
RTL Functional Test Generation using Factored Concolic
Execution

Sonal Pinto

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Michael S. Hsiao, Chair
Haibo Zeng

Patrick R. Schaumont

June 1, 2017
Blacksburg, Virginia

Keywords: Functional Test Generation, Control-Flow Response, Concolic Execution,
Branch Coverage, System State

Copyright 2017, Sonal Pinto

RTL Functional Test Generation using Factored Concolic Execution

Sonal Pinto

(ABSTRACT)

This thesis presents a novel concolic testing methodology and CORT, a test generation

framework that uses it for high-level functional test generation. The test generation effort is

visualized as the systematic unraveling of the control-flow response of the design over mul-

tiple (factored) explorations. We begin by transforming the Register Transfer Level (RTL)

source for the design into a high-performance C++ compiled functional simulator which

is instrumented for branch coverage. An exploration begins by simulating the design with

concrete stimuli. Then, we perform an interleaved cycle-by-cycle symbolic evaluation over

the concrete execution trace extracted from the Control Flow Graph (CFG) of the design.

The purpose of this task is to dynamically discover means to divert the control flow of the

system, by mutating primary-input stimulated control statements in this trace. We record

the control-flow response as a Test Decision Tree (TDT), a new representation for the test

generation effort. Successive explorations begin at system states heuristically selected from

a global TDT, onto which each new decision tree resultant from an exploration is stitched.

CORT succeeds at constructing functional tests for ITC99 and IWLS-2005 benchmarks that

achieve high branch coverage using the fewest number of input vectors, faster than exist-

ing methods. Furthermore, we achieve orders of magnitude speedup compared to previous

hybrid concrete and symbolic simulation based techniques.

This work was supported in part by the DARPA CRAFT Verification Task (DARPA-BAA-

15-55) and the National Science Foundation Project 1422054.

RTL Functional Test Generation using Factored Concolic Execution

Sonal Pinto

(GENERAL AUDIENCE ABSTRACT)

In recent years, the cost of verifying digital designs has outpaced the cost of development, in

terms of both resources and time. The scale and complexity of modern designs have made

it increasingly impractical to manually verify the design. In the process of circuit design,

designers use Hardware Descriptive Languages (HDL) to abstract the design in a manner

similar to software programming languages. This thesis presents a novel methodology for

the automation of testing functional level hardware description with the aim of maximizing

branch coverage. Branches indicate decision points in the design, and tests with high branch

coverage are able to thoroughly exercise the design in a manner that randomly generated

tests cannot. In our work, the design is simulated concretely with a random test (a sequence

of input or stimulus). During simulation, we analyze the flow of behavioral statements

and decisions executed to construct a formulaic interpretation of the design execution in

terms of syntactical elements, to uncover differentiating input that could have diverted the

flow of execution to unstimulated parts of the design. This process is formally known as

Concolic Execution. The techniques described in this thesis tightly interleaves concrete and

symbolic simulation (concolic execution) of hardware designs to generate tests with high

branch coverage, orders of magnitude faster than previous similar work.

∼ To my family ∼

iv

Acknowledgments

This work would be incomplete without acknowledging the guidance and support of those

who made it possible. To begin with, I owe my greatest thanks to my research mentor, Dr.

Michael S. Hsiao for granting me the opportunity to engage in invigorating research and to

participate as his research assistant. His excellent course on "Electronic Design Automation"

in Spring 2016 piqued my curiosity and inspired me to pursue my Master’s thesis under his

tutelage. Throughout the span of the work that went into this thesis, he tirelessly guided and

polished my work with his extensive background and experience in the field. I am honored

to have received a chance to work with him.

I would like to thank Dr. Haibo Zeng and Dr. Patrick Schaumont for graciously agreeing to

serve on my thesis committee. I also thank the administrative staff of the Graduate School

and the Bradley Department of Electrical and Computer Engineering for their timely help

and continued cooperation with paperwork and other administrative matters.

I am thankful to my friends in the PROACTIVE Research Group for enriching my graduate

school experience: Tonmoy Roy, Kunal Bansal, Yue Zhan, Aravind V., Tania Khanna and

ChungHa Sung. I am especially grateful to Tonmoy for his patience in engaging me in my

animated narrations of knowledge that I gleaned from the research literature. He introduced

me to the complex domain of symbolic execution in hardware and entertained every query I

had on the topic.

v

I thank Shobek Sam, Shobal Sam, Shriya Shah, Nahush Gondhalekar, Harsh Patel and Ak-

shatha Kini for indeed making my graduate school experience unforgettable. I am thankful

for the love and support of my family, without whom I would not even have had the oppor-

tunity to experience a fulfilling graduate school life at Virginia Tech. Lastly, I am thankful

to my loving fiancee, Rohita Darga, for believing in me, and being my ultimate pillar of

support and ensuring that I didn’t starve.

Sonal Pinto

Blacksburg

June 1, 2017

vi

Contents

List of Figures ix

List of Tables x

List of Algorithms xi

1 Introduction 1

1.1 Contributions of this Thesis . 2

1.2 Thesis Organization . 4

2 Background 5

2.1 Automated Functional Test Generation . 5

2.2 Concolic Execution . 8

2.3 Scaling through Factored Exploration . 10

2.4 Verilator and RTL Instrumentation . 15

2.5 Related Work . 17

3 Cycle-by-Cycle Concolic Execution of RTL 20

3.1 Terminology . 21

3.2 Preprocessing and Instrumentation . 23

3.2.1 Concrete Trace Recording . 23

3.2.2 RTL Translation and Analysis . 24

3.3 RTL Concolic Execution . 27

vii

3.3.1 Two-Pass Simulation . 27

3.3.2 Dynamic discovery and mutation of Activated Guards 29

3.3.3 Iterative Bounded Explorations . 31

3.4 Experimentation and Results . 31

3.4.1 Experiment Setup . 32

3.4.2 Branch Coverage . 33

3.4.3 Test Generation Runtime . 34

4 Test Generation using Factored Explorations 35

4.1 Test Decision Tree . 36

4.2 CORT Framework . 39

4.2.1 Preprocessing . 41

4.2.2 Concolic Execution Engine . 42

4.2.3 Test Generation . 42

4.2.4 Systematic Exploration . 45

4.3 Experimentation and Results . 48

4.3.1 Search Strategy . 49

4.3.2 Branch Coverage . 50

4.3.3 Effects of Exploration Length . 53

5 Conclusion 55

5.1 Limitations and Future Work . 55

5.2 Conclusion . 57

Bibliography 59

viii

List of Figures

2.1 Example for Concolic Execution . 9

2.2 Example HDL design and control flow . 12

2.3 Complexity of symbolic analysis . 13

2.4 Verilog code snippet and its Verilator translated C++ RTL 16

3.1 Instrumentation of concrete trace recording in the eval function of the C++
RTL . 24

3.2 Example Design-Under-Test . 25

3.3 Preprocessed CFG and AST . 26

3.4 Concrete evaluation of array index for symbolic expression construction . . . 30

4.1 Test Decision Tree for the example exploration in Section 3.3 38

4.2 CORT Framework . 40

4.3 Branch Transition Graph . 41

4.4 New exploration at n3 . 44

4.5 Global Test Decision Tree after two explorations 45

4.6 Tests derived from the TDT and their branch coverage 46

ix

List of Tables

3.1 Discovery of Activated Guards using Concolic Execution 29

3.2 Benchmark Description . 32

3.3 Comparison of Branch Coverage . 33

3.4 Comparison of Runtime . 34

4.1 Benchmark and CORT Strategy . 49

4.2 Performance Comparison with Previous Work 51

4.3 Extended Performance Comparison . 52

4.4 Effects of Exploration Length for b15 . 53

x

List of Algorithms

1 Derive Final Test from the TDT . 48

xi

Chapter 1

Introduction

Hardware design validation consumes as much, or more, resources than design development.

Rapid test generation for functional metrics at a high level of design abstraction such as the

Register Transfer Level (RTL), can aid validation effort. Commonly used functional metrics

are akin to their software testing counterparts, i.e., statement coverage, branch coverage,

path coverage and assertion coverage [3]. Tests for functional metrics at the RTL help catch

design flaws earlier. Considering the complexity of practical hardware design, the go-to

standard approach of constrained random test generation is proving to be unsuitable for

achieving high functional coverage. Random testing, as popularly used, does not utilize

the available high-level functional design information available at this abstraction level. To

bridge the gap, designers manually guide directed test generation effort. It is crucial that

this task is automated to decrease the overall human effort and redirect it for suitable goals.

Directed test generation by evaluating the design under formal methods can theoretically

reach all system states in the design. However, in reality, these techniques do not scale well

due to the size and complexity of modern designs. Though it is attractive to use formal

techniques such as symbolic execution for the task of automation, it is impractical with

1

Sonal Pinto Chapter 1. Introduction 2

current technology. Traditionally, symbolic evaluation of RTL [1] is statically performed by

unrolling the design for several cycles. Considering that the entire hardware RTL needs to

be evaluated per cycle of unrolling, the number of feasible paths that need to be considered

grow exponentially (the path explosion ceiling [11]).

This problem has been assuaged to a great extent with the help of Software Testing inspired

concolic execution based semi-formal techniques [17, 25, 32], where the expensive task of

symbolic evaluation is reduced by restricting it to concrete execution traces stimulated by

the random real input. In Software Testing, Godefroid et al. [19] introduced the concept

of high performance directed automated random testing (DART) by engaging classical sym-

bolic execution over the concrete execution path derived by testing the software with real

(concrete) inputs. Based on this concept, Sen et al. [13] built an efficient C-language unit-

test generator, CUTE, and coined the term, Concolic Execution (a portmanteau of concrete

and symbolic). Current semi-formal concolic execution based RTL testing methodologies

score well on their intended functional metric with a minimal number of test vectors but

incur a long non-negligible runtime. Furthermore, the search spaces of hybrid concrete and

symbolic simulation techniques such as [17] and [25] are bounded to a few tens of cycles due

to computational complexity, albeit far superior to traditional static symbolic execution. On

the other hand, stochastic or heuristically guided search-based techniques [20, 14] are often

faster than semi-formal techniques and have the potential to explore a larger search space,

but usually, end up producing relatively larger tests to meet similar goals.

1.1 Contributions of this Thesis

In this thesis, we introduce CORT (Concolic RTL Test Generator) which aims to generate

tests that maximize branch coverage at the RTL of the design-under-test using the least

Sonal Pinto Chapter 1. Introduction 3

number of input vectors. Moreover, CORT was designed with the goal of being able to

generate tests as fast as stochastic search-based techniques despite being in the class of RTL

semi-formal test generation methods. The expensive costs of hybrid concrete and symbolic

evaluation is offset by dynamically analyzing concretely executed statements to restrict the

computational costs to segments of the RTL that have been stimulated by the primary

input. Furthermore, we highlight the Test Decision Tree, a new perspective in the field of

RTL testing where we abstract and record the test generation process in terms of stimuli

and control-flow response of the system. Fundamentally, our test generation strategy focuses

on systematically growing the Test Decision Tree over several short explorations of highly

efficient cycle-by-cycle concolic execution.

CORT has successfully generated high-branch coverage tests for hardware benchmarks from

ITC ’99 [8] and IWLS-2005 [4]. Experiments show that our methodology is orders of mag-

nitude faster than previous hybrid concrete and symbolic evaluation based techniques while

retaining their advantage of achieving a high branch coverage. The tests generated by CORT

are significantly smaller than those generated by stochastic search-based techniques.

The contributions of the thesis are summarized below.

• We introduce a cycle-by-cycle concolic execution methodology, where the symbolic

evaluation effort is strictly limited to primary input stimulated statements, and un-

stimulated values are substituted with concrete values from the trace.

• A novel test representation, the Test Decision Tree is proposed, which specifies the

multi-cycle control-flow response of the design under various stimuli. Each of our

concolic execution based explorations results in a decision tree. Path explosion and

limitation of unrolling are overcome by a systematic stitching of the decision trees of

many individual explorations to form a global Test Decision Tree.

Sonal Pinto Chapter 1. Introduction 4

• We present CORT, an efficient factored concolic-execution based automated test gen-

erator for RTL. Three selection methods are described which heuristically select the

next starting state for each factored exploration. Our approach generates the optimal

test that reaches all covered branches with the least number of test vectors using the

Test Decision Tree.

The work described in this thesis has been submitted to the IEEE International Test Confer-

ence (ITC ’17), and is currently under review as, S. Pinto and M. S. Hsiao, "RTL Functional

Test Generation using Factored Concolic Execution."

