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Abstract—We propose a new partial-scan algorithm, the first
to use toggling rates of the flip-flops (analyzed using DSP meth-
ods) and Shannon entropy measures of flip-flops to select flip-
flops for scan. This improves the testability of the circuit-under-
test (CUT). Entropy is maximized throughout the circuit to max-
imize the information flow (the principle of maximum entropy),
which improves testability. We propose using partial-scan for
testing, to maximize fault coverage (FC), reduce test volume
(TV), reduce test application time (TAT), and reduce test power
(TP) but we allow for full-scan during silicon debug. Full-scan
is commonly used for testing, to reduce sequential automatic
test-pattern generation (ATPG) to the complexity of combina-
tional ATPG, but comes with serious TV, TAT, and TP overheads.
Partial-scan significantly reduces circuit delay, when compared
to full-scan, because critical flip-flops in the circuit data path
do not have the extra hardware for full-scan, and therefore are
roughly 5% faster, and use 10% less area. This is particularly
critical for microprocessors. The HITEC ATPG program gener-
ated results for this new partial-scan algorithm [1].

I. Introduction

Rapid advancements in chip fabrication technology allow
hundreds of millions of transistors on a single VLSI chip, at the
cost of increased testing difficulty. An Intel Pentium 4 micro-
processor has 55 million transistors. The testing cost is alleviated
by improving the circuit testability, using design-for-testability
(DFT) techniques. Logic DFT consists of ad-hoc and structured
techniques. Structured DFT is further split into scan (full and
partial) and test point insertion (TPI) methods.

Most complex circuits today employ full-scan to improve
testability because it reduces the ATPG problem to a combina-
tional one and full-scan designs are very useful for silicon debug.
Also, scan chain insertion and test generation can be fully auto-
mated, and almost always require little manual DFT. Disadvan-
tages of using full-scan are long scan shifting sequences, over
testing, and higher power consumption. Long scan chains need
long shift sequences, which consume much time because scan-
in and scan-out of shift sequences is done at a lower clock rate
to avoid circuit burnout. Using full-scan also causes the detec-
tion of redundant faults, because in a fully scanned circuit, any
arbitrary state can be achieved, but in normal operation, only a
tiny fraction of these states are legal functional states [2]. This
can cause unnecessary rejection of otherwise fault-free circuits,
resulting in yield loss. We ran SEST [3], a deterministic se-
quential ATPG, on benchmark s9234 (with 6927 total faults)
and it reported 6909 untestable faults in s9234. We then ran

the wavelet sequential ATPG [4] on s9234 with full-scan and the
ATPG detected 6475 faults (93.47% fault coverage), thus over
testing the circuit. The remaining 452 faults are redundant in
full-scan mode, but of the 6475 faults, only 18 faults need to be
tested in functional mode [5]. Since we are shifting sequences
through all flip-flops, the circuit in test mode can consume up to
200% of the normal circuit power [6].

Partial-scan mthods can be categorized as: structure
based [7–11], testability-measure based [12], and test-generation
based [13] methods. Of the three, structure based methods have
been most successful. Some partial-scan algorithms use a com-
bination of testability measures, structural information, and test-
generation information [14]. However, only some of these meth-
ods have been used, because of inadequate fault coverage, se-
vere problems and long computation times for sequential ATPG,
and the need, therefore, to repeat partial-scan insertion many
times. This leads to a number of cycles of partial-scan, sequen-
tial ATPG, and ad hoc testability insertion, which takes too long
compared with full-scan and combinational ATPG. Also, most
of the prior partial-scan methods have not emphasized high fault
coverage, but rather selected the minimal number of flip-flops to
scan. The industry prefers full-scan and combinational ATPG,
because high fault coverage and rapid ATPG are more important
to them than scanning fewer flip-flops. For the present, the com-
parison metric is full-scan and combinational ATPG. Therefore,
we abandon the focus of the prior work on selecting the minimal
number of flip-flops, and instead focus on maximizing the fault
coverage, and minimizing TV and TAT. This means that we will
compare our results in this work to mpscan [12].

Because of the success of spectral sequential ATPG tools, we
propose a spectral partial-scan algorithm, SPARTAN, which dis-
sects the sequential circuit states in the spectral domain. Spec-
tral sequential ATPG tools have attained the highest fault cov-
erages on sequential benchmark circuits, with drastically shorter
test sequences in drastically less CPU time than deterministic
sequential ATPG tools. SPARTAN uses spectral analysis and
entropy analysis for scan flip-flop (SFF) selection by logic simu-
lation with an analysis of the CUT structure. SPARTAN’s results
are compared to Xiang and Patel’s partial-scan algorithm, mp-
scan [12], because mpscan has higher FC and shorter test vector
length (TL) compared to prior partial-scan algorithms that use
only structural information and testability analysis. SPARTAN
achieved a higher FC (an average of 97.6%) compared to mpscan
(an average of 96.7%). The average TV achieved by SPARTAN
is 349 Kbits and the average TAT is 327971 clock cycles.

The paper is organized as follows. Section II reports prior
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work on information theory, information theoretic approaches to
testing, and partial-scan. Section III describes SPARTAN. Sec-
tion IV provides results for ISCAS-89 benchmarks. Section V
concludes and Section VI discusses future work.

II. Prior Work

A. Entropy and Testing

Information theory is useful in combating noise-related er-
rors of communication. Information theoretic measures such
as entropy also apply to physics (statistical mechanics), math-
ematics (probability theory), electrical engineering (communi-
cation theory), and computer science (algorithmic complexity).
Equation 1 shows the general definition of entropy for a random
variable (RV) X with a probability mass function (PMF) p(x).
A PMF is the discrete version of a probability density function
(PDF). Variable x varies over all possible values of X .

H(X) = − ∑
x ∈ X

p(x) log2(p(x)) (1)

Entropy is the number of bits (information), on average, required
to encode a RV.

