IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 1 April 2013; revised 11 July 2013; accepted 15 July 2013. Date of publication 22 August 2013;
date of current version 20 September 2013.

Digital Object Identifier 10.1109/TETC.2013.2278698

A Priced Public Sensing Framework for
Heterogeneous loT Architectures

ASHRAF E. AL-FAGIH! (Member, IEEE), FADI M. AL-TURJMAN? (Member, IEEE),
WALEED M. ALSALIH3, AND HOSSAM S. HASSANEIN* (Senior Member, IEEE)

Hnformation and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
23chool of Engineering, University of Guelph, Guelph, ON N1L 2W1, Canada
3Depal’lmenl of Computer Science, King Saud University, Riyadh 11543, Saudi Arabia
4School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada

CORRESPONDING AUTHOR: A. E. AL-FAGIH (alfagih@kfupm.edu.sa)

This work was supported by King Fahd University of Petroleum and Minerals, by the National Plan for Science and Technology at King Saud
University under Project 11-INF1500-02, and by the Canadian Natural Science and Engineering Research Council (NSERC).

ABSTRACT The proliferation of wireless sensors has given rise to public sensing (PS) as a vibrant data-
sharing model. This vision can be extended under the umbrella of the Internet of Things (IoT) to include
versatile data sources within smart cities such as cell phones, radio frequency identification tags and sensors
on roads, and buildings and living spaces. The facilitation of such a vision faces many challenges in terms
of inter operability, resource management, and pricing. In this paper, we present a priced PS framework for
IoT architectures. Our framework caters for service-based applications in smart cities where data is provided
via a data cloud of multifarious data sources. We propose online heuristics for public data delivery in smart
city settings. We also introduce a pricing utility function for data acquisition. Our pricing function considers
resource limitations in terms of delay, capacity and lifetime on the data providers’ side, as well as user’s
quality and trust requirements from the requesters’ side. We present simulation results showing the efficiency
of our scheme as compared with other wireless sensor and mobile ad-hoc schemes with respect to scalability,
lifetime, delay, delivery ratio, and price.

INDEX TERMS  Wireless sensor networks, public sensing, Internet of Things, heuristic algorithms, utility

functions.

I. INTRODUCTION

There are billions of sensor-enabled devices that are linked
together generating a boundless pool of data [1]. The topolo-
gies formed by such devices, including sensors, cellphones,
GPS locators, RFID systems and other pervasive objects,
collectively build the Internet of Things (IoT); a paradigm
that assumes all the aforementioned components to be equally
identifiable, tractable and connected [2]. IoT is expected to
integrate a multitude of wireless platforms and architectures
to provide large-scale information access. One particularly
promising model in this regard is Public (or Participatory)
Sensing (PS) which employs large-scale sensor networks at
low cost by utilizing everyday sensory and mobile devices in
applications where data is shared among users for the greater
public good [3], [4].
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In smart cities [5], under the umbrella of IoT, PS will
expand to incorporate heterogeneous data generating/sharing
systems including Wireless Sensor Networks (WSNs),
database centers, ubiquitous devices, personal and environ-
mental monitoring devices deployed both in metropolitan
as well as urban areas. Henceforth, the term “‘sensor” is
expanded in this paper to include any form of data source
that is either stationary or on transit, regardless of its com-
munication protocol or underlying technology. Hence, this
distributed network of sensors will provide a multitude of
services to improve the residential experience and quality of
living in smart cities. Sensors in such settings are abundant
and available with individuals, onboard private and public
vehicles and/or deployed on roads and buildings. In such
a comprehensive public sensing model, an incentive data
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sharing policy is required to motivate sensor owners to partici-
pate in the sensing process and to ensure that the provided data
is fairly priced. Moreover, the proposed deployment scale
introduces challenges regarding the system’s limitations in
terms of lifetime, available capacity and delay. In addition,
quality management policies are to be considered, as well,
given the variety of data that is exchanged across the proposed
system.

We visualize an IoT-driven PS architecture for smart cities
that tackles all the above mentioned concerns. In our pro-
posal, sensors (i.e. data sources), within smaller peripheral
networks, populate a broad spectrum of data types, including
Voice over IP (VoIP), live and buffered video, identification
messages, emergency alerts, geographical and environmental
readings into a common data cloud. Each peripheral network
is connected to the cloud via a gateway, defined by WiFi
hotspots, data servers or even landline hubs. Gateways are
responsible for managing the data within their correspond-
ing peripheral networks in terms of provisioning and pric-
ing. Fig. 1 depicts our view of such an architecture where
data is generated by masses of data sources and is deliv-
ered, possibly via data collectors (static or mobile), to gate-
ways that respond to data requests issued on behalf of the
clients by access points that are owned by various service
providers.

Request
(( )) Static
Data
Glient Collector
N Access Point
A Gateway
Mobile Data  }
Collector

Gateway Database ©

FIGURE 1. Architectural model of loT public sensing.

To this end, we list our contributions as follows:

o We propose a framework for priced public sensing (PPS)
in smart cities based on an IoT architectural model that
integrates heterogeneous data sources.

o We categorize data exchanged across the proposed archi-
tecture based on its delay and quality requirements.
Accordingly, we classify our data delivery schemes into
delay-tolerant and delay-sensitive schemes.

o We provide a dynamic two-tier pricing scheme that,
from the suppliers’ end, adheres to the social welfare
of the PS system by incorporating lifetime and capacity
constraints while considering, from the users’ end, delay,
quality and trust metrics to ensure the maximum utility
gain.

o We provide heuristics specifying a distributed data deliv-
ery scheme that exploits the components of the proposed
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architectural model, in addition to utilizing our pricing
model.

The reminder of this paper is organized as follows:
Section II surveys the related work in terms of data delivery
and pricing schemes in PS. Section III presents our PPS
system models, including the network, lifetime, delay and
two-tier pricing models. Section IV defines our problem
statement and delivery heuristics. Section V demonstrates
our simulation approach and results. Section VI concludes
this paper.

Il. BACKGROUND

Many research disciplines have been motivated by PS in
metropolitan areas [4]-[6]. Accordingly, several PS proto-
type systems that are based on sensory and Mobile Ad-hoc
Networking (MANET) applications have emerged. In this
section, we survey some of the prominent PS prototype sys-
tems, including their corresponding data delivery and pricing
approaches.

