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ABSTRACT The wide deployment of general purpose and embedded microprocessors has emphasized the
need for defenses against cyber-attacks. Due to the globalized supply chain, however, there are several stages
where a processor can be maliciously modified. The most promising stage, and the hardest during which to
inject the hardware trojan, is the fabrication stage. As modern microprocessor chips are characterized by very
dense, billion-transistor designs, such attacks must be very carefully crafted. In this paper, we demonstrate
zero overhead malicious modifications on both high-performance and embedded microprocessors. These
hardware trojans enable privilege escalation through execution of an instruction stream that excites the
necessary conditions to make the modification appear. The minimal footprint, however, comes at the cost
of a small window of attack opportunities. Experimental results show that malicious users can gain escalated
privileges within a few million clock cycles. In addition, no system crashes were reported during normal
operation, rendering the modifications transparent to the end user.

INDEX TERMS Hardware trojans, fabrication attacks, microprocessors, zero overhead, malicious
modification, privilege escalation.

I. INTRODUCTION
Modern microprocessors are ubiquitously deployed in a wide
variety of applications: From personal computers, laptops,
tablets and cellphones for personal use, to space and auto-
motive applications. It has been reported that the average
household in the United States includes on average 40 micro-
processors, premium class automobiles carry at least
75 embedded processors, while even low-profile vehicles can
still include at least 50 processors [1].

Therefore, ensuring the integrity of a microprocessor is
paramount, as security breaches can range from simple infor-
mation leakage to life-threatening situations. Microproces-
sor designers incorporate extended security features in latest
designs, in an effort to protect the system from external
attacks. Due to the globalized supply chain, however, the final
design may be tampered with during the design cycle and
eventually fail to satisfy the security properties set forth by
the designers.

Due to the vast choice of intellectual property (IP) cores,
circuit designers as well as system integrators can focus on
the development of system architectures instead of manu-
ally designing, testing and implementing common functional
modules. The wide usage of IP cores, however, comes at
the cost of decreased security. Before eventually reaching
the system integrator, an IP core has traveled through many
stages and is modified by various design houses [2]. There
are plenty of design stages for attackers to insert malicious
logic in the IP core throughout the whole IP transaction pro-
cess. Such modifications, commonly refered to as hardware
trojans, are purportedly done without the knowledge of the IP
consumer. The additional functionality can be exploited by
an attacker in order to cause catastrophic results, in case the
functional module is embedded into mission-critical devices.
Recently, silicon scanning revealed a backdoor in military
chips [3], allowing the attacker to disable all the security of
the chip. This discovery emphasizes the need for malicious
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FIGURE 1. Trojan taxonomy, as presented in [4].

modification research, as compromised chips are already
deployed in the field.

Especially in the domain of modern microprocessors,
as discussed previously, malicious modifications can have
extensive impact: The dramatic increase of mobile devices,
consisting of high-performance, multi-core microprocessors,
provide a wide radius of attack surface.

Due to the microprocessor complexity, however, introduc-
ing malicious modifications is a very tedious process, as
microprocessor designs are very compact with very limited,
if any, area for extra malicious circuitry. Therefore, it is very
difficult to maliciously insert a non-negligible amount of
hardware during the fabrication stage of the microprocessor,
as discussed extensively in Section II.

In this paper, we present zero overheadmaliciousmodifica-
tions that can be successfully implanted during the fabrication
stage of the microprocessor (assuming an untrusted foundry).
These alterations, discussed in Section III, can be as simple as
an addition of a buffer, a change in the size of a wire, or even
a resistive particle that bridges two adjacent wires. The goal
of these modifications is to create a temporary malfunction
at the system that an attacker can exploit in order to execute
unauthorized code or read protected memory locations. The
most prominent way to execute unauthorized instructions is
through privilege escalation attacks, discussed in Section IV.
Examples of such zero overhead modifications are presented
in Section V, for both high-performance and high-throughput
microprocessors, representing personal computer and embed-
ded microprocessors respectively. Using the experimental
platforms presented in Section VI, we demonstrate the quality
of the presented malicious modifications in the experimental
results, Section VII. Finally, conclusions of the presented
work appear in Section VIII.