EXAMPLE 1 – Consider a RV X that has a uniform distribution
and has 32 equiprobable outcomes. The entropy of X is:

H(X) =−
32

∑
x=1

px log2(px) =−32×(
1
32

log2(
1

32
)) = 5 bits (2)

which agrees with the number of bits needed to describe X .
For logic circuits, each line is a RV with 2 possible outcomes

– logic 0 and logic 1. Entropy of a wire is:

H(X) = −((1− p) log2(1− p)+ p log2(p)) (3)

where p is the probability of logic 1 occurring at a line. Equa-
tion 3 is plotted in Figure 1 with H(X = p) on the ordinate and
p on the abscissa. Maximum entropy occurs when 0 and 1 are
equally likely.

Figure 1: H(p) vs. p.

Dussault proposed the first information theoretic testability
measure [15]. Mutual information (MI), I(X ;Y ), in Equation 4 is
a measure of dependence between two RVs. H(X |Y ) is the con-
ditional entropy of a RV X if we know the value of a second RV

Y (see Equation 5) [16]. Equation 6 gives I(X ;Y ), the reduction
in the uncertainty of X due to the knowledge of Y . I(X ;Y ) is 0
if X and Y are independent RVs. For binary logic, X ,Y ∈ (0,1).
Equations 7 – 9 show the proposed testability measures. Circuit
inputs (outputs) are represented by the RV vector X (Y ).

I(X ;Y ) = ∑
x∈X
y∈Y

p(x,y)log2
p(x,y)

p(x)p(y)
= I(Y ;X) (4)

H(X |Y ) = ∑
y∈ Y

p(y)H(X |Y = y) (5)

I(X ;Y ) = H(X)−H(X |Y) (6)

Observability =
1

H(X |Y )
(7)

Controllability =
1

H(Y |X)
(8)

Testability = I(X ;Y ) (9)

H(X |Y ) gives the uncertainty in inputs X given that outputs Y
are known. The less the uncertainty, the greater the amount of in-
formation about inputs reaching the outputs, implying higher ob-
servability. Equation 7 gives the observability since observabil-
ity and uncertainty H(X |Y ) are inversely proportional. Similarly,
Equation 8 gives the controllability. Overall circuit testability is
given by I(X ;Y ), where large values indicate high testability.

Agrawal proposed an information theoretic approach to test-
ing digital circuits [17] and derived the probability P(T ) of de-
tecting a stuck-at fault by a vector sequence T as:

P(T ) = 1−2−
HoT

k (10)

where k is the number of lines through a circuit partition where
the detectable fault exists and Ho is the entropy at the output of
the circuit. Consider a 2-input AND gate with inputs i1, i2, and
output Z. If the probability of logic 0 (logic 1) occurring at the
inputs is 0.5 (0.5), the entropies at the inputs, i1 and i2, are:

Hi1 = Hi2 = −0.5 log2(0.5)−0.5 log2(0.5) = 1.0 (11)

Therefore, the total information present at the inputs is 1+1 = 2.
The probability of logic 0 (logic 1) at output Z is 0.75 (0.25) and
the entropy of Z is:

HZ = −0.25 log2(0.25)−0.75 log2(0.75) = 0.811 (12)

So, the AND gate has information loss of 2.0− 0.811 = 1.189.
Agrawal proposed an ATPG method that reduces the loss (by
increasing entropy) of information and maximizes P(T ) in the
circuit by adjusting the probabilities of 0 and 1 at the inputs.

Thearling and Abraham proposed information theory based
testability measures at the functional level [18] and partitioned
the circuit, to improve testability, using entropy measures.

B. Partial-scan and DFT

Williams and Angell [19] first incorporated full-scan into a
circuit for testing. Agrawal et al. selected a near optimal sub-
set of scan flip-flops [20]. The method tried to achieve a required
test coverage with minimum overhead through the use of a modi-
fied path-oriented decision making (PODEM) automatic test pat-
tern generation program [21]. Cheng and Agrawal [8] presented
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graph-theoretic algorithms to select a minimal set of flip-flops
for eliminating feedback cycles and reducing sequential depth.
Bhawmik et al. based the PASCANT algorithm for selection of
flip-flops on identification and elimination of strongly connected
components (SCCs) in a circuit graph [22].

Chakradhar et al. [7] solved the minimum feedback vertex set
(MFVS) problem for partial-scan with branch-and-bound par-
titioning and pruning techniques using integer linear program-
ming (ILP). Table 1 shows the number of flip-flops that were
selected by different algorithms. Columns LR, Pa, Op, and
PSCAN report data obtained from the Lee and Reddy [23], PAS-
CANT [22], Opus [24], and PSCAN algorithms.

Table 1: Partial-scan results.
Circuit FF Scan Flip-Flops CPU Sec.

LR Pa Op PSCAN Pa Op PSCAN
s953 29 5 5 5 5 0.0 0.1 0.1

s1196 18 0 0 0 0 0.0 0.4 0.0
s1238 18 0 0 0 0 0.0 0.4 0.0
s1423 74 21 37 22 21 0.3 1.0 0.9
s1494 6 5 5 5 5 0.0 0.5 0.1

Xiang and Patel [12] presented a multi-phase partial-scan al-
gorithms (opscan and mpscan). Partial-scan is divided into a
critical cycle breaking phase and a partial flip-flop selection with
respect to conflict resolution phase.

Trischler [25] introduced a simple testability measure to se-
lect scan flip-flops, which is the first testability-analysis based
partial-scan method. Lin et al. used test point insertion to scan
combinational logic paths [26]. Cheng and Lin devised a timing-
driven test point insertion method for full and partial-scan built-
in self-testing (BIST) schemes [27].

