-based
rewiring method that generates functionally-equivalent yet
structurally-different implementations of a logic circuit us-
ing a set of simple transformation rules. We demonstrated
how these transformations result in circuit implementations
with reduced SER and we presented a search algorithm that
iteratively evolves a design in order to satisfy a given set of
design objectives. Experimental results on ISCAS’89 and
ITC’99 benchmark circuits verify that SER reduction can be
seamlessly and effectively integrated in the list of objectives
supported by rewiring-based design-space exploration.
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