II. RELATED WORK
Malicious modification insertion and detection has risen as
a contemporary topic of interest. An extensive taxonomy of

hardware modifications (called ‘‘Hardware trojans’’) appears
in [4]. The taxonomy, presented in Fig. 1, sorts hardware
trojans based on five different attributes: Insertion phase,
abstraction level, activation mechanism, effects and loca-
tion. These attributes provide an indication about several
trojan properties, such as area and power overhead, potential
impact etc. For example, gate sizing cannot be applied at
the Register-Transfer-Level. Similarly, trojans inserted at the
fabrication stage must be minimal in terms of area and power
overhead.
Researchers are currently focusing their efforts on side

channel attacks, such as power or wireless channels
[5]–[8], targeting small integrated circuits (ICs). There has
been, however, a limited amount of work targeting contem-
porary, high-performance microprocessors.
Microprocessor trojans targeting an i8051 microproces-

sor executing a cryptographic algorithm appear in [9], [10],
and [11]. In [9], the authors present a set of modifications tar-
geting mostly execution of unauthorized code through archi-
tecture changes. Examples include interrupt handler location
change, operation code modification and introduction of a
transparent one-instruction set computing unit. The modifi-
cation overhead ranges from 0% to 17.9%, presented on an
FPGA. Similarly, [10] presents a 5% area overhead addition
of modifications that enable information leakage. The trojan
is triggered by the instructions and the key leaks through
the transmission channel. Finally, [11] discusses denial-of-
service (DoS) attacks through instruction skipping or addi-
tion of a functions that force individual chips to fail. All
aforementioned solutions, however, target an old micropro-
cessor and since no operating system is used, the solutions
can not be ported to latest commercial, high-performance
microprocessors.
A more sophisticated public-key encryption circuit attack

has been presented in [12]. The authors attack a circuit by
turning off portions of the circuit, enabling a key-leaking
attack. The malicious hardware still incurs a non-negligible
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overhead of 406 gates, and can only applied to RSA designs
and not generic microprocessors.

The closest work to a modern microprocessor modification
has been presented in [13]. The authors present amodification
of a high performance microprocessor, where extra hardware
is inserted during the design stage, providing the attacker
with an extended stage of attack (login backdoor, stealing
password etc.). The area overhead, however, is a few thousand
gates (theminimum overhead for login attacks is 1,341 gates).
Therefore, due to the high area overhead (which is more than
a few transistors), the modification cannot be applied during
the fabrication stage of the processor and can only be inserted
during the design or specification.

III. ZERO OVERHEAD MODIFICATIONS
Given the design phases shown in Fig. 1, the size of the
added hardware limits the phase where the trojan can be
implanted. As most of the hardware attacks presented in
Section II incur a non-negligible overhead (the footprint of the
smallest solution requires 406 gates), the addition of circuits
of that size during the fabrication stage is difficult. Mod-
ern IC floorplanning tools can achieve very high utilization,
leaving very small area for addition of extra circuitry. And
even if such empty area can be found, the extra hardware
has to be connected to very specific parts of the integrated
circuit, requiring available interconnection layers that can
be extremely long. Furthermore, the attacker must be very
careful not to interfere with the critical path of the circuit,
rendering the design non operational. All these factors further
increase the difficulty of adding trojans during the fabrication
stage.

Adding trojans during the design or specification stage is
an appealing option, but because the design goes through
many iterations and different design teams, the trojan might
be detected easily. Moreover, the RTL designer delivers the
final design to the physical layout team, and the chance that
the extra circuitry will be detected by other people is even
higher. Therefore, for all the discussed reasons, we believe
that trojans implanted during fabrication are the hardest to
detect and are the best candidates to actually make it to a real
chip.

To the best of our knowledge, there is no demonstrated
attack at the fabrication phase of a modern microprocessor.
The main reason for this is the very limited control and poten-
tial of fabrication stage modifications. The authors of [4] sug-
gested that the clock trees or the power supply are potential
candidates for fabrication stage attacks of high complexity
designs. Tampering with the clock tree or the power supply,
however, can have an immediate catastrophic impact on the
design. The modifications must be minimal and transparent
in order to be effective.

