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Preface

The unprecedented and relentless growth in the electronics industry is feeding the
demand for integrated circuits (ICs) with increasing functionality and performance
at minimum cost and power consumption. As predicted by Moore’s law, ICs are
being aggressively scaled to meet this demand. While the continuous scaling of
process technology is reducing gate delays, the performance of ICs is being
increasingly dominated by interconnect delays. In an effort to improve submi-
crometer interconnect performance, to increase packing density, and to reduce chip
area and power consumption, the semiconductor industry is focusing on
three-dimensional (3D) integration. However, volume production and commercial
exploitation of 3D integration are not feasible yet due to significant technical
hurdles.

At the present time, interposer-based 2.5D integration is emerging as a precursor
to stacked 3D integration. All the dies and the interposer in a 2.5D IC must be
adequately tested for product qualification. However, since the structure of 2.5D ICs
is different from the traditional 2D ICs, new challenges have emerged: (1) pre-bond
interposer testing, (2) lack of test access, (3) limited ability for at-speed testing,
(4) high-density I/O ports and interconnects, (5) reduced number of test pins, and
(6) high power consumption. This research targets that the above challenges and
effective solutions have been developed to test both dies and the interposer.

The book first introduces the basic concepts of 3D ICs and 2.5D ICs. Prior work
on testing of 2.5D ICs is studied. An efficient method is presented to locate defects
in a passive interposer before stacking. The proposed test architecture uses e-fuses
that can be programmed to connect or disconnect functional paths inside the
interposer. The concept of a die footprint is utilized for interconnect testing, and the
overall assembly and test flow is described. Moreover, the concept of weighted
critical area is defined and utilized to reduce test time. In order to fully determine
the location of each e-fuse and the order of functional interconnects in a test path,
we also present a test-path design algorithm. The proposed algorithm can generate
all test paths for interconnect testing.

In order to test for opens, shorts, and interconnect delay defects in the interposer,
a test architecture is proposed that is fully compatible with the IEEE 1149.1
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standard and relies on an enhancement of the standard test access port
(TAP) controller. To reduce test cost, a test-path design and scheduling technique is
also presented that minimizes a composite cost function based on test time and the
design-for-test (DfT) overhead in terms of additional through silicon vias (TSVs)
and micro-bumps needed for test access. The locations of the dies on the interposer
are taken into consideration in order to determine the order of dies in a test path.

To address the scenario of high density of I/O ports and interconnects, an
efficient built-in self-test (BIST) technique is presented that targets the dies and the
interposer interconnects. The proposed BIST architecture can be enabled by the
standard TAP controller in the IEEE 1149.1 standard. The area overhead introduced
by this BIST architecture is negligible; it includes two simple BIST controllers,
a linear-feedback shift register (LFSR), a multiple-input signature register (MISR),
and some extensions to the boundary-scan cells in the dies on the interposer. With
these extensions, all boundary-scan cells can be used for self-configuration and
self-diagnosis during interconnect testing. To reduce the overall test cost, a test
scheduling and optimization technique under power constraints is described.

In order to accomplish testing with a small number test pins, the book presents
two efficient ExTest scheduling strategies that implements interconnect testing
between tiles inside an system on chip (SoC) die on the interposer while satisfying
the practical constraint that the number of required test pins cannot exceed the
number of available pins at the chip level. The tiles in the SoC are divided into
groups based on the manner in which they are interconnected. In order to minimize
the test time, two optimization solutions are introduced. The first solution mini-
mizes the number of input test pins, and the second solution minimizes the number
of output test pins. In addition, two subgroup configuration methods are further
proposed to generate subgroups inside each test group.

Finally, the book presents a programmable method for shift-clock stagger
assignment to reduce power supply noise during SoC die testing in 2.5D ICs. An
SoC die in the 2.5D IC is typically composed of several blocks and two neighboring
blocks that share the same power rails should not be toggled at the same time during
shift. Therefore, the proposed programmable method does not assign the same
stagger value to neighboring blocks. The positions of all blocks are first analyzed,
and the shared boundary length between blocks is then calculated. Based on the
position relationships between the blocks, a mathematical model is presented to
derive optimal result for small-to-medium-sized problems. For larger designs, a
heuristic algorithm is proposed and evaluated.

In summary, this book targets important design and optimization problems
related to testing of interposer-based 2.5D ICs. The research reported in the book
has led to theoretical insights, experiment results, and a set of test and
design-for-test methods to make testing effective and feasible from a cost
perspective.

Sunnyvale, CA, USA Ran Wang
Durham, NC, USA Krishnendu Chakrabarty
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