1.2 Thesis Organization

The remainder of this thesis is structured as follows.

Chapter 2 describes fundamental concepts of hybrid concrete and symbolic evaluation of

RTL for the purpose of test generation and related work based on it. The chapter also

describes their limitations and methods employed to tackle them.

In Chapter 3, we introduce our novel cycle-by-cycle concolic execution methodology. To

demonstrate its performance and efficiency, it is used in a bounded test generation framework

similar to previous concolic techniques.

Chapter 4 introduces and describes the CORT framework in illustrative detail. The concept

of the Test Decision Tree and its role in the overall factored exploration based test generation

process is also exemplified. CORT is benchmarked, and the results are highlighted against

previous works.

We conclude this thesis in Chapter 5, describing the current limitations of our methodology

and proposals for future work.

Chapter 2

Background

In this chapter, we explain fundamental concepts and terminology that forms our work.

This chapter also surveys and contrasts previous work in the field of test generation at the

Register Transfer Level (RTL) using concolic execution and how it relates to the work done

in this thesis.

2.1 Automated Functional Test Generation

Hardware design validation is engaged with the goal of ensuring that the design conforms to

its specifications and architecture and that it does not display any behavior inimical to its

functional performance. Considering the current scale and complexity of hardware designs,

we rely on Hardware Descriptive Languages (HDL) like Verilog and VHDL to abstract the

design in terms of its behavioral response and structural components. The task of hardware

design is growing analogous to software development. Similar to software development, with

the ease of development, it also brings the risk of introducing design errors at the higher

abstraction layer, possibly due to direct human error or incorrect interpretation of language

5

Sonal Pinto Chapter 2. Background 6

constructs. The RTL provides high-level behavioral information for directed test generation

that can offer a better chance of solving problems like state justification, a primary task in

gate-level sequential ATPG (Automated Test Pattern Generation) [30].

At the RTL, functional metrics like statement coverage, branch coverage, toggle coverage or

assertion coverage helps with exercising basic structural integrity and measuring behavioral

accuracy at that design stage. These functional metrics [3] are derivatives of their equivalent

in software development. Without a doubt, automation of test generation effort aimed at

maximizing functional metrics or targeted tests that invoke a certain a behavioral response

from the design would aid design validation earlier in the design cycle [13]. This not only

helps avoid errors that could compound if not caught early but would reduce the overall

design cycle time, where hardware design validation currently consumes more time and

resources than development.

However, much of the RTL test generation effort is still relegated to constrained or directed

random testing. Due to the principal differences between HDL and software languages, the

proven techniques from software testing cannot be directly applied to hardware. The HDL

usually describes the response of the hardware in the most basic forms of control systems

such as finite state machines. The entire HDL is evaluated per cycle per clock in a clocked

hardware design. Registers and memory elements hold the state of the system and the next

state is decided based on the current state and primary input. Such state registers would

be identical to static variables in certain software languages (e.g. C++), the use of which

is discouraged in practical software development. To adopt directed search-based software

testing techniques like [26], [12], and [24], the entire HDL would need to be unrolled per

cycle of evaluation, and input domain would grow impractically with the length of the test.

The popular constraint-based formal technique of static symbolic execution [1] or Bounded

Model Checking [7, 2] would require the unrolling of the RTL design and evaluation of every

Sonal Pinto Chapter 2. Background 7

statement per cycle. Though it is entirely possible to reach every state in the RTL design

theoretically, such an exercise quickly proves to be computationally impractical and inviable

for real-world designs. In contrast, search-based techniques are oblivious to the behavioral

specification of the RTL and rely more on the brute-force random search of the state space,

albeit constrained or directed with the help of search optimization strategies. Search-based

techniques like [10] and STRATEGATE [21, 22, 6] have successfully employed Genetic Al-

gorithms (GA), a widely popular optimization technique to maximize the state space during

explorations for sequential ATPG. Due to its focused approach, STRATEGATE achieved a

higher fault coverage due to a greater success at state justification than previous determin-

istic or simulation-based techniques. Corno et al. [10] used instrumented RTL over a com-

mercial simulator to optimized tests geared towards high statement coverage. Search-based

techniques like [20, 14] rely on heuristics measured over optimizing branch coverage among

their candidate exploratory tests. Undoubtedly, search-based techniques are more popular

due to their simplicity of implementation as they often require minimal instrumentation

and can operate without severe knowledge of the underlying design, unlike constraint-based

techniques. In Software Testing terms, search-based techniques would usually fall under

black-box or gray-box testing strategies, while constraint-based testing would be considered

as a white-box strategy.

In this thesis, we focus on hybrid or semi-formal techniques that combine the salient advan-

tages of constraint-based and search-based techniques that have been introduced in the field

of RTL test generation.

Sonal Pinto Chapter 2. Background 8

2.2 Concolic Execution

Concolic execution is a hybrid testing technique that combines the classic formal symbolic

execution with concrete execution or simulation (in the case of hardware). Godefroid et

al. first introduced the technique in his implementation of DART [19], a directed software

test generator based on concolic execution. The term concolic execution, a portmanteau of

concrete and symbolic execution was coined by Sen et al. [13] in their work on CUTE, a

concolic unit test engine for C language. Their work extended DART for data structures.

Symbolic execution is a formal method where the program or design under test is solved

with the help of a Satisfiability Modulo Theory (SMT) solver, in terms of its evaluation

as symbolic constraint logic. However, in concolic execution, the symbolic execution effort

is restricted to the dynamic concrete analysis of the system, rather than static analysis, in

order to divert the control flow of the system along a path different than the one concretely

executed. The primary focus of concolic execution based testing is finding faults or bugs in

the functional behavior of the system under test.

With the advent of powerful SMT solvers like Z3 [34] and Yices2 [35], it has become easier

to construct full-featured symbolic interpreters for modern programming languages. Tradi-

tionally, in symbolic execution, tests are generated by building and solving a path constraint

for a target path in the control flow of the system. All possible paths are investigated in

a Depth-First-Search or wavefront manner, without any prior cognizance of feasibility. In

concolic execution, the system is first executed with a real or concrete input to obtain a con-

crete execution trace. The symbolic path constraint is constructed over the statements along

that concrete trace. For each branching statement or guards, the path constraint denoting

it is negated and solved with an SMT solver to generate the test that certainly guides the

control flow along a path that was not concretely executed. The actual superiority of this

method is apparent in its ability to restrict symbolic evaluation to statements that have been

Sonal Pinto Chapter 2. Background 9

influenced by the input, by only using the symbols for primary input. This reduces the over-

all computational effort, as fewer symbolic constraints need to be constructed and smaller

logical constraints need to be solved, for the same goal as traditional symbolic execution.

Nonetheless, concolic execution explores a tree of possible execution paths in a depth-first

search manner, and requires being bounded.

vo id foo (i n t x) {
1 . i n t y = 2∗x ;
2 . i n t z = x + 10;
3 . i f (y == z) {
4 . asser t (False) ; /∗ e r r o r ∗ /

}
}

(a) Source Code (b) Control Flow Response

Figure 2.1: Example for Concolic Execution

Concolic execution is illustrated over the example software code in Fig. 2.1a. In function foo,

the target statement 4 can only be reached when the input integer x holds the specific value

of 10. The test begins with an arbitrary value of x, say x = 8. The concrete execution of foo

will result in y = 16 and z = 18 in assignment statements 1 and 2 respectively. This leads

to guard statement 3 being evaluated to False, and thus taking the else branch. The input

is treated as a symbol and the path constraint for the execution is construction for the else-

branch as, 2 ∗ x 6= x+10. Thus, to divert the control flow along the then branch, input that

negates this path condition needs to be applied. The negated conditioned, 2 ∗ x = x + 10,

is solved using an SMT solver for x = 10. On the next run of foo, the input x = 10 is

applied in order to reach the target assertion in statement 4. The control flow response of

the function is shown in Fig. 2.1b. The tests are generated corresponding to the leaf nodes

in the response tree.

Sonal Pinto Chapter 2. Background 10

2.3 Scaling through Factored Exploration

A distinct difference between hardware and software with respect to its formal techniques

like Bounded Model Checking (BMC) and Symbolic Execution is in the abstract functional

description of the systems (HDL for hardware, and programming languages for software).

The HDL source of the hardware consists of both concurrent and procedural statements and

code blocks. The hardware is described in terms of its response to primary-input stimuli

and its stored system states in memory elements such as registers and memory arrays. For

sequential hardware, the HDL is usually synchronized to one or more clocks. Per clock cy-

cle, not all system states are reachable regardless of primary input. The entire HDL has

to be unrolled and evaluated per clock cycle. Any practical test for hardware will consist

of a non-negligible number of cycles. It has been previously mentioned in this thesis that

such large unrolling makes symbolic execution unrealistic, even under the assumption that a

full featured symbolic interpreter is present for the HDL design under test. Nonetheless, to

overcome this clear limitation of formal methods under deterministic computing paradigms,

clever techniques like inductive reasoning and variable ordering strategies have been suc-

cessfully implemented. In [18], SAT-based (Boolean Satisfiability) BMC was scaled through

variable ordering that is learned during incremental unrolling, and efficient BMC-specific

ordering tactics implemented were in the core SAT solver. With the help of signal corre-

lations, implications were deduced across multiple cycles of unrolling in [27]. This allowed

their SAT-based BMC to scale phenomenally beyond previous work at that time, as it could

reduce the overall search space.

The primary input is engaged for every cycle in the HDL, and every primary-input signal

requires being cycle-annotated to be evaluated symbolically. The degree of unrolling decides

the complexity of the symbolic execution. Such a formal evaluation of the HDL can be

understood as having static or state variables in software functions that are engaged in an

Sonal Pinto Chapter 2. Background 11

infinite loop [24]. This property is unique to hardware as software testing does not require

unrolling of cycles as in hardware and the concrete path under evaluation begins at distinct

start and end system state. In traditional hardware concolic execution [17], all symbolic

evaluation along a concrete simulation trace begins at predefined state (say, reset) prior to

which no signal has been stimulated by the primary input. At this starting state, all signals

are either assigned initial constant values or some function of the primary input. For each

cycle hence, it is easy to detect signals influenced or stimulated by cycle-annotated primary

input by following the use-definition [26] chain. This is akin to software testing of a function

where no function-scoped variable has a deterministic value before execution. Despite having

the property to control the complexity of symbolic execution by limiting the unrolling, the

effort necessarily begins at a fixed starting state. Thus, a maximum bound for cycles that

can be concolically simulated for test generation from the starting state is unfortunately

conditioned on computational power and time at disposal.

However, with appropriate instrumentation, concolic execution for HDL can begin at any

system state. This is enabled by having access to values of memory elements through sim-

ulator instrumentation. Say, a new exploration needs to begin a system state that is 1000

cycles away from the predefined reset state, then, after simulation of that base test the val-

ues of all memory elements form the initial values for symbolic execution (constrained to

primary input stimulated statements) of the new test. Though this constrains the input

search domain to the cycles of simulation; it allows for path constraints to be constructed in

a search space previously computationally unreachable. The search space can be factored to

computationally feasible exploration sizes (test length) using concolic execution. This allows

for piecewise test generation similar to iterative or generational search-based techniques, a

feature previously not conceived for hardware constraint-based techniques. In software con-

colic execution, without heavy instrumentation, a large functional (say, 1000-line) concrete

Sonal Pinto Chapter 2. Background 12

path cannot be split into parts and individually symbolically analyzed. In hardware, we can

split a long test (say, 1000 cycles) into incremental parts, reading the system state before

and after each part.