A. DATA DELIVERY IN PUBLIC SENSING
The recent explosion of mobile phone market inspired a cate-
gory of PS prototypes [7]-[10]. These prototypes use sensor-
enabled mobile phones to sense their local environments
(e.g. pollution and temperature sensing) [7], to monitor their
private spaces (e.g. monitoring body vital signals) or to create
a binding between tasks and the physical world (e.g. take
video or audio samples) [8], [9]. We note that these prototypes
are mostly simplistic and dedicated to a single sensory task.
MetroSense, which is a more comprehensive PS framework
presented in [11], represents a wider vision of a people-centric
paradigm for urban sensing. Nevertheless, Metro Sense solely
explores sensor-embedded mobile phones to support personal
and public sensing.

Joining the capabilities of a multitude of smart devices in
a Cloud of Things (CoT) has been proposed in several works
[12]-[14]. Other proposals specifically address smart cities
applications [15]-[17]. The authors of [15], for instance,
highlight how future cities need to collect data from an abun-
dance of low-cost urban sensors including environmental sen-
sors, electric meters, GPS devices and building sensors. The
key idea for getting high-quality services from such cheap
sensors is the cross-correlation of sensed data from several
sensors and analyzing them using sophisticated algorithms.
However, none of the aforementioned approaches introduce
a comprehensive framework that addresses delivery, resource
management and pricing challenges together. Most impor-
tantly and from the delivery perspective, they either apply
simplistic communication protocols that are either basically
cellular (e.g. GPRS or UMTS) coupled with some WiFi or
Bluetooth capabilities, or apply algorithms that are intended
originally for MANETS such as Ad-hoc On demand Distance
Vector Routing (AODV) [18] and Dynamic Source Routing
(DSR) [19] which are short-path routing protocols that are
based on minimum-hop count. We note that DSR outperforms
other protocols in smaller networks of lower load and/or
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mobility. AODV, however, outperforms DSR in more stressful
situations, with widening performance gaps with increasing
stress (e.g. more load, higher mobility). Hence, if a delivery
price function is to be proposed for AODYV, it would be based
on its high control overhead and bandwidth consumption
due to its table-exchange-based discovery process, whereas
delivery in DSR would be priced according to its performance
in highly mobile settings. We, on the other hand, aim at pro-
viding a comprehensive pricing function for our framework
that considers these and other factors, as will be shown in
Section I'V.

B. PRICING IN PUBLIC SENSING

Pricing schemes proposed in the literature focus on maximiz-
ing the service provider’s profit in addition to optimizing the
network’s resources. From the wider perspective of wireless
networks, pricing schemes are classified into flat-rate and
parameter-based schemes.

Flat-rate schemes set a fixed price to each connec-
tion session regardless of its duration, the type of ser-
vice requested or the amount of traffic in the network.
Examples of common flat rate schemes include metered,
packet and Paris-Metro pricing schemes [20]. However,
flat-rate schemes have major drawbacks including failing
to support users’ mobility and often overpricing provided
services.

A considerable body of research has been conducted to
develop parameter-based schemes [21]—-[23] that improve on
the flexibility, adaptability and resource allocation mecha-
nisms of their flat-based rivals. Static and dynamic classes of
parameter-based pricing schemes are defined according to the
scheme’s adaptability to wireless technologies and varying
user demands. An important aspect related to parameter-
based sensing is related to its participatory nature. That is to
say, the users’ willingness to contribute their data is crucial
to the success of the PS system. Hence, incentives are needed
to motivate participants.

Numerous incentive-based schemes are proposed, includ-
ing the work in [24] where groups of mobile users exchange
credits. ‘Tit for tat” was proposed for peer-to-peer (P2P)
networks [25]. In order to download any content, users
are required first to contribute their own data. These two
incentive-based schemes assume a unified value per data unit
and do not consider the quality of the data. In [26], each
intermediate node buys a packet from its previous hop with
some credits, and then sells the packet to the next hop for more
credits. The authors in [27] allow each node to determine the
price of its forwarding services based on the availability of its
own resources. These previous studies assume that both the
source and the destination are charged for exchanging data.
However, [28] introduces a virtual credit-based mechanism
to collect data and share bandwidth where both the source
and the sink (i.e. 3G node) are rewarded for providing and
forwarding data. Yet, this framework is limited to vehicular
mobile networks. In [29], an envisioned Internet of Things
market is referred to where the primary asset is the provi-
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sioning of sensor data. In such a market, charging individual
queries requires a micro payment scheme. Providers, on the
other hand, have to increase their future revenues. Accord-
ingly, an IoT-driven pricing scheme has to realize a level of
service that aggregates data from several sources, including
4G, WSNs and other sources, to produce better reliable read-
ings. Furthermore, we mark that the aforementioned schemes
assume mostly a direct provider-client relation in determining
their price mechanisms. However, in large economic systems
such as the one we are targeting by our PPS framework,
entities known as intermediaries are required for coordinat-
ing central structures in the IoT market. Intermediaries take
care of authentication, billing and interfacing required to
find appropriate services within the heterogeneous cloud of
sources. We remark that our dynamic pricing scheme and
the architecture associated to it address the aforementioned
concerns in addition to addressing lifetime, delay and data
quality constraints as explained in Section III-D.

lll. SYSTEM MODELS
In this section, we explain our network, delay and lifetime
models, in addition to our pricing model.

Client $ |@

Access
Point
O van, caenar (1)
Data
Callector

f
FIGURE 2. Network model components.

A. NETWORK MODEL

In this paper, we consider a multi-tier PPS framework with
four main components as depicted in Fig. 2. At the top tier
of our proposed architecture, Access Points (APs), owned
by service providers, initiate data requests based on clients’
queries. Data resides at the lower tier of the architecture
which includes Light Nodes (LNs) comprising sensors, smart
devices, RFID tags and other IoT pervasive entities capable of
providing PS data within a binary disk communication range.
Each group of LNs is assumed to form a peripheral network
according to their deployment and application specifications.
Our scheme entirely dedicates LNs to data reading. Thus, data
requests and consequent transmissions are not forthrightly
conducted between APs and LNs. Each LN delivers its sensed
data by multi-hop transmission through other LNs to one
or more Data Collector (DC) that could be either station-
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ary or mobile. Data collectors are equipped with wireless
transceivers or RFID readers and are responsible for forward-
ing the LNs’ data load to gateways (GWs). Gateways are
more sophisticated devices which are connected to the cloud
via the Internet or any other backhaul. Furthermore, GWs
perform an intermediary role by replying to AP data requests
in addition to providing them with pricing parameters as will
be explained in Section D.

