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ABSTRACT Cyber-physical systems (CPSs), featuring a tight combination of computational and physical
elements as well as communication networks, attracted intensive attention recently because of their wide
applications in various areas. In many applications, especially those aggregating or processing a large amount
of data over large spatial regions or long spans of time or both, the workload would be too heavy for any CPS
element (or node) to finish on its own. How to enable the CPS nodes to efficiently collaborate with each
other to accommodate more CPS services is a very challenging problem and deserves systematic research.
In this paper, we present a cross-layer optimization framework for hybrid crowdsourcing in the CPSs to
facilitate heavy-duty computation. Particularly, by joint computing resource management, routing, and link
scheduling, we formulate an offline finite-queue-aware CPS service maximization problem to crowdsource
nodes’ computing tasks in a CPS. We then find both lower and upper bounds on the optimal result of the
problem. In addition, the lower bound result is proved to be a feasible result that guarantees all queues in the
network are finite, i.e., network strong stability. Extensive simulations have been conducted to validate the
proposed algorithms’ performance.

INDEX TERMS Cyber-physical systems, crowdsourcing, stochastic optimization, network strong stability.

I. INTRODUCTION
Advances in embedded computing, communication, and
related hardware technologies have recently brought about
cyber-physical systems (CPSs) as a new research frontier
[1]–[3]. A CPS is typically designed as a network of interact-
ing elements, such as sensors, actuators, controllers, robotics,
instead of standalone devices, to fulfill certain objectives.
In many applications, such as object recognition and track-
ing, traffic management, search and rescue, and healthcare
monitoring and delivery, a CPS needs to aggregate or process
a large amount of data over large spatial regions and/or long
spans of time. The workload would be too heavy for any CPS
node to finish on its own and hence requires some CPS nodes
to collaborate. The fast growth of the CPS nodes’ computing
capabilities also increases the opportunities for them to help
each other. For example, in a system for tracking endangered
species, a sensor node needs to compare the captured images
with its pre-installed library to check if the moving object
in the images is one of the endangered species that the sys-
tem is looking for. Since image recognition involves high

computational complexity, the corresponding workload may
not be completed by the node itself. Collaborations from the
other sensor nodes are thus indispensable. How to enable the
CPS nodes to efficiently collaborate so as to accomplish more
computing tasks is a very challenging problem and deserves
a systematic study.
There are generally two issues associated with enabling the

collaborations in a CPS: whom to collaborate with and how
to collaborate, which are in correspondence to two problems:
computing resource management and network design. In this
paper, we consider a typical CPS where a base station (BS)
or an access point (AP) and a number of nodes are distributed
in an area for monitoring and complex information process-
ing. The BS/AP is connected to a central cloud environ-
ment which can provide sufficient computation capabilities.
The nodes may communicate with each other and with the
BS/AP using different spectrums. We present a cross-layer
optimization framework for hybrid crowdsourcing in CPSs,
which utilizes both the central cloud resource and the CPS
nodes’ resources. The framework aims to find an optimal
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crowdsourcing scheme to maximize CPS services by consid-
ering both computing resource management and networking
constraints.

Two kinds of computing resource management schemes
have been proposed in the literature. Following traditional
outsourcing approaches [4], [5], CPS nodes could outsource
their workloads to the central cloud via the BS or the AP.
However, when the number of nodes gets larger and their
workloads become heavier, the performance of a CPS may
degrade seriously due to the communication bottleneck at
the BS or the AP. On the other hand, some other works,
e.g., Cloudlet [6] and Serendipity [7], propose to crowdsource
the workload of a node to its nearby resource-rich nodes
throughWiFi connections. They treat the node as a thin-client
to access nearby resources, without considering the cooper-
ations among different outsourcing nodes, available nearby
resources, and the central cloud resource. Thus, neither of
these two kinds of schemes could take full advantage of the
computing resources in a system.

Besides, although there have been many related works on
throughput optimization in wireless networks [8]–[20], most
of them obtain suboptimal results that are either unbounded
or still far from the optimal results. Besides, the above
works assume static spectrum availabilities, e.g., constant
available bandwidths, which does not fully capture the
dynamic characteristics of wireless networks. Some research
[21]–[25] proposes to use dynamic control methods to
address the dynamics in wireless networks. In particular, a
link layer scheduling scheme is proposed in [21] utilizing
independent sets which are assumed to be given. Ding et
al. [23], [24] develop heuristic algorithms for the through-
put maximization problem in cognitive ad hoc networks.
Gatsis et al. [25] propose a scheduling policy for an offline
optimization problem, which requires the future information
of the network. These works cannot guarantee finite queue
sizes in the network. Thus, data buffers may overflow and
packets may get dropped. Moreover, in traditional network
optimization problems, the destination for a source node is
predefined. In contrast, in crowdsourcing, it is not clear who
are the destinations. For each source node, we need to find out
the corresponding computing nodes who can help finish the
task, the data outsourcing paths, and the schedule of workload
delivery, based on the dynamic underlying network condition
and the amount of available computing resource at each node.

Therefore, the aforementioned two issues, i.e, computing
resource management and network design, are not indepen-
dent but tightly coupled issues in CPS crowdsourcing, and
have not been well studied before. In this paper, by jointly
exploring computing resource management, routing, and link
scheduling, we formulate an offline finite-queue-aware CPS
service maximization problem P1 to crowdsource in hybrid
mode nodes’ computing tasks in a CPS, under the constraint
that all network queues are finite. We consider that the avail-
able spectrum bandwidths and computing resources at each
node and at the central cloud are time-varying. The formu-
lated problem is a time-coupling stochastic Mixed-Integer

Linear Programming (MILP) problem. Previous approaches
usually solve such problems based on Dynamic Programming
and suffer from the ‘‘curse of dimensionality’’ problem [26].
They also require detailed statistical information on the sys-
tem random variables, which may be difficult to obtain in
practice.
To solve P1, we employ Lyapunov optimization theory

[27] to develop online crowdsourcing algorithms, taking into
account network dynamics. Enabling the design of online
control algorithms for time-varying systems, Lyapunov opti-
mization operates without requiring any knowledge of the
system statistics. In the literature, Lyapunov optimization
techniques have been adopted to investigate stochastic opti-
mization problems in wireless networks [27]–[34]. Unfor-
tunately, [28]–[30] cannot guarantee all queues are finite.
[31]–[33] develop opportunistic scheduling schemes, which
maintain finite queue sizes by dropping some packets. [27],
[34] propose joint stability and utility optimization algo-
rithms, but assume that the users’ input data rate is interior
to the network capacity region. More recently, Lyapunov
optimization is also applied to resource allocation in cloud
ecosystems [35]–[37]. Huang et al. [35] study the energy
efficiency at mobile devices, while [36], [37] explore resource
management in central cloud servers and formulate Integer
Linear Programming (ILP) problems, thus NP-hard in gen-
eral. Consequently, in spite of the existing studies, none of the
developed algorithms can be adopted to solve our problem,
nor to keep all queues finite.
Our approach to solving P1 is as follows.We first formulate

an online CPS service maximization problem P2 which has
relaxed constraints compared to P1. Since P2 is still an MILP
problem that is in general NP-hard but needs to be solved in
each time slot, we further relax it into a Linear Programming
(LP) problem and obtain an upper bound on the optimal
result of P1. We also reformulate P1 into an equivalent offline
optimization problem P3. Based on P3, by introducing link-
layer virtual queues, we formulate an online finite-queue-
aware CPS service maximization problem P4, and are able
to decompose it into several subproblems: link scheduling,
routing, and computing resource allocation. Since all the sub-
problems are ILP problems, we develop algorithms to solve
them respectively and efficiently based on current network
states only. We prove that the approximation algorithm can
guarantee that all queues in the network are finite. Moreover,
we show that the approximation algorithm can lead to a lower
bound on the optimal result of P1.
Our main contributions in this paper can be briefly summa-

rized as follows.
• We present a cross-layer optimization framework for
hybrid crowdsourcing in CPSs to accommodate CPS
services requiring heavy-duty computation.