Consider the simple Verilog HDL example in Fig. 2.2b, where a register count has to be

incremented before having an opportunity to reach the target statement. This would require

at least 16 cycles, i.e. 15 cycles of incrementing count and 1 cycle for initialization (reset

state). Aside from the functional clock and reset input, key is the primary input that allows

us to guide the control flow towards the target at the right moment. The control flow graph

of the example design is shown in Fig. 2.2c, where we observe 4 unique paths that can be

executed.

vo id bar (i n t key) {
1 . i n t count = 0 ;
2 . f o r (i n t i =1; i <16; ++ i)
3 . count ++;
4 . i f (count==key)
5 . asser t (f a l s e) /∗ t a r g e t ∗ /

}

(a) Software equivalent

i npu t key ;
i npu t c lock ;
i npu t rese t ;
ou tput out ;

reg [3 : 0] count ;

always @(posedge c lock)
begin

i f (rese t) begin
count <= 0;
out <= 0;

end else begin
count <= count + 1 ;
i f (count == 15) begin

i f (key==count) begin
out <= ~out ; / / t a r g e t

end end
end end

(b) Verilog HDL design (c) Control Flow

Figure 2.2: Example HDL design and control flow

Sonal Pinto Chapter 2. Background 13

In the first necessary reset cycle, path-1 is taken. Pursuant of bounded concolic execution

(with concrete stimuli of k = 0), we would have to begin analysis at this state which pro-

vides constant initial values for variables participating in the execution. For the next 15

cycles, path-2 is executed, and the path-constraint grows accordingly. In the 16th cycle, the

concrete input key = 0 leads the execution away from the target, along path-3. Overall,

the relevant symbolic path constraint for these 16 cycles is described in Fig. 2.3a. The large

path constraint associated with the target requires the incremental symbolic computation

of count (assuming for the sake of the example that no advanced symbolic execution op-

timization techniques are being used). Without knowledge of initial values of count this

evaluation would not be possible. This situation where the evaluation is forced to begin

at predetermined start state is akin to the Input-Output testing of functions in Software

Testing [26], where all variables are scoped within the function and evaluation begins at the

start of the function block. The evaluation cannot begin at a point within that function,

as we would not know the values of variables altered before that point (without extensive

instrumentation to access the concrete environment). Looking at the software equivalent in

Fig 2.2a, we see that the formal analysis cannot simply begin at statement-4. The value of

count needs to be symbolically determined over the statements 2-3 from its initial definition

in statement-1.

i n i t : r ese t s t a t e
count=0
out=0

Concrete Test : key1−16=0 , 16 cyc les
path c o n s t r a i n t :

count=count+1
count=count+1
. . . 15 times total!
count=count+1
count=count+1
<not (key16==count) >

(a) 16-cycle path constraint

base t e s t : key1−12=0 , 12 cyc les
i n i t : Concrete System State Read

count=12
out=0

Concrete Test : key13−16=0 , 4 cyc les
path c o n s t r a i n t :

count=count+1
count=count+1
count=count+1
<not ((key16==count) >

(b) Path constraint for segment-4

Figure 2.3: Complexity of symbolic analysis

Sonal Pinto Chapter 2. Background 14

Assume that instrumentation to access any signal in the simulated design is available. Being

able to concretely read the system state at any cycle would not only allow the test to be at a

state away from the reset state, but also enable the ability to factor the test. Let us assume

that the 16-cycle test is factored into four parts, each of length 4 with the same concrete

stimuli of key = 0 throughout. Consider the first segment (cycles 1-4) which concretely

simulates the first four cycles of the same execution as in Fig. 2.3a. However, no path

constraint would need to be built in this factored segment as no statement was influenced

by input (implying that control flow in the segment cannot be changed as no stimulus is

consumed). The test so far forms the base test for the next segment, i.e. the concrete

stimuli of segment-1 is applied before concolic execution of segment-2. Once, the base test

is simulated, the system state is concretely read to determine the initial values for concolic

execution in the current segment.

The case for the segment-2 (cycles 5-8) and segment-3 (cycles 9-12) would be the same as

segment-1, as the system continues to execute through path-2. For the fourth segment (cycles

13-16), the first three segments form a cumulative base test of 12 cycles which would lead

to the system state consisting of count = 12 and out = 0. This system state is read from

memory elements (registers and arrays) and provide initial values for the formal analysis

distant from the reset state. The concrete stimuli for segment-4 are four cycles of key = 0

leading to a concrete trace that goes through path-3 in cycle-16. The path constraint for

this factored segment is shown in Fig. 2.3b. The size and computational complexity of this

4-cycle path constraint are smaller than the 16-cycle path constraint. The cyclic execution

of hardware forms a natural boundary for factoring and analysis where the system state can

be read between cycles (or segments of cycles).

While it true that a larger path constraint has a greater visibility of the effect of primary

input on the control flow, it is also expensive. Factoring the exploration into smaller tests

Sonal Pinto Chapter 2. Background 15

and obtaining the initial values of signals through instrumentation, each time bringing the

system away from the initial state, is the compromise we adopt to scale our concolic execution

methodology.

2.4 Verilator and RTL Instrumentation

Verilator [36] is an open source transpiler (source-to-source compiler) that converters Ver-

ilog HDL into a high-performance C++ behavioral simulator. Given synthesizable Verilog,

Verilator outputs a C++ class representing a cycle-accurate functional model of the RTL.

All signals (IO and internal) of the top hierarchical component of the design are directly ac-

cessible as public data members of this class. The class also provides a public function, eval,

which simulates the model’s behavioral response based on the current values of its public

data members.

Furthermore, Verilator automatically instruments the source code for branch coverage mea-

surement. Counters are placed under decision branches which increment when the control

flow executes through them. Simulating the model for a single cycle can be understood as as-

signing the data input, followed by two calls to eval with complimentary values set for clock

input. All Verilog branching logic (case, if/else) are converted to optimized nested if/else

chains in the C++ RTL. Verilog arrays are converted to contiguous C++ traditional arrays

(non-STL). An example Verilog snippet and its translated C++ RTL is shown in Fig. 2.4.

A C++ class, Vtop forms the top hierarchical component that is structurally equivalent to

the top module in the Verilog source. The branch coverage instrumentation, VCoverage is a

contiguous array of length equivalent to the number of branches in the behavioral code.

Since every signal of the Verilog design can be accessed or mutated in an object oriented

manner as public data members of the top hierarchical class, the simulator that is compiled

Sonal Pinto Chapter 2. Background 16

always @(posedge c lock) begin
i f (rese t) begin / / 1 7

s ta te1 <= 0;
end else begin / / 2 6

case (s ta te1)
0 : / / 1 9

i f (count1 == 4 ’ h f) / / 1 8
s ta te1 <= 1;

1 : / / 2 1
i f (count2 == 4 ’ h f) / / 2 0

s ta te1 <= 2;
2 : / / 2 3

i f (count3 == 4 ’ h f) / / 2 2
s ta te1 <= 3;

3 : / / 2 4
s ta te1 <= 0;

d e f a u l t : / / 2 5
s ta te1 <= s ta te1 ;

endcase
end

end

(a) Verilog HDL

i f (rese t) {
++(__Vcoverage [1 7]) ;
s ta te1 = 0U;

} e lse {
i f (0U == s ta te1) {

++(__Vcoverage [1 9]) ;
i f (0 xfU == count1) {

++(__Vcoverage [1 8]) ;
s ta te1 = 1U;

}
} e lse {

i f (1U == s ta te1) {
++(__Vcoverage [2 1]) ;
i f (0 xfU == count2)) {

++(__Vcoverage [2 0]) ;
s ta te1 = 2U;

}
} e lse {

i f (2U == s ta te1) {
++(__Vcoverage [2 3]) ;
i f (0 xfU == count3) {

++(__Vcoverage [2 2]) ;
s ta te1 = 3U;

}
} e lse {

i f (3U == s ta te1) {
++(__Vcoverage [2 4]) ;
s ta te1 = 0U;

} e lse {
s ta te1 = s ta te1 ;
++(__Vcoverage [2 5]) ;

}
}

}
++(__Vcoverage [2 6]) ;

}
}

(b) Verilated C++ RTL

Figure 2.4: Verilog code snippet and its Verilator translated C++ RTL

using the Verilated model (C++ RTL) is explicitly well suited for concolic execution. While

building path constraints, used signals that have not been stimulated by primary input

can simply be read from the simulator instance and substituted as concrete values. In the

traditional symbolic evaluation, the value for unstimulated variables would be evaluated from

its last definition.

Sonal Pinto Chapter 2. Background 17

2.5 Related Work

HYBRO [17] demonstrates viable RTL directed test generation by symbolically executing the

concrete trace extracted from the design Control Flow Graph (CFG) [9] during simulation.

The RTL is instrumented with branch coverage counters, and the execution path in the CFG

is deduced by observing the change in branch counters per simulation cycle. From a fixed

starting state, the design is concretely simulated using random vectors. The entire extracted

concrete trace is then symbolically evaluated to reveal activated (stimulated by input) guards

along that trace. In HYBRO, both cycle-annotated primary input and unstimulated internal

signals are considered for the symbolic execution effort. The path constraints for activated

guards are negated (mutated) and solved using an SMT solver, in the reversed order of their

concrete execution. The solution (in terms of primary input) that satisfies the negated path

expressions for the guards is used to form the new test that offers an exploration of a new

region in the test. HYBRO improves upon STAR [16] where previously mutated guards

would have been retained, resulting in repeated execution of previously explored paths. As

a compromise, in subsequent iterations, mutation is not attempted on guards that lead to

branches that have been explored within the bounded region. Thus, HYBRO poorly relies

on the random concrete stimuli to reach system states that require repeated execution of

certain paths (e.g. loops and counters). Moreover, HYBRO does not support HDL array

elements or memories which are integral parts of practical designs.

Xiaoke and Mishra [25] also interleaved concrete simulation and symbolic execution, by

instrumenting the RTL with statements that printed the concrete execution in terms of

syntactic elements. The design is simulated with random stimuli and a trace file representing

the concrete execution is output. The resultant trace file is symbolically analyzed to reveal

activated statements. In contrast to HYBRO, which symbolically evaluates unstimulated

variables used in activated statements, their work could simply substitute them with their

Sonal Pinto Chapter 2. Background 18

concrete equivalent (parsed from the print statements in the trace file). [25] also supports

symbolic evaluation of memory arrays by treating them as individual index-annotated scalar

variables. In a statement where an array variable is used, the index is evaluated as concrete,

and the appropriate symbol for the memory index is substituted. Both [17] and [25] generate

tests by unrolling the design for a fixed number of cycles from a specific starting state and

are limited to the exploration of system states reachable within the unrolled cycles.

PACOST [32, 33], a target oriented RTL test generator has shown success in reaching deep

hard-to-reach states by using factored explorations adjunct to interleaved concrete and sym-

bolic simulation. Both the single-cycle and the multi-cycle path constraint variant of PA-

COST relies on systematically building the test over smaller explorations. In an exploration,

the state space is explored in a similar manner to [17], where the guards are mutated in the

symbolic path-constraint constructed over the concrete execution. Successive explorations

begin at a heuristically determined starting state discovered in the current exploration. A

selection of a starting state is determined from state distances derived from an abstract

model of the RTL [29]. However, the construction of path constraints in each exploration is

limited to variables that can trace their use-definition chain to an input variable within that

exploration. If any variable in a guard path expression cannot be defined solely in terms of

primary input, then no mutation effort is performed on that guard. In contrast to PACOST,

our factored explorations are guided by heuristic metrics derived from the overall coverage

status of the test, and our analysis is not restricted to use-definition chains wholly contained

within the exploration. Furthermore, in PACOST, abstraction of the RTL leads to loss of

information and the calculation of abstract state distances is limited by their BMC-based

preprocessing.

Guiding the direction of test generation by dynamically calculating branch coverage based

heuristics is described in BEACON [20]. It is a search-based testing technique which uses a

Sonal Pinto Chapter 2. Background 19

hybrid Ant Colony Optimization and evolutionary algorithm to maximize branch coverage in

the RTL design under test. The Verilog RTL source is translated to a functional C++ model

and is instrumented for branch coverage measurement. The underlying search heuristics are

updated at each iteration during simulation. BEACON is able to reach hard-to-reach states

in a runtime that is orders of magnitude shorter than HYBRO. This is expected as it does

not incur the cost of expensive SMT solver operations. To further improve its performance,

in [15], BEACON was extended with a feature to periodically perform a local state space

search using an SMT-based Bounded Model Checker. This allows the search-based algorithm

to detect branches that could not have been found by a stochastic search alone.

Chapter 3

Cycle-by-Cycle Concolic Execution of

RTL

In this chapter, we introduce a novel concolic execution methodology geared towards rapidly

generating tests at the Register Transfer Level (RTL). The goal of this methodology is to

generate a multi-cycle sequential test that maximizes branch coverage, in the shortest amount

of time. The following is a brief overview of our hybrid concrete and symbolic simulation

test generation method. The overall test is iteratively built over several explorations using

randomly generated concrete input vectors (concrete stimuli), from a predetermined starting

system state (say, system reset), bounded to a fixed number of simulation cycles. For

each exploration, we perform cycle-by-cycle concolic simulation where symbolic expressions

are only constructed for primary input stimulated (activated) statements in the concrete

execution trace. Not all statements or variables are data-dependent on primary input. Such

statements can be abstracted away, and the unstimulated variables defined by them can be

substituted for their concrete values (read from the simulator) if they are eventually used in

other activated statements. As a result, the overall symbolic evaluation effort is significantly

20

Sonal Pinto Chapter 3. Cycle-by-Cycle Concolic Execution of RTL 21

reduced.