Accordingly, our framework accommodates the following

two prominent scenarios:

o A network with a Stationary Data Collector (SDC)
located at the center of the sensing field (See Fig. 3-a).
Here, all data packets are destined to the DC via multi-
hop transmission. Examples of SDCs in smart cities
include wireless hotspots and multi-owned static base
stations.

o A network with a Mobile Data Collector (MDC) that
moves along the boundary (i.e. the perimeter) of the
sensing field (See Fig. 3-b). MDCs are represented in
smart cities by public transit such as tramway carts and
People Movers, equipped with light base stations, that
are expected to cover the entire span of their peripheral
networks according to a predefined trajectory. We note
that our scheme is applicable to fixed trajectories of
any shape. Without the loss of generality, we assume
at this stage a circular trajectory just to simplify the
analysis. Corresponding calculations for other shapes
can be derived similarly.

© .,

Fast Track (O Data (((I)))

________ Mobility
Relay Node Collector i’_,‘"‘, Gateway »

Direction

‘ © vightNode (8) Relay Node

FIGURE 3. lllustration of two data collection scenarios (a) SDC
(b) MDC.

As depicted in Fig. 3-b, we label LNs that are able to
directly communicate with the DC as Relay Nodes (RNs).
In the SDC scenario, RNs are represented by LNs within a
single-hop reach of the SDC. This also applies to the MDC
scenario where RNs are LNs whose transmission range over-
laps with the trajectory of the MDC. In addition, we further
label RN that are the closest to the location of the GW as
Fast Track Relay Nodes (FTRNs) as shown in Fig. 3-b. Such
nodes are periodically identified by the MDC and are used for
more delay-sensitive data as will be shown soon.

We make the following assumptions regarding the lifetime,
delay and data delivery models:
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o LN are uniformly distributed over the sensing field.
The sensing field is a circle of radius Rm.

o The transmission range of an LN is r m.

« All LNs have the same data generation rate where each

LN generates M packets per time unit.

For our analysis, we remark though that our proposed
framework does not rely on such assumptions — they are made
solely to facilitate a quantitative analysis.

B. LIFETIME MODEL

We define the network lifetime as the time until the DC
is unreachable (i.e. there exists a LN that does not have a
multi-hop path to the DC). In the following, we provide a
comparison between the SDC and MDC scenarios that
assumes evenly distributed load over RNs (i.e. all RNs relay
the same amount of traffic). In addition, we adopt the energy
consumption model proposed in [30] which can be described
as follows:

Er (r, B) = b X (eclec + Camp X r®) (1
Ege (b) = b X eclec 2

where E7-(r, b) is the energy consumed to send b bits over
r m, Erc(b) is the energy consumed to receive b bits, eejec 1S
the energy consumed by the transmitter to send one bit, egp
is the energy consumed by the transmission amplifier for one
bit, and w is the path-loss exponent. We also assume that every
LN starts with an energy supply of Ej,;; energy units.

In the following, we compare the two aforementioned sce-
narios in terms of network lifetime.

1) STATIONARY DATA COLLECTORS

With multi-hop communication, and assuming a circular
sensing field, the lifetime of the network is determined by the
lifetime of RNs. Since LN are uniformly distributed over the
sensing field, the number of RNs is expressed as:

nwr:  nr?

Ea @
where n is the total number of LNs and r is the transmission
range of all LNs. These RNs are in charge of delivering
all data generated within their designated area to the SDC.
Therefore, they transmit Mn packets to the DC. With a perfect

load balancing, each RN transmits

MnR*>  MR?
— = “)
2 72
packets. Thus, the lifetime of a relaying node is
{—E"”;’ rz J 5)
MR?E,,

time units.

2) MOBILE DATA COLLECTORS
Since the DC moves along the perimeter of the sensing field,
we have

JT(RZ— (R—r)z)n . (2Rr—r2)n 6
TR? N R? ©)
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relaying nodes. With a perfect load balancing and a constant
data generation rate, each relaying node will be in charge of
transmitting

MnR* MR’
(2Rr —r*)n ~ (2Rr —r2)
packets. Thus, the lifetime of a relaying node in time units is:

\\Einit (2Rr - FZ)J (8)

MR?E,,

(7

From this comparison, we show that the lifetime of a
network with an MDC is longer than that of a network with a
SDC by a factor of

2R —r
9
’

For example, if r = 100 m and R = 1000 m, the life-
time of a network with a MDC is 19 times longer than the
lifetime of the same network with a SDC. We also note that
the amount of energy consumed to send a packet over a
multi-hop path is also proportional to the number of hops
and, hence, can be approximated to a linear function of the
Euclidean distance between the source and the destination.
Therefore, the maximum amount of energy consumed to
send a packet to a SDC is 6R energy units, where 6 is a
fractional constant. On the other hand, the maximum amount
of energy consumed to send a packet to a MDC is 6R*
energy units, where R* is the maximum distance between a
LN and its nearest RN. R* is expected to be smaller than
R. We finally note that although the analysis above consid-
ers a single MDC, the case for multiple MDCs is straight
forward.

C. DELAY MODEL
Delay is defined as the time needed to deliver a packet from a
source LN to a destination DC. We remark that we provided
in [31] a comparison between the two scenarios in terms of
delay. For a network with a SDC (Fig. 3-a), the delay a packet
encounters is proportional to the number of hops between the
packet’s source and the SDC. Therefore, the maximum delay
a packet encounters is linearly proportional to the diameter of
the network. This results in a delay of ¥R time units, where
¥ is a constant. On the other hand, the maximum delay in a
network with a MDC (Fig. 3-b) is significantly worse. With
a MDC, the worst case occurs when a packet arrives to a RN
which has just been left by the MDC and it is the first node
facing the MDC when it exits the communication range of
the GW; such a packet needs to wait for the MDC to complete
two full rounds over its trajectory which depends on the speed
of the MDC. Let max_D denote the maximum delay a packet
may encounter waiting for a MDC at some RN in the network.
It is worth mentioning that max_D is expected to be much
greater than YR as it depends on the physical motion and
speed of the MDC.

Based on the aforementioned lifetime and delay model, we
remark that having an MDC has a great potential to prolong
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the lifetime of the network and save energy, yet it suffers from
a longer delay if compared with a SDC. This brings together
a group of competing objectives and makes a demand for a
scheme to choose the right data gathering strategy, and this is
the main motivation for this paper.

D. PRICING MODEL

The public sensing framework we propose is priced. Hence,
sensed data in a smart city setting is delivered upon client’s
request in exchange for a monetary charge or a price to be
compensated for by the requesting party. The data provided
by LNs is priced according to attributes related to the LN’s
resource availability such as energy, transmission capacity
and the collective lifetime of the peripheral network it belongs
to. This latter attribute is decided by the GW connecting the
peripheral network to the cloud, which simultaneously acts as
an intermediary on behalf of LNs as explained in Section II-B.
The requesting party, on the other hand, is to decide on the
suitability of the price according to a utility function that
conceders the user’s service requirements.