• We formulate an offline finite-queue-aware CPS
service maximization problem, considering dynamic
spectrum and computing resource availability, to crowd-
source CPS nodes’ computing tasks by joint computing
resource allocation, routing, and link scheduling.
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• We formulate an online finite-queue-aware CPS service
maximization problem, and propose an approximation
algorithm which can solve the problem efficiently and
guarantee all queues are finite, i.e., network strong sta-
bility.

• We prove that the proposed approximation algorithm
gives a lower bound on the optimal result of the original
offline CPS service maximization problem. An upper
bound is also obtained.

• Extensive simulation results show that 1) the obtained
lower and upper bounds are very tight, and 2) by dis-
tributing some computing tasks to other CPS nodes, the
crowdsourcing architecture can in fact delivermore tasks
to the central cloud and support a lot more CPS services
than other outsourcing architectures.

The rest of this paper is organized as follows. In Section II,
we briefly introduce our systemmodels. We then formulate in
Section III an offline and a relaxed online CPS service max-
imization problem by joint computing resource allocation
and network design, while considering network dynamics. In
Section IV, we reformulate an online CPS service maximiza-
tion problem, and propose a decomposition based approxi-
mation algorithm to solve the problem. Section V proves the
proposed approximation algorithm guarantees network strong
stability, and derives both a lower bound and an upper bound
on the optimal result of the offline optimization problem.
Simulations are conducted in Section VI for performance
evaluation and comparison. We finally conclude this paper
in Section VII.

II. SYSTEM MODELS
A. SYSTEM ARCHITECTURE
We consider a CPS where a base station (or an access point)
and a number of nodes (e.g., sensors, robotics, and UAVs) are
distributed in an area for monitoring and complex information
processing. A typical architecture is shown in Fig. 1. The
base station is connected to a central cloud environment
which can provide sufficient computation capabilities. The
CPS nodes may communicate with each other and with the
base station using different spectrums. Here we study a hybrid
crowdsourcing architecture for CPSs, where both the central
cloud and CPS nodes offer their resources to collaboratively
accomplish ceratin tasks. Under this architecture, rather than
outsource all the computing workloads to the central cloud
via the base station1, which is the most common approach in
cloud computing, we take advantage of both the central cloud
and the CPS nodes to finish the computing tasks in the system.

Besides, in order to efficiently support crowdsourcing, the
base station is in charge of computing resource allocation,
routing, and link scheduling. Following the scheduling deci-
sions, each node divides its computing tasks into multiple
subtasks, and transmits them to the other nodes and/or the

1We consider that the base station is connected to the central cloud via a
high capacity backbone network. Thus, we consider the central cloud is at
the base station in this study.

base station accordingly. Note that in this study we do not
discuss the transmission scheduling for sending results from
computing nodes back to source nodes. The reason is that the
computed results are usually simple data or instructions of
much smaller sizes, which can be easily delivered.

FIGURE 1. Cyber-physical systems for search and rescue, traffic
analysis and management, object recognition and monitoring.

B. NETWORK MODEL
Consider a CPS consisting of N = {1, 2, . . . , n, . . . ,N }
nodes and a base station B and denote N = N ∪ {B}.
Assume there are a set of delay-insensitive crowdsourc-
ing requests from some CPS nodes, e.g., image process-
ing, statistical data analysis2. We denote such requests by
R = {1, 2, . . . , r, . . . ,R}, each of which can be denoted as a
tuple {sr , vr (t)}where sr is the source node of service request
r , and vr (t) stands for the amount of computing job r in time
slot t , in terms of the number of instructions.
Since each computing job may require a large amount of

computing resources, each job can be divided into multiple
subtasks and handled at some nodes and/or the base station.
Besides, we assume that a node i is able to process Oi(t)
instructions in time slot t according to its current available
computing resources. Since Oi(t) depends on the current
workload and resource usage of user i, we assume {Oi(t)}∞t=0
to be an i.i.d. random process.We also denote by εri (t) (i ∈ N ,
r ∈ R) the number of instructions that node i processes for
service r in time slot t .
Suppose the CPS nodes are allowed to access a set of

spectrum bands M = {1, 2, . . . ,m . . . ,M} with different
bandwidths. Assume the bandwidth of band m is an i.i.d.
random process denoted by {Wm(t)}∞t=0, and can be observed
at the beginning of each time slot. Due to their different com-
munication interfaces and geographical locations, the nodes
may have different available spectrum bands. Let Mi ⊆M
represent the set of available spectrum bands at node i ∈ N .
Then, we may haveMi 6=Mj for i 6= j, i, j ∈ N .

2We will show later that our proposed algorithm can in fact guarantee that
the processing delay for each crowdsourcing request is bounded.
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C. TRANSMISSION/INTERFERENCE RANGE AND LINK
CAPACITY
Suppose the power spectral density of node i on bandm is Pmi .
A widely used model [13], [17] for power propagation gain
between node i and node j, denoted by gij, is

gij = C · [d(i, j)]−γ ,

where i and j also denote the positions of node i and node j,
respectively, d(i, j) refers to the Euclidean distance between i
and j, γ is the path loss factor, and C is a constant related
to the antenna profiles of the transmitter and the receiver,
wavelength, and so on. We assume that the data transmission
is successful only if the received power spectral density at
the receiver exceeds a threshold PmT . Meanwhile, we assume
interference becomes non-negligible only if it produces a
power spectral density over a threshold of PmI at the receiver.
Thus, the transmission range for a node i on band m is Ri,mT =
(CPmi /P

m
T )

1/γ , which comes from C(Ri,mT )−γ · Pmi = PmT .
Similarly, based on the interference threshold PmI (P

m
I ≤ P

m
T ),

the interference range for a node is Ri,mI = (CPmi /P
m
I )

1/γ ,
which is no smaller than Ri,mT . Thus, different nodes may have
different transmission ranges/interference ranges on different
channels with different transmission power.

In addition, according to the Shannon-Hartley theorem, if
node i sends data to node j on link (i, j) using band m, the
capacity of link (i, j) on band m during time slot t is

cmij (t) = Wm(t) log2
(
1+

gijPmi
η

)
, (1)

wherem ∈Mi∩Mj and η is the thermal noise at the receiver.
Note that the denominator inside the log function only con-
tains η. This is because of one of our interference constraints,
i.e., when node i is transmitting to node j on band m, all the
other neighbors of node j within its interference range are
prohibited from using this band. Besides, since the bandwidth
of each spectrum {Wm(t)}∞t=0 is an i.i.d. random process,
{cmij (t)}

∞

t=0 is also an i.i.d. random process.

D. DEFINITIONS AND PRELIMINARIES
Next, we introduce some definitions and theorems that we
will use in this paper [27].

Definition 1: The time average of a random process a(t),
denoted by a, is a = limT→∞

1
T

∑T−1
t=0 E[a(t)].

Definition 2: A discrete time process a(t) is rate stable if
limt→∞

a(t)
t = 0 with probability 1, and strongly stable if

limT→∞ sup 1
T

∑T−1
t=0 E[|a(t)|] <∞.

Theorem 1: Let Q(t) denote the queue length of a single-
server discrete time queueing system, whose initial stateQ(0)
is a non-negative real-valued random variable, and future
states are driven by stochastic arrival and server processes a(t)
and b(t) according to the following dynamic equation:

Q(t + 1) = max{Q(t)− b(t), 0} + a(t) for t ∈ {0, 1, 2, . . .}.