Abadir and Breuer created the I-path to analyze an RTL cir-
cuit description to introduce DFT structures [28]. An I-path is a
data channel over which test data flows. It is a subcircuit with
n-bit-wide input and output data ports and control lines such that
data on the input port are reproduced unchanged (but possibly
delayed) on the output port when the control lines are appro-
priately exercised. Buses, MUXes, and parallelin/parallel-out
registers have I-paths, as do cascaded combinations of them.

C. Spectral Techniques

Darmala and Karpovksy have proposed fault detection tech-
niques in combinational circuits using spectral transforms [29,
30]. In many fields such as communications, digital signal
processing, etc., analysis in the spectral (frequency) domain pro-
vides a better intuition of the signal properties than analysis in
the time domain. Spectral techniques have also been used for
fault detection [31] and sequential ATPG [4, 32].

III. The SPARTAN Algorithm

The algorithm analyzes the CUT and selects SFFs using three
measures: spectral analysis of the flip-flop oscillations, entropy
from information theory, and logic gate circuit level informa-
tion to measure observability and controllability. A high quality
SFF set will enhance the testability of the CUT, which allows
the ATPG method to attain high fault coverage with a shorter
test set. We use the spectral analysis and entropy combination
because spectral analysis incorporates only functional informa-
tion and does not use any structural information of the CUT.

A. Spectral Analysis

A.1 Data Structure

SPARTAN uses an s-graph, the logic circuit graph, and logic
simulation. In a sequential circuit, each s-graph node represents
a flip-flop and an edge between two nodes is a path through com-
binational logic between the flip-flops. When the s-graph is con-
densed, each node of a condensed s-graph is called an SCC.

A.2 Spectral Algorithm

Overview. Because of the success of spectral ATPGs, we pro-
pose to dissect the function and structure of sequential circuit
states in the spectral domain. The spectral coefficients (SCs) for
each flip-flop in the CUT, which are coefficients of the flip-flop
states in the spectral domain, are used as a controllability mea-
sure. A low toggling rate flip-flop will have small SC values and
thus is difficult to control. If the average value of the SCs of a
flip-flop is low (low toggling), the flip-flop has low controllabil-
ity and will be a good SFF candidate (see Example 3). A low
toggling flip-flop has bad controllability because regardless of
which vectors are used, then the ATPG will have to apply many
vectors to set the flip-flop to a desired state in order to observe
or sensitize faults. To compute observability, we first find for
each flip-flop the primary outputs (POs) in its fanout cone. We
then compute the SCs of all POs. Then we perform a SC com-
parison of each flip-flop with each PO in its fanout cone. If the
SCs of a flip-flop are identical to SCs of any one of POs in its
fanout cone, we consider that flip-flop observable. We employ an
order 4 Radamacher-Walsh transform (RWT) (an order 3 RWT
is shown in Equation 13) for analyzing states of flip-flops and
POs. First, the state machine is initialized to a randomly-chosen
state. Flip-flop states and PO logic values are obtained via logic
simulation with 50K random vectors [31]. Procedure 1 shows
the spectral analysis and Figure 3 presents the flow chart of the
spectral analysis. Please note that spectral correlation coefficient
and SC will be used interchangeably.

Spectral Correlation Coefficients. The spectral correlation coef-
ficients, for each flip-flop, are obtained by dividing the flip-flop
state over the last n clock periods into chunks (the state vector
is divided into smaller column vectors), Z, and pre-multiplying
each chunk with the RWT of appropriate dimension (see Equa-
tion 14). S is the SC vector. The chunk size for the flip-flop states
depends on the dimension of the RWT used. We use a 16× 16
matrix for our analysis. Matrix dimensions up to 512×512 were
tried, but larger matrices had inconsequential effect on the qual-
ity of the SFF set. Also, it takes less time to perform spectral
analysis using a 16× 16 transform. Since the transform entries
∈ {+1, −1}, we have to translate the flip-flop states to +1 or
−1. We translate 0 →−1 and 1 → +1 because when we calcu-
late the spectral coefficients (a SC is the number of agreements
minus the number of disagreements with the row elements of the
transform matrix), logic 0 and logic 1 should be given equal and
opposite magnitude. This ensures that both logic 0 and logic 1
are weighted equally and provide a contribution in the SCs. For
example, if we have a vector with logic 0’s and logic 1’s and if
we extract spectra (using any matrix transform) from this vector,
the logic 0’s in the vector will have no contribution in the SCs.
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Figure 2 shows the wave representation of the order 3 (8× 8)
RWT. When a bit stream is analyzed using an order 3 transform,
each coefficient tells us how well the bit stream correlates with
each wave in Figure 2 (or matrix row in Equation 13).

RWT (3) =




1 1 1 1 1 1 1 1
1 1 1 1−1−1−1−1
1 1−1−1 1 1−1−1
1−1 1−1 1−1 1−1
1 1−1−1−1−1 1 1
1−1 1−1−1 1−1 1
1−1−1 1 1−1−1 1
1−1−1 1−1 1 1−1




(13)

RWT (3)× [
Z

]
=

[
S

]
(14)

+1

+1

+1

+1

+1

+1

+1

+1

−1

−1

−1

−1

−1

−1

−1

−1

n is Order of Transform

0 1 2 3 4 5 6 7k = 

k = 0 to 2  − 1
n

Complete Interval

Figure 2: Orthogonal Radamacher-Walsh functions for n = 3.

EXAMPLE 2 – In this example we will use the 8× 8 RWT for
analysis. To compute the first SC (s0), row 1 of the 8×8 RWT is
first multiplied with column vector Z, comprised of the flip-flop
state over the last 8 clock periods, to obtain the SC with the first
8 states of the flip-flop. This 8 bits of state is then multiplied
by rows 2 through 8 of RWT(3) to obtain the remaining 7 SCs,
s1 − s7, with the RWT basis vectors. RWT(3) is then multiplied
with bits 2 to 9, bits 3 to 10, and so on of the flip-flop states. The
partial SCs of the flip-flop obtained, after each row of the RWT
is multiplied with the state over the last 8 clock periods, are ag-
gregated and normalized by the number of times multiplication
was performed by row 1 to obtain the first SC s0. Example 3
elaborates the spectral analysis procedure. Multiplication of a
row with a chunk Z is the calculation of the correlation of the
data vector with that matrix row. Here the data vectors are the
first row of the RWT and a state chunk Z.

