
Paper 25.1 INTERNATIONAL TEST CONFERENCE 1
978-1-4244-7207-9/10/$26.00 ©2010 IEEE 978-1-4244-4867-8/09/$25.00 ©2010 IEEE

MT-SBST: Self-Test Optimization in Multithreaded Multicore Architectures

N. Foutris1 M. Psarakis1 D. Gizopoulos1 A. Apostolakis1
X. Vera2 A. Gonzalez2

1 University of Piraeus, Department of Informatics, Greece
{nfoutr | mpsarak | dgizop | andapo}@unipi.gr

2 Intel Barcelona Research Center, Intel Labs-UPC, Barcelona, Spain
{xavier.vera | antonio.gonzalez}@intel.com

Abstract
Instruction-based or software-based self-testing (SBST) is a
scalable functional testing paradigm that has gained increasing
acceptance in testing of single-threaded uniprocessors. Recent
computer architecture trends towards chip multiprocessing and
multithreading have raised new challenges in the test process. In
this paper, we present a novel self-test optimization strategy for
multithreaded, multicore microprocessor architectures and apply
it to both manufacturing testing (execution from on-chip cache
memory) and post-silicon validation (execution from main
memory) setups. The proposed self-test program execution
optimization aims to: (a) take maximum advantage of the
available execution parallelism provided by multiple threads and
multiple cores, (b) preserve the high fault coverage that single-
thread execution provides for the processor components, and (c)
enhance the fault coverage of the thread-specific control logic of
the multithreaded multiprocessor. The proposed multithreaded
(MT) SBST methodology generates an efficient multithreaded
version of the test program and schedules the resulting test
threads into the hardware threads of the processor to reduce the
overall test execution time and on the same time to increase the
overall fault coverage. We demonstrate our methodology in the
OpenSPARC T1 processor model which integrates eight CPU
cores, each one supporting four hardware threads. MT-SBST
methodology and scheduling algorithm significantly speeds up
self-test time at both the core level (3.6 times) and the processor
level (6.0 times) against single-threaded execution, while at the
same time it improves the overall fault coverage. Compared with
straightforward multithreaded execution, it reduces the self-test
time at both the core level and the processor level by 33% and
20%, respectively. Overall, MT-SBST reaches more than 91%
stuck-at fault coverage for the functional units and 88% for the
entire chip multiprocessor, a total of more than 1.5M logic gates.

1. Introduction
The physical limits of semiconductor microelectronics
have become a major concern in manufacturing
technology. The diminishing gains in processor’s
performance due to the increasing gap between processor
and memory speed (memory wall), the absence of enough
parallelism in single instruction streams (ILP wall) and the
escalation in power consumption (power wall) motivate
computer architects to look at different directions for next
processor generations.
Current microprocessor industry trend is towards the
development of chip multiprocessors (CMP) and chip
multithreaded (CMT) architectures which although
operate at lower frequencies are able to deliver higher

performance exploiting thread-level (intra-core) or
processor-level (inter-core) execution parallelism.
However, to cope with this industry trend, the test
technology community has to explore the effective porting
from the uniprocessor era to the multiprocessor era (CMP
and CMT architectures) of all test and validation
techniques, that have been recently devised to deal with
the emerging reliability problems of modern
microprocessors [1], [2]. The main objective of this
porting of test techniques to multithreaded multiprocessors
should be the exploitation of the execution parallelism of
the new processor architectures to avoid excessive scaling
of the overall test time. As a consequence, it will reduce
test cost and improve time-to-market without degrading
the effectiveness of the test techniques in terms of their
fault detection capabilities (fault coverage).
Software-Based Self-Testing (SBST) [3]–[15] is a testing
method that has gained increasing acceptance with major
microprocessor vendors and today forms an integral part
of the manufacturing test flow of single-threaded
processors. The SBST key idea is to exploit the instruction
set architecture and on-chip programmable resources to
execute effective self-test programs. The use of SBST
methodologies contributes to the reduction of yield loss,
while its non-intrusive nature does not require any
processor hardware modification. In addition, at-speed
testing ability enables screening of timing defects that do
not manifest themselves at lower frequencies [12].
The effective application of SBST to multithreaded
multicore architectures poses significant challenges: (i)
porting of existing test programs from the single-threaded,
unicore case to efficiently test all the individual cores; (ii)
providing sufficient fault coverage for the thread-specific
control logic, which is a significant portion of the control
logic in the multithreaded architectures; (iii) exploitation
of thread-level and core-level parallelism to reduce test
execution time; and (iv) avoiding the scaling of test
program memory footprint with the number of cores.
Software-based approaches for the manufacturing testing
of CMP and CMT architectures have been proposed in
[13], [14], and [15]. Bayraktaroglu et al. [13] proposed the
conversion of existing legacy tests, either hand-written or
randomly-generated to test the multithreaded cores of the
CMT architecture of UltraSPARC T1. They described
how a software-based cache-resident test methodology
can be utilized during the manufacturing test flow of a