The objective of concolic simulation is to dynamically reveal activated control points (guard

statements) in the trace. The symbolic expressions for activated guards aremutated (negated)

using a formal Satisfiability Modulo Theory (SMT) solver, to generate mutation stimuli. Al-

tering the concrete test with the specific mutation stimuli generates the test that reaches

branches that were not executed during the current exploration. For the purpose of experi-

mentation, a bounded test generator based on this concolic execution methodology is built.

In each exploration, the test for each discovered branch is recorded. The overall test is the

optimal concatenation of tests selected from pool of all tests recorded so far, such that all

discovered branches are covered.

The cycle-by-cycle concolic execution methodology proposed in this thesis offers a significant

reduction in functional test generation time compared to previous work [17, 25] based on

similar hybrid concrete and symbolic evaluation.

The rest of the chapter is organized as follows. Terminology for key components of our

concolic execution algorithm is described in Section 3.1. In Section 3.2 details the prepro-

cessing and instrumentation of our RTL simulation framework. Our cycle-by-cycle concolic

execution methodology is described in great detail over an example in Section 3.3. Lastly,

our method is tested against previous work in Section 3.4.

3.1 Terminology

A concrete path or trace is defined as a sequence of statements (assignments and guards)

executed upon simulating the RTL source code (for one or more cycles) with concrete in-

put stimuli. However, unlike previous work, we do not construct a path constraint which

Sonal Pinto Chapter 3. Cycle-by-Cycle Concolic Execution of RTL 22

represents concrete trace as the stack of symbolic assignments and guards. Rather, we per-

form cycle-by-cycle concolic evaluation and maintain an Activation Table which stores the

symbolic definition of activated variables defined in assignment statements. In our work,

concolic execution requires symbolically executing the concrete path by only using symbols

for inputs. In each cycle, a symbolic expression is constructed for a statement if it is found

to be activated, with appropriate substitutions for each variable used. For primary inputs,

the cycle annotated input symbol representing them are used. An activated variable is sub-

stituted for its defining symbolic expression fetched from the Activation Table. Values of

unstimulated variables are said to be concrete, and are obtained (read) from the simulator

during simulation (between cycles).

Along a concrete trace, guards that use activated variables or primary inputs are termed

activated guards. For each activated guard, a boolean symbolic expression representing its

predicate and the concrete branch taken is constructed. A guard expression is a function of

input stimuli. To divert the control flow, we attempt to mutate the activated guards. An

activated guard that can be mutated is called a mutable guard and the stimuli that satisfy the

mutation is referred to as the mutation stimuli. The constraint stack for each activated guard

includes its negated expression and the concrete expressions for the intersecting mutable

guards found before it, in this trace. The intersection of guards is defined as having cycle-

annotated input stimuli in common, and we consider this during the mutation effort to

ensure that the mutation stimuli of a latter guard do not mutate the concrete execution of

a former. The constraint stack is solved using an SMT solver. If the constraint stack could

not be solved, then the activated guard is ignored henceforth in the analysis of this trace.

Comparable to [25], our work can build symbolic expressions for statements involving array

accesses (e.g. memory, queues, FIFO) where every element in the array is treated as a

scalar variable annotated by its index. This means that the array index would be read as

Sonal Pinto Chapter 3. Cycle-by-Cycle Concolic Execution of RTL 23

concrete. Thus, upon encountering activated variables being used as array access indexes,

we deactivate them and consider their input stimuli to be immutable stimuli. No symbols

are created for immutable stimuli, and their concrete values are substituted wherever they

are used. In a similar note, our concolic execution methodology considers clocking and reset

inputs as immutable stimuli, and always treats them as concrete values.

3.2 Preprocessing and Instrumentation

This section describes the preprocessing tasks that occur before the real test generation

effort. The RTL is instrumented for both branch coverage and trace recording, the latter

being an enhancement to Verilator introduced as a part of our work.

3.2.1 Concrete Trace Recording

Recording the concrete trace traversed in the design in each cycle is a fundamental operation

in our work. To this end, Verilator [36] (introduced in Section 2.4) compiler source code is

modified to allow for instrumentation of concrete trace recording during functional simula-

tion. The top hierarchal class which simulates the design, Vtop is extended with a C++

integer vector named trace. In the eval function, each branch coverage increment statement

is followed by a command to concatenate the branch ID into the trace (Fig. 3.1). The trace

data structure is cleared before a cycle and read at the end of a cycle. During a call to

eval function, when the execution flows through a path, it is recorded in the trace as unique

sequence of branches. The accumulated sequence of integer branch IDs denotes the concrete

trace and is accessed as a public data member of the top simulator class.

Sonal Pinto Chapter 3. Cycle-by-Cycle Concolic Execution of RTL 24

i f (0U == s ta te1) {
++(__Vcoverage [1 9]) ;
t race . push_back (1 9) ;
i f (0 xfU == count1) {

++(__Vcoverage [1 8]) ;
t race . push_back (1 8) ;
s ta te1 = 1U;

}
}

Figure 3.1: Instrumentation of concrete trace recording in the eval function of the C++
RTL

3.2.2 RTL Translation and Analysis

The task of preprocessing begins with the translation of the Verilog source of the design

into C++ using Verilator. Branch coverage measurement (in-built Verilator feature) and

execution trace recording are instrumented during the translation. The coverage status for

the simulation is the value in each instrumented branch coverage counter. The Verilog

source for the design used as the motivating example in the following section is presented in

Fig. 3.2a. The instrumented C++ code (with simplified variable names for the purpose of

illustration) representing its cycle-accurate behavior is displayed in Fig. 3.2b.

The Abstract Syntax Tree (AST) for the model’s eval (behavioral model) function is parsed

from the Verilated design source code and is transformed into a Control Flow Graph (CFG)

[9]. The AST structure for each statement helps with analysis and construction of symbolic

expressions. A single-cycle execution trace of branch IDs corresponds to a unique path in

the CFG describing both the assignment statements and the concrete execution of guard

statements. In the RTL, by construct, certain branches might be unreachable, i.e. there

exists no test that can guide the control flow through that segment of the code. Verilog

default segments in case statements are the usual examples for these cases. Identification

of such branches helps narrow down the goal space (branch coverage). In this work, we use

signal domain analysis as introduced in [28] across the AST to identify predicates (branch

conditions) that cannot be satisfied under any assignment of the predicate variables. How-

Sonal Pinto Chapter 3. Cycle-by-Cycle Concolic Execution of RTL 25

module DUT(din , c lock , reset , dout) ;
i npu t c lock , rese t ;
i npu t [7 : 0] d in ;
output dout ;
reg [7 : 0] b u f f e r [0 : 3] ;
reg [1 5 : 0] r0 ;
reg [1 : 0] addr ;
reg [1 : 0] s t a t e ;

always @(posedge c lock) begin
i f (rese t) begin

addr<=0;
s ta t e <=0;
dout<=0;

end
else begin

case (s ta te)
0 : begin

b u f f e r [addr] <=d in ;
addr<=addr +1; s ta t e <=1;

end
1: begin

b u f f e r [addr] <=d in ;
addr<=addr +1; s ta t e <=2;

end
2: begin

r0<= { b u f f e r [addr - 1] ,
b u f f e r [addr - 2] } ;

addr<=0; s ta t e <=3;
end
3: begin

i f (r0 == 16 ’hDEAD)
dout<=1;

e lse
dout<=0;

s ta t e <=0;
end
endcase end end

endmodule

(a) Verilog RTL

1. i f (rese t) {
2 . ++coverage [0] ;

t race . push_back (0)
3 . addr =0;
4 . s t a te =0;
5 . dout =0;

} e lse {
6 . ++coverage [7] ;

t race . push_back (7)
7 . i f (0== s ta te) {
8 . ++coverage [1] ;

t race . push_back (1)
9 . b u f f e r [addr]= d in ;
10. s t a t e =1;
11. addr =(3 & (1 + addr)) ;

} e lse {
12. i f (1== s ta te) {
13. ++coverage [2] ;

t race . push_back (2)
14. b u f f e r [addr]= d in ;
15. s t a t e =2;
16. addr =(3 & (1 + addr)) ;

} e lse {
17. i f ((2==(s ta te))) {
18. ++coverage [3] ;

t race . push_back (3)
19. r0 = ((b u f f e r [3 & (addr - 1)] < <8U)

| (b u f f e r [3 & (addr - 2)])) ;
20. s t a t e =3;
21. addr =0;

} e lse {
22. i f (3== s ta te) {
23. ++coverage [6] ;

t race . push_back (6)
24. i f (0xdeadU==r0) {
25. ++coverage [4] ;

t race . push_back (4)
26. dout =1;

} e lse {
27. ++coverage [5] ;

t race . push_back (5)
28. dout =0;

}
29. s t a t e = 0 ; } } } } }

(b) Instrumented C++ RTL

Figure 3.2: Example Design-Under-Test

ever, we use a non-formal approach [31] by restricting the signal domain range to predicate

control signals that are only assigned constant values across all statements that define them.

In simple terms, given that a predicate variable can take a value from a finite set of values

(parsed from the AST), satisfiability is checked in predicates that use that signal. Branch

expressions which cannot be satisfied are said to be unreachable branches.

Sonal Pinto Chapter 3. Cycle-by-Cycle Concolic Execution of RTL 26

Lastly, a simple harness that instantiates the C++ model and provides generic accessor

functions to its public members (signal variables, coverage counters, trace, and eval) is

generated. The harness is compiled along with the model to obtain the design simulator.

The CFG for the example design is shown in Fig. 3.3a. The AST forming statement-19 is

portrayed in Fig. 3.3b, highlighting a complex expression that utilizes arrays.

(a) Control Flow Graph (b) AST for statement-19

Figure 3.3: Preprocessed CFG and AST

Sonal Pinto Chapter 3. Cycle-by-Cycle Concolic Execution of RTL 27

3.3 RTL Concolic Execution

In this section, our concolic execution methodology is illustrated over the example design

in Fig. 3.2. The following subsections demonstrate a concolic exploration of the design

and the cycle-by-cycle simulation and analysis is annotated in Table 3.1. For this example

exploration, assume a random concrete input of five cycles (cycles 1-to-5 in column 2).

Before simulating the model with the concrete input, user-provided initialization vectors are

applied to the model. In this case, that would be a single cycle of primary input reset set

to high, during cycle-0, beyond which it is held low. This brings the system to the required

starting state. No analysis is performed over the initialization cycles.

3.3.1 Two-Pass Simulation

Though we have access to concrete values of all signals by simply reading them directly from

the simulator (instead of parsing simulation print-outputs as in [25]), the values can only be

read between clock pulses, not during it. Therefore, we require at least two passes through

the same concrete stimuli to have valid requisite pre-cycle or post-cycle concrete reads. Each

simulation pass begins by applying the initialization sequence. The Activation Table is only

required for the second pass and starts off empty. Firstly, as the functional simulation of

the C++ translated RTL is at least five times faster than native Verilog simulation, such

an overhead is acceptable. Secondly, being able to read and substitute concrete values for

unstimulated variables avoids the redundant effort of symbolically evaluating unstimulated

statements, as done in [17]. We take advantage of the fact that the simulator functionally

evaluates every statement and variable regardless of stimulation, and that we have easy

access to read any variable value during simulation.

Sonal Pinto Chapter 3. Cycle-by-Cycle Concolic Execution of RTL 28

• Pass-1: Concrete Trace Analysis. The design is simulated over the concrete stim-

uli. The concrete execution trace (column 3) traversed in the model is inferred from

the CFG by observing the trace recorded after the cycle. Say, in cycle-1, by noting a

trace of <1, 7>, we can deduce that the execution followed a concrete path of <1F-6-

7T-8-9-10-11> where the guards in statements 1 and 7 evaluated to False (else) and

True (then) respectively. By analyzing the statements along the per-cycle trace, we

mark each used variable as a post-cycle or pre-cycle read, for their particular cycle. A

used variable in marked as a post-cycle-read if the variable was first defined (Verilog

blocking assignment) and then utilized in the same cycle. Else, it is characterized as

a pre-cycle-read. Symbolic analysis of the concrete trace is performed in the second

pass.