Then Q(t) is rate stable if and only if a ≤ b.

Theorem 2: If a queue Q(t) is strongly stable, and there
is a finite constant c such that either a(t) + b−(t) ≤ c with
probability 1 for all t (where b−(t) , −min[b(t), 0]), or
b(t) − a(t) ≤ c with probability 1 for all t , then Q(t) is rate
stable, i.e., a ≤ b.
Besides, we say that a network is rate stable or strongly

stable if all queues in this network are rate stable or strongly
stable as described above.

III. OPTIMIZATION FOR CROWDSOURCING IN CPSs
In this section, we investigate the CPS service optimization
problem to crowdsource the nodes’ computing tasks in a
CPS, by joint computing resource allocation, routing, and link
scheduling, with network stability taken into consideration.

A. COMPUTING RESOURCE ALLOCATION CONSTRAINTS
Consider a source node sr whose computing request contains
vr (t) instructions in time slot t . LetAmaxr denote themaximum
number of instructions that sr can possibly generate in one
time slot. Then, we have

0 ≤ vr (t) ≤ Armax . (2)

These vr (t) instructionsmay be divided intomultiple subtasks
and distributed to multiple computing nodes.
In the same time slot, some computing nodes use their

available computing resources to process certain number of
instructions for the source node sr , which are those already
queued at the nodes. Recall that the number of instructions
node i processes for service r is denoted by εri (t). Denote by
Oi(t) the number of instructions node i can process in time
slot t . Therefore, we get∑

r∈R
εri (t) ≤ Oi(t). (3)

Let Omaxi denote the number of instructions that node i
can process with all its computing resources. We can sub-
sequently have εri (t) ≤

∑
r∈R ε

r
i (t) ≤ Oi(t) ≤ Omaxi .

If εri (t) = 0, it means that node i does not provide computing
resource for service r in time slot t . Note that it is possible
that εrsr (t) > 0, i.e., the source node processes part of the
computing task by itself.

B. NETWORK LAYER CONSTRAINTS
Each node may receive computing subtasks of multiple ser-
vices, and process them by themselves or forward them
towards other computing nodes. Thus, each node i maintains
a data queue Qri , which is at the network layer, for each com-
puting service request r that goes through it. The queueing
law for each Qri is:

Qri (t + 1) = max
{
Qri (t)−

∑
j∈Ti

f rij (t)− ε
r
i (t), 0

}
+

∑
{j|i∈Tj}

f rji (t)+ vr (t) · 1i=sr , (4)
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where f rij (t) denotes the flow rate, in terms of number of
instructions, on link (i, j) for service r in time slot t , and
Ti =

⋃
m∈Mi

T m
i given that T m

i is the set of nodes that can
access the band m and are within the transmission range of
node i on band m. 1{A} is a binary indicator function, which is
equal to 1 if eventA is true and 0 otherwise. Each node updates
its queue size in each time slot according to the queueing
law (4).

Besides, since there is no incoming data at the source node
of service request r , we have the following constraint:∑

{j|i∈Tj}
f rji (t) = 0, ∀ i = sr , r ∈ R. (5)

C. LINK SCHEDULING CONSTRAINTS
Next, we illustrate the channel allocation and link scheduling
constraints on data transmissions.

Assume band m is available at both node i and node j, i.e.,
m ∈Mi ∩Mj. We denote

smij (t) =

 1, if node i transmits to node j using
channel m in time slot t ,

0, otherwise.

Since a node is not able to transmit to or receive from
multiple nodes on the same frequency band simultaneously,
we have ∑

j∈T m
i

smij (t) ≤ 1, and
∑
{i|j∈T m

i }

smij (t) ≤ 1. (6)

Besides, a node cannot use the same frequency band for trans-
mission and reception, due to ‘‘self-interference’’ at physical
layer, i.e., ∑

{i|j∈T m
i }

smij (t)+
∑
q∈T m

j

smjq(t) ≤ 1. (7)

Moreover, recall that in this study, we consider each node is
only equipped with a single radio, which means each node
can only transmit or receive on one frequency band at a time.
Thus, we can have∑

m∈Mj

∑
{i|j∈T m

i }

smij (t)+
∑
m∈Mj

∑
q∈T m

j

smjq(t) ≤ 1. (8)

Notice that (6) and (7) will hold whenever (8) holds.
In addition to the above constraints at a certain node,

there are also constraints due to potential interference among
different nodes. In particular, on a frequency bandm, if node i
uses this band for transmitting data to a neighboring node
j ∈ T m

i , then any other node that can interfere with node j’s
reception should not use this band. To model this constraint,
we denote by Pm

j the set of nodes that can interfere with node
j’s reception on band m, i.e.,

Pm
j =

{
p|d(p, j) ≤ Rp,mI , p 6= j, T m

p 6= ∅

}
.

The physical meaning of T m
p 6= ∅ in the above definition is

that node p has at least one neighbor to which it may trans-
mit data and hence cause interference to node j’s reception.

Therefore, we have∑
{i|j∈T m

i }

smij (t)+
∑
q∈T m

p

smpq(t) ≤ 1 (∀p ∈ Pm
j ). (9)

Besides, let cmij (t) be the link capacity on link (i, j) over
band m in time slot t calculated according to (1). The flow
rate over link (i, j) should satisfy the following:

α
∑
r∈R

f rij (t) ≤
∑

m∈Mi∩Mj

cmij (t)s
m
ij (t)1t, (10)

where α is the length, in terms of number of bits, of an
instruction, and 1t is the time duration of one time slot.
(10) indicates that the total number of bits transmitted on a
link during one time slot cannot exceed the link’s capacity
multiplied by the duration of a time slot.

D. OFFLINE FINITE-QUEUE-AWARE CPS SERVICE
MAXIMIZATION
In the offline finite-queue-aware CPS service maximization
problem, we aim to maximize the long-term total amount
of computing tasks that can be processed in the network
while guaranteeing finite queue backlog size at each node.
Specifically, the time-averaged expected total amount of CPS
services that can be supported can be calculated as:

∑
r∈R

vr =
∑
r∈R

lim
T→∞

1
T

T−1∑
t=0

E[vr (t)].

Weutilize the base station tomake an optimal decision to allo-
cate computing resources, determine end-to-end outsourcing
paths, and schedule the transmissions, so as to support as
many computing services as possible from a long term point
of view. Thus, the offline finite-queue-aware CPS service
maximization problem under the aforementioned constraints
can be formulated as follows:

P1: Maximize ψ =
∑
r∈R

vr

s.t. Constraints (2)–(3), (5), (8)–(10) for all t ≥ 0,

Q(t) is strongly stable (11)

where Q(t) = {Qri (t),∀i ∈ N , r ∈ R}. We denote the
optimal result of P1 by ψ∗P1. We can see that without the con-
straint (11), P1 is a time-coupling stochastic Mixed-Integer
Linear Programming (MILP) problem, which is already pro-
hibitively expensive to solve. Previous approaches usually
solve such problems based on Dynamic Programming and
suffer from the ‘‘curse of dimensionality’’ problem [26]. They
also require detailed statistical information on the random
variables in the problem, i.e., the available spectrums and
computing resources at each node, which may be difficult
to obtain in practice. The constraint (11) makes P1 an even
more complicated problem. In the next subsection, we will
formulate a relaxed online optimization problem to break the
time coupling, so that the problem can be solved based on the
current network state only.
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E. ONLINE CPS SERVICE MAXIMIZATION
Here, we employ Lyapunov optimization theory to formulate
an online CPS service maximization problem, solving which
does not require any knowledge of the network statistics.

Particularly, since the queues maintained in the network are
Q(t) = {Qri (t),∀i ∈ N , r ∈ R}, we can define a Lyapunov
function [27] as

L(Q(t)) ,
1
2

∑
r∈R

∑
i∈N

(Qri (t))
2.