Controllability
Bad

Controllability
Good

Observability
Bad

Observability
Good

Compare SC_avg of
FF with SC Threshold

with SCs of POs

Compare SCs of FF

in its Fanout Cone

are Marked for Scanning

FFs with Bad Controllability & Bad Observability

Compute SCs
of all FFs and POs

Logic Simulate

FF SC_avg < SC Threshold?

All FFs Considered?

Fanout Cone PO?

SCs of FF == SCs of its

Yes
No Yes No

Begin

Compute SC_avg
of FF

End

Yes

No

Figure 3: SPARTAN’s spectral SFF selection procedure.

EXAMPLE 3 – We use the RWT in Equation 13 for spectral
analysis of a flip-flop F . After ten random vectors at pri-
mary inputs (PIs) of the CUT, F goes through states V =
[1, 0, 1, 1, 0, 1, 1, 0, 0, 0]. After translation, we get V ′ =
[1, −1, 1, 1, −1, 1, 1, −1, −1, −1]. To compute s0, we mul-
tiply row 1 of the RWT with translated bits 1-8, 2-9, and 3-10
of V ′. For bits 1-8 the partial SC is (1× 1)+ (1×−1)+ (1×
1)+ (1×1)+ (1×−1)+ (1×1)+ (1×1)+(1×−1)= 2. For
bits 2-9 the partial SC is (1×−1) + (1× 1) + (1× 1) + (1×
−1)+(1×1)+(1×1)+(1×−1)+(1×−1)= 0 and bits 3-10
give us (1× 1)+ (1× 1)+ (1×−1)+ (1× 1)+ (1× 1)+ (1×
−1)+ (1×−1)+ (1×−1) = 0. The aggregate of partial sums
is 2 + 0 + 0 = 2 and after normalization we get s0 = 2

3 . Normal-
ization is by 3 because there were 3 multiplication operations of
row 1 and three 8-bit chunks (Z) of V ′. This flip-flop will have 8
SCs. Similarly, SCs are computed for other flip-flops.

Procedure 1 – Spectral Analysis (see Figure 3):
1. Logic simulate the CUT with 50K random vectors to obtain

valid FF states and PO values.
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2. Compute SCs of all FFs and POs.
3. Set SCavg MAX = 0 and SCavg MIN = 0.
4. For each flip-flop:

(a) Compute the average of SCs, SCi avg, for flip-flop i with
k = 16 using Equation 15.

(b) If SCi avg ≥ SCavg MAX ⇒ SCavg MAX = SCi avg.
(c) If SCi avg ≤ SCavg MIN ⇒ SCavg MIN = SCi avg.
(d) Compare SCs of FF i with SCs of POs its fanout cone.

i. If SCs of FF i == SCs of any fanout cone PO ⇒
Good Observability(i) = FALSE .

5. Compute the “SC threshold” using Equation 16.
6. For each flip-flop:

(a) If SCi avg < SC T hreshold &&
Good Observability(i) == FALSE ⇒
scan mark(FF(i)) = TRUE .

SCi avg =
∑k

j=1 SCj

k
(15)

SC T hreshold = average( SCavg MIN + (16)

SCavg MAX ) �

After Procedure 1 (Figure 3), spectral analysis gives a list of
candidate flip-flops recommended for scanning. We will scan
only a subset of this list. If a flip-flop only has paths to it from
other flip-flops, we automatically scan it. Next, we set the
scanning threshold (ST) to 25% of the total FFs in the circuit.
This gives us the size of the subset (of initial candidate FF list
from Procedure 1) that will eventaully be scanned. ST can be
varied and 25% gave the best results. Once ST is set, we start
scanning FFs from the list of FFs marked as candidates for
scanning by Procedure 1, starting with FFs belonging to the
largest SCC because it will help us break bigger cycles in the
circuit. Once all the marked FFs in a SCC are scanned, the SCC
is marked as ‘visited’ and cannot be revisited. If the number of
scanned FFs is less than ST, we move to subsequent SCCs of
the circuit. The procedure is Procedure 1a (see Figure 4).

Procedure 1a – SFF Selection After Spectral Analysis:
1. Number of SFFs, numScanFF = 0.
2. Largest SCC size, maxSCCSz = 0.
3. Each SCC’s scan flag, SCC(i) scanned = FALSE .
4. while numScanFF < ST

(a) For each SCC i:/*Locate largest SCC not visited yet.*/
i. If SCC(i) scanned == FALSE

A. If SCC(i) size > maxSCCSz ⇒ maxSCCSz =
SCC(i) size and SCC max = SCC(i).

(a) For each flip-flop, FF(i), in SCC max:
i. If scan mark(FF(i)) == T RUE

A. scan(FF(i)) = T RUE and numScanFF ++.
B. If numScanFF > ST ⇒break for-loop (Step 4a).

(b) SCC(i) scanned = TRUE .

A.3 Computational Complexity

Complexity of Procedure 1. Assume that the cut has N logic
gates, L lines, F flip-flops, P POs, and PFO POs in a flip-flop’s
fanout cone. Also, the CUT is logic simulated using V vectors.
To find SCCs, we need to perform depth-first search (DFS) on
the s-graph. The complexity if DFS is O(N + L). The complex-
ity of Step 1 is O(VN). Step 2 has a cost of O((F + P)× (V −

SCC(i)_scanned = FALSE
For each SCC i set

Find Largest SCC i such
that SCC(i)_scanned = FALSE

End

SCC(i)_scan = TRUE

Compute Scan
Threshold (ST)

SCC Considered?
All FFs in current

For a FF in current SCC
check scan_mark(FF)

scan(F) = TRUE and
numScanFF++

scan_mark(FF)==TRUE?

numScanFF>ST?