We hence provide a two-tier dynamic pricing scheme.
At the lower tier, GWs reply to AP data requests with a
resource-based service price. At the top tier, the requesting
AP generates a utility function based on the user’s service
requirements, his/her affordable price limit and on the avail-
able GW replies to choose from.

1) GATEWAY PRICING

We propose a decentralized approach where each gateway
(GW}) decides on its data/service price (PGWJ.); a tradeoff
of data for a monetary value based on the availability of
resources. We specify three main parameters for each GW;
to announce its Pgw, in reply to an AP;’s request:

e Delay (Dgw): A combination of the time needed to
deliver a packet from a source LN to a destination DC
(T pc) and the time (Tgw) the sensed data will need to
arrive to the GW from the DC such that

Dew = Tpc + Tow. (10)
Hence, we define a normalized Dgw as

DGW,'
max_D’

1)

/
DGW,':

where max_D is the maximum expected delay.

o Gateway Capacity (Cgw): Our delivery scheme adopts
a data delivery approach where GWs have a limited
capacity for the maximum amount of data that they can-
deliver over a specific time period. The GW’s capacity
is directly related to its service price (Pgw). We define
a normalized relaying capacity for the set of GWs as

Cow;,
Clow = — (12)

9
max_C

where max_C is the maximum expected capacity.
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o Lifetime (Lgw): We adopt the general energy consump-
tion model proposed in Section III-B. We define a nor-
malized Lifetime for the set of GWs as

LGW,‘
max_L’

L'gw = (13)
where max_L is the maximum expected lifetime.

Based on the three aforementioned parameters, we propose
a price function Py, for each GW such that

C'ew,L ow,

Pow, =@
GW, D'ow,

) (14)
where ® is a weight variable set here to define a closed form
equation for stating a direct proportional relation between
price, capacity and lifetime, and an inversely proportional
relation between price and delay.

2) ACCESS POINT PRICING

At the top level of our PPS framework, APs are to implement
a utility function tailored to cater for the quality, delay and
trust parameters of the data type requested by the client. This
utility function aims at increasing the users’ gain from the
coming GW replies according to the user’s reservation price
(i.e. the maximum price a client is willing to pay) and his/her
data requirements. In order to differentiate between the users’
requirements of delay and quality in the available data, we
categorize the data in smart cities into four main types:

« Hard Real-time bounded Multimedia (HRM)
o Soft Real-time bounded Multimedia (SRM)
« Delay-tolerant data (DTD)

« Delay-sensitive data (DSD)

The four types above cover all data specifications in terms
of quality and delay requirements. The first two types (HRM
and SRM) are inspired by the work presented in [32] and [33]
regarding the type of end-to-end delay and the expected
quality guarantees for voice and video data either in real-
time (HRM) or buffered (SRM) streams. DTD and DSD
are suggested for non-multimedia data (e.g. alert signals,
geographic coordinates, environmental measures, etc.) which
allows for more relaxed constraints on delay and quality. Nev-
ertheless, some non-multimedia data could have tight delay
requirements (e.g. medical alerts). Hence was the distinction
between DTD and DSD. Henceforth, we define the following
three utility parameters for each data request depending on its
type:

o Delay sensitivity (DS) of the requested data. The AP
may mark some requests to be delay-sensitive or delay-
tolerant. And the user may be willing to pay more for less
delay, or to compromise some delay for a better (lower)
price.

o Quality of service (Q) representing the quality of trans-
mission in some predefined aggregate term (e.g. bit rate
or average packet loss) where some service (i.e. VoIP
and video streaming) require a higher quality level (i.e.
quality-sensitive data) in terms of transmission rates as
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compared to data on traffic updates, for instance. Qual-
ity can be also defined with respect of the reliability
of the source (i.e. in terms of proximity to the sensed
phenomenon).

o Trust factor (T) is a history function that is calculated
at the AP per gateway to represent a GW; fulfillment
measure. A higher Tgw; indicates that previous data
exchanges between AP; and GW; have been fulfilled
according to the parameters (e.g. delay) promised by
GW;. We hence label some data to be trust-sensitive
while other data may be trust-tolerant (e.g. data on the
weather may be accepted from sources less worthy of
trust than is data on a missing person).

Consequently, when a data request (Data) is established,
the corresponding access point (AP;) sets a reservation price
(Py,) to that request in consistence with the client’s service
agreement plan, such that P, defines the maximum price a
client is willing to pay for (Data), where

Datayapye

Pp=—- (15)
' Datascarcity

such that

no. of replying gateways + ¢
Dattyeqreiy = 20 TPEMESAUNDI L E 46
’ total no. of gateways

where ¢ is a small constant specially placed here to guarantee
that 0 < Dyeareiry < 1, in order to avoid a situation where
P, = ocoin Eq. 15.

As for Data, e, this parameter is determined according to
the quality (Q) and delay (DS) constraints specified by the AP
per request according to the data type and the user’s service
plan. The AP receives the GW reply and if a gateway GW;
replaysback to AP;, its replywill include the following three
parameters:

o The service price (Pgw;) as specified in Eq.14.

o The level of expected delay (D’ Gw;), as specified in
Eq. 11. The AP will use this parameter after normaliza-
tion to compute a delay utility component according to
the function

—o
7

1= " forVGW; € (GW) 17

where « is a tuning variable chosen to control the shape of the
function’s curve as will be explained soon.

o The level of quality (Qgw;) the GW is willing to provide
based on its resources. The AP will use this normalized
parameter in its quality utility component according to
the function

1

|+ o @ow=P"

(18)

where € and § are variables chosen to control the shape of the
function’s curve.
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Delay and quality parameters are used, according to
Egs. 17 and 18, to determine Data, 4. to be substituted in
Eq. 15 such that:

—a

Dow,
GWj

1
Datae = (1= " )+ (e ) (19
value | + o <Qaw;— P

In addition, upon receiving a reply, the AP will generate a

Trust utility factor (T') per GW. The calculation of Tgw; could

follow a function similar to the fuzzy reputation formula

presented in [34]. In this paper, we assume an arbitrary value
between 0 and 1 to express the trust parameter according to
the function

(TGWl)Vv

where y > 0 is a weight variable to control the slope of the
function by giving more emphasis to the trust parameter.