• Pass-2: Concolic Execution. In this pass, before simulating a clock pulse with con-

crete stimuli, we first analyze the previously extracted concrete path for the upcoming

cycle, to reveal activated statements (stimulated by primary input or an activated vari-

able from the Activation Table). The used variables in each activated statement which

were marked as pre-cycle-read for this cycle, are now read from the simulator. Next,

the clock pulse is applied. Symbolic expressions (column 5) are constructed for acti-

vated statements using its AST representation with appropriate value substitutions for

the used variables. Post-cycle concrete reads for unstimulated variables are read from

the simulator on demand. The defined activated variable is enlisted in the Activation

Table (column 6). The concrete reads in each cycle are shown in column 4.

Sonal Pinto Chapter 3. Cycle-by-Cycle Concolic Execution of RTL 29

Table 3.1: Discovery of Activated Guards using Concolic Execution

Cycle Concrete Concrete Concrete Statement Activation
Stimuli Trace Reads Expressions Table

0 reset=1 – – – –

1 din=68 1F-6-7T-8-9-10-
11 addr=0 9: buffer [0] = din1

buffer_0 : din1

2 din=178 1F-6-7F-12T-
13-14-15-16 addr=1 14: buffer [1] = din2

buffer_0 : din1

buffer_1 : din2

3 din=75
1F-6-7F-12F-

17T-
18-19-20-21

addr=2
19:

r0 = (buffer [1] « 8) | buffer [0]
= (din2 « 8) | din1

buffer_0 : din1

buffer_1 : din2

r0 : (din2 « 8) | din1

4 din=232
1F-6-7F-12F-

17F-
22T-23-24F-27-

28-29

–
Activated Guard 24F:

not(57005 == r0) 7→
¬(57005 ==(din2 « 8) | din1)

buffer_0 : din1

buffer_1 : din2

r0 : (din2 « 8) | din1

5 din=22 1F-6-7F-8-9-10-
11 addr=0 9: buffer [0] = din5

buffer_0 : din5

buffer_1 : din2

r0 : (din2 « 8) | din1

3.3.2 Dynamic discovery and mutation of Activated Guards

For this example, din i denotes the byte input din on cycle i. In cycle-1, the first cycle of

analysis, the assignment statement-9 is found to be activated by the input din. It is seen

that this statement involves the definition of an index in the array buffer. We require that

the array access index variables themselves are concrete. Thus, the concrete value for addr

is pre-cycle-read from the simulator and the index is calculated by substituting it in the AST

for array index selection (ArraySel AST node). To construct the symbolic expression, the

AST is traversed in a depth-first search manner, recursively building expression components.

In the LHS of the activated statement, we use din1 for the construction of the symbolic

expression defining buffer[0]. Finally, we add the index annotated array variable, buffer_0

and its symbolic expression: din1, to the Activation Table. Similarly, in cycle-2, statement-

Sonal Pinto Chapter 3. Cycle-by-Cycle Concolic Execution of RTL 30

14 is found to be stimulated, and the Activation Table is updated with buffer_1 with its

expression: din2.

During cycle-3, statement-19 is found to be activated as it uses activated variables buffer_0

and buffer_1. The symbolic expression for r0 is constructed by substituting values for

activated variables from the Activation Table in statement’s AST representation, as shown

in Fig. 3.4. In cycle-4, statement-24 is the first activated guard to be encountered along

the overall concrete path. We see that, with the concrete stimuli, the execution takes the

else branch, and thus, the appropriate predicate expression is constructed. Statement-9 is

re-activated in cycle-5 and updated in the Activation Table but is not used further in this

exploration. While not shown in the example, it must be noted that if an entry in the

Activation Table is found to be deactivated (defined wholly by unstimulated variables or

constants) while analyzing the concrete path, it is simply removed.

Figure 3.4: Concrete evaluation of array index for symbolic expression construction

Once all the activated guards are discovered, an attempt is made to check if they are

mutable. The negated expression for each activated guard is fed to the SMT solver con-

Sonal Pinto Chapter 3. Cycle-by-Cycle Concolic Execution of RTL 31

strained by expressions for mutable guards with which its stimuli intersects. In the current

example, the expression representing activated guard-24 on cycle-4, is negated to obtain

(57005 ==(din2 « 8) | din1). The solver returns din1 = 173 and din2 = 222 as mutation

stimuli, and guard-24 is found to be a mutable guard in cycle-4.

3.3.3 Iterative Bounded Explorations

The test that reaches branch-4 is built by overwriting the current concrete test with the

mutation stimuli. The new test is simulated to verify that the control flow reaches the target

branch, and recorded as the test for that branch. For the purpose of experimentation and

evaluation of our concolic execution methodology against previous work [17, 25], a simplistic

bounded test generator is built. The strategy followed is similar to HYBRO [17] where

the process of concolic execution is performed over several iterations using random concrete

stimuli, and for each mutable guard discovered, a new test is recorded and added to the pool.

Such iterative explorations begin a the reset state (application of initialization vectors) and

are bounded by a predefined number of simulation cycles, defining the exploration length. In-

creasing the exploration length leads to increased concolic execution complexity as described

in Section 2.3. The final optimal test is greedily derived (maximize branches covered per

test) from the pool of individual tests such that all discovered branches are covered.

3.4 Experimentation and Results

This section evaluates the performance of our cycle-by-cycle concolic execution methodology

against previous work [17, 25] that used hybrid concrete and symbolic execution.

Sonal Pinto Chapter 3. Cycle-by-Cycle Concolic Execution of RTL 32

3.4.1 Experiment Setup

The test generation framework is written in Python (v3.4.3) and uses the Microsoft’s Z3

(v4.5.1) [34] SMT solver. The design information parsed during preprocessing is stored and

accessed as Python objects (Python pickling). The Verilated C++ RTL and the simulator

harness which instantiates and provides accessor functions to the behavioral model of the

design is compiled as shared library object that can be imported as a Python module. All

experiments are run on a Linux (Lubuntu 15.10) machine with an Intel Core i7-975 (3.33GHz)

with 6GB memory.

Table 3.2: Benchmark Description

Benchmark #PI #PO #branches #gates Unreach.
b01 4 2 26 45 0
b06 2 6 24 66 1
b10 11 6 32 172 1
b11 7 6 33 366 1
b14 32 54 211 3461 12

HYBRO [17] and [25] are bounded test generators that begin at the reset state, and perform

repeated concolic execution for a specific number of cycles. This limits the unrolling of the

RTL and is a parameter to control the computation complexity of the symbolic evaluation

effort. Since, we compare our work against these methods in this chapter, our test generation

framework is built to perform bounded concolic execution. Our work is tested over the same

benchmarks (Table 3.2) from ITC99 as used in [17]. Column 6 (Unreach.) in this table shows

the number of branches that are found to be guaranteed unreachable during preprocessing.

The cost of preprocessing which includes translation, parsing, static analysis and simulator

compilation is at worst under 2s.

Sonal Pinto Chapter 3. Cycle-by-Cycle Concolic Execution of RTL 33

3.4.2 Branch Coverage

Table 3.3 highlights the performance of our concolic execution methodology over HYBRO [17]

and [25] in terms of branch coverage and runtime. Column 3-5 (BC%) shows the overall

branch coverage which is measured over all branch points. Column 6 (Reach. BC%) shows

our reachable branch coverage which discounts branches that are deemed guaranteed un-

reachable during preprocessing. Column 2 (Unroll Cycles) shows the degree of unrolling

(same as [17]), and column 7 (Iter.) shows the number of iterations or rounds of concolic

execution engaged. The number of rounds is decided experimentally per bound where it is

initially set at 4, and increased until a high branch coverage (>90%) is consistently obtained.

The column 8 (#vec.) indicates the length of the final test that greedily covers all branches

discovered in the test generation process. Information about test length was not provided in

the compared works.

Table 3.3: Comparison of Branch Coverage

Bench. Unroll Cycles BC1% Reach. BC% Iter. #vec2HYBRO [25] Ours
b01 10 94.44 96.3 100 100 4 35
b06 10 94.12 96.3 95.83 100 4 39
b10 30 96.77 96.67 96.88 100 8 66
b11 10 78.26 81.82 93.94 96.875 16 68
b11 50 91.3 94.44 93.94 96.875 8 76
b14 15 83.5 98.95 92.89 98.49 36 506
1 Number of branches present in the RTL may vary between compared methods due to in-
strumentation differences.
2 Test length not provided in [17] (HYBRO) and [25]

Minor differences in reachable coverage might be attributed to the different instrumentation

methods used in compared works. Therefore, both overall coverage and reachable coverage

from our work are reported. Our work generates tests that can reach more than 95% of all

reachable branches across all compared benchmarks. Our methodology manages to cover all

Sonal Pinto Chapter 3. Cycle-by-Cycle Concolic Execution of RTL 34

reachable branches in the case of b01, b06 and b10. In the design b14, we achieve 92.89%

(98.5% reachable) branch coverage compared to HYBRO with 83.5% overall coverage. The

test for b14 is comparable to the search success of [25] (98.95% reported branch coverage).

3.4.3 Test Generation Runtime

The runtime cost of our concolic execution based test generation effort is detailed in Table 3.4.

The runtime is described in seconds in columns 3-6, and speedup of our work over previous

methods in highlighted in column 6 and 7.

Table 3.4: Comparison of Runtime

Bench. Unroll Cycles Time(s) Speedup
HYBRO [25] Ours v/s HYBRO v/s [25]

b01 10 0.07 0.55 0.01 7 55
b06 10 0.1 0.6 0.11 0.91 5.45
b10 30 52.14 24.61 0.39 133.69 63.10
b11 10 0.28 0.67 0.26 1.08 2.58
b11 50 326.85 270.28 1.21 270.12 223.37
b14 15 301.69 257.59 11.98 25.17 21.49

The results in Table 3.4 show that our cycle-by-cycle concolic execution methodology is

orders of magnitude faster than the compared work. The performance speedup may not be

certifiable measurable at smaller designs like b01 and b06, especially under relatively fewer

cycles of unrolling. In the design b11, we see at low degree of unrolling (10 cycles), the

performance is comparable. However, upon increasing the computation complexity, i.e. by

raising the concolic execution effort to 50 cycles, it becomes clear that our lean methodology is

superior to HYBRO (270× speedup) and [25] (223× speedup). The remarkable improvement

in execution costs of engaging a semi-formal technique like concolic execution reinvigorates

the viability of constraint-based techniques in the RTL testing field currently dominated by

search-based techniques.

Chapter 4

Test Generation using Factored

Explorations

Concolic execution on its own is hindered by the same limitations of path explosion and

computational effort of evaluation over a large number of cycles. The entire Control Flow

Graph (CFG) of the design is processed every cycle. As demonstrated in [32], factoring the

exploration into a smaller number of cycles and combining the results of each exploration

offers a promising avenue to scale. In this chapter, we present, CORT (Concolic RTL Test

Generator), a methodology for RTL directed test generation that aims to maximize branch

coverage with a minimal number of test vectors, in the shortest amount of time. Our work

treats the test generation problem as a task of iteratively building the global Test Decision

Tree (TDT) for the design over each exploration.

The following is a short overview of CORT’s underlying test generation methodology. We

iteratively build upon several relatively smaller explorations to generate the overall test. For

each exploration, we perform a cycle-by-cycle concolic simulation to build the tests that

reach branches that were not executed by the current concrete simulation, as described in

35

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 36

Chapter 3. Firstly, the costly construction and solving of symbolic expressions is limited to

primary input stimulated (activated) statements. Secondly, concrete values of unstimulated

signals are substituted in expressions that use them. These measures reduce the cost of

symbolic evaluation effort. In order to reveal alternate execution paths in the concrete

simulation, the negated symbolic expressions for activated guard statements are solved using

a formal Satisfiability Modulo Theory (SMT) solver, to generate mutation stimuli.

The concrete and mutation stimuli are used to build a test decision tree which represents

the control-flow response of the design in the exploration. The decision trees from individual

explorations incrementally uncover the overall control-flow response of the design to various

stimuli over several cycles, i.e., a global Test Decision Tree. This is subsequently used to guide

new explorations along heuristically determined starting system states. Once all explorations

have concluded, the optimal test is derived directly from the global Test Decision Tree.

The rest of the chapter is organized as follows. Section 4.1 introduces the paradigm of the

Test Decision Tree, along with its construction and interpretation. The CORT framework

is described in detail and the example introduced in Chapter 3 is continued in Section 4.2.