Yes

No

Yes

No

Yes

Begin

Figure 4: Procedure 1a – SPARTAN’s spectral SFF selection.

(16− 1))× 256). The loop in Step 4 compares each flip-flop’s
SCs with SCs of all POs in its fanout cone. Since there are 16
coefficients for each PO and PFO POs in each flip-flop’s fanout
cone, we get a total complexity of O(F × (16×PFO)). The com-
plexity of the Step 6 loop is O(F). Steps 3 and 5 use constant
time. So, the total computational complexity of Procedure 1 is
approximately O((N + E)+VN +(F + P)V + F ×PFO).

Complexity of Procedure 1a. Assume that there are S SCCs in
the circuit, FSCC flip-flops in each SCC, and ST is the scan
threshold. The Step 4 loop’s complexity in Procedure 1a is
O(ST (S + FSCC)).

B. Entropy Analysis

Agrawal’s Work. Agrawal showed that the testability of a circuit
can be improved by increasing entropy at the POs [17]. SPAR-
TAN uses entropy H as a testability measure to select scan flip-
flops such that the entropy of unscanned flip-flops in the CUT is
enhanced. We conjecture that increasing the entropy of a line l in
the circuit is akin to increasing the controllability of l. Figure 1
shows that entropy is maximum when logic 0 and logic 1 are
equally likely, i.e., the probabilities of logic 0 (p(0)) and logic 1
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(p(1)) occurring are equal (p(0) = p(1) = 0.5). Then, control-
ling l to 0 or 1 from PIs should become easier, thus increasing l’s
controllability. The entropy analysis uses random-pattern testa-
bility analysis since p(1) and p(0) are required to compute en-
tropy [33]. Using entropy analysis is analogous to using Fourier
analysis. Given the time domain data, Fourier analysis gives the
spectral components of the data. Similarly, p(0) and p(1) of
each line in the circuit are like time domain data and the entropy
analysis gives us the amount of information on each line.

Cycle Breaking. Breaking cycles in the s-graph of the CUT im-
proves testability [7, 8, 34, 35]. Entropy analysis uses the SCC
information for selecting the best scan candidates because SCCs
capture direct and indirect paths from a flip-flop to every other
flip-flop in the same SCC. Each flip-flop in a SCC lies on at least
one cycle. Flip-flops from different SCCs cannot lie on any cycle
together because if these two flip-flops were reachable from each
other, they would be included in the same SCC and not different
SCCs. Therefore, we perform entropy analysis on one SCC at a
time in an effort to break cycles (since flip-flops from two dis-
tinct SCCs cannot be in any cycle together) in all the SCCs and
improve the CUT’s testability.

Probability Calculation. We use logic simulation to compute the
probabilities, which are then used to compute flip-flop entropies.
Parker and McCluskey’s probability expressions (PMEs) to com-
pute probabilities can also be used [33]. Even though PMEs pro-
vide a quick method for approximating probability values, we
used probability values obtained via logic simulations because
they are more accurate. Table 2 shows the probability and en-
tropy values, of benchmark s820, for the deterministic method
(PME) and logic simulation. The first column is the flip-flop
number, the second is the probability, psim(1), of a logic 1 ob-
tained via logic simulation and the third is the corresponding
entropy value Hsim. Similarly, the fourth column is the proba-
bility, pdet(1), of a logic 1 obtained using PMEs [33] and the
fifth column is the corresponding entropy value Hdet . The sixth
column is the difference in entropy values for the two methods.
Entropy values for the two methods are not identical because
PMEs assume that each line in the CUT is independent, which
is not accurate. Since logic simulation accounts for correlation
among signal lines in the CUT, probability values obtained via
logic simulation are more accurate.

Table 2: Experimental and deterministic values for probability
of logic 1 (p(1)) and entropy (H) for s820.

DFF Simulation Deterministic % Entropy
psim(1) Hsim pdet(1) Hdet Difference

1 0.329 0.914 0.272 0.844 7.66
2 0.036 0.222 0.019 0.136 38.74
3 0.037 0.227 0.046 0.267 17.62
4 0.044 0.260 0.076 0.387 48.85
5 0.137 0.576 0.106 0.487 15.45

Avg. 0.440 0.424 25.66

Entropy for Scan Flip-Flop Selection. First, we initialize the
state machine to a random state, and we logic simulate it us-
ing 50,000 random vectors to compute the probabilities. After
all of the probabilities are computed, they are used to compute
the entropy, Hi(Q), using Equation 3 and conditional entropies,

Hi(D|PIj), and Hi(Q|POk), using Equation 5 for each flip-flop i.
Hi(Q) is the information at flip-flop i. Hi(D|PIj) is the informa-
tion (controllability) on flip-flop i’s input given a logic value (0
or 1) on the jth PI, PI j, in its fanin cone. Similarly, Hi(Q|POk)
is the amount of information (observability) on flip-flop i’s out-
put given a logic value on the kth PO, POk, in its fanout cone.
The number of controllability values (Hi(D|PI)) for flip-flop i
depends on the number of PIs in its fanin and the number of ob-
servability values (Hi(Q|PO)) depends on the number of POs in
its fanout. Then, for each flip-flop i, we compute the average
controllability and observability values using Equations 17 and
18, where p (q) is the number of PIs (POs) in the fanin (fanout)
cone of flip-flop i. We maximize the information flow through
the circuit and unscanned flip-flops. Increasing the information
flow in the circuit is analogous to increasing the testability.