Egs. 17, 18 and 20 are used by AP; to determine the utility
score of GW; after they are tested against the two constraints
D Gw; < DS and Pgw; < P,.Hence, we define our utility
function as:

(20)

P,

Ucw. =
GW; |:P

} x (Tow,)" 1)

The function in Eq. 21 utilizes both prices components P,
and Pgw, and employs delay, quality and trust parameters in
a manner that maps the expected user experience to changes
in individual utility components.

In order to highlight the individual effects of the afore-

mentioned parameters on the utility function representing our
AP pricing model we present in Fig. 4 plots for each of

the utility parameters: DS, Q and T according to Egs. 17,

18 and 20, respectively. In Fig. 4-a, DS is plotted with a

constant « that determines the decrease rate of the delay
exponential utility component expressed in Eq. 17 as expected
delay increases. By varying the value of «, it is possible
to achieve different levels of delay-tolerance as shown in

Fig. 4-a, where we chose o« = 0.5 for delay-tolerant data

and ¢ = 0.1 for more delay-sensitive data. We note that,
for a delay-sensitive data request, a very low delay has to be
achieved in order to provide a high delay utility component.

(b)

For the quality utility component (Fig. 4-b), we adopt the
Sigmoid function where the tolerance to quality is expressed
by controlling the inflection point denoted by the value of 8
in Eq. 18. Thus, if the requested data is quality-sensitive (e.g.
VoIP), the function will require a higher value of Q before
the utility curve increases (as depicted in the lower plot with
B = 0.8 in Fig. 4-b). In contrast, lower constraints on
quality require a utility that increases rapidly at a lower
value of Q, which can be achieved with an early inflec-
tion point (8 = 0.5). The value of € is chosen here to
be 10. Lastly, Fig. 4-c shows the plot of the trust func-
tion T € [0,1] based on the history of GW;. Note
that an AP can give more emphasis to this parameter
through the factor y to particularly penalize GWs with
bad service accounts. This is shown in the lower plot of
Fig. 4-c (y = 2), whereas the upper plotis aresult of y = 1
indicating less emphasis on trust or data that is not trust-
sensitive. We note here that we multiply the Trust component
by the rest of the utility function in Eq. 21 to balance the effect
of “deceiving” GWs that may offer attractively low Pgw in
order to pass false quality promises. Moreover, we divide the
utility function by Pgw in order to protect the client from
situations where two or more GWs happen to achieve almost
equal utility scores while charging for prices that, although
less than P,, largely vary.

Fig. 5 show a 3-D rendering of the variation of the overall
utility calculated by Eq. 21 as the individual utility parameters
are varied. The worst utility scores are indicated by the blue
color at the lower-left corner of the cube. These worst utilities
are associated with extremely low Trust, low Quality and
extremely high Delay functions. On the contrary, the best
utility scores are indicated by the red color at the top-right
corner of the cube. The maximum utility score is associated
with extremely high Trust, high Quality and extremely high
Delays. When gateways’ replies arrive at an AP, several utility
scores are generated according to the returned utility parame-
ters of each GW. The AP is responsible of computing the best
GW to be chosen based on its individual utility score that is
best suitable for the type of data requested and the level of
quality specified by the user.
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Delay 0o Quality

FIGURE 5. Variation of utility function.

To demonstrate the impact of the utility parameters on the
type of requested data in our PPS scheme, Fig. 6 and Fig. 7
compare the utility scores defined by Eq. 21 for the four data
types: HRM, SRM, DSD and DTD while varying delay and
quality requirements. We set the following values for each
data type:

HRM: o =0.1,8=0.85

SRM: «=0.5,8=06

DSD: o =0.3,8=0.35

DID: o« =0.9,8=0.2.
0.55 = HRM
0.5 el DTD
0.45 SRM
0.4 ey DSD

Uew 035

0.3
0.25
0.2

0.1 0.5 0.6 0.7 1 2 4
Delay (msec)

FIGURE 6. Utility vs. Delay for different data types.

The values of y and € are fixed for all data types at 2 and 10,
respectively. The values mentioned above were chosen based
on the plots in Fig. 4 to reflect the nature of each data type
where HRM is the most sensitive in terms of quality and delay,
whereas DTD is the most tolerant among the four types in
terms of quality and delay requirements. In Fig. 6, we note
that the four plots follow the benchmark trend depicted in
Fig. 4-a. HRM is the strictest in terms of delay component.
The utility plot of HRM deteriorates faster than the rest of data
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types at D = 0.5 msec. DTD is the most tolerant in terms of
delay. It achieves a higher utility score throughout the delay
axis.

0.5
0.4
0.3
Usw 0.2
g HRM
== DTD
0.1
SRM
0 DSD

01 03 05 06 07 09 1
Quality (normalized aggregated metric)

FIGURE 7. Utility vs. Quality for different data types.

Fig. 7 shows how different data types react to quality
requirements with respect to our utility function. Again, HRM
and DTD are impacted the most by quality sensitivity. As for
DSD, we see that it is more lenient than SRM, which is repre-
sented by buffered video streams, for instance. DSD reaches
a utility saturation level faster (at @ = 0.75) whereas SRM
continuous to demand utility to serve its quality requirement.

IV. PROBLEM STATEMENT & PPS FRAMEWORK
According to the abovementioned PPS system mod-
els, the proposed framework addresses two significant
problems:

1) Finding a mechanism that manages the relationship
between the GWs and the APs at the top-tier of
the delivery model. This mechanism is supposed
to help each AP to pick the right GW for each
data request according to a particular set of utility
parameters.

2) Finding the routing infrastructure for the lower-tier of
the model that supports delivery of both delay-tolerant
and delay-sensitive data to the AP.

Henceforth, the targeted PPS framework aims towards the
following:

Given an abundance of multi-owned APs, GWs, and
MDCs; APs are to find the best GWs to answer their data
requests within specific geographical vicinities while consid-
ering different utility parameters for different types of sensed
data.

The following two subsections explain our methodology to
tackle each of the aforementioned problems.