Paper 25.1 INTERNATIONAL TEST CONFERENCE 2

commercial multicore chip, UltraSPARC T1, and applied
by a low-cost external tester. In [13], the CPU cores of the
CMT architecture execute the test program sequentially
while the other cores are disabled; this scheme eliminates
the need for replicating the test program for each
processor core but it does not exploit either the core-level
parallelism or the thread-level parallelism of the
architecture, thus, it does not satisfy one of the main
objectives of a multithreaded SBST methodology.
Apostolakis et al. [14] considered the application of SBST
to bus-based CMP architectures consisting of multiple
single-threaded cores of OpenRISC 1200 processor. A
scheduling methodology has been proposed for the test
routines to exploit core-level parallelism and minimize the
time overheads coming from the memory subsystem in
order to reduce the total test execution time. The work of
[14] exploits only the core-level execution parallelism of a
single-threaded CMP architecture. A first approach on the
application of SBST in the CMT architecture of
OpenSPARC T1 processor for manufacturing testing only,
was proposed in [15] where thread-level parallelism is
exploited to reduce self-test execution time. In [15], the
impact of the test program scheduling in the fault coverage
of the thread-specific control logic and the shared
functional units of the OpenSPARC T1 processor were not
taken into consideration. Overall, none of the above
approaches considers the case of self-test program
execution from main memory (as in a post-silicon
validation setup), where the cache-residence limitation
does not apply and a main memory subsystem is available
to store the test program.
In this paper, we present, for first time, a complete
multithreaded software-based self-testing (MT-SBST)
methodology that targets both the optimization of test
execution time and the improvement of the fault coverage
of the thread-specific control logic. First, we assess the
impact of test routine scheduling in the fault coverage of
hard-to-test control structures: the thread-switch logic
inside the processor cores and the thread-specific control
logic of the shared components outside the processor
cores. Subsequently, we propose a multithread scheduling
algorithm that achieves a very efficient balance between
self-test program execution time and fault coverage of the
thread-specific control logic. The algorithm is solely based
on easy-to-obtain runtime statistics of the single-threaded
execution of the self-test program. In particular, our
proposed MT-SBST methodology performs the following:
• Test program development for all the functional units

of a CMT multiprocessor architecture.
• Test program profiling, without multiple time-

consuming simulations, from single-threaded unicore
execution.

• Assessment of the impact of the multithreaded
execution of test program on the fault coverage of the
thread-specific control logic.

• Test program scheduling to take advantage of thread-
level parallelism and speedup execution of its test
routines for the on-core functional units, and core-
level parallelism to speedup the execution of its test
routines for the off-core shared functional units. At
the same time, our scheduling improves the fault
coverage for those structures.

We fully apply the proposed methodology in a complex
publicly available CMT processor architecture,
OpenSPARC T1 [16] consisting of 8 cores and 32 threads.
Our experimental results show that the proposed
multithread scheduling algorithm significantly speeds up
the execution time of test program at both the core-level
(up to 3.6X) and the processor-level (up to 6.0X)
compared to the single-threaded execution. Furthermore,
compared to straightforward multithreaded execution of
the test program the proposed multithread schedule
reduces test execution time at the core-level and the
processor-level by more than 33% and 20%, respectively.
On top of these significant speed improvements, and
despite its much shorter execution time, the proposed MT-
SBST schedule improves the fault coverage of the thread
switch logic of each core by about 10% compared to the
straightforward multithreaded version. Overall, our
methodology guarantees high stuck-at fault coverage
levels: more than 91% for the functional units (all integer
functional units of the eight cores and the off-core shared
floating point unit) and more than 88% for the logic of the
entire processor (including the functional units, the thread
switch logic and the interconnection networking, which all
together count about 1.5M logic gates).
The rest of the paper is organized as follows: Section 2
provides an overview of SBST, for single threaded and
multithreaded architectures. Section 3 provides a detailed
analysis of the proposed MT-SBST methodology and
Section 4 presents the experimental results. Finally,
Section 5 concludes the paper.

2. Software-Based Self-Testing Overview
2.1 SBST of single-threaded processors
The basic concept of software-based self-testing (SBST)
for a single-threaded uniprocessor is described in detail in
[12], along with its position in the testing process. A test
program is executed by the processor at normal mode of
operation. The test instruction sequences usually load test
patterns from memory (or generate them internally) and
apply operations to excite faults in hardware components.
Fault propagation is performed executing instructions that
store test responses into data memory, from which they
can be uploaded and evaluated by an external (low-cost)
tester. A key task of an SBST methodology is the
generation of test instruction sequences that can
effectively test the processor modules and reach high fault
coverage. Several recent works have proposed efficient
test program generation methodologies that target different
modules of single-threaded microprocessor cores, such as

Paper 25.1 INTERNATIONAL TEST CONFERENCE 3

integer functional units [4], [5], [6], pipeline control logic
[7], [8], speculative mechanisms [9] and floating-point
units [11]. Today, SBST forms an integral part of the
manufacturing test flow [3], [13] of top-end processors,
and its role is complementary to other traditional testing
methods, either structural like scan-based test or BIST, or
functional using external testers [12]. SBST improves the
overall test quality without requiring any hardware
modification or extra test equipment.
SBST is also a potentially effective solution for post-
silicon validation. Execution of verification tests in early
silicon prototypes is orders of magnitude faster than
simulation-based verification tests and this enables
designers to apply more comprehensive tests within a
limited time period [17]. However, developing testbenches
for post-silicon validation is a tedious task since it suffers
from limited internal node observability compared to the
full signal observability that a pre-silicon, simulation-
based environment offers. This problem is exacerbated in
multithreaded, multicore architectures because of their
more complex control logic (for thread scheduling and
synchronization) and memory subsystems (cache
coherence mechanisms) [18]. Therefore, utilization of self-
test programs from manufacturing testing as a starting
point or using SBST methodologies to enhance the
controllability and observability of functional verification
tests (i.e. legacy tests) [19] could be a very efficient
solution for the generation of effective post-silicon
validation tests.
Consequently, SBST can be a key part of an efficient flow
for manufacturing testing and post-silicon validation
stages, and in this paper we study both cases. The SBST
experimental setup for these two stages differs in the
storage device where the self-test program resides. In a
manufacturing testing setup, test code and data are
downloaded into on-chip caches (instruction and data) by
an external tester and the test responses are also stored
into the on-chip data cache [13]; after test program
execution, the tester uploads the test responses to compare
them with the golden signatures. This cache-resident setup
eliminates the need for high-cost functional testers and
speeds up the execution of self-test program. However, it
imposes a restriction in the development of self-test
program, that no cache misses occur during its execution.
On the contrary, in a post-silicon validation setup of
prototype chips, no such limitation exists, since a main
memory subsystem is usually available for full system-
level testing. The test code and data are stored in main
memory and this also allows the execution of the much
larger programs used in post-silicon validation. In this
paper, we utilize the same self-test programs for
manufacturing testing and post-silicon validation, and
study how the two different setups affect the
multithreaded execution of self-test programs. Of course,
in the case of post-silicon validation setup, the main
memory transactions induce longer waiting intervals in the
execution of self-test programs compared to the