Hi avg(D|PI) =
∑p

x=1 Hi(D|PIx)
p

(17)

Hi avg(Q|PO) =
∑q

x=1 Hi(Q|POx)
q

(18)

So far we have Hi(Q), Hi avg(D|PI), and Hi avg(Q|PO) val-
ues for each flip-flop i. Now we need average values H(Q) j,
H(D|PI) j, and H(Q|PO) j for any SCC j . Equations 19, 20, and
21 compute the average entropy values for any SCC j where m is
the number of nodes in SCC j.

H(Q) j =
∑m

i=1 Hi(Q)
m

(19)

H(D|PI) j =
∑m

i=1 Hi avg(D|PI)
m

(20)

H(Q|PO) j =
∑m

i=1 Hi avg(Q|PO)
m

(21)

Similarly, other SCCs’ average entropies are computed. For each
SCC (of size > 1), the algorithm checks to see which flip-flops
in the SCC, if scanned, will cause an increase in the average en-
tropy values of the SCC. It does so by making the flip-flop’s input
a pseudo-primary output (PPO) and its output a pseudo-primary
input (PPI). It then performs logic simulation to to recompute
the probabilities of the circuit. This flip-flop is marked as ‘tried.’
Initially all flip-flops are marked as ‘not tried.’ Since any flip-
flop in a SCC has a direct or indirect path to every other flip-flop
in that SCC, scanning a flip-flop will affect the probabilities of
all of the unscanned flip-flops in that SCC and possibly other
SCCs.This means that scanning a flip-flop in SCC j will change
the entropies of the unscanned flip-flops and thus the average
entropy of the SCC j will change. The new average entropy val-
ues of SCC j become H(Q) ′

j , H(D|PI) ′
j , and H(Q|PO) ′

j . The
changes in average entropy values are given in Equations 22, 23,
and 24.

�H(Q) j = H(Q) ′
j −H(Q) j (22)

�H(D|PI) j = H(D|PI) ′
j −H(D|PI) j (23)

�H(Q|PO) j = H(Q|PO) ′
j −H(Q|PO) j (24)

If any one of the average entropy values (H(Q) ′
j , H(D|PI) ′

j , and
H(Q|PO) ′

j ) of SCC j , after selecting the flip-flop (currently being
considered for scanning), increases at all, the flip-flop is marked
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as a good candidate for scanning because it increased the con-
trollability and observability of other flip-flops in the SCC. The
remaining flip-flops in the SCC are then ‘tried’ for scanning, one
at a time, and the ones that increase the average entropy val-
ues of the SCC are marked as good choices for scanning. After
all of the flip-flops have been tried for scanning, the flip-flops
that were marked for scanning are scanned (and converted into
pseudo-primary inputs (PPIs) and PPOs). Procedure 2 is the en-
tropy analysis algorithm (flowchart in Figure 5).

for all FFs

f

(Equations 19,20 and 21)

f

f_avg
H’     (D|PI) and H’     (Q|PO)

f_avg

H’  (Q)>H  (Q)
f for

H’    (D|PI)>H    (D|PI)
f_avg f_avg

or

H’    (Q|PO)>H    (Q|PO)
f_avg f_avg

scan(f)=TRUE

‘tried’ all FFs in
current SCC?

Tried all
SCCs?

Go to next SCC

Yes

Yes

Yes

No

No

No

Originial Netlist

End

H     (D|PI) and H     (Q|PO)
f_avg f_avg

Logic simulate and
obtain p(0) and p(1)

For each FF f,
calculate H  (Q)

For current SCC,
calculate avg. entropy values

For an unscanned FF f in current
SCC, ‘not tried’, try scanning f

Perform logic simulation with

new p(0) and p(1) values
f as scan FF to compute

Compute new H’  (Q)

Figure 5: Procedure 2 – SPARTAN’s entropy SFF selection.

Procedure 2 – Entropy Analysis:
1. Logic simulate to compute values of p(0) and p(1) for all

flip-flops.
2. For each flip-flop f :

(a) Use p f (0) and p f (1) to calculate entropy values Hf (Q),
Hf avg(D|PI), and Hf avg(Q|PO).

3. For each SCC S:
(a) Calculate average entropy values of SCC using Equa-

tions 19, 20, and 21.
i. For each unscanned and ‘not tried’ flip-flop f in the cur-

rent SCC:

A. Try scanning f (mark it ‘tried’) by converting its
input (output) into a PPO (PPI). Perform logic
simulation and compute new probabilities.

B. Backup S’s original average entropy values H(Q)S,
H(D|PI)S, and H(Q|PO)S. Then compute S’s
new average entropy values H(Q) ′

S, H(D|PI) ′
S,

and H(Q|PO) ′
S from updated probability values.

C. If
H(Q) ′S−H(Q)S

H(Q)S
> 0.0 || H(D|PI) ′S−H(D|PI)S

H(D|PI)S
> 0.0 ||

H(Q|PO) ′S−H(Q|PO)S
H(Q|PO)S

> 0.0 by scanning f , ‘flag’ f
as a candidate for scanning.

ii. If the number of ‘flagged’ flip-flops is = 0:
A. No scan flip-flop is chosen from the SCC S – try the

remaining untried SCCs. �

B.1 Computational Complexity

Computational Complexity of Procedure 2. Assume there are N
logic gates, F flip-flops, and S SCCs in the CUT. Each SCC
has FSCC flip-flops and the CUT is logic simulated with V vec-
tors. The complexity of Step 1 is O(VN), and of Step 2 is
O(F). For each SCC, Step 3 calculates the average entropy in
Step 3a, tries each flip-flop as a scan candidate in Step 3aiA,
and logic simulates (to compute updated probability values) in
Step 3aiB. The complexity for average calculation is O(FSCC)
and the complexity of trying each flip-flop and logic simulating
after each try is O(FSCC(V N)). So, the total complexity of Step
3 is O(S(FSCC(VN + 1))). The total complexity of Procedure 2
is approximately O(VN(SFSCC + 1)).

C. Combined Analysis

Note that entropy analysis is applied to SCCs with cardinality
> 1 and spectral analysis is done on all flip-flops. SPARTAN
first performs the spectral analysis and then the entropy analysis.
A flip-flop is selected for scan if it is picked by both the spectral
and the entropy analysis, and if it is more than 4 levels away from
a PI and more than 4 levels away from a PO. Figure 6 shows
SPARTAN’s flow chart and Algorithm 1 is the algorithm.

Algorithm 1 – The SPARTAN Algorithm.

Input: Circuit netlist.
Output: Modified circuit netlist with scan flip-flops.

SPARTAN (CIRCUIT)
{

1. Construct the s-graph from netlist;

2. Condense s-graph to obtain SCCs;

3. Perform logic simulation with 50K random vectors;

4. Perform spectral analysis via Procedures 1 and 1a in
Section III A to obtain SCs for all flip-flops;

5. Select spectral analysis based scan flip-flops;

6. Perform entropy analysis via Procedure 2 in
Section III B to obtain entropy for all flip-flops;

7. Select entropy analysis based scan flip-flops;

8. Flip-flops selected by both methods are scanned;

9. If more scanning is required, go to Step 3. Else, exit.
}

Paper 21.1 INTERNATIONAL TEST CONFERENCE 7



Original Netlist

End

SFF Selection
 Complete?

Modification
Circuit

Perform Entropy

Analysis

obtain SCCs
Construct s−graph and

Perform Spectral 
Analysis

Choose flip−flops selected by 
both methods for scanning

Yes

No

Figure 6: SPARTAN’s SFF selection procedure.

IV. Results

We first evaluated whether spectral analysis was sufficient for
partial-scan insertion. Table 3 shows results for partial scanning
using only spectral analysis. We simulated 50,000 random vec-
tors for each circuit, because prior work used that number. This
could be improved by making the number proportional to the
number of PIs. The other parameter, ST (scanning threshold),
was set to 25% of the flip-flops, which gave the best results, on
average. The best result (FC, TL, TV, and TAT) for each bench-
mark is shown in bold in each table. We compare our results
to the mpscan results, as they had the highest fault coverage of
any partial-scan method previously reported. HITEC is used to
generate test patterns for all three tables discussed below.

We added entropy analysis to spectral analysis because the en-
tropy analysis uses structural (SCC) and functional (logic prob-
abilities) information to select flip-flops [22]. The two analyses
together will use both structural and functional analysis to im-
prove the quality of the scan set. Table 4 shows results with
SPARTAN using a combination of spectral and entropy analysis
to select scan flip-flops for ISCAS-89 benchmarks. Column 4
gives the number of SFFs, column 5 is the fault coverage (FC),
column 6 is the test efficiency (TE) or fault efficiency, column 7
is the TL, column 8 is the test volume (TV), and column 9 is the

test application time (TAT) for SPARTAN.

TV = # o f test vectors× (# PIs+ # o f SFFs) (25)

TAT = # o f SFF ×TL (26)

Similarly, columns 11 to 16 of Table 4 report the results for Xi-
ang and Patel’s partial-scan algorithm, mpscan [12]. Method mp-
scan has better results for TL, TV, and TAT than SPARTAN for
smaller circuits, but SPARTAN gets a better result than mpscan
as circuit size increases. SPARTAN gets an average of 97.6%
FC and 99.7% TE, while mpscan’s average FC is 96.7%. SPAR-
TAN’s average TV is 349 Kbits, whereas mpscan’s average TV
is 361 Kbits. The TAT is the number of clock cycles required
to shift data into the scan chain (see Equation 26). SPARTAN’s
average TAT is 327971 cycles and mpscan attained 306376 cy-
cles. SPARTAN’s average TAT is 6.58% longer than mpscan,
but SPARTAN has a higher FC and TE and lower TV and TAT
than mpscan for the larger benchmarks. SPARTAN has a higher
FC for s9234 and 34.6% lower TV and 23.3% lower TAT. For
s15850, SPARTAN has a higher FC and TE and 21.4% lower TV
and 1.1% lower TAT. For s38417, SPARTAN also has a higher
FC and TE and 11.4% lower TV and 6.4% lower TAT.

Table 5 shows SPARTAN results after compaction was applied
to the HITEC vectors generated for the circuit with DFT using
the spectral ATPG compactor [4]. This not only greatly com-
pacted the vectors, but also slightly improved FC. In Table 5, on
average, SPARTAN’s TV is 23.5% lower than mpscan and TAT
is 15.1% is shorter than mpscan. Although data and control lines
have different testability requirements, we have no information
about which lines are data vs. control in the ISCAS ’89 circuits,
so we treat both kinds of lines identically. Also, this partial-scan
method can support multiple scan chains.

V. Conclusion

We proposed a new partial-scan algorithm that is the first algo-
rithm that uses both spectral and entropy analysis to select scan
flip-flops. Difficult to control flip-flops have an adverse effect on
the testability of the circuit. The first idea here is to scan flip-
flops that greatly increase the controllability of unscanned flip-
flops. Low toggling flip-flops are difficult to control from PIs.
Spectral analysis helps the algorithm to find flip-flops that have
low activity. From the results shown in Table 4, we can safely
deduce that spectral analysis gives us information regarding the
toggling activity of each flip-flop.

The second idea involves scanning flip-flops such that infor-
mation flow through unscanned flip-flops from PIs is improved.
In other words increasing information flow (entropy) through the
circuit improves circuit testability. If the amount of information
passing through a flip-flop is high, the controllability and observ-
ability of the flip-flop is high. The entropy analysis combined
with spectral analysis gave us a higher FC and TE than mpscan.
The TV and TAT are comparable to mpscan and SPARTAN does
better than mpscan on the large benchmarks.

VI. Future Work

We need a formal proof that the increase in entropy of a
flip-flop is analogous to increasing its controllability. We are
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Table 3: ISCAS-89 benchmark results for spectral analysis only compared to mpscan [12].
Ckt. PIs FFs SPARTAN mpscan [12]

SFF FC TE TL TV TAT CPU SFF FC TE TL TV TAT
(%) (%) (bits) (cycles) Time (s) (%) (%) (bits) (cycles)

s298 3 14 4 99.00 100.00 161 1127 644 4 2 98.7 100.0 160 800 320
s344 9 15 7 99.70 100.00 75 1200 525 7 3 99.4 100.0 141 1692 423
s349 9 15 7 99.10 100.00 52 832 364 4 3 98.9 100.0 161 1932 483
s382 3 21 13 99.75 100.00 108 1728 1404 17 6 99.0 100.0 168 1512 1008
s386 7 6 4 100.00 100.00 217 2387 868 9 4 100.0 100.0 205 2255 820
s400 4 21 10 97.90 100.00 113 1582 1130 9 4 95.8 100.0 394 3152 1576
s444 3 21 13 96.80 100.00 92 1472 1196 11 6 96.2 100.0 193 1737 1158
s526 3 21 15 99.80 100.00 182 3276 2730 23 10 99.3 100.0 273 3549 2730
s641 35 19 12 100.00 100.00 147 6909 1764 19 1 99.4 100.0 286 5720 286
s713 35 21 9 93.10 100.00 186 8184 1674 13 1 92.9 100.0 310 11160 310
s820 18 5 2 100.00 100.00 679 13580 1358 6 2 100.0 100.0 602 12040 1204
s953 16 29 6 100.00 100.00 252 5544 1512 19 3 100.0 100.0 339 6441 1017

s1423 17 74 58 98.10 99.70 246 18450 14268 276 41 98.1 99.7 397 23026 16277
s1488 8 6 4 100.00 100.00 406 4872 1624 23 2 100.0 100.0 639 6390 1278
s1494 8 6 4 99.20 100.00 391 4692 1564 22 2 99.1 100.0 622 6220 1244
s5378 35 179 79 97.00 99.90 1100 125400 86900 123 50 97.2 100.0 1023 86955 51150
s9234 19 228 177 94.30 98.70 1332 261072 235764 33480 97 93.0 98.6 3114 361224 302058

s13207 31 669 336 85.92 98.40 7452 2734884 2503872 6390 58 85.6 95.8 9805 872645 568690
s15850 77 534 365 89.41 99.00 3402 1503684 1241730 46140 180 94.8 99.9 4527 1163439 814860
s35932 35 1728 433 89.80 99.99 456 213408 197448 1617 150 89.8 100.0 252 46620 37800
s38417 28 1636 946 95.20 96.50 5393 5252782 5101778 5040 400 94.5 96.0 11573 4953244 4629200
s38584 12 1452 651 89.50 94.80 7568 5017584 4926768 31615 - - - - - -

Avg. 96.90 99.60 1069 484145 447624 4441 96.7 99.5 1675 360560 306376
w/o s38584

Table 4: ISCAS-89 benchmark results for SPARTAN (spectral with entropy) compared to mpscan [12].
Ckt. PIs FFs SPARTAN mpscan [12]

SFF FC TE TL TV TAT CPU SFF FC TE TL TV TAT
(%) (%) (bits) (cycles) Time (s) (%) (%) (bits) (cycles)

s298 3 14 11 99.70 100.00 93 1302 1023 27 2 98.7 100.0 160 800 320
s344 9 15 7 99.70 100.00 75 1200 525 55 3 99.4 100.0 141 1692 423
s349 9 15 8 99.10 100.00 35 595 280 57 3 98.9 100.0 161 1932 483
s382 3 21 17 99.00 100.00 142 2840 2414 59 6 99.0 100.0 168 1512 1008
s386 7 6 4 100.00 100.00 217 2387 868 11 4 100.0 100.0 205 2255 820
s400 4 21 16 94.60 100.00 109 2180 1744 19 4 95.8 100.0 394 3152 1576
s444 3 21 18 96.80 100.00 171 3591 3078 43 6 96.2 100.0 193 1737 1158
s526 3 21 19 99.80 100.00 176 3872 3344 143 10 99.3 100.0 273 3549 2730
s641 35 19 9 99.40 100.00 235 10340 2115 79 1 99.4 100.0 286 5720 286
s713 35 21 9 92.90 100.00 231 10164 2079 65 1 92.9 100.0 310 11160 310
s820 18 5 2 100.00 100.00 679 13580 1358 10 2 100.0 100.0 602 12040 1204
s953 16 29 23 100.00 100.00 234 9126 5382 127 3 100.0 100.0 339 6441 1017

s1423 17 74 63 98.50 99.30 227 18160 14301 673 41 98.1 99.7 397 23026 16277
s1488 8 6 5 100.00 100.00 347 4511 1735 127 2 100.0 100.0 639 6390 1278
s1494 8 6 4 99.20 100.00 445 5340 1780 124 2 99.1 100.0 622 6220 1244
s5378 35 179 114 98.96 99.90 1165 173585 132810 2443 50 97.2 100.0 1023 86955 51150
s9234 19 228 199 93.40 98.60 1231 268358 244969 4658 97 93.0 98.6 3114 361224 302058

s13207 31 669 496 98.00 100.00 2360 1243720 1170560 8915 58 85.6 95.8 9805 872645 568690
s15850 77 534 407 95.10 99.96 1980 958320 805860 34075 180 94.8 99.9 4527 1163439 814860
s35932 35 1728 477 89.80 99.99 298 152576 142146 101435 150 89.8 100.0 252 46620 37800
s38417 28 1636 1249 96.00 96.70 3482 4446514 4349018 43670 400 94.5 96.0 11573 4953244 4629200

Avg. 97.60 99.70 663 349155 327971 9372 96.7 99.5 1675 360560 306376

currently working on an algorithm that will use spectral and
entropy analysis for test point insertion.
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