Finally, CORT is benchmarked and evaluated against previous work in Section 4.3.

4.1 Test Decision Tree

The test generation effort is represented as a decision tree in our work. Performing concolic

execution over a given sequence of input vectors (concrete stimuli), we detect mutable guards

and their corresponding mutation stimuli. The mutable guards can be considered as points of

divergence in the control-flow, with the divergence being achieved by applying the mutation

stimuli instead of concrete stimuli.

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 37

Structurally, the decision tree consists of two types of nodes, data nodes and control nodes.

A data node comprises zero or more concrete input vectors called default stimuli. Control

nodes are non-terminal, and detail a cycle annotated mutable guard, its concrete execution

(default execution) and mutation stimuli.

An exploration is the task of performing concolic execution over a given concrete stimuli

and returning a decision tree representing its control-flow response. The exercise of building

a decision tree begins with an empty data node. The concrete input vectors are enlisted

cycle-by-cycle as default stimuli until their execution discovers a mutable guard. Thus, the

data node leads to a new control node which will branch into two children, along edges called

default and mutate, indicating the concrete and divergent execution of the mutable guard,

respectively. The control node holds the mutation stimuli, and its branches represent a choice

to either default or mutate (application of mutation stimuli) the control-flow. Subsequent

concrete input vectors are enlisted into the default data nodes, branching as necessary until

all concrete stimuli are exhausted.

Construction of the test represented by a data node in the decision tree requires a reverse

traversal from that node towards the root gathering input vectors along the way. The default

stimuli from each traversed data node are first collected in its entirety. Then, the mutation

stimuli are merely noted from the control nodes that fell on the mutate branch of their

parent during traversal. In situations where some mutation stimulus of a deeper control

node coincides (same signal on the same cycle) with the mutation stimulus of a higher

control node, the latter is ignored. Lastly, the default stimuli are overwritten by mutation

stimuli for the cycles that it denotes. The task of overwriting the default stimuli with the

mutation stimuli is indicative of the minimum change in the input vectors necessary to guide

the control-flow to the target node. There is a need to apply the mutation stimuli over the

complete default stimuli because the mutation of a guard (while honoring the control-flow

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 38

through the guards above it) might require altering input, many cycles in the past.

(a) TDT (b) Test to reach node n3

Figure 4.1: Test Decision Tree for the example exploration in Section 3.3

Continuing the example in Section 3.3, the decision tree in Fig. 4.1a shows the response

uncovered by the concolic execution based exploration. The test decision tree can be under-

stood as an abstraction of the CFG unrolled over the simulated cycles, in terms of stimuli

and response. In each cycle, a concrete input vector is applied to the system and a unique

path is traversed in the CFG. However, the response to the stimuli may not be guaranteed in

the same cycle, and in some cycles, there is no controllable response at all (cycle 1-3 in the

example shown in Section 3.3). Thus we store the minimum amount information in terms

of stimuli distributed over data and control nodes, describing the control flow response and

means to alter it (mutation stimuli of control nodes). Data node n0 in the TDT accumulates

the first 4 concrete input vectors as no mutable guard was discovered before that point. In

cycle 4, according to the concrete (default) execution the mutable guard-24 takes the False

path. Control node n1 records this control-flow response and the mutation stimuli that can

alter it. The unexplored part of the control-flow response, n3 appears on the mutate edge

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 39

of n1. The remaining default stimuli is accumulated in data node n2.

If the primary input din is modified as per the mutation stimuli of n1 on cycles 1 and 2 in

the decision tree, then the system would execute the True branch for guard-24 on cycle-4.

This is well represented in the TDT by the test that reaches node n3. From the TDT, we

see that the test for n3 is formed by <n0, n1, n3>. First, the default stimuli from the

data nodes n0 and n3 are collected. Since, n3 is currently empty, only n0 can contribute

its default stimuli. This action reveals the length of the test to be 4 cycle long. Next, the

mutation stimuli from n1 overrides the concrete stimuli on the appropriate cycles. Overall,

a 4 cycle test (Fig. 4.1b) is constructed to reach node n3.

4.2 CORT Framework

The framework for CORT is illustrated in Fig. 4.2. Identification of clocking and reset signals

and initialization input vectors is expected from the user, along with the Verilog Hardware

Description Language (HDL) source for the design. Currently, our work can handle multiple

synchronous clocks, each of which can toggle at different rates. The user also configures a

search strategy (consisting of several options) to be used for test generation.

Before test generation, a preprocessor generates a cycle-accurate functional simulator from

the given Verilog alongside extracting various design information. The Test Generator (TG)

block engages the Concolic Execution Engine (CEE) for several explorations towards the

goal of building a test that achieves maximum branch coverage. The CEE receives input

vectors from the TG and performs concolic execution over their concrete simulation. It

discovers mutable guards and their mutation stimuli, and a returns a decision tree identifying

them. The TG stitches these decision trees from individual explorations to form a global

Test Decision Tree (TDT). At the start of each exploration, the TG selectively determines

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 40

Figure 4.2: CORT Framework

terminal nodes in the TDT to commit new explorations from and generates appropriate input

vectors to reach that node followed by random input vectors for the unexplored cycles. Once

all explorations have completed, the input vectors that form the optimal test are written

out. The working of the CORT framework is described over the example introduced in

Section 3.2.2.

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 41

4.2.1 Preprocessing

The Preprocessor performs the translation and analysis tasks described in Section. 3.2. The

Verilog RTL source is translated to C++ and harnessed to produce a cycle-accurate func-

tional simulator. The Abstract Syntax Tree (AST) and Control Flow Graph (CFG) [9] is

extracted during this phase along with specifications for various signals in the design. To

avoid redundant illustration, the translated C++ RTL for the example design introduced in

Section 3.2.2 and its behavioral CFG is shown in Fig. 3.2b and Fig. 3.3a respectively.

Figure 4.3: Branch Transition Graph

RTL for FSM-based designs often involves guidepost variables to denote the state of the sys-

tem. In CORT, we extend the preprocessing task towards the static analysis of assignments

and guards for such variables in the AST to construct a Branch Transition Graph (BTG)

as described in [31]. A node in the BTG is representative of a state in an FSM graph, and

its branch coverage point identifies the guard that acts as its state-variable guidepost. The

BTG edges denote the branch that must be covered to transition from the current state to

the next. We can associate all branch points with their respective BTG nodes, by following

their hierarchy in the CFG. This task mimics the purpose of design abstraction in [32] and

aims to identify the underlying design FSM. The BTG representation of the FSM in the

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 42

example design is shown in Fig. 4.3.

4.2.2 Concolic Execution Engine

The Concolic Execution Engine (CEE) is the heart of the CORT framework and performs

the primary task of exploring the design response for a given sequence of input vectors. It

follows the same core concolic execution methodology as described in Section 3.3. The Test

Generator (TG) provides the CEE with a sequence of concrete input vectors (column 2 in

Fig. 3.1) to be used for a new exploration along with a base test sequence which brings the

simulated design to a desired state.

Prior to simulation during both phases of our cycle-by-cycle concolic execution, initialization

vectors and the base test are applied to the model. Concolic execution is only performed

on the exploration vectors, and not on the initialization and base test vectors. The CEE

simulates the concrete input and symbolically evaluates the trace to discover mutable guards,

and their mutation stimuli. In our example, that would be guard-24 on cycle-4 with a

mutation stimuli of din1 = 173 and din2 = 222 which allows the test to progress to the True

branch (branch 4). Once the concolic analysis is completed, the CEE constructs a decision

tree (Fig. 4.1a) for the current exploration as per Section 4.1 and returns it to the Test

Generator.

4.2.3 Test Generation

The Test Generator (TG) block is primary controller for the entire test generation strategy

which fundamentally revolves around incrementally discovering and growing the control flow

response of the design-under-test in the form of a Test Decision Tree (TDT). It seeds the

Concolic Execution Engine (CEE) with concrete stimuli and analyzes its response to grow

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 43

the global TDT. The TG is also responsible for the selection of system states to start each

new exploration from.

A configurable parameter called exploration-radius (R) determines the length of each ex-

ploration. An iteration begins by heuristically selecting a terminal data node in the TDT.

Assume that the terminal data node n3 from Fig. 4.1a is selected as the starting point for

a new exploration. Reaching the system state represented by n3 requires that the mutate

branch is taken from node n1. The test is constructed as described in Section 4.1 where the

entire 4-cycle default stimulus is collected first, and then overwritten by specific mutation

stimuli on cycle 1 and 2. The execution region under the then branch of guard-24 on cycle-4

is unexplored, which is also implied by an empty n3. Thus, to ensure that the exploration

does not miss any mutable guard on cycle-4 along the new execution branch, the last input

vector in the 4-cycle test that reaches n3, is set as the first cycle of the concrete stimuli.

This represents a 1-cycle overlap of the previous exploration and the new one.

The concept of stitching factored decision trees that guide the overall control flow of the

design is afforded by overlapping explorations using a configurable parameter, exploration-

overlap (Q). The exploration-overlap can take a minimum value of 1. The overlapping vectors

are treated as concrete stimuli, which implies that concolic execution is performed over Q+R

vectors. The test that reaches the selected terminal node is reduced by Q cycles to form a

base-test, and the remaining vectors are used as overlap. For the new exploration’s concrete

stimuli, the Q overlapping vectors are supplemented by R randomly generated input vectors

(with inactive reset input).

For our example, assume an R = 10. The cumulative 3-cycle base-test and the new 11-

cycle (Q + R) concrete stimuli with Q = 1, driving the new exploration at n3, is shown in

Fig. 4.4a. The returned decision tree in displayed in Fig. 4.4b. This time, the previously

empty n3 starts off as the head node while building the exploration’s decision tree. However,

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 44

(a) Concrete Stimuli (b) Control-Flow Response

Figure 4.4: New exploration at n3

the vectors that were included as overlap are not gathered as default stimuli, as illustrated

by the absence of <cycle-4, din=232> in the updated n3. The stitching of the decision tree

returned by the new exploration at n3 is shown in Fig. 4.5.

Overlapping explorations may lead to re-discovering mutable guards within the region of

overlap. The CEE ignores these previously explored cycle-specific mutable guards while

building its local decision tree, but includes them for mutation effort (in cases where their

stimuli intersect with activated guards down the new concrete path). Increasing Q may

increase the discovery of mutable guards in the new exploration, as it deepens the influence

of primary input stimuli. A Q =∞ would rediscover all mutable guards from the root of the

TDT but would be computationally intensive. A smaller Q and R would lead to relatively

fewer activated statements being processed per exploration.

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 45

Figure 4.5: Global Test Decision Tree after two explorations

4.2.4 Systematic Exploration

The test represented by a data node includes the test that reaches it, and its default stimuli

(if any). The test representing node n6 is shown in Fig. 4.6a. At the end of an exploration,

the coverage status for each new terminal node is recorded by simulating the design over

their tests. If no mutable guards were discovered during an exploration, then the head data

node from which the exploration began would continue to be terminal, though with more

default stimuli. The coverage status needs to be refreshed for such updated terminal nodes.

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 46

(a) Test for node n6 (b) Final test output

Figure 4.6: Tests derived from the TDT and their branch coverage

The TG currently employs three heuristic metrics to select the next terminal node for each

exploration.

• Random Path Selection (RPS): This selection heuristic was introduced in KLEE [5].

A terminal node is selected by traversing the TDT, starting from the root with random

choices made at every branch. This strategy is expected to uncover easy-to-reach sys-

tem states. Despite being shallow heuristic, a random selection based on TDT traversal

is immune to the effects of loops and state space traps.

• Coverage Oriented Selection (COS): This strategy aims to guide the exploration

along least covered branches in hopes of uncovering unexplored regions of the design.

Say, I branches are covered among all J terminal nodes. And, cij is the coverage

count for branch i in terminal node j. Then, as shown below, a score sj for each node

is calculated from a branch heuristic weight wi. The node with the highest score is

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 47

selected.

Ci =
∑∀j∈J cij (4.1)

wi =

∑∀i∈I Ci

Ci

(4.2)

sj =
∑∀i∈I|cij>0 wi (4.3)

• Target Oriented Selection (TOS): Given a target branch, TOS restricts a COS

type heuristic selection to terminal nodes that may possibly reach the target. If a

terminal node is found to cover a branch that offers no path to the target branch

in the design BTG, then it is ignored during selection. Such ignored nodes denote

tests that proceed the control flow along paths of the FSM away from the target

state. Restricting the coverage oriented heuristic to viable nodes has a better chance

of guiding the test generation effort towards the target.

The concluding task for the Test Generator (TG) is to derive the test from the global Test

Decision Tree (TDT). Writing out the optimal test can be boiled down to selecting the

optimal set of data nodes in the TDT that cover all explored branches with the minimal

number of input vectors. The technique of deriving the optimal test from the TDT removes

the requirement to use standard test compaction techniques [23], thereby further reducing

the overall functional testing time.

We utilize a greedy approach for handling this operation. With a breadth-first traversal, we

collect a list of data nodes, M , that were the first at discovering a branch, until M includes

nodes that cover all discovered branches, I. The test, Tj represented by each node-j includes

the test that reaches it and its default stimuli. Algorithm 1 shows the greedy accumulation of

vectors among M , to build the final test, T . Concluding our example, the final test written

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 48

out will only consist of n3 as it covers all branches (specifically, branch-4 in cycle-4, and

branch-5 in cycle-8). A test of length, 9 (Fig. 4.6b) is built concatenating the initialization

vector and the 8-cycle test represented by n3.

Algorithm 1 Derive Final Test from the TDT
I = set of all unique branches covered in the TDT
M = data nodes that first-discovered some branch ∈ I
Nj = set of branches covered by node j ∈M , of size nj

Tj = test represented by j ∈M , of length tj
Tinit = initialization vectors

RequiredTest , T = ∅,
Let, k ∈M
while I 6= ∅ do

for each j ∈M do
if (nj > nk) ∨ (nj = nk ∧ tj < tk) then

k = j

T = T + Tinit + Tk

I = I −Nk

for each j ∈M do
Nj = Nj −Nk

4.3 Experimentation and Results

CORT is written in Python (v3.4.3) and uses the Z3Py Python interface to Z3 (v4.5.1) [34],

an SMT solver from Microsoft Research. The design information parsed and generated by

the Preprocessor is stored as Python objects (Python pickling) in binary format to be read

in further stages. The simulator source code which includes the Verilator C++ translation of

the RTL and its harness generated by the Preprocessor is compiled as shared library object

that can be imported as a Python module. All experiments are run on a Linux (Lubuntu

15.10) machine with an Intel Core i7-975 (3.33GHz) with 6GB memory. We present CORT’s

performance in terms of branch coverage, test length and execution time over benchmarks

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 49

from ITC99 [8] (row 2-8) and IWLS-2005 [4] (row 9-14) detailed in Table 4.1.

Table 4.1: Benchmark and CORT Strategy

Bench. PI PO Gates Bran. Unreach.1 Pre.(s) Q R Search
b06 2 6 66 24 1 1.9 1 8 RPS
b07 1 8 382 19 1 1.98 1 8 RPS+16xCOS
b10 11 6 172 32 1 1.98 4 8 RPS+32xCOS
b11 7 6 366 33 1 1.92 4 8 RPS+128xCOS

b12 5 6 1000 105 1 2.12 1 128 RPS+TOS(c1)
+TOS(c2)

b14 32 54 3461 211 12 2.14 8 8 RPS+128xCOS
b15 36 70 6931 149 1 2.15 8 16 RPS+128xCOS

ss_pcm 17 9 470 19 0 1.99 2 4 RPS+128xCOS
usb_phy 13 18 546 144 0 2.1 4 8 RPS+192xCOS

sasc 14 12 549 58 0 1.99 4 8 RPS+128xCOS
simple_spi 14 12 821 81 1 1.98 4 8 RPS+128xCOS

i2c 16 14 1142 112 0 2.07 4 20 RPS+192xCOS
spi 45 45 3227 89 0 2.02 4 8 RPS+192xCOS

1 Statically determined unreachable branches (Section 3.2)

4.3.1 Search Strategy

The benchmark circuits used and the parameters set for each circuit are described in Ta-

ble 4.1. The number of branches instrumented by Verilator is shown in column 4 (Bran.).

During preprocessing, we also statically analyze the use-definition chains in the parsed Ab-

stract Syntax Tree to determine unreachable branches (column 6) as described in Section 3.2.

These may not include all possible unreachable branches. The one-time cost for preprocess-

ing inclusive of the simulator compilation is shown in column 7 (Pre.). The individual

exploration for each design is bound by exploration-radius (R) and exploration-overlap (Q),

selected as per design complexity and size. These parameters are experimentally determined

with a minimum of Q = 1 and R = 4 and are increased until the trials for test generation

results in high branch coverage (aim: >95%).

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 50

Search in column 10, describes the quantity and type of the iterative selection method for

each exploration. We begin growing the TDT for each design with repeated rounds of RPS

until no new coverage points are discovered (for four rounds). The actual number of RPS

iterations during test-generation is non-deterministic and thus is simply mentioned as RPS.

This is usually followed by multiple explorations using COS, selected as per design size.

A description of RPS+N×COS implies that N explorations using the COS strategy were

pursued after exhausting RPS. Almost all designs are suitably covered by using RPS and

COS alone. For b12, a single player game of guessing a sequence, a TOS for the branches

representing hard-to-reach states c1 and c2 [20, 32] is repeated, until the targets are covered.

A relatively larger exploration radius is set for b12 because the primary inputs are only used

in guards, offering low concolic execution complexity.

4.3.2 Branch Coverage

CORT results are compared against HYBRO [17], [25] and BEACON [20] in Table 4.2. For

unreported benchmarks in HYBRO and [25], NA is placed. Columns 5 and 11 highlights

the branch coverage (overall) and test length for CORT. Column 9 describes the time taken

by CORT for executing the search strategy and generating the test for each benchmark and

excludes the preprocessing cost. Column 12 (Reach. BC%) represents the CORT’s branch

coverage only accounting for reachable branches. A quick glance shows that our work, despite

relying on interleaved concrete and symbolic constraint solving, demonstrates significantly

shorter test generation time and achieves a high RTL branch coverage. A fewer number of

vectors are generated for the same goal of maximal branch coverage compared to BEACON,

a search-based test generator. The minor differences in coverage between tools could be

attributed to instrumentation differences and optimizations.

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 51

Table 4.2: Performance Comparison with Previous Work

Bench. Branch Coverage1 % Run Time(s) #Vectors2 Reach.
HYBRO [25] BEACON CORT HYBRO [25] BEACON CORT BEACON CORT BC%3

b06 94.12 96.3 95.83 95.83 0.1 0.55 0.0054 0.12 1731 18 100
b07 NA NA 90 90 NA NA 0.37 0.05 759 46 94.74
b10 96.77 96.77 93.75 96.88 52.14 24.61 11.4 0.52 3547 28 100
b11 91.3 94.44 96.88 96.97 326.85 270.28 11.95 3.11 1213 430 100
b12 NA NA 98.09 98.09 NA NA 111.42 35.23 37006 35081 99.04
b14 83.5 98.95 91.94 93.36 301.69 257.59 204.65 40.98 4381 573 98.99
1 Number of branches present in the RTL may vary between compared methods due to in-
strumentation differences. Represents overall branch coverage.
2 Test length was not reported for HYBRO [17] and [25].
3 Reachable branch coverage for CORT

Consider design b10 where CORT achieves a high branch coverage score (96.88% overall,

100% reachable branches) on par with HYBRO and [25] in only 0.52s. Although HYBRO,

[25], and CORT base their test generation effort on hybrid concrete and symbolic simulation,

our work is more than 40× faster for b10 alone. For b14, we compare CORT with BEACON

which also uses Verilator for instrumentation and simulation. We achieve a higher coverage

(93.36% overall, 99% reachable branches) with a test which is 7.5× smaller.

Concerning the target-oriented test generation, CORT consistently manages to cover states

c1 and c2 in b12. Satisfying c1 requires timing-out by not pressing the input (k). The deepest

system state in b12, c2 (WIN, state variable gamma = 25), which requires over 30000 cycles

in a comparable time to PACOST [32] (single-cycle: 54.22s, multi-cycle: 169.83s). Reaching

the winning state requires guessing the correct input over 500 times in sequence. Pressing

the wrong key in the sequence traps the system in LOSS (state variable gamma = 23) unless

reset or restarted. Thus, nodes in the TDT that have reached states that offer no path to c2

in the BTG for b12 are ignored during selection for new TOS(c2) explorations. Nonetheless,

the TDT represents the entire control-flow response of the system, and thus the final test is

written out covers c1, c2, and LOSS. Concolic execution based directed test generators that

only rely on fixed unrolling like HYBRO and [25] are unable to reach such deep targets.

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 52

Table 4.3: Extended Performance Comparison

Bench.
Stochastic Search-Based Hybrid Concrete×Symbolic Reach.3

RAND1 BEACON CORT2 CORT
BC% BC% Vec. Time(s) BC% Vec. Time(s) BC%

b15 42.13 89.93 38234 6.88 92.62 367 27.7 93.24
ss_pcm 100 100 393 2.98 100 61 2.76 100
usb_phy 82.64 82.64 3918 5.67 84.72 764 75.15 84.72

sasc 91.67 91.67 278 4.06 91.67 68 16.48 91.67
simple_spi 98.3 97.53 5566 4.32 98.77 663 104.2 100

i2c 83.27 87.5 6445 5.01 87.5 1188 430.38 87.5
spi 90.31 100 1180 7.36 100 71 28.6 100

1 Test consists of random input vectors generated for 50k cycles
2 CORT, written in Python is compared against C++ based BEACON
3 Reachable branch coverage for CORT

Table 4.3 shows results of test generation on the remaining benchmarks for which results for

HYBRO and [25] were not available. Hence, we compare CORT against random test gener-

ation (RAND), and BEACON configured to the settings used in [20]. RAND is constrained

to non-reset primary inputs for 50000 cycles and averaged across eight trials to represent a

baseline. The table highlights the best results from BEACON and CORT. BC% (overall),

Vec. and Time represent percentage branch coverage, test length and runtime respectively.

Reach. BC% describes CORT’s branch coverage without accounting for guaranteed unreach-

able branches.In all cases, the result from CORT matches or exceeds the compared methods

in terms of coverage and test length. The design, b15 contains a 16-byte prefetch queue

(array) through which both instructions (80386 opcodes) and data are buffered. Random

test generation is unable to handle such sequential depth in the control-flow. BEACON

almost covers as many branches (89.93%) as CORT (92.62% overall, 93.24% reachable) but

requires notably more vectors to do so (almost 100×).

Although CORT is not as fast as stochastic search-based techniques like BEACON for these

circuits, the tests generated are undoubtedly efficient in terms of coverage per vector. This

is within our expectation, as CORT is a Python-based semi-formal methodology relying on

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 53

costly SMT operations. Nonetheless, in comparison to the same class of techniques that

use hybrid concrete and symbolic simulation (HYBRO, [25]), CORT is remarkably faster.

These results are indicative of CORT’s ability to generate minimal directed tests for practical

Verilog designs.

4.3.3 Effects of Exploration Length

Table 4.4: Effects of Exploration Length for b15

Q R Q+R BC% Vec. Time(s)
2 2 4 84.73 288 2.13
4 4 8 88.42 261 4.62
8 8 16 90.60 374 9.82
8 16 24 91.44 426 16.57
16 16 32 91.52 401 20.51
16 32 48 91.61 472 40.73

In Table 4.4, for a fixed search strategy of 64×COS, the exploration radius (R) and explo-

ration overlap (Q) are varied for the design, b15. An increasing exploration length (R+Q)

is analyzed, and the average branch coverage (BC%, overall), test length (Vec.) and runtime

(Time) are reported over 8 trials. Our experiments show that a suitably sized exploration

is necessary for generating efficient tests. With shorter exploration lengths (row 2-3), we

discover fewer branches in the same search. However, these tests require fewer vectors to

cover those branches, highlighting the utility of deriving the overall test from the TDT.

Finding the suitable exploration length is a matter of experimentation and knowledge of

design complexity. A smaller Q leads to discovering fewer mutable guards per exploration

and thus, longer tests, which is indicative of a greater reliance on the randomness of the

concrete stimuli (R) to reach certain branches. On the other hand, an exploration with a

high Q is computationally intensive and demands a high execution time.

Sonal Pinto Chapter 4. Test Generation using Factored Explorations 54

It is seen that an exploration length of 24 (row 5) optimally leverages all goal metrics. The

efficiency of the test generation effort stagnates beyond a certain an exploration length,

indicating its sufficiency at handling the design complexity. Lastly, row 7 (Q = 16, R = 32)

shows a larger final test length, which is an adverse effect of the greedy test accumulation

technique.

Chapter 5

Conclusion

5.1 Limitations and Future Work

In our work, the concrete values of variables can only be read between, not during, cycles.

In the same cycle, if a variable is used in a statement between two blocking definitions of

the same variable, then no valid (pre/post cycle) concrete values can read for its use. When

the CEE encounters such a situation in the concrete path, it is reported to the user, and the

program terminates. The user is expected to insert a temporary internal variable in the RTL

to mirror the first blocking definition. This adds no functional value and does not increase

the size of the synthesized design, but is quite helpful for concolic execution. Converting

the C++ RTL to Static Single Assignment (SSA) form would solve this problem, and is

expected in our future work.

Secondly, our work is limited to RTL designs containing signals with a maximum width of 64

bits. This limitation is posed by Verilator’s handling of large-width signals as contiguous C

arrays. The capability to handle such signals and their assignments is also being considered

55

Sonal Pinto Chapter 5. Conclusion 56

for future work. In hardware RTL, the sequential memory elements like registers usually

change their values are their trigger clock edges. In our methodology, the RTL is translated

to C++, where this RTL feature (non-blocking statements in Verilog) is mimicked by using

temporary variables which are function scoped (and not declared at the top class level). This

requires extended evaluation effort where the RTL Control Flow Graph is analyzed to infer

resolution of these temporary variables and see their effect in actual named signals (available

at the top class). The immediate solution to this would be to scope these temporary variables

to the top simulator class, but would required severe modification to the Verilator compiler

source code.

Lastly, CORT is written in Python as a proof of concept and will be reconstructed in C++

for performance.

While developing our work we curated certain ideas that could help enhance concolic execu-

tion based testing methodology. They are listed as follows.

• While the Test Decision Tree (TDT) excellently abstracts the control-flow response of

the design in terms of stimuli, it does not account for system states. In reality, designs

have a limited number of functionally reachable system states, and these are often

revisited. The TDT needs to be extended to support the identification of system states,

possibly abstracted to control signals. Additional edges should be added showing a loop

of the control flow back to previously visited system states, implying the response needs

to be recorded in the form of a graph rather than a tree.

• Upon simulation, the control flow executed through a unique path in the CFG. A

cost metric that is based on maximizing all unique single-cycle paths discovered could

be a better search heuristic than branch coverage alone. Single-cycle path coverage

encompasses branch coverage and may offer more differentiation between solutions

Sonal Pinto Chapter 5. Conclusion 57

that need to be selected.

5.2 Conclusion

In this thesis, we proposed a novel concolic execution methodology for the Register Trans-

fer Level (RTL). We strongly intertwine symbolic execution and concrete simulation, and

dynamically construct symbolic constraints in a cycle-by-cycle functional simulation. Our

symbolic analysis is lean and restricted to primary input stimulated regions of the RTL.

Traditionally, a path constraint would be built over the entire concrete trace, extracted after

concrete simulation. However, the simulator used in our work is instrumented for direct

access of all signals in the design at any time. Furthermore, the simulator is enhanced to

record the concrete trace in terms of branch IDs during simulation. Unstimulated variables

in statements are concretely read from the simulator and substituted in-place to construct

symbolic expressions. This reduces the overall computational complexity of our formal anal-

ysis component. The base cycle-by-cycle concolic execution methodology is tested against

previous work and is demonstrated to be significantly superior.

We have presented CORT; a factored concolic execution based test generation technique for

the Register Transfer Level. Our method tightly interleaves concrete simulation and sym-

bolic evaluation at a cycle-by-cycle level, providing advantageous performance over previous

hybrid techniques. Our minimalist approach to concolic execution, where we dynamically

evaluate primary-input stimulated statements, allows us to explore the search space effort-

lessly. Furthermore, we abstract the control-flow response for the entire test search effort in

a novel representation, the Test Decision Tree (TDT), which is systematically grown over

several factored explorations. We not only use the TDT for strategic guidance for each new

exploration but also derive the optimal test from it without requiring any standard test com-

Sonal Pinto Chapter 5. Conclusion 58

paction techniques. Our results show that CORT generates smaller tests with high branch

coverage, faster than existing hybrid semi-formal methods.

Bibliography

[1] A. Koelbl, J. H. Kukula, and R. Damiano, "Symbolic RTL simulation," in Proc. of

Design Automation and Test Europe Conference, 2001, pp. 47-50.

[2] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, "Symbolic model checking without

BDDs," in Proc. of International Conference on Tools and Algorithms for Construction

and Analysis of Systems, 1999, pp. 193-207.

[3] B. Beizer, "Software testing techniques (2nd ed.)," Van Nostrand Reinhold Co., USA,

1990.

[4] C. Albrecht, "IWLS 2005 Benchmarks," International Workshop on Logic Synthesis,

2005.

[5] D. Dunbar, C. Cadar, and D. Engler, "KLEE: unassisted and automatic generation

of high-coverage tests for complex systems programs," in Proc. of the 8th USENIX

conference on Operating Systems Design and Implementation, 2008, pp. 209-224.

[6] D. Krishnaswamy, M. S. Hsiao, V. Saxena, E. M. Rudnick, J. H. Patel and P. Banerjee,

"Parallel genetic algorithms for simulation-based sequential circuit test generation," in

Proc. of Tenth International Conference on VLSI Design, Hyderabad, 1997, pp. 475-481.

59

Sonal Pinto Bibliography 60

[7] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, "Bounded model checking using satisfiability

solving," Formal Methods in System Design, 2001, pp. 7-34.

[8] F. Corno, M.S. Reorda, G. Squillero, "RT-level ITC’99 benchmarks and first ATPG

results," in Proc. of the IEEE Design and Test of Computers, 2000, vol. 17, no. 3, pp.

44-53.

[9] F.E. Allen, "Control flow analysis," SIGPLAN Not., 1970, vol. 5, no. 7, pp. 1-19.

[10] F. Corno, M. S. Reorda, G. Squillero, A. Manzone, and A. Pincetti, âĂĲAutomatic test

bench generation for validation of rt-level descriptions: an industrial experience,âĂİ in

Proc. of Design Automation and Test Europe Conference, 2000, pp. 385âĂŞ389.

[11] J. Burnim and K. Sen, âĂĲHeuristics for Scalable Dynamic Test Generation,âĂİ in

Automated Software Engineering, 2008, pp. 443âĂŞ446.

[12] J. Wegener, A. Baresel, H. Sthamer, "Evolutionary Test Environment for Automatic

Structural Testing," Information and Software Technology, Special Issue devoted to the

Application of Metaheuristic Algorithms to Problems in Software Engineering, 2001,

vol. 43, pp. 841-854.

[13] K. Sen, D. Marinov, and G. Agha, "CUTE: a concolic unit testing engine for C," in

Proc. of the 10th European Software Engineering Conference held jointly with 13th ACM

SIGSOFT international symposium on Foundations of Software Engineering, 2005, pp.

263-272.

[14] K. Gent and M. S. Hsiao, "Abstraction-based relation mining for functional test gener-

ation," IEEE VLSI Test Symposium, 2015, pp. 1-6.

[15] K. Gent and M. S. Hsiao, "Functional Test Generation at the RTL Using Swarm Intelli-

gence and Bounded Model Checking," 22nd Asian Test Symposium, 2013, pp. 233-238.

Sonal Pinto Bibliography 61

[16] L. Liu and S. Vasudevan, "STAR: Generating input vectors for design validation by

static analysis of RTL," in Proc. High Level Design Validation Test Workshop, 2009,

pp. 32-37.

[17] L. Liu and S. Vasudevan, "Efficient validation input generation in RTL by hybridized

source code analysis," Design, Automation and Test in Europe, 2011, pp. 1-6.

[18] L. Zhang, M. R. Prasad, and M. S. Hsiao, "Incremental deductive and inductive rea-

soning for SAT-based bounded model checking," in Proc. of the IEEE International

Conference on Computer Aided Design, November 2004, pp. 502-509.

[19] P. Godefroid, N. Klarlund, and K. Sen, "DART: directed automated random testing,"

in Proc. of the ACM SIGPLAN conference on Programming Language Design and Im-

plementation, 2005, pp. 213-223.

[20] M. Li, K. Gent and M. S. Hsiao, "Design validation of RTL circuits using evolutionary

swarm intelligence," IEEE International Test Conference, 2012, pp. 1-8.

[21] M. S. Hsiao, E. M. Rudnick and J. H. Patel, "Sequential circuit test generation using

dynamic state traversal," in Proc. of European Design and Test Conference,1997, pp.

22-28.

[22] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, "Dynamic state traversal for sequential

circuit test generation," ACM Trans. on Design Automation of Electronic Systems, 2000,

pp. 548-565.

[23] M. S. Hsiao, E. M. Rudnick, and Janak H. Patel, "Fast static compaction algorithms

for sequential circuit test vectors," IEEE Tran. on Computers, 1999, vol. 48, no. 3, pp.

311-322.

Sonal Pinto Bibliography 62

[24] P. McMinn and M. Holcombe, "Evolutionary testing of state-based programs," in Proc.

of the 7th annual conference on Genetic and evolutionary computation (GECCO ’05),

Hans-Georg Beyer (Ed.), ACM, pp. 1013-1020.

[25] Q. Xiaoke and P. Mishra, "Scalable Test Generation by Interleaving Concrete and Sym-

bolic Execution," in International Conference on VLSI Design and International Con-

ference on Embedded Systems, 2014, pp. 104-109.

[26] R. Ferguson and B. Korel, "Software test data generation using the chaining approach,"

in Proc. of 1995 IEEE International Test Conference (ITC), 1995, pp. 703-709.

[27] R. Arora and M. S. Hsiao, "Enhancing SAT-based bounded model checking using se-

quential logic implications," in Proc.s of the IEEE VLSI Design Conference, January,

2004, pp. 784-787.

[28] S. Bagri, K. Gent and M. S. Hsiao, "Signal domain based reachability analysis in RTL

circuits," Sixteenth International Symposium on Quality Electronic Design, 2015, pp.

250-256.

[29] T. Zhang, T. Lv and X. Li, "An abstraction-guided simulation approach using Markov

models for microprocessor verification," in Proc. of Design, Automation & Test in Eu-

rope Conference & Exhibition (DATE ’10), 2010, pp. 484-489.

[30] T. Niermann and J. H. Patel, "HITEC: a test generation package for sequential circuits,"

in Proc. of the conference on European design automation (EURO-DAC ’91). IEEE

Computer Society Press, 1991, pp. 214-218.

[31] V. V. Acharya, S. Bagri and M. S. Hsiao, "Branch guided functional test generation at

the RTL," in IEEE European Test Symposium, 2015, pp. 1-6.

Sonal Pinto Bibliography 63

[32] Y. Zhou, T. Wang, H. Li, T. Lv and X. Li, "Functional Test Generation for Hard-

to-Reach States Using Path Constraint Solving," in IEEE Tran. on Computer-Aided

Design of Integrated Circuits and Systems, 2016, vol. 35, no. 6, pp. 999-1011.

[33] Y. Zhou, T. Wang, T. Lv, H. Li and X. Li, "Path Constraint Solving Based Test

Generation for Hard-to-Reach States," 22nd Asian Test Symposium, 2013, pp. 239-244.

[34] Microsoft Research, "Z3 theorem prover," https://z3.codeplex.com/

[35] SRI International Computer Science Laboratory, "The Yices SMT Solver,"

http://yices.csl.sri.com/

[36] W. Snyder, D. Galbi and P. Wasson, "Verilator,"

https://www.veripool.org/wiki/verilator

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Contributions of this Thesis
	Thesis Organization

	Background
	Automated Functional Test Generation
	Concolic Execution
	Scaling through Factored Exploration
	Verilator and RTL Instrumentation
	Related Work

	Cycle-by-Cycle Concolic Execution of RTL
	Terminology
	Preprocessing and Instrumentation
	Concrete Trace Recording
	RTL Translation and Analysis

	RTL Concolic Execution
	Two-Pass Simulation
	Dynamic discovery and mutation of Activated Guards
	Iterative Bounded Explorations

	Experimentation and Results
	Experiment Setup
	Branch Coverage
	Test Generation Runtime

	Test Generation using Factored Explorations
	Test Decision Tree
	CORT Framework
	Preprocessing
	Concolic Execution Engine
	Test Generation
	Systematic Exploration

	Experimentation and Results
	Search Strategy
	Branch Coverage
	Effects of Exploration Length

	Conclusion
	Limitations and Future Work
	Conclusion

	Bibliography