manufacturing testing setup. The proposed test scheduling
algorithm efficiently exploits the waiting intervals to
speedup execution of self-test threads in both cases and
generates different schedules.
It should be noted that the total test application time, both
in manufacturing testing and post-silicon validation,
consists of the test program download time, the test
program execution time and the test responses upload
time, which are affected by the underlying architecture, the
cache access interface bandwidth, and the test routine
structure. Our methodology primarily focuses on test
program execution time optimization, but decent gains are
also obtained in download time due to the single copy of
test program. Further reduction of upload and download
time could be achieved using test program compression
and test response compaction techniques.

2.2 Multithreaded (MT) SBST Preliminaries
and Experimental Setup

For the application of SBST in a multithreaded multicore
architecture, we assume the following setup:
• A test program consists of a set of test routines that

target all the private functional units of each
processor core (i.e. functional units in the execution
pipeline of each core such as ALU, multiplier, divider
and shifter) and the off-core shared functional units
(i.e. a floating-point unit that all cores share).

• A single copy of the test program (test code and data)
is stored in memory (either on-chip cache or main
memory depending on the setup) instead of separate
copies for each core; this reduces the storage
requirements and avoids the scaling of test program
memory footprint with the number of cores. All
processor cores have to execute the same test program
to detect faults in their private units while the self-test
program for the shared units must be executed once
(by one or more cores).

• Each processor core generates a set of separate test
responses; this assumption enables faulty core
diagnosis. Diagnosis capability is important for both
manufacturing testing and post-silicon validation
since it allows the binning of partially “good” chips.

In order to reduce the execution time in an MT-SBST
approach, we need to take advantage of both the available
thread-level and core-level parallelism, visualized in
Figure 1. Let assume four test routines for the functional
units FU1, FU2, FU3, and FU4 of the processor core (these
routines must be executed by each core) and one test
routine for a shared functional unit (this routine must be
executed once). Exploitation of core-level parallelism
enables the parallel execution of the test routines FU1,
FU2, FU3 and FU4 by all n processor cores and speeds up
the execution of the shared-FU test routine. If execution
parallelism is not exploited, the overall test execution time
will scale with the number of processor cores (8 in T1
multiprocessor). Instead of having a single core to execute

Paper 25.1 INTERNATIONAL TEST CONFERENCE 4

the shared-FU routine (top of Figure 1), the routine is split
into n subroutines which can be executed in parallel
(middle of Figure 1). We can schedule in a different way
the test routines in the n cores to achieve the optimum
utilization of the common memory subsystem and the
interconnection network [14]. Next, we exploit thread-
level parallelism to speedup the execution of the test
routines in each core; assuming that each core supports
four hardware threads in an interleaved multithreading
fashion, all four threads are used to execute the test
routines as shown in Figure 1 (bottom). Τhe overlap of the
idle intervals of one thread (i.e. due to a long latency
operation or a cache miss) by another active thread is the
key point for the efficient parallelization of test routines.

Shared-FU FU1 FU2 FU3 FU4

Single-thread execution

Exploiting MP and MT parallelism

Core0

Core1

Coren-1

thread0

thread1

thread2

thread3

Shared-FU FU1 FU2 FU3 FU4

Single-thread execution
Shared-FU FU1 FU2 FU3 FU4

Single-thread execution

Exploiting MP and MT parallelism

Core0

Core1

Coren-1

Exploiting MP and MT parallelism

Core0

Core1

Coren-1

Core0

Core1

Coren-1

thread0

thread1

thread2

thread3

thread0

thread1

thread2

thread3

Figure 1: Exploiting MP and MT parallelism in the execution of
the test program

3. Proposed MT-SBST Methodology
When normal applications are developed for a
multithreaded architecture the main focus is the
maximization of the application throughput and the
processor resources utilization. The tuning of the
application workload depends on its specific
characteristics. In this paper, we aim to tune self-test
program to the characteristics of multithreading
technology to achieve the maximum speedup, that – as our
experiments reveal – a naïve, straightforward
multithreading schedule is not able to reach. Even in the
case of a small number of cores and threads per core, the
exhaustive search of the test program scheduling is
infeasible and a high-level test scheduling algorithm based
on simple single-thread runtime statistics is required.
The main objectives of the proposed methodology are: (a)
to develop test routines for the functional units of the
processor; (b) to assess the test program execution
characteristics for its efficient tuning towards a
multithreaded architecture; (c) to analyze how the
multithreaded execution of the test program affects the
fault coverage of the thread-specific control logic (which
is not explicitly targeted by the test routines for the
functional units); and (d) to propose an efficient
scheduling algorithm which reduces test program
execution time without degrading its effectiveness in

terms of fault coverage for the related logic. Overall, the
main goal of our methodology is to achieve the best
tradeoff point between self-test time reduction and self-test
effectiveness for the thread-specific control logic. The
steps of the methodology are summarized in Figure 2 and
individually analyzed in the following subsections.