A. TOP-TIER GATEWAY SELECTION

We specify two algorithms at the level of APs and GWs.
These algorithms give details about how an AP will send a
data request and how it will process the parameters received
from responding GWs into the utility function. The algorithm
at the GWs level sets the parameters to be included in a reply
to an AP’s request and shoes how each GW will determine
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Algorithm 1 AP Seeking GW to Provide Priced Data

Algorithm 2 GW Reply to AP Query Request

1. Function AP (Client_Req.x)

2. Input

3. Client Req.x: A client’s data request for some service x to be
provided by this AP.

4. Output:

5. GWi: A selected GWi € {GWo, ..., GWn} to pay and receive
data from.

6. Begin

7. Set Data , Data.type //define requested data and its type

according to four predefined types
8. Set DS, B. for Data
9. Initialize GV, GW{}
replying GWs
10. Request Data from GWs in GV
11. While an Ack is received from GW;
12. If Pgy, < P.and D'y, < DS then
13. Add GWito {GW}
14.  Check Tgy,
15. End
16. Based on Data.type do
17. For each GW; € {GWy, ..
18. Calculate Uy,
19. End
20. Select GW; with best Ugy,
21. Pay Pgy, to GWi

22.End

//geographic vicinity and set of

/service utility preferences
., GWn} do
//Equation (21)

its service (data) price according to the availability of its
resources. Algorithm 1 specifies the steps of a query issued
by an AP seeking data (for a client’s service request) from
any GW in the set {GWy, ..., GW,}. This set is determined
according to the geographical vicinity (GV) of the request
(line 9). As mentioned earlier, the AP waits for the GW
acknowledgements and bases its selection decision on the
returned utility parameters (lines 12, 13), in addition to Pgw,
and Tgw, of each responding GW which is calculated by the
AP (line 14). Then, the utility score of each GW is calculated
according to the type of data and the required services (lines
16-18). The AP pays the price finally to the chosen GW with
arequest to release the data (lines 20, 21). Algorithm 2 shows
how a GW responds to an AP data request. The GW validates
the request at two levels. First it checks if the requested
data is available within LNs under its immediate coverage
(lines 8—11). If this is the case, the delay component (7 5y )
in Eq. 10 is expected to be zero and the whole delay fac-
tor is hence drastically lower than the following scenarios
(lines 12—-14) in which the GW checks with MDCs within
the specified GV. In either case, whenever the requested data
is found, utility parameters of the GW are calculated and
included in its acknowledgement to the AP (lines 11 and
14). Once the AP accepts the offer, the data is sold to it
(lines 17-19).

B. LOWER-TIER DATA DELIVERY

The lower tier involves Data Collectors (DC’s) that collect
different types of data from Light Nodes (LN’s) and deliver
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1. Function GW (Data)

2.  Input:

3. Data: A data request from AP:.

4.  Output:

5. RA: Request answer that could be an Acknowledgement to
the Data request including Price, Quality and Delay
parameters.

6. Begin

7. Initialize /ist of static and dynamic sensors in GV

8. Ifrequested Data is available at static sensors then

9. Set Delay = 0

10.  Set Pgy, //Equation 14

11.  Return (RA=Ack) with Pgy,, available Qg
12. Else if the requested data is available at mobile sensors then

13.  Set Pgy, /laccording to different Delay expectation

14. Return (RA=Ack) with Py, available Qg4 and
expected Dgyy

15. Else

16. Ignore

17. If this GW is selected by AP; then

18.  Return (QA=Data)

19.  Charge AP: with Pgy,

20. End

them to GW’s. Here, we give a routing infrastructure for
the lower-tier of the network that supports delivery of both
delay-tolerant and delay-sensitive data to DC’s. In order for
LNs to deliver their delay-tolerant data to the DCs, they need
to have a path to at least one Relay Node (RN). -Remember
that a RN is a LN that can communicate directly (in a single-
hop) with the DC. To do so, RNs broadcast their identity at
the deployment stage and each LN keeps a record of the next
hop towards some relaying node. Each LN n; has a Relaying
Node Record (RNR;) which has the following fields:

o id: the id of the relaying node to which delay-tolerant
data will be sent.

o Next_hop: a neighbor of n; which is used as a next hop
towards the relaying node.

o Number_of_hops: the number of hops to the relaying
node.

These records are used to determine the route from a LN
to a DC. When data is received by a RN, it is stored there
until a Mobile DC(MDC) passes by to pick the data up. The
data is then carried by the MDC until it becomes within
the communication range of a GW; at that point the MDC
delivers the data to the GW. Delay is dominated here by
the physical motion of the MDC and has two factors. The
first is the speed of the MDC. The second is the distance
travelled by the MDC between the RN, where the data is
picked up, and the GW. While controlling the speed of the
MDC is out of the scope of our work, we can minimize
the travelled distance by sending the data to an RN that is
very close to the GW (i.e. FTRN). Each LN »; maintains
an FTRN Record (FTRNR;) with the same structure as that
of RNRs. In consequence, for delivering delay-tolerant and
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delay-sensitive data, Algorithm 3 describes the process of
setting the FTRNRs and RNRs of all LNs, assuming that each
LN uses the nearest RN. Note that this process will construct
a tree for each RN; the tree of a RN #; is rooted at n; and
involves all LNs whose nearest RN is ;. FTRNRs and RNRs
will be identified at the initialization of the network.

V. PERFORMANCE EVALUATION

The proposed sensor environments were simulated using
MATLAB. We compare the data delivery scheme of our
PPS framework against Ad-hoc On-demand Distance Vec-
tor (AODV) and the New Reliable Routing Algorithm
(NRRA) [35]. NRRA is a variant of the Dynamic Source
Routing (DSR) protocol that uses source routing instead of
relying on routing tables in intermediate devices. However,
NRRA enhances the link failure in DSR by reducing the
number of broken links. NRRA chooses a stable path for
nodes mobility by considering nodes position and velocity
information. This algorithm can reduce the number of broken
routes efficiently and can improve route stability and network
performance.

We chose AODV and NRRA since they represent the
two prominent on-demand routing protocols for mobile
Ad-hoc networks which are characterized by multi-hop wire-
less connectivity, frequently changing network topology and
the need for efficient dynamic routing protocols. NRRA uses
source routing and exploits caching aggressively to maintain
multiple routes per destination with a notable performance
degrade with increasing mobility. AODV, on the other hand,
uses routing tables, one route per destination and destination
sequence numbers to prevent loops and to determine fresh-
ness of routes. Yet, AODV may suffer from heavy control
overhead and unnecessary bandwidth consumption due to
periodic beaconing. We remark, however, that we employ
here modified versions of AODV and NRRA particularly
suited for our proposed framework. This is because the
original algorithms specify end-to-end delivery routes, while
the versions we use here are oblivious on the link state
within the data cloud. We define this as the cloud effect.
In other words, the aforementioned algorithms in their origi-
nal description are restricted by their corresponding GW's and
their view of the topology is limited at their own peripheral
networks. Hence, we will refer to our modified versions of
AODV and NRRA through the remainder of this section as
PODYV and PRRA, respectively, where the ‘P’ stands here for
Peripheral. We point out that the original AODV and NRRA
approaches are not hierarchical. Thus, we employed the
modified versions of them (PODV and PRRA) to make
them suitable for our proposed hierarchical framework, where
the modified versions take into consideration the in-network
nodes heterogeneity and choose next hop based on types of
the surrounding node types.