This represents a scalar measure of queue congestion in the
network. L(Q(t)) being small implies that all queue backlogs
are small, while L(Q(t)) being large implies that at least
one queue backlog is large. Besides, the one-slot conditional
Lyapunov drift can be defined as

1(Q(t)) , E[L(Q(t + 1))− L(Q(t))|Q(t)]. (12)

Since our objective is to support the most computing ser-
vices, and take control action to limit 1(Q(t)), we minimize
the following drift-plus-penalty function:

1(Q(t))− VE

[∑
r∈R

vr (t)|Q(t)

]
,

where V ≥ 0 is a parameter that represents an importance
weight on how much we emphasize on the CPS service
maximization. Such a scheduling decision can be explained
as follows: We want to make 1(Q(t)) small to push queue
backlog towards a lower congestion state, and we also want
to make

∑
r∈R vr (t) large in each time slot so that we can

support more CPS services in the network.
We can have the following lemma.

Lemma 1: Given 1(Q(t)) defined in (12), we have

1(Q(t))− VE

[∑
r∈R

vr (t)|Q(t)

]
≤ B+9(t), (13)

where B is a constant, i.e.,

B =
1
2

∑
r∈R

∑
i∈N

[(
max
j∈Ti

{
1
α
cmaxij 1t

}
+ Omaxi

)2
+

(
max
{j|i∈Tj}

{
1
α
cmaxji 1t

}
+ Amaxr · 1i=sr

)2]
,

and9(t) is related to the variables f rij (t)’s, vr (t)’s, and ε
r
i (t)’s,

i.e.,

9(t) = E
[∑
r∈R

∑
i∈N

Qri (t)
( ∑
{j|i∈Tj}

f rji (t)+ vr (t) · 1i=sr

−

∑
j∈Ti

f rij (t)− ε
r
i (t)

)
|Q(t)

]
− VE

[∑
r∈R

vr (t)|Q(t)
]
.

Note that cmaxij denotes the maximum possible link capacity
of link (i, j). Since according to (1) cmij (t) depends on d(i, j),
Pmi and Wm(t) (m ∈ Mi ∩Mj), among which d(i, j) and
Pmi are constants, then cmaxij is determined by Wmax , i.e., the

maximum bandwidth that the channels available on link (i, j)
can have.

Proof: Please refer to Appendix A, available in the
online supplemental material, for the detailed proof.
Based on the drift-plus-penalty framework, our objective

is to observe the current channel state, available computing
resources, as well as queue backlogs Q(t), and to make con-
trol decisions to minimize the right-hand-side of (13), i.e.,
a weighted sum ofQ(t) plus a penalty−E[

∑
r∈R vr (t)|Q(t)].

Since B is a constant, we only need to minimize9(t). We now
use the concept of opportunistically minimizing an expecta-
tion [27], which is to minimize:

9 ′(t) =
∑
r∈R

∑
i∈N

Qri (t)
( ∑
{j|i∈Tj}

f rji (t)+ vr (t) · 1i=sr

−

∑
j∈Ti

f rij (t)− ε
r
i (t)

)
− V ·

(∑
r∈R

vr (t)

)
.

Therefore, the problem of online CPS service maximization
can be formulated as follows:

P2: Minimize 9 ′(t)

s.t. Constraints (2)–(3), (5), (8)–(10)

We denote the optimal solution of vr (t) to P2 by v̂∗r (t),
and the corresponding value of the objective function of P1,
i.e.,

∑
r∈R vr , by ψ∗P2. We can see that P2 is a Mixed-Integer

Linear Programming (MILP) problem, which is in general NP
hard to solve [38]. Note that we do not include constraint (11)
in P2 because otherwise P2 would still be a very complicated
problem to solve. Since P2 has relaxed constraints compared
to P1, we use it to obtain an upper bound on ψ∗P1 which will
become clear later.

IV. AN APPROXIMATION ALGORITHM FOR
FINITE-QUEUE-AWARE CPS SERVICE OPTIMIZATION
We notice that P2 cannot guarantee finite queue sizes in
the network. In this section, we first reformulate P1 into an
equivalent offline optimization problem P3. Based on P3, by
introducing link-layer virtual queues, we formulate an online
finite-queue-aware CPS service maximization problem P4,
and propose an approximation algorithm that can efficiently
solve it in each time slot.
In particular, by summing the inequality (10) over all

t ∈ {0, 1, . . . ,T − 1}, and taking expectation and limitation
of both sides, we can get

lim
T→∞

1
T

T−1∑
t=0

E

[
α
∑
r∈R

f rij (t)

]

≤ lim
T→∞

1
T

T−1∑
t=0

E

 ∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)1t

 . (14)

Applying (14) as an extra constraint, the optimization prob-
lem P1 is equivalent to the following optimization problem
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P3:

P3: Maximize ψ =
∑
r∈R

vr

s.t. Constraints (2)–(3), (5), (8)–(11), (14) for all t.

We denote the optimal result of P3 by ψ∗P3. In what follows,
we will formulate a drift-plus-penalty problem based on P3,
which we call P4.

A. MODELING VIRTUAL QUEUES
Consider a virtual queueXij(t) at node i for each of its one-hop
neighbor j with the following queueing law:

Xij(t + 1) = max
{
Xij(t)−

1
α

∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)1t, 0

}
+

∑
r∈R

f rij (t). (15)

This virtual queue can be understood as the link-layer buffer
on link (i, j). The queue backlog Xij(t) represents the total
number of instructions stored at node i to be transmitted to
node j at the beginning of time slot t3.
For queue Xij(t), we have

1
α

∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)1t −

∑
r∈R

f rij (t)

≤
1
α

∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)1t

≤
1
α
cmaxij 1t (16)

where 1
α
cmaxij 1t is a constant, due to

∑
m∈Mi∩Mj

smij (t) ≤∑
m∈Mi

∑
j∈T m

i
smij (t) ≤ 1 according to (8), i.e., one node

can transmit to at most one neighbor on one band at a time.
Therefore, if we can guarantee the strong stability of this
queue, we can ensure its rate stability, i.e., constraint (14),
according to Theorem 2. Besides, the virtual queue backlog
is always nonnegative according to the queueing law (15).

Rather than utilizing the virtual queue Xij(t) directly, we
build another virtual queue Yij(t) based on Xij(t) as Yij(t) =
σXij(t), where σ = maxi∈N ,j∈Ti{

1
α
cmaxij 1t} . Consequently,

its queuing law is

Yij(t + 1) = max
{
Yij(t)−

σ

α

∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)1t, 0

}
+ σ

∑
r∈R

f rij (t). (17)

Note that if we can guarantee the strong stability of Yij(t), the
strong stability of Xij(t) directly follows, and constraint (14)
can be satisfied.

3In order to guarantee that the queue size of Xij(t) is an
integer in each time slot, the service rate of the queue should
in fact be b

1
α

∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)1tc. Here, we assume

1
α

∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)1t to be integers for simplicity.

B. ONLINE FINITE-QUEUE-AWARE CPS SERVICE
MAXIMIZATION
Next, we formulate an online finite-queue-aware CPS service
maximization problem corresponding to P3. Notice that in
problem P3, two types of queues 2(t) = {Q(t),Y(t)} are
maintained, i.e., the real queue (network-layer queue)Q(t) =
{Qri (t),∀r ∈ R, i ∈ N } and the virtual queue (link-layer
queue) Y(t) = {Yij(t),∀i ∈ N , j ∈ Ti}. We assume Q(0) = 0
and Y(0) = 0. Thus, we can similarly define a Lyapunov
function of2(t) as

L(2(t)) ,
1
2
[
∑
r∈R

∑
i∈N

(Qri (t))
2
+

∑
i∈N

∑
j∈Ti

(Yij(t))2].