Fault Coverage-driven
test routine splitting

Test program
profiling

Test program
development

Test
scheduling

Fault Coverage-driven
test routine splitting

Test program
profiling

Test program
development

Test
scheduling

Figure 2: Proposed MT-SBST methodology

3.1 Test program development
Our demonstration vehicle is the open-source CMT
processor model, OpenSPARC T1, which integrates eight
64-bit SPARC V9 processor cores, each supporting four
hardware threads [16]. Figure 3 shows the organization of
the OpenSPARC T1 processor. Each CPU core
implements a six-stage, single-issue execution pipeline
and has 16KB L1 instruction cache and 8KB L1 data
cache. An on-chip unified 3MB L2 cache divided in four
banks is shared among all CPU cores. A crossbar switch
handles communication between the CPU cores and the
shared memory while at the same time it provides access
to a shared floating-point subsystem. OpenSPARC T1
implements fine-grain multithreading: it switches among
the available threads at every cycle giving priority to the
least recently executed thread.

Figure 3: OpenSPARC T1 organization

The first step of the proposed methodology is the
development of test routines that target all the private
functional units of each SPARC V9 core: ALU, shifter,
integer multiplier, integer divider, stream processing unit
(SPU), and floating-point frontend unit (FFU). The test
routines for these six functional units must be executed by
all processor cores. We also develop separate test routines
for the components of the off-core shared floating-point

Paper 25.1 INTERNATIONAL TEST CONFERENCE 5

unit (FPU – FP adder, multiplier, divider) of OpenSPARC
T1 each of which must be executed only once.
For a few functional units, like the shifter and the
multiplier we adopted proven effective optimized test sets
from previous SBST approaches [6], [8] and tuned them to
the functional units of SPARC V9 core. For the other
modules, we either developed customized test routines
(like in the cases of the ALU and the divider) or enhanced
the regression tests of the modules (like in the cases of
FFU and SPU) included into OpenSPARC T1 verification
suite. This first step of self-test program development does
not affect the operation of the subsequent steps. Thus any
self-test program for the individual integer and floating-
point units can be used.
Table 1 summarizes the characteristics of the functional
units of the SPARC V9 core and the corresponding test
routines. Second column presents the gate count of the
functional units and third column gives the fault coverage
obtained in a single-thread execution (results are for stuck-
at fault model using Synopsys’ TetraMAX).

Single-thread
execution time (K cycles) Functional

units

Gate
count

(K gates)

Fault
coverage

(stuck-at %) Manufacturing
testing

Post-silicon
validation

Shifter 5.9 97.5 14.4 45.2
ALU 6.2 92.7 32.5 61.4

Divider 11.4 97.3 54.5 78.4
Multiplier 54.2 96.4 8.6 17.7

FFU 16.6 72.1 9.9 18.3
SPU 18.5 86.9 33.1 45.4
Total 112.8 91.2 153.0 266.4

Table 1: Private functional units and corresponding test
routines of SPARC V9 core

The two rightmost columns show the test routine
execution time in a single thread for: (a) manufacturing
testing (execution from on-chip shared L2 cache) and (b)
post-silicon validation (execution from main memory).
The execution time of the test routines depends on: the
number of test patterns, the latency of the corresponding
instructions and the development style (which affects the
instruction-level parallelism of the routines – loops, etc).
Our test program achieves more than 91% fault coverage
in total for all the functional units, the highest structural
fault coverage that has been reported by a software-based
testing approach on a real open-source industrial processor
such as OpenSPARC T1.
In Table 2 we present the effectiveness of the FPU routine
in terms of stuck-at fault coverage only for the execution
pipelines (adder, multiplier, divider) of the shared
floating-point unit. We deal with the control part of the
FPU later. The developed FPU routine achieves more than
92% stuck-at fault coverage for this complex functional
unit. The total execution time of FPU routine is 2.6M
clock cycles when executed from on-chip shared L2 cache
(manufacturing testing) and 2.9M clock cycles when
executed from main memory (post-silicon validation).

Single-thread
execution time (K cycles) Modules

Gate
count

(K gates)

Fault
coverage

(stuck-at %) Manufacturing
testing

Post-silicon
validation

FP Add. 33.7 91.7 1300.1 1450.2
FP Mult. 60.1 92.9 520.4 580.5
FP Div. 13.6 91.0 780.2 870.2
Total 107.4 92.3 2600.7 2900.9

Table 2: Modules of the shared off-core floating point unit and
corresponding test routines

The fault coverage of the individual functional units
remains the same when the corresponding test routines are
executed in a multithreaded fashion. However, this is not
the case for the control logic, either the thread-specific
control logic of the core or the shared FPU control logic.
In Section 3.3 we analyze how the multithreaded
execution affects the fault coverage of these control
modules. We aim to propose a multithreaded execution of
our test routines that although reduces the total test
execution time it does not reduce the fault coverage on this
control logic. We discuss our scheduling algorithm in
Section 3.4.

3.2 Test program profiling
The second step of the methodology is the high-level
profiling of the single-thread version of the test program
that allows us to quickly assess its scaling characteristics
to a multithreaded environment. All test routines are
executed in a single hardware thread of one SPARC V9
core that has exclusive access to the core resources while
the other three threads are parked (i.e. exclusive single-
thread performance). Figure 4 shows the exclusive single-
thread performance of all test routines for the two different
SBST setups (note that routines DIV, FFU and SPU have
been divided into two subroutines; at the end of this
subsection we explain why we chose to split these
routines). Each bar represents the fractions of time the
state machine of the hardware thread, executing the
corresponding test routine, stays in one of the five possible
states: ready, run, wait, speculative ready, and speculative
run. The SPARC V9 core switches among the available
threads at every cycle (i.e. fine-grain multithreading). A
thread can be scheduled (is available) when it is in one of
the following states: ready, speculative ready, run, and
speculative run1. On the other hand, a thread enters the
wait state due to one of the following reasons: I-cache fill,
store buffer full, long latency operation, and resource
conflict (i.e. simultaneous requests to a shared resource).
Therefore, when executing the test routines in a single-
thread, the core enters a wait state when the thread is
unavailable. To collect runtime statistics for the thread
state we used the functionality of the thread monitor unit
of SPARC V9 core.