As previously mentioned in Section III-B, we adopt
the energy consumption model proposed in [30], which is
described in Eqgs. 1 and 2. In our simulation, 7 is set to 50 m,
Celec 1S set to 50 mI/bit, eqmp is set to 0.1 mJ/bit/m?, and w
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Algorithm 3 Delay-Tolerant and Fast Track Routing Records

Function RN()
For each LN n; do
if n; is a FTRN then
FTRNR;.id=i;
FTRNRi.next hop=i;
FTRNRinumber of hops=0;
broadcast FTRNRIi to all neighbors of n; ;
elseif n; is a RN then
RNRi.id=i;
RNRi.next hop=i;
RNRi.number of hops=0;
broadcast RNRi to all neighbors of n; ;
else
RNRi.number of hops = oo;
end
end

when a LN n; receives a broadcasted RNR; :
if RNRj .number of hops + 1 < RNRi.number of hops then
RNRinumber of hops = RNRj.number of hops +
1;
RNRi.id = RNRj .id;
RNRi.next hop =J;
broadcast RNRi to all neighbors of ni ;
end
end
when a LN n; receives a broadcasted FTRNR; :
if FTRNRj .number of hops + 1 < FTRNRi.number of hops

then
FTRNRinumber of hops = FTRNRj.number of
hops + 1;
FTRNRi.id = FTRNRj .id;
FTRNRi.next hop =J;
broadcast FTRNR:i to all neighbors of n;;
end
if FTRNRj .number of hops + 1 < RNRi.number of hops
then
RNRinumber of hops = FTRNRj.number of hops
+1;
RNRi.id = FTRNRj .id;
RNRi.next hop =;
broadcast FTRNR:i to all neighbors of n;;
end
end

is set to 2. The packet size is 512 bits. Every sensor node
has an initial energy of 50 J and generates 150 pkts/round.
A round is defined as the time span per which all sensors
and tags have reported their targeted data. Our simulations
involve networks of size 4000, 6000, 8000, 10000, 12000
and 14000 LNs randomly deployed in a field of radius
R that ranges from 400 km to 1400 km in increments of
100 km. We also simulate environments for a fixed LN
count of 4500 while varying the DC count from 5 to 30
in increments of five, with an average speed of 45 km/h.
Each RN has, for simplicity, a fixed relaying capacity equal
to 50% of its generated traffic. For each network size, we
test 20 instances and take the average. To generate a tra-
jectory for the DC, we use a simple method. We divide
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the sensing field into four equal-size squares; the trajec-
tory of the DC is a quadrilateral that has a vertex inside
each square.

As for the arbitrary variables specified in our AP pricing
function (Eq. 21) we set @ = 0.5, 8 = 0.5,y =2 and
e =10.

A. PERFORMANCE METRICS

To compare the performance of the proposed PPS
approach, the following three performance metrics are
used:

1) Average Network Delay (AND), which is measured in
msec and is defined as the average amount of time
required to deliver a data unit to the AP.

2) Average Packet Delivery (APD), which is set here as a
quality measure. It is the average percentage of trans-
mitted data packets that succeed in reaching the AP
reflecting the effect of delay on data delivery over the
utilized data delivery approach.

3) Average Network Lifetime (ANL), which is a mea-
surement of the total number of rounds the deployed
network can stay operational for.

While studying these performance metrics, we vary five main
parameters:

1) The size of the network in terms of total LN count. This
reflects the application’s complexity and the scalability
of the exploited routing scheme.

2) DC count while fixing the LN count.

3) Pause time for MDCs as a major delay factor.

4) Sensing field radios (R) per MDC.

5) Average packet generation rate per time round (M) as
an indicator of the traffic load across the network.

6) Price at the GW level Pgw to observe the influence
of its increment on performance in terms of delay and
lifetime.

B. SIMULATION RESULTS

We present our simulation results covering performance vari-
ations with respect to four primary factors stemming from
our utility function (Eq. 21). These factors are: quality level
(represented here in APD), delay (seconds), lifetime (rounds)
and price (Pgw ). Figs. 8—18 show our results. In the follow-
ing subsections, we detail our observations regarding these
results.

1) PERFORMANCE WITH RESPECT TO QUALITY

In Fig. 8, we see that the APD decreases for all three delivery
schemes as the size of the network increases in terms of LN
count. This is expected since a larger network size implies
longer paths and higher probabilities for link loss. A larger
node count raises the risk of node failure and, hence, dropped
packets. Thus, choosing smaller peripheral networks is bet-
ter for the quality gain according to Eq. 18. The results in
Fig. 8 show that PPS substantially outperforms both PODV
and PRRA. Several factors contribute to this superior perfor-
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FIGURE 8. Average packet delivery vs. LN count (100 GWs,
5-30 DCs).

mance of PPS. First, our scheme assumes a heterogeneous
environment with abundance of data sources where several
copies of the required data may be available. The other
schemes suffer from their own disadvantages. PODV relies
on multiple history-based routing tables which is inadequate
for heavy mobile data traffic. PRRA is a source-routing proto-
col, which means that a route maintenance mechanism does
not locally repair a broken link. In addition, the connection
setup delay is higher than that in table-driven protocols. Even
though the protocol performs well in static and low-mobility
environments, the performance degrades rapidly with increas-
ing mobility. Furthermore, PODV and PRRA are not aware of
the link state in the cloud beyond their corresponding GWs.
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FIGURE 9. Average packet delivery vs. DC count (100 GWs,
4500 LNs).

Fig. 9 examines APD rates with the network size expressed
in DC count. We note that while PODV and PRRA show a
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FIGURE 10. Average packet delivery vs. pause (100 GWs,
5-30 DCs, 4500 LNs).

declining performance almost similar to that of Fig. §, PPS
shows an improvement in delivery as the number of DCs
increases. This is because PPS’s architecture incorporates in
its core the existence of DCs, which gives it an advantage
over other delivery schemes. PODV performs slightly better
than PRRA since PRRA is challenged by increased mobility,
which is subsequent to increases in DCs.