Consequently, its one-slot conditional Lyapunov drift can
be defined as

1(2(t)) , E
[
L(2(t + 1))− L(2(t))|2(t)

]
. (18)

Similar to that in P2, i.e., to support more CPS services and
to limit the queue backlogs, we intend to minimize an upper
bound on the following drift-plus-penalty expression:

1(2(t))− VE
[∑
r∈R

vr (t)|2(t)
]
. (19)

We can have the following lemma.

Lemma 2: Given 1(2(t)) defined in (18), we have

1(2(t))− VE
[∑
r∈R

εri (t)|2(t)
]

≤ B′ +91(t)+92(t)+93(t) (20)

where B′ is a constant, i.e.,

B′ =
1
2

∑
r∈R

∑
i∈N

[(
max
j∈Ti
{
1
α
cmaxij 1t} + Omaxi

)2
+
(
max
{j|i∈Tj}

{
1
α
cmaxji 1t} + Amaxr · 1i=sr

)2]
+

∑
i∈N

∑
j∈Ti

(σ
α
cmaxij 1t

)2
,

91(t) is only related to the link scheduling variables smij (t)’s,
i.e.,

91(t) =

−
σ

α
E
[∑
i∈N

∑
j∈Ti

(
Yij(t)

∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)1t

)
|Y(t)

]
,

92(t) is only related to the routing variables f rij (t)’s, i.e.,

92(t) = E
[∑
r∈R

∑
i∈N

Qri (t)
( ∑
{j|i∈Tj}

f rji (t)−
∑
j∈Ti

f rij (t)
)
|Q(t)

]
+E

[∑
i∈N

∑
j∈Ti

(
σYij(t)

∑
r∈R

f rij (t)
)
|Y(t)

]
,
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and93(t) is only related to the computing resource allocation
variables vr (t)’s and εri (t)’s, i.e.,

93(t) = E
[∑
r∈R

∑
i∈N

(
Qri (t)(vr (t) · 1i=sr − ε

r
i (t))

)
|Q(t)

]
−VE

[∑
r∈R

vr (t)|2(t)
]
.

Proof: Please refer to Appendix B, available in the
online supplemental material, for the detailed proof.

From Lemma 2 , to minimize the right-hand-side of (20)
is to minimize 91(t)+92(t)+93(t). Note that 91(t), 92(t)
and 93(t) are all conditional expectations. The same as that
in P2, we use the concept of opportunistically minimizing an
expectation, i.e., to minimize 9 ′1(t)+9

′

2(t)+9
′

3(t) where

9 ′1(t) = −
σ

α

∑
i∈N

∑
j∈Ti

(
Yij(t)

∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)1t

)
,

9 ′2(t) =
∑
r∈R

∑
i∈N

(
Qri (t)(

∑
{j|i∈Tj}

f rji (t)−
∑
j∈Ti

f rij (t)
)

+

∑
i∈N

∑
j∈Ti

(
σYij(t)

∑
r∈R

f rij (t)
)
,

9 ′3(t) =
∑
r∈R

∑
i∈N

(Qri (t)(vr (t) · 1i=sr − ε
r
i (t)))

−V
∑
r∈R

vr (t).

Thus, the online finite-queue-aware CPS service maximiza-
tion problem can be formulated as

P4: Minimize 9 ′1(t)+9
′

2(t)+9
′

3(t)

s.t. Constraints (2)–(3), (5), (8)–(10)

Q(t) and Y(t) are strongly stable. (21)

Note that the constraint (14) has been left out in P4 (compared
to P3) since it can be guaranteed if Y(t) is strongly stable as
shown before.

C. A DECOMPOSITION BASED APPROXIMATION
ALGORITHM
In P4, we notice that 9 ′1(t), 9

′

2(t) and 9
′

3(t) are related to
variables smij (t)’s, f

r
ij (t)’s, and vr (t)’s and ε

r
i (t)’s, respectively.

Thus, in the following we decompose P4 into four subprob-
lems (from S1 to S4) and solve them respectively to obtain a
suboptimal and feasible solution to P4.

1) LINK SCHEDULING
First, we minimize9 ′1(t) by finding the optimal link schedul-
ing policy, i.e., determining the variables smij (t)’s (∀i ∈ N ,
j ∈ Ti,m ∈Mi ∩Mj), as follows:

S1: Minimize 9 ′1(t)

s.t. Constraints (8)–(9).

Since the only variables smij (t)’s can only take value of 0
or 1, the above formulated problem is a Binary Integer

Programming (BIP) problem, which can be solved by apply-
ing the traditional branch-and-bound or branch-and-cut [38]
approach. In the following, we develop a more efficient
greedy algorithm to find a suboptimal solution to this prob-
lem, which is called the sequential-fix (SF) algorithm based
on a similar idea to that in [17] and [12].
The main idea of SF is to fix the values of smij (t)’s sequen-

tially through a series of relaxed linear programming prob-
lems. Specifically, we first set smij (t)’s to 0 if Yij(t) = 0,
remove all the terms associated with such smij (t)’s from the
objective function, and eliminate the related constraints in
(8) and (9). Then, in each iteration, we first relax all the
0-1 integer constraints on smij (t)’s to 0 ≤ smij (t) ≤ 1 to
transform the problem to a linear programming (LP) problem.
Then, we solve this LP to obtain an optimal solution with each
smij (t) being between 0 and 1. Among all the values, we set the
largest smij (t) to 1. After that, by (8), we can fix s

n
pj(t) = 0 and

snjq(t) = 0 for any n ∈ Mj, {p|j ∈ T n
p , p 6= i}, q ∈ T n

j ,
and by (9), we can fix smpj(t) = 0 and smtq(t) = 0 for any
{p|j ∈ T m

p , p 6= i}, t ∈ Pm
j , q ∈ T m

t . Besides, if the result
includes some smij (t)’s with the value of 1, we can set those
smij (t)’s to 1 and perform an additional fixing for the largest
fractional variable in the current iteration as illustrated above.
Having fixed some smij (t)’s, we remove all the terms associated
with those already fixed smij (t)’s from the objective function,
eliminate the related constraints in (8) and (9), and update
the problem to a new one for the next iteration. The iteration
continues until we fix all smij (t)’s to be either 0 or 1.

2) ROUTING
Second, we minimize 9 ′2(t) by finding the optimal routing
policy, i.e., determining the variables f rij (t)’s (∀r ∈ R,
i ∈ N , j ∈ Ti), as follows:

Minimize 9 ′2(t)

s.t. Constraints (5), (10).

By reorganizing the objective function, we can reformulate
S2 as follows:

S2: Minimize∑
r∈R

∑
i∈N

∑
j∈Ti

(
− Qri (t)+ Q

r
j (t)+ σYij(t)

)
· f rij (t)

s.t. Constraints (5), (10).

We can see that S2 is an Integer Linear Programming (ILP)
problem with the only variables being f rij (t)’s. We notice that
the total flow rate

∑
r∈R f rij (t) over link (i, j) does not affect

the flow rates over other links {(p, q)|p 6= i ∩ q 6= j}, and
only depends on its link capacity according to the constraint
(10). Besides, the objective function of S2 can be viewed as
a weighted sum of the variables f rij (t)’s. Therefore, we can
determine the flow rate over any link (i, j) at node i locally,
based on its current queue backlogs Qri (t) and Yij(t), and the
queue backlogs of node j, i.e.,Qrj (t). In the following, we will
propose an algorithm to obtain the optimal solution of f rij (t)’s.
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In particular, a node i (∀i ∈ N ) first sets the variables
f rij (t)’s (∀j = sr , r ∈ R) to 0 according to constraint (5).
In order to minimize the objective function, node i also sets
the variables f rij (t)’s (∀j ∈ Ti, r ∈ R) with non-negative
coefficients to 0. For all the variables f rij (t)’s (with
negative coefficients) over link (i, j), node i finds out
the one with the smallest coefficient, and sets it to
1
α

∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)1t while the rest to 0. It means

that the link (i, j) is fully utilized to deliver that specific
computing service. Besides, if there are multiple variables
f rij (t)’s with the same smallest coefficients, node i randomly
picks one of them and sets it to 1

α

∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)1t

while the rest to be 0. Note that smij (t)’s are known
from the link scheduling optimization problem S1. It is
possible that 1

α

∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)1t is equal to 0 if∑

m∈Mi∩Mj
smij (t) = 0. Then, the corresponding variable

f rij (t) is also equal to 0.