1 A thread speculates a load operation as a cache hit before the actual
request is granted from the memory subsystem.

Paper 25.1 INTERNATIONAL TEST CONFERENCE 6

Figure 4: Test program profiling: exclusive single-thread
execution for (a) manufacturing testing (b) post-silicon
validation

Test program profiling shows that the total core utilization
is very low since the core is waiting for long time intervals
because the thread is unavailable. In the case of
manufacturing testing (Figure 4a) the thread is in wait
state for the 62% of the total execution time of the test
program. In the case of post-silicon validation (Figure 4b)
the time that the thread waits increases due to the longer
penalty of L2 cache misses and accesses to main memory;
the thread is in wait state more than 77% of the total
execution time. Hence, the test program profiling stage
designates the ability for performance gains when routines
are scheduled in an optimized multithreaded fashion.

We further analyzed the profiles of the test routines to
identify different execution phases, such as CPU-bound or
memory-bound intervals, within a test routine execution
and then we split it into more than one subroutines based
on these phases. This splitting procedure enables us to
schedule more efficiently the test routines into the
hardware threads achieving better exploitation of thread-
level parallelism (TLP). In our study, routines Div, FFU
and SPU, present different runtime statistics at different
execution phases and are split into two subroutines each,
Div1 (24.2 K) and Div2 (30.3 K), FFU1 (9.4 K) and FFU2
(0.5 K) and SPU1 (23.8 K) and SPU2 (9.3 K), respectively
(execution from L2 cache in clock cycles).

3.3 Coverage-driven test routine splitting
We study the effect of multithreaded execution of the test
routines on the fault coverage of the on-core (thread-
switch logic) and off-core (shared FPU) control logic.

On-core control logic (thread-switch logic). Thread-
switch logic fault coverage increases with the activity of
the four thread state machines. Thus, to increase the fault
coverage of the thread-switch logic, we should avoid
decreasing the number of state transitions of the thread
state machines by forcing the four threads to enter more
times in the wait state. However, this target contradicts
with the test execution time reduction goal since
increasing the number of resource conflicts (i.e.
simultaneous requests to a shared resource) will adversely
affect the exploitation of CMT.

We consider two routines from our basic core test program
that can cause resource conflicts due to their long latency
operations: multiplier and divider routines. We performed
a set of fast, high-level experiments to quantify the
speedup achieved if we split these test routines into two or
four time-balanced subroutines and schedule two or four
hardware threads to execute them in parallel. In Table 3,
we compare the time of the single-threaded execution
versus the multithreaded execution for these two routines
for execution from L2 cache and main memory.

1 thread 2 threads 4 threads Testing
setup Routines ET (A)

K cycles
ET (B)

K cycles
Speedup

(A/B)
ET (C)

K cycles
Speedup

(A/C)
Multiplier 8.6 5.7 1.5 5.4 1.6 Manuf.

testing Divider 54.5 37.1 1.5 35.9 1.5
Multiplier 17.7 9.3 1.9 8.3 2.1 Post-si.

validation Divider 78.4 43.5 1.8 39.3 2.0

Table 3: Single-threaded execution vs. multithreaded
execution (ET: execution time)

The experimental results show that the two-threaded
execution achieves significant speedup over the single-
threaded execution which ranges between 1.5X and 1.9X.
However, the speedup saturates at two threads since using
more than two threads only slightly reduces execution
time. Therefore, to improve the fault coverage of the
thread-switch logic during the multithreaded execution we
split the long-latency routines into subroutines that
generate resource conflicts when executed in
multithreaded mode. However, to achieve the best tradeoff
between execution time reduction and fault coverage of
the thread-switch logic the number of subroutines must not
exceed the number of threads at which the speedup
saturates. The output of this step is a number of sets each
one containing the appropriate number of subroutines that
must be executed in parallel to cause resource conflicts. In
the case of the multiplier and the divider two sets are
created: {Div1, Div2} and {Mult1, Mult2}.

Off-core control logic (shared FPU). We exploit core-
level parallelism to execute the test routines for the off-
core shared FPU. In order to determine an efficient
multicore, multithreaded execution of FPU test routine we
study how the execution time and the fault coverage scale
with the number of cores and threads that execute the test
routines. Thus, we split FPU test routine into 4, 8, 16, and

Paper 25.1 INTERNATIONAL TEST CONFERENCE 7

32 subroutines and schedule them to different number of
processor cores: 1, 4 or 8 cores each running 1 or 4
threads. At this point it should be noted that partitioning
the test routines in arbitrary number of subroutines with
‘almost’ equivalent execution times, depends on code style
that have been adopted in the development of test routines
(e.g. load-apply-store routines, such FPU routine, allow
this partitioning). Table 4 presents total execution time
and combined stuck-at fault coverage of the two FPU
control submodules: FP input that multiplexes the FPU
requests from multiple cores and FP output that arbitrates
the results of FP pipelines for the single FPU-crossbar
connection. Also, Table 4 presents results for both the
execution from L2 cache (manufacturing testing) and main
memory (post-silicon validation). Our experiments
demonstrate that the fault coverage is affected by the
execution of FPU test routine by multiple cores and
multiple threads. This happens because the FPU control
modules carry thread and core id specific information.
The results suggest that the most efficient FPU routine
schedule in terms of speedup and fault coverage in both
setups is 8 cores each running 4 threads: a total of 32
hardware threads executing in parallel 32 different FPU
time-balanced subroutines. Thus, in our proposed test
scheduling the FPU test subroutines are executed in
parallel by all processor cores – separately from basic
core test routines – occupying all 32 threads of the CMT
architecture.

1 thread 4 threads Schedule
ET (K cycles) FC (%) ET (K cycles) FC (%)

Manufacturing Testing

1 core 2600.7 61.9 1400.1 62.7
4 cores 920.1 89.9 490.3 91.0
8 cores 519.2 90.9 437.4 91.6

Post-silicon validation

1 core 2900.9 62.3 1600.7 63.2

4 cores 1000.5 90.5 517.8 91.2
8 cores 563.1 91.2 460.5 92.3

Table 4: Multicore, multithreaded execution of FPU test
routine (ET: execution time, FC: fault coverage of FPU control
logic)

3.4 Test scheduling algorithm
We propose an algorithm that schedules a set of on-core
components test routines {R1, R2, …, RN} into k hardware
threads targeting the best tradeoff between test execution
time and fault coverage. The proposed algorithm is
presented in Figure 5.

The first part of the algorithm partitions test routines into
two groups: GL which contains routines having waiting
time fraction (WT) less than the average waiting time
fraction (WTavg) of all test routines and GH which contains
routines having WT more than WTavg. Then, the two
groups are sorted in descending order according to the

execution time (ET) of their routines (WT, WTavg and ET
values are calculated during test program profiling).

The second part of the algorithm picks test routines from
the two groups and iteratively assigns them into threads.
The long test routines (with the higher ET) are scheduled
first in order to produce a time-balanced scheduling. When
a routine that belongs to a resource conflict group (RCG)
(an RCG contains routines that perform concurrent
requests to a shared resource) is selected then all the other
elements of the group are scheduled in parallel. If there are
routines that can not be scheduled in parallel due to
resource limitations they are not selected in the current
loop iteration. For instance, routines SPU1 and SPU2 can
not be executed in parallel since the co-processor
implementing the SPU operations supports one
outstanding SPU operation per core.

The algorithm satisfies two scheduling criteria: (a)
routines that generate resource conflicts (belong to a
resource conflict group, RCG) are executed in parallel;
and (b) at any time the set of currently executed routines
(CXR) contains equal number of low-WT and high-WT
test routines. The first criterion aims to improve the fault
coverage of the thread-specific control logic and the
second criterion aims to overlap the “long” waiting
intervals of the half routines with the “running” intervals
of the other half routines. The algorithm output is k sets
SRth1, SRth2, … SRthk that contain the routines scheduled to
each thread.

4. Experimental Results
We applied the proposed scheduling algorithm to the test
routines of functional units of OpenSPARC T1 for the two
different SBST setups: manufacturing testing and post-
silicon validation. For the purposes of our evaluation, we
also set up a naïve (straightforward) multithreading
schedule that assigns routines with the same characteristics
to the same thread, i.e. routines using the multiplier (SPU
and Mult), divider routines (Div), short latency operations
(ALU and Sft) and floating-point operations (FFU and
FPU). Both the naïve and the proposed multithreading
schedules are based upon the same requirement: to avoid,
as much as possible, resource conflicts that degrade test
program performance. Therefore, naïve approach
constitutes a fair alternative of the proposed approach.

We first analyze core-level thread scheduling without
considering testing of the off-core shared FPU. The
generated test routine schedules for the two SBST setups
and the naïve scheduling approach are shown in Table 5.
Each column includes the test routines scheduled in each
thread of the core. Notice that the proposed schedules for
the two SBST setups are different which is due to the
different results of the test program profiling stage.

Paper 25.1 INTERNATIONAL TEST CONFERENCE 8

Figure 5: The proposed core scheduling algorithm

1. Inputs: k: number of threads
2. Basic core test routines: S = {R1, R2, …, RN}
3. Single-threaded test program profiling results:
4. ETi: execution time of routine Ri

5. WTi: waiting time fraction of routine Ri
6. WTavg: average waiting time fraction of all test routines
7. Groups of routines causing resource conflicts: RCG1, RCG2, …, RCGM
8. Restrictions: Routines cannot be executed concurrently due to limited resources (i.e. SPU1, SPU2)
9.
10. Output: Sets of scheduled test routines in k threads: {SRth1, SRth2, … SRthk}
11.
12. // Partition routines into two groups:GL (routines with low WT fraction) and GH (routines with high WT fraction)
13. for i = 1, 2, …, N do
14. if WTi < WTavg insert Ri to GL ;
15. else insert Ri to GH ;
16. end for
17.
18. Sort GL and GH in descending order according to ETi

19.
20. ETth1, ETth2, … ETthk = 0 ; // Accumulated execution times of routines assigned to threads 1…k
21. SRth1, SRth2, … SRthk = Ø ; // Set of routines scheduled to threads 1…k
22. CXR = Ø ; // Set of currently executed routines by all k threads
23.
24. while (GL, GH not empty) do
25. select thread j with shortest ETthj;
26. remove the last routine of SRthj from CXR ; // The last routine has been completed
27.
28. // Picks up a routine from GH or GL and assigns it to thread j
29. if (GH empty) OR (# of routines in CXR with low WT < # of routines in CXR with high WT) then
30. select the longest routine Ri from GL that does not have restriction with any routine of CXR ;
31. remove Ri from GL ;
32. end if
33. if (GL empty) OR (# of routines in CXR with low WT ≥ # of routines in CXR with high WT) then
34. select the longest routine Ri from GH that does not have restriction with any routine of CXR ;
35. remove Ri from GH ;
36. end if
37. insert Ri to SRthj ;
38. insert Ri to CXR ;
39.
40. // Schedules in parallel all routines having resource conflicts with Ri
41. if Ri belongs to an RCGm then
42. remove Ri from RCGm ;
43. while (RCGm not empty) do
44. select thread j with shortest ETthj ;
45. remove the last routine of SRthj from CXR ;
46. select next longest routine Ri from RCGm ;
47. remove Ri from RCGm;
48. remove Ri from its group (GL or GH) ;
49. insert Ri to SRthj ;
50. insert Ri to CXR ;
51. end while
52. end if
53. end while

Paper 25.1 INTERNATIONAL TEST CONFERENCE 9

Thread 0 Thread 1 Thread 2 Thread 3

Naïve
scheduling

SPU1
SPU2
Mult1
Mult2

Div1

Div2
ALU
Sft

FFU1
FFU2

Manufacturing Testing
Thread 0 Thread 1 Thread 2 Thread 3

ALU Div1
Mult2
FFU1

Div2
SPU2

SPU1

Mult1
FFU2
Sft

Post-silicon validation
Thread 0 Thread 1 Thread 2 Thread 3

Proposed
scheduling

ALU
FFU2

Div1

SPU2
Mult2

Div2
FFU1

Mult1

SPU1

Sft

Table 5: Schedules of core test routines

In Table 6 we compare the proposed multithreaded
scheduling with the single-threaded and naïve scheduling
approaches in terms of execution time and stuck-at fault
coverage of the thread-switch logic (recall that the
coverage for the functional units is in all cases more than
91% – see Table 1 – since the coverage does not depend
on the multithreaded execution). The speedup of the
multithreaded approach is calculated against the test
execution time of the single-threaded execution. The
speedup obtained by the proposed multithreaded
scheduling is up to 3.6X, very close to the ideal theoretical
4X speedup, which means that it exploits the TLP very
efficiently, using only easy-to-obtain runtime statistics
from the single-threaded execution and avoiding time
consuming simulations. Compared with the naive
scheduling (that achieves a speedup only up to 2.5X), our
methodology reduces the test time by 33%.

Single

threaded
Naïve

scheduling
Proposed

scheduling
 Manuf. Post-si Manuf. Post-si Manuf. Post-si

Execution
time

(K cycles)
153.0 266.4 69.2 107.5 46.1 73.6

Speedup – – 2.2 2.5 3.3 3.6

FC (%) 32.6 33.5 67.6 68.3 75.5 77.2

Table 6: Comparison of core level scheduling approaches (FC:
Fault coverage of thread switch logic)

Furthermore, the proposed scheduling does not reduce the
fault coverage of thread-specific control logic of the core
but on the contrary (due to the elaborate routines
scheduling algorithm) it improves it up to about 10%
compared with the naïve scheduling, thus achieving an
excellent tradeoff between speedup and fault coverage.
From this point onward, we include the testing of the
control part of the off-core shared FPU (recall that the
coverage for the FP adder, multiplier and divider is more
than 92% – see Table 2) in our scheduling. In naïve

scheduling the FPU routine is split into 8 subroutines
(FPUi/8) which are executed by thread 3 of each core
shown in bold in Table 7. In our approach the FPU test
routine is split into 32 time-balanced subroutines (FPUi/32)
which are executed by all four threads of each core before
the basic core test routines: all 32 threads of the
architecture are occupied to execute in parallel the FPU
subroutines. Note that Table 7 presents only the schedules
of processor core 0 for the naïve approach and our
proposed approach for manufacturing testing and post-
silicon validation. The schedules for all processor cores
are similarly produced scheduling the corresponding FPU
subroutines before the core test routines.

Thread 0 Thread 1 Thread 2 Thread 3

Naïve
scheduling

SPU1
SPU2
Mult1

Mult2

Div1
Div2

ALU
Sft

FFU1
FFU2

FPU1/8

Manufacturing Testing
Thread 0 Thread 1 Thread 2 Thread 3
FPU1/32

ALU
FPU2/32

Div1
Mult2
FFU1

FPU3/32

Div2
SPU2

FPU4/32

SPU1

Mult1
FFU2
Sft

Post-silicon Validation
Thread 0 Thread 1 Thread 2 Thread 3

Proposed
Scheduling

FPU1/32
ALU
FFU2

FPU2/32
Div1

SPU2
Mult2

FPU3/32
Div2

FFU1
Mult1

FPU4/32

SPU1

Sft

Table 7: Schedules of test routines at processor level

Table 8 summarizes test execution time of single-threaded,
naïve scheduling and proposed scheduling approaches and
the speedup achieved by the multithreaded approaches
over the single-threaded one. Compared with the naïve
scheduling, the proposed scheduling reduces the test
execution time of the entire processor by up to 20%.

 Single
threaded

Naïve
scheduling

Proposed
scheduling

 Manuf. Post-si Manuf. Post-si Manuf. Post-si
Execution

time
(K cycles)

2753.7 3167.3 592.4 662.6 492.5 531.1

Speedup – – 4.6 4.8 5.6 6.0

Table 8: Comparison of scheduling approaches incl. FPU

Finally, Table 9 presents the fault coverage for the
complete targeted logic (about 1.5M gates of logic) of the
OpenSPARC T1, which includes all the integer functional
units and the on-core control logic (thread-switch logic
and integer pipeline control logic) of all eight CPU cores,
the off-core shared FPU (including the execution units and
the thread-specific control logic) and also the
interconnection network (this is not explicitly targeted by

Paper 25.1 INTERNATIONAL TEST CONFERENCE 10

test routines). The total fault coverage for all functional
units (both integer and floating-point) is 91.3%, while the
total fault coverage for the entire processor is 88.6%.
Despite its shorter execution time, the proposed approach
achieves higher fault coverage compared with naïve.

Fault coverage (stuck-at %)
Components

Gate
count

(K gates)
Single

threaded
Naïve

Scheduling
Proposed

scheduling

IFUs 8 × 112.8 91.2 91.2 91.2
Core (x8)

CCL 8 × 28.4 62.2 71.8 82.8

FPU 115.8 90.0 92.0 92.3
Off-core

INN 259.5 14.9 79.9 82.7

Total (FUs) 1018.2 91.0 91.2 91.3

Total
(Processor) 1504.9 73.6 86.3 88.6

Table 9: Fault coverage (IFUs: Integer Functional Units, FPU:
Floating-Point Unit, CCL: Core Control Logic, INN:
INterconnection Network, FUs: Functional Units of processor)

5. Conclusions
In this paper, we present the application of SBST in
multithreaded, multicore architectures. The proposed MT-
SBST methodology leverages the existing thread-level
parallelism (TLP) for test optimization. We analyze the
impact of multithreaded test execution on fault coverage
and propose a flexible methodology to speedup test
execution time by exploiting execution parallelism without
reducing the fault coverage of the control logic (but on the
contrary improving it). Comprehensive experiments on
OpenSPARC T1 demonstrate that our methodology speeds
up the test time of a 4-threaded core by 3.3 and 3.6 times
for manufacturing testing and post-silicon validation,
respectively. Compared with a straightforward
multithreaded scheduling the proposed methodology
achieves significant time reduction, 33% at the core-level
and 20% at the processor-level. Overall, our methodology
guarantees high fault coverage, more than 91% fault
coverage for the functional units and more than 88% for
the entire OpenSPARC T1 processor logic (more than
1.5M gates of logic).

References
[1] S.Bockar, “Designing Reliable Systems from Unreliable

Components: The Challenges of Transistor Variability and
Degradation”, IEEE Micro, vol. 25, no. 6, pp. 10-16, Nov.
2005.

[2] C.Constantinescu, “Trends and Challenges in VLSI Circuit
Reliability”, IEEE Micro, vol. 23, no. 4, pp. 14-19, July
2003.

[3] P.K.Parvathala, K.Maneparambil, W.Lindsay, “FRITS–A
Microprocessor Functional BIST Method”, IEEE
International Test Conference (ITC), pp. 590 – 598, 2002.

[4] L.Chen, S.Ravi, A.Raghunathan, S.Dey, “A Scalable
Software-Based Self-Test Methodology for Programmable
Processors”, IEEE/ACM Design Automation Conference
(DAC), pp. 548-553, 2003.

[5] F.Corno, E.Sanchez, M.Sonza Reorda, G.Squillero,
“Automatic Test Program Generation – a Case Study”,
IEEE Design & Test of Computers, vol. 21, no. 2, pp. 102–
109, 2004.

[6] A.Paschalis and D.Gizopoulos, “Effective Software-Based
Self-Test Strategies for On-line Periodic Testing of
Embedded Processors,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 24,
no. 1, 2005, pp. 88-99.

[7] S.Gurumurthy, S.Vasudevan and J.Abraham, “Automatic
generation of instruction sequences targeting hard-to-detect
structural faults in a processor”, IEEE International Test
Conference (ITC), paper 27.3, 2006.

[8] D.Gizopoulos, M.Psarakis, M.Hatzimihail, M.Maniatakos,
A.Paschalis, A.Raghunathan, S.Ravi, “Systematic
Software-Based Self-Test for Pipelined Processors”, IEEE
Transactions on VLSI Systems, vol.16, no. 11, pp 1441-
1453, Nov. 2008.

[9] M.Hatzimihail, M.Psarakis, D.Gizopoulos, A.Paschalis, “A
Methodology for Detecting Performance Faults in
Microprocessor Speculative Execution Units via Hardware
Performance Monitoring”, IEEE International Test
Conference (ITC), paper 29.3, 2007.

[10] L.Lingappan, N.K.Jha, “Satisfiability-based automatic test
program generation and design for testability for
microprocessors”, IEEE Transactions on VLSI Systems,
vol. 15, no. 5, pp. 518-530, May 2007.

[11] G.Xenoulis, D.Gizopoulos, M.Psarakis, A.Paschalis,
“Instruction-Based Online Periodic Self-Testing of
Microprocessors with Floating-Point Units”, IEEE
Transactions on Dependable and Secure Computing, vol.
6, no.2, pp. 124-134, 2009.

[12] M.Psarakis, D.Gizopulos, E.Sanchez, M.Sonza Reorda,
“Microprocessor Software-Based Self-Testing”, IEEE
Design & Test of Computers, vol. 27, no. 3, pp. 4-18
May/June 2010.

[13] I.Bayraktaroglu, J.Hunt, D.Watkins, “Cache Resident
Functional Microprocessor Testing: Avoiding High Speed
IO Issues”, IEEE Internatioal Test Conference (ITC),
paper 27.2, 2006.

[14] A.Apostolakis, D.Gizopoulos, M.Psarakis, A.Paschalis,
“Software-Based Self-Testing of Symmetric Shared-
Memory Multiprocessors,” IEEE Transactions on
Computers, vol. 58, no. 12, 2009, pp. 1682-1694.

[15] A.Apostolakis, M.Psarakis, D.Gizopoulos, A.Paschalis,
I.Parulkar, “Exploiting Thread-Level Parallelism in
Functional Self-Testing of CMT Processors”, IEEE
European Test Symposium (ETS), pp. 33-38, 2009.

[16] OpenSPARC T1 Microarchitecture Specification, Sun
Microsystems Inc., Aug. 2006.

[17] H.Rotithor, “Postsilicon Validation Methodology for
Microprocessors”, IEEE Design & Test of Computers, vol.
17, no. 4, pp. 77-88, October/December 2000..

[18] A.DeOrio, I.Wagner, V.Bertacoo, “Dacota: Post-silicon
validation of the memory subsystem in multi-core
designs”, IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 405-
416, Feb. 2009.

[19] O.Guzey, Li-C.Wang, J.Bhara, “Enhancing signal
controllability in functional test-benches through automatic
constrain extraction”, IEEE International Test Conference
(ITC), paper 19.2, 2007.