Fig. 10 compares APD against pause time. We see that
for all three schemes, the delivery increases slightly as the
pause time for mobile nodes increases. This is normal since
more pause time ensures a wider window for control and
data message exchange, especially for large data loads. Pause
time also helps PRRA to discover unknown routes via flood-
ing the network with route requests. However, PPS again
shows a better performance as compared to its rivals. In the
worst case, PPS is 28% better in delivery than PRRA, which
outperforms PODV as mobility decreases (i.e. pause time
increases).

2) PERFORMANCE WITH RESPECT TO DELAY

Fig. 11 shows the results of comparing Average Network
Delay (AND) with the sensing field radius (R). We see that
delay and the size of the sensing field are directly propor-
tional. Yet, because PPS utilizes multiple DCs per sensing
field, in addition to adopting an approach that serves delay-
sensitivity by defining RNs and FTRNs (Algorithm 3), we
note that its delay increaseis steadier and lower than that of
its rivals.

The effect of utilizing DCs in PPS is further demonstrated
in Fig. 12, where the Average Network Delay (AND) shows
a sharp decline unattainable by neither PODV nor PRRA as
the DC count increases.

We note that AND is proportional as well to pause time
(see Fig. 13). The superior performance of PPS in terms of
lower delay is attributed here to its delay-sensitive routing and
source selection approach as explained in Algorithms 2 and 3.

3) PERFORMANCE WITH RESPECT TO LIFETIME

In Fig. 14, the increase in generation rate causes PRRA to
increase its route discovery process which exhausts the ANL.
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FIGURE 13. Average network delay vs. pause time (100 GWs,
5-30 DCs, 4500 LNs).

In contrast PSS has a higher ANL because its data delivery
scheme is top-down. LNs are not exhausted by routing loads.
Rather, intermediary GW’s are responsible for replying to data
requests issued by APs. In addition, our categorization of
LNs to RNs and FTRNs has an apparent effect on reducing
the transmission load over the collective set of LNs within
each peripheral network. Fig. 15 shows that the increase in
DC count significantly improves the lifetime of the system
under PPS. More DCs facilitate delivery according to PPS
algorithms and relieves LNs from further relaying tasks.

VOLUME 1, NO. 1, JUNE 2013



Al-Fagih et al.: Priced Public Sensing Framework

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

300

I o —%— PRRA

200 i

Avg. network lifetime (rounds)

0 . c c c c
200 400 600 800 1000 1200 1400
Avg. generation rate (M)

FIGURE 14. Average network lifetime vs. M (pkt/round)
(100 GWs, 5-30 DCs, 4500 LNs).
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FIGURE 15. Average network lifetime vs. DC count (100 GWs,
4500 LNs).
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FIGURE 16. Average network lifetime vs. pause time
(100 GWs, 5-30 DCs, 4500 LNs).

As for PODV and PRRA, we note from Figs. 14 and 15
that PRRA delivers better performance under low mobility

conditions, whereas

MDCs are present.

MDCs’ pause time

PODV outperforms PRRA when more
In Fig. 16, we study the effect of
on ANL, which is a measurement of

the total rounds the deployed network can stay operational
for. We note that PRRA performs the worst among the
three schemes, which agrees with the aforementioned obser-
vation on the relation between high node mobility and
PRRA.
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4) PERFORMANCE WITH RESPECT TO PRICE

As for the influence of data prices set at the GW level, we
assign this parameter to GWs in PODV and PRRA by calcu-
lating their average performance in terms of the parameters
defined in Eq. 14 (i.e. GW capacity, lifetime and delay). The
GW price is incremented by some specific value in each
round (e.g. 1 price unit per round). Since the selection of
GWs is influenced by their announced prices according to
our scheme, we apply up to 90% price increments on each
GW and remark on the increments’ effect on reducing average
network delay and lifetime, respectively.

Avg. delay (msec)

r r r

r r
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20 c c c
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FIGURE 17. Average delay vs. Price increment percentage
(100 GWs, 5-30 DCs, 4500 LNs).

Fig. 17 shows that as the GWs price increase,PPS provides
delays that are much lower than PODV and PRRA do. This
is because PPS’s resource management algorithm is base-
don this price consideration. These results indicate that our
pricing scheme is successful in providing lower delivery delay
given the incentive to do so (i.e. higher data price). We note
that PODV performs better than PRRA in this regard since
PODV’s routing is essentially based on reducing hop-count
on end-to-end links, indicating better handling of end-to-end
delay on the LN-to-GW level.
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FIGURE 18. Average network lifetime vs. Price increment
(100 GWs, 5-30 DCs, 4500 LNs).

Fig. 18 shows how the three delivery schemes react to price
increments with respect to ANL per peripheral network. Here,
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as the client pays higher prices, more LNs (represented by
GWs interfacing each peripheral network) will participate in
the public sensing service, which consequently entails more
consumption of their energy resources. A higher price would
then diversify the sources of data giving away to a longer
network lifetime. Again, PPS shows that it successfully uti-
lizes its pricing function in a manner that conserves lifetime
and provides it as a resource for higher bidders only. Here,
we note that PRRA performs better since its algorithm does
not overwhelm every node in the network by periodical table
updates that consequently dramatically degrade the nodes’
battery power. This is the case with PODV which performs
worst in terms of lifetime regardless of the steady increments
on GW pricing.

VI. CONCLUSION

In this paper we introduce PPS - a priced IoT public sens-
ing framework for smart cities. Our framework is based on
a multi-tier architecture that caters for heterogeneous data
sources (e.g. sensors) in addition to stationary and dynamic
data collectors in peripheral networks that are assumed to be
connected to a data cloud via more powerful intermediary
gateways. According to our framework, access points at the
top of the architecture receive user queries and initiate data
requests. Our delivery scheme implements algorithms that
realize delay-sensitivity and user-based data quality require-
ments. Moreover, we provide a dynamic two-tier pricing
model that acts on both ends of the supply-demand chain. At
the lower tier, it caters for the social welfare of the peripheral
system by observing constraints on delay, GW capacity and
system lifetime. At the top tier, our pricing model employs
a utility function that maximizes the client’s gain accord-
ing to the delay limit, service quality, trust factor and the
monetary value of the requested data. We provide simulation
results showing the efficiency of our framework when com-
pared to two prominent mobile Ad-hoc data delivery proto-
cols. Our simulation results show that the PPS framework
exhibits superior performance for different network sizes,
lifetime, end-to-end delays, data prices and packet delivery
ratios.

Future work would investigate utilizing vehicles in
smart city settings either as sensors/reporters or mobile
data collectors with semi-deterministic mobility trajec-
tories. It is also interesting to look at the applica-
tion of localization methods among sensors operating on
different technologies and to study the effect of such
methods on the system’s performance and the delivery
rate.
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