3) COMPUTING RESOURCE ALLOCATION
Third, we minimize 9 ′3(t) by finding the optimal comput-
ing resource allocation policy, i.e., determining the variables
εri (t)’s (∀r ∈ R, i ∈ N ) and vr (t)’s (∀r ∈ R), as follows:

Minimize 9 ′3(t)

s.t. Constraints (2)–(3).

Notice that vr (t)’s and εri (t)’s are uncoupled variables. There-
fore, the above problem can be further divided into two
individual problems, S3 and S4, which are related to vr (t)’s
and εri (t)’s, respectively:

S3: Minimize
∑
r∈R

(Qrsr (t)− V )vr (t)

s.t. Constraint (2)

where Qrsr (t) is the queue size for service r at its source node
sr , and

S4: Minimize
∑
r∈R

∑
i∈N
−Qri (t)ε

r
i (t)

s.t. Constraint (3)

We can find that both S3 and S4 are ILP problems. Since the
computing resource allocation at one computing node does
not affect the allocation policy at any other nodes according to
constraints (2) and (3), we develop the following algorithms
to enable each computing node to locally find its optimal
computing resource allocation policy.

The optimal solution to S3 can be directly obtained as
follows. Particularly, for any r ∈ R, we have

vr (t) =
{
Armax , if Qrsr (t)− V < 0
0, otherwise.

In order to minimize the objective function of S4, among
all the service tasks that go through it (including the one
generated by itself and those generated by the other nodes),
node i sets the εri (t) with the smallest coefficient toOi(t), i.e.,
the amount of all its available computing resources, and the

other variables to 0. Besides, if there are multiple variables
with the same smallest negative coefficient, node i randomly
picks one of them and sets it to Oi(t) and the others to 0.
In each time slot, the online finite-queue-aware CPS ser-

vice maximization problem P4 can be solved after S1–S4
are solved. The queues Q(t) and Y(t) are also updated in
each time slot according to the queueing laws (4) and (17),
respectively. Although the constraint (21) is not considered
in S1–S4, we will show in the next section that bothQ(t) and
Y(t) are strongly stable. We denote the corresponding time-
averaged expected total CPS services, i.e., the value of the
objective function of P1 and P3, by ψP4.

V. PERFORMANCE ANALYSIS
In this section, we first prove that the proposed approximation
algorithm can guarantee network strong stability. Then, we
derive both lower and upper bounds on the optimal result
of P1.

A. NETWORK STRONG STABILITY
Although [27], [34] have proved that all network queues are
finite when applying Lyapunov optimization theory to solve
stochastic network optimization problems, they assume that
the users’ input data is interior to the network capacity region
and the formulated drift-plus-penalty function is optimally
solved. Since we do not have any such assumption and our
proposed approximation algorithm finds a feasible solution
to P4 by joint computing resource management, routing, and
scheduling, it is a more challenging problem to prove all the
network queues are strongly stable in our case.

Theorem 3: Our proposed decomposition based approxi-
mation algorithm for P4 guarantees that the queues Q(t) and
Y(t) are both strongly stable.

Proof: We first demonstrate the strong stability of
Q(t) by considering an arbitrary queueQri (t). Specifically, we
prove by induction that Qri (t) ≤ V + Armax when i = sr and
i 6= sr , separately.
1) i = sr : We first investigate the stability of Qrsr (t), whose

queueing law is as follows:

Qrsr (t + 1) = max{Qrsr (t)−
∑
j∈Tsr

f rsr j(t)− ε
r
sr (t), 0}

+vr (t). (22)

When t = 0, we have Qrsr (0) = 0 < V + Armax .
Assume that we have Qrsr (t) ≤ V + Armax when t = t ′

(t ′ ≥ 0).

• If Qrsr (t
′) ≥ V , according to the optimal solution to S3,

we know that vr (t ′) = 0. Thus, we have

Qrsr (t
′
+ 1) ≤ Qrsr (t

′) ≤ V + Armax .

• If Qrsr (t
′) < V , according to the optimal solution to S3,

we get that vr (t ′) = Armax . Following (22), we have

Qrsr (t
′
+ 1) ≤ Qrsr (t

′)+ Armax ≤ V + A
r
max .
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Therefore, we have Qrsr (t) ≤ V + Armax , and hence Qrsr (t) is
strongly stable.

2) i 6= sr : We then explore the stability of Qri (t) when
i 6= sr , whose queueing law can be expressed as:

Qri (t + 1) = max{Qri (t)−
∑
j∈Ti

f rij (t)− ε
r
i (t), 0}

+

∑
{j|i∈Tj}

f rji (t). (23)

When t = 0, we have Qri (0) = 0 < V + Armax .
Assume that we have Qri (t) ≤ V + Armax when t = t ′

(t ′ ≥ 0). Since only one neighboring node can transmit to
node i in time slot t ′, we denote it by node j. Consider the
coefficient in front of f rji (t

′) in the objective function of S2.

• If Qri (t
′) < Qrj (t

′)− σYji(t ′), according to (23), we have

Qri (t
′
+ 1) ≤ Qri (t

′)+ f rji (t
′)

< Qrj (t
′)− σYji(t ′)+ f rji (t

′)

≤ Qrj (t
′)

≤ V + Armax ,

The third inequality above can be proved in the following
two cases.

– If Yji(t ′) = 0, according to the solution to S1, we can
know that smji (t

′) = 0 ∀m ∈ Mj ∩Mi, and hence
f rji (t
′) = 0. Thus, the inequality holds.

– If Yji(t ′) ≥ 1, we have σYji(t ′) ≥ f rji (t
′), as f rji (t

′) ≤
maxp∈N ,q∈Tp{

1
α
cmaxpq 1t} = σ as defined before.

• If Qri (t
′) ≥ Qrj (t

′)− σYji(t ′), according to our proposed
solution to S2, we know that f rji (t

′) = 0. Following (23),
we have

Qri (t
′
+ 1) ≤ Qri (t

′) ≤ V + Armax .

Therefore, we also have Qri (t) ≤ V + A
r
max .

Based on the above results, we can see that an arbitrary
queue Qri (t) is finite in any time slot. Thus, Q(t) is strongly
stable by Definition 2.

Next, we prove the strong stability ofY(t), and specifically,

Yij(t) ≤ σ · max
0≤k≤t

∑
r∈R

f rij (k) (24)

for any i ∈ N , j ∈ Ti, by induction.
Consider an arbitrary queue Yij(t).
When t = 0, we have Yij(0) = 0, and hence (24) holds.
Assume (24) holds when t = t ′, i.e., Yij(t ′) ≤ σ ·

max0≤k≤t ′
∑

r∈R f rij (k). Then, when t = t ′ + 1, we have

Yij(t ′ + 1) = max
{
Yij(t ′)−

σ

α

∑
m∈Mi∩Mj

cmij (t
′)smij (t

′)1t, 0
}

+ σ
∑
r∈R

f rij (t
′).

If Yij(t ′) > σ
α

∑
m∈Mi∩Mj

cmij (t
′)smij (t

′)1t , with inequality
(10), we have

Yij(t ′ + 1) ≤ Yij(t ′) ≤ σ max
0≤k≤t ′

∑
r∈R

f rij (k)

≤ σ max
0≤k≤t ′+1

∑
r∈R

f rij (k).

If Yij(t ′) ≤ σ
α

∑
m∈Mi∩Mj

cmij (t
′)smij (t

′)1t , then

Yij(t ′ + 1) = σ
∑
r∈R

f rij (t
′) ≤ σ max

0≤k≤t ′+1

∑
r∈R

f rij (k).

Therefore, (24) holds when t = t ′ + 1 as well.
Since

∑
r∈R f rij (t) ≤

1
α
cmaxij 1t , we have that Yij(t) ≤

σ
α
cmaxij 1t and hence always finite and strongly stable.

B. LOWER AND UPPER BOUNDS ON ψ∗

P1
In what follows, we obtain both lower and upper bounds on
the optimal results of P1, i.e., ψ∗P1.

Theorem 4: The scheduling policy obtained by our pro-
posed approximation algorithm serves as a suboptimal yet
feasible solution to P1, and the corresponding time-averaged
expected amount of CPS services serves as a lower bound on
the optimal result of P1, i.e., ψ∗P1 ≥ ψP4.

Proof: Recall that the proposed approximation algo-
rithm finds a feasible solution to P4 in each time slot, which
satisfies all the constraints in P4, i.e., (2)–(3), (5), (8)–(10),
and (21) as we have proved in the previous subsection. Since
Y(t) is strongly stable, according to (16) and Theorem 2, we
can know that Y(t) is also rate stable, i.e., the constraint (14)
holds as well. Therefore, the scheduling policies we found in
all time slots serve as a feasible solution to P3. Since P3 is
equivalent to P1, the obtained scheduling policies serve as a
feasible solution to P1 as well. Thus, the corresponding time-
averaged expected amount of CPS services, i.e., ψP4, is no
larger than the optimal result of P1, i.e., ψP4 ≤ ψ∗P1.
Next, we find an upper bound on ψ∗P1. We first present a

lemma as follows.

Lemma 3: The time-averaged expected amount of CPS
services achieved by optimally solving P2, denoted by ψ∗P2,
is within a constant gap B

V from the maximum time-averaged
expected CPS services achieved by P1, i.e., ψ∗P1. Particularly,
we have

ψ∗P2 ≥ ψ
∗

P1 −
B
V
,

where B and V are defined in Section III-E.

Proof: Please refer to Appendix C, available in the
online supplemental material, for the detailed proof.
Notice that P1 and P2 are both Mixed-Integer Linear

Programming (MILP) problems. We relax P1 to a Linear
Programming (LP) problem denoted by P1, and formulate
a corresponding online CPS service maximization problem
denoted by P2. We can see that P2 is a relaxed LP prob-
lem based on P2, and can be easily solved. Denote the
time averaged expected amount of CPS services obtained by
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optimally solving P1 and P2 by ψ∗
P1

and ψ∗
P2
, respectively.

By Lemma 3, we can know that

ψ∗
P2
≥ ψ∗

P1
−
B
V
.

Since obviously we also have ψ∗
P1
≥ ψ∗P1, we can arrive at

the following result.

Theorem 5: The optimal result of P1 is upper bounded
by ψ∗P1 ≤ ψ

∗

P2
+

B
V , where ψ

∗

P2
can be obtained by optimally

solving P2, and B and V are defined in Section III-E.
Theorem 4 and Theorem 5 give a lower bound and an upper

bound on the optimal result of P1, i.e,ψ∗P1, respectively. Thus,
we can not only better estimate the optimal result, but also
know an upper bound on the gap between our lower bound
and the optimal result. As will be shown later, the obtained
lower bound and upper bound can be very close with properly
chosen parameters. It indicates that our approximate solution
is very effective.

In addition, note that we consider delay-insensitive CPS
services in this study, and service delay is not our primary
concern. On the other hand, we have proved in Theorem 3 that
the queue backlog size at each node is finite in our proposed
algorithm. Thus, the queueing delay at each node is finite and
the processing delay of each CPS request is finite as well.

VI. SIMULATION RESULTS
In this section, we carry out extensive simulations to demon-
strate the performance of our proposed algorithms in finding
the lower and upper bounds on the optimal result ψ∗P1, and
the performance improvement due to employing the hybrid
crowdsourcing architecture. Simulations are conducted under
CPLEX 12.4 on a computer with a 2.27 GHz CPU and 24 GB
RAM. In particular, we consider a square network of area
1000 m× 1000 m, where a base station (BS) is located at the
center, and 20 nodes are uniformly and randomly distributed.
Five nodes have CPS service requests, i.e., certain amounts of
computing instructions to be outsourced. Each instruction is
8 bytes long.We assume the number of instructions each node
can process in each time slot, i.e., Oi(t), is independently and
uniformly distributed within [5×105, 106], while the number
of instructions the BS can process is 107, a constant. We set
Armax’s (1 ≤ r ≤ R) to 5 × 106. Besides, there are a basic
spectrum band whose bandwidth is 1 MHz, and four other
opportunistic spectrum bands, the bandwidth of each ofwhich
is independently and uniformly distributed within [0.5 MHz,
1 MHz] in each time slot. At each node, only a random
subset of the spectrum bands are available, while the BS can
utilize all of those bands. Some other important simulation
parameters are listed as follows. The path loss exponent is 4
andC = 62.5. The noise power spectral density is η = 3.34×
10−18 W/Hz at all nodes. The transmission power spectral
density of nodes is 8.1×109η, and the reception threshold and
interference threshold are both 8.1 η. Thus, the transmission
range and the interference range on all frequency bands are all
equal to 500 m. All the results presented below are collected
after the experiments run for a period of T = 100 time

slots unless otherwise specified. We set the duration of each
time slot to 1 s. In this paper, our proposed Lyapunov-based
approximation algorithm guarantees the finite queue backlog
size in the network, while most previous approaches do not.
Thus, it is not very fair to compare with them. Moreover,
the hybrid crowdsourcing architecture makes the problem
studied in this paper a very unique problem. In fact, due to
similar reasons, most previous works, e.g., [28]–[34], focus
on the performance evaluation of their proposed algorithms
and do not compare with other schemes, either. Nevertheless,
we will compare the performance of the proposed hybrid
crowdsourcing architecture with that of other architectures.

FIGURE 2. CPS service maximization (time-averaged results).
(a) Time-averaged expected total CPS services. (b)
Time-averaged expected total queue backlog of all nodes.

A. CPS SERVICE MAXIMIZATION
Wefirst illustrate in Fig. 2(a) both the lower and upper bounds
on the optimal result ψ∗P1 of the offline CPS service maxi-
mization problem. Recall that the lower bound is achieved
by our proposed approximation algorithm, i.e., ψP4, and the
upper bound is obtained by solving the relaxed problem P2,
i.e., ψ∗

P2
+B/V . We find that the lower and upper bounds get

closer to each other as V increases, and that the lower bound
first increases fast when V grows from 6×108 to 9×108 and
then becomes stable. In particular, when V = 9 × 108, the
lower bound is 2.46× 107 instructions, and the upper bound
is 2.50× 107 instructions. We can see that the lower bound is
about 98.4% of the upper bound, i.e., the obtained bounds are
very tight and hence very close to the optimal result. We then
shown in Fig. 2(b) the time-averaged expected total queue
backlog of all nodes incurred by our proposed approximation
algorithm, i.e., the queue length corresponding to the lower
bound result in Fig. 2(a). We find that the queue backlog in
the approximation algorithm increases as V grows because a
larger V means that we emphasize more on the CPS service
maximization than on the queue size. From the results in
Fig. 2(a) and Fig. 2(b), we can see that there is a tradeoff
between CPS service and queue length in the design of our
approximation algorithm. Specifically, in order to support
more CPS services, we need to have a larger V which leads
to a larger queue length.

The results in Fig. 2 are obtained by taking the average over
100 time slots as mentioned before. In Fig. 3, we show the
results in each time slot. Specifically, we present in Fig. 3(a)
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FIGURE 3. Online finite-queue-aware CPS service maximization
(results in each time slot). (a) Expected total CPS services in
each time slot. (b) Expected total queue size in each time slot.

the expected CPS services supported by the proposed
approximation algorithm when V = 7 × 108, 8 × 108, and
9× 108. We can see that in each time slot the amount of CPS
services that can be supported is larger under a larger V . The
corresponding expected total queue backlogs of all nodes are
shown in Fig. 3(b). We find that the expected total queue
lengths first increase linearly with time, and then become
steady after t = 62, 75, and 83, when V = 7× 108, 8× 108,
and 9 × 108, respectively. Since the expected total queue
length is finite, each single queue in the network is finite as
well in each time slot and hence strongly stable.

B. PERFORMANCE COMPARISON
One main advantage of the proposed hybrid crowdsourcing
architecture, i.e., outsourcing the computing tasks to both the
CPS nodes and the BS (or the central cloud), is that it can fully
utilize the computing capabilities of CPS nodes and avoid
communication congestion at the BS, and hence support more
computing services. In the following, we compare the perfor-
mance of the hybrid crowdsourcing architecture with that of
another two outsourcing architectures, i.e., outsourcing to the
BS and outsourcing to one-hop neighbors.

As shown in Fig. 4, we present the achievable time-
averaged expected total CPS services under hybrid crowd-
sourcing, outsourcing to the BS, and outsourcing to
1-hop neighbors architectures with different network settings.
Recall that we denote by N and R the number of users and the
number of CPS service requests, respectively.

Fig. 4(a) demonstrates the achievable time-averaged
expected total CPS services. We can see that with the same
R and the same N , the performance of hybrid crowdsourcing
is better than that of outsourcing to the BS and outsourcing to
1-hop neighbors due to the utilization of computing capabil-
ities of both CPS nodes and the BS, and the avoidance of
the communication congestion at the BS. Moreover, when
N gets larger, the amount of services that can be supported
increases under hybrid crowdsourcing and outsourcing to
1-hop neighbors architectures, but does not increase much
under outsourcing to the BS architecture because it has lim-
ited network throughput capacity and does not utilize the
computing capabilities at the other nodes.

Fig. 4(b) shows the time-averaged expected CPS services
processed at the BS when R = 3 and 4, and N ranges from
4 to 20. We find that with the same R and the same N , the
amount of CPS services processed at the BS under outsourc-
ing to the BS architecture is higher than that under outsourc-
ing to 1-hop neighbors architecture. This is because more
nodes try to utilize the computing resource at the base station
under outsourcing to the BS architecture. More interestingly,
we also find that the amount of CPS services processed at the
BS under hybrid crowdsourcing architecture is higher than
that under outsourcing to the BS architecture. The reason is
that rather than outsourcing all the computing tasks to the BS,
the hybrid crowdsourcing architecture distributes computing
tasks to both normal nodes and the BS, and thus can alleviate
the contentions in the network and enhance the throughput to
the BS. In other words, the hybrid crowdsourcing architecture
can make more use of the computation capability of the BS
(or the central cloud) by distributing some computing tasks
to other nodes.
The time-averaged expected CPS services processed at the

source nodes are shown in Fig. 4(c), which do not change
when N increases. This is because all the source nodes can
use all their available resources to provide some CPS ser-
vices with no communication cost. Fig. 4(d) shows the time-
averaged expected CPS services processed at the other nodes.
Since under outsourcing to the BS architecture the computing
resources at the other nodes are not utilized, the amount of
CPS services handled at the other nodes is 0. We can also
see that the other nodes can process more CPS services under
hybrid crowdsourcing architecture than under outsourcing
to 1-hop neighbors architecture, since in the latter case the
services are only outsourced to the nodes that are within
source nodes’ 1-hop neighboring areas.
Fig. 5 demonstrates the time-averaged expected queue

backlogs under hybrid crowdsourcing, outsourcing to the
BS, and outsourcing to 1-hop neighbors architectures. From
Fig. 5(b), we can see that with the same N and the same
R, the queue length at the BS under hybrid crowdsourcing
architecture is smaller than that under outsourcing to the BS
architecture, since not all the computing tasks are sent to the
BS. Besides, the queue length at the BS under hybrid crowd-
sourcing architecture is larger than that under outsourcing to
1-hop neighbors architecture because the services supported
at the BS is larger in the former case as shown in Fig. 4(b).
From Fig. 5(c), we find that with the same R and the

same N , the queue length at the source nodes under hybrid
crowdsourcing architecture is larger than that under the other
two architectures. This is because according to (4) the queue
length at a source node is at least the amount of CPS services it
requested, i.e., vr (t), and the hybrid crowdsourcing architec-
ture can support the most CPS services as shown by Fig. 4(a).
Fig. 5(d) shows the queue length at all the other nodes.

We can see that the queue length under hybrid crowdsourc-
ing architecture is smaller than that under outsourcing to
the BS architecture, because under hybrid crowdsourcing
architecture other nodes can also process some computing
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FIGURE 4. Achievable CPS services under hybrid crowdsourcing, outsourcing to the BS, and outsourcing to 1-hop neighbors
architectures. (a) Time-averaged expected total CPS services. (b) Time-averaged expected CPS services processed at the BS.
(c) Time-averaged expected CPS services processed at the source nodes. (d) Time-averaged expected CPS services processed at
all the other nodes.

FIGURE 5. Queue backlogs under hybrid crowdsourcing, outsourcing to the BS, and outsourcing to 1-hop neighbors architectures.
(a) Time-averaged expected total queue size. (b) Time-averaged expected queue size at the BS. (c) Time-averaged expected queue
size at source nodes. (d) Time-averaged expected queue size at all the other nodes.

tasks. Besides, the queue length under hybrid crowdsourcing
architecture is still larger than that under outsourcing to 1-hop
neighbors architecture because the services processed at the
other nodes is fewer in the latter case as shown in Fig. 4(d).
Since the queue at the source nodes is the longest among these
three queues, the time-averaged expected total queue length
under hybrid crowdsourcing architecture is the largest among
that under all the three architectures as shown in Fig. 5(a).

VII. CONCLUSION
In this paper, we employ a hybrid crowdsourcing architecture,
which utilizes both the central cloud and some other CPS
nodes to provide computing resources for resource-limited
CPS nodes to accomplish their workloads. We have studied
how to support CPS services by jointly considering comput-
ing resource allocation, routing, and link scheduling. Specif-
ically, we investigate the offline CPS service maximization
problem while considering network dynamics, e.g., dynamic
spectrum and computing resource availability, and the finite
network queues sizes. A feasible lower bound has been found
by developing an approximation algorithm to solve an online
CPS service maximization problem, which has been proved
to guarantee network strong stability. An upper bound has
also been obtained. We have demonstrated that the lower
and upper bounds are very tight and hence close to the
optimal result. Besides, we find that our proposed hybrid
crowdsourcing architecture can support more CPS services
than other outsourcing architectures. The reason is not only

that hybrid crowdsourcing architecture can utilize both the
central cloud resources and CPS nodes’ computing resources,
but also that by distributing some tasks to other nodes, hybrid
crowdsourcing architecture can deliver more computing tasks
to the base station and hence make more use of the central
cloud’s computation capability.
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