In this work, we demonstrate modifications at the phys-
ical level of the design that enable malicious users to
attack a microprocessor. The modifications are minimal,
practically incurring zero area overhead. Such modifications
include simple gate alterations, gate additions, gate sizing

or interconnection tampering. The goal of the malicious
modifications is to introduce a faulty condition (delay fault,
coupling fault, bridging fault etc.) that can be exploited by the
attacker.
Since the presence of faults can have a catastrophic impact

on the microprocessor, the attacker needs to ensure that these
faults are activated only under certain conditions: Specific
stream of patterns exciting the delay fault, temperature or
thermal variations that could enable a bridging fault etc. Ide-
ally, the malicious modifications will create temporary mal-
functions that will have no functional impact to the end user.
Branch prediction malfunction, supervisor mode temporarily
enabled for simple user, unnecessary Translation Lookaside
Buffer (TLB) flushing are examples of faults that do not affect
the functionality of the microprocessor.
An example of a zero overhead microprocessor modifica-

tion appears in Fig. 2, where the TLB of the Alpha 21264
microprocessor is presented. In this case, a delay fault is
introduced at the most significant bit of the Address Space
Number (ASN). A delay fault can be introduced during
fabrication by modifying the transistor sizes or the wires
between the memory elements storing the next address space
identifier, and the location where the comparison occurs.
Alternatively, a buffer between the two aforementioned loca-
tions can be inserted. In Section V-A.1, we explain how this
delay fault can be exploited in order to gain control of the
microprocessor.
Since a typical modern microprocessor contains billion

transistors, the exploration space of zero overhead malicious
modification is practically infinite. Therefore, we define spe-
cific properties of the modifications, in order to be able to
identify the best modification depending on the attacker’s
needs. Each property can have a qualitative value in the range
very low, low, medium, high or very high, and the proposed
properties are:
1) Feasibility: Represents the extent of the physical layer

modifications required in order to implant the hardware
trojan. Simple wire sizing is an example of high feasi-
bility, while the addition of a few gates greatly limits
the feasibility of the trojan during the microprocessor’s
fabrication stage.

2) Controllability: This property represents how often the
conditions required for trojan activation are fulfilled
(including carefully crafted code that will accelerate
the process). If the expected series of microprocessor
inputs typically appear every few billion cycles, the
modification is classified as highly controllable. In the
case that the trojan activation is heavily dependent on
the non-determinism of the system load, the operating
system context switching etc., the modification has
very low controllability.

3) Visibility: Represents the effect the modification has
on the microprocessor (and the end user) when the nec-
essary conditions are satisfied and there is no attacker.
Examples of very low visibility include a branch
misprediction or no operation instruction execution.
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FIGURE 2. Alpha 21264 memory structure [14].

Potential catastrophic impacts, such as invalid memory
access, are typical cases of very high visibility.

4) Potential: Every modification is characterized by dif-
ferent potential, depending on what are the extra fea-
tures granted to the attacker in case the attack goes
through. Gaining root access can provide extreme
power to the attacker, while a writing to the memory of
another user process might hinder the attacker’s efforts
to gain system control.

We will use the presented metrics in order to classify
the presented microprocessor modifications. In this work, all
demonstrated attacks aim for privilege escalation, presented
in the next section, offering very high payload potential.

IV. PRIVILEGE ESCALATION ATTACK
In order to ensure proper and secure resource management,
modern microprocessors incorporate distinct privilege levels,
preventing unauthorized processes to gain access to system or
other user resources. The most typical privilege configuration
separates the kernel from the user processes, while more
advanced configurations incorporate several privilege levels,
such as kernel, executive, supervisor, user etc. In case lower
privilege level processes request a legitimate access to system
resources, the operating system can grant a higher privilege
level temporarily.

A privilege escalation attack is a type of attack where an
unauthorized user gains elevated access to system or other
user resources. Privilege escalation attacks typically exploit
software or hardware bugs and oversights, as well as poor
software configurations. Once elevated privileges are granted,
the attacker can access files, view private information (such
as encryption keys), modify system files or install unwanted
software.

There are two types of privilege escalation:
• Vertical privilege escalation: This attack allows the
attackers to grant themselves higher privileges. For
instance, injecting and executing code at the ker-
nel space, or performing kernel operations that allow
unauthorized code execution.

• Horizontal privilege escalation: During this attack, the
malicious user maintains the same privilege levels, but
can gain access to resources belonging to other processes
or users sharing the same privilege levels.

The concept of privilege escalation attacks has been exten-
sively studied in the software domain [15], where the attack-
ers exploit programming or hardware bugs to stage privilege
escalation attacks [16]. In this research, we consider vertical
privilege escalation at the hardware level. This implies that
the attacker is trying to gain kernel or supervisor access to
resources in order to exploit the underlying vulnerability.

A. PRIVILEGE ESCALATION ATTACK PREREQUISITES
Staging a privilege escalation attack requires the existence of
distinct privilege levels, such as kernel, supervisor, user etc.,
at the microprocessor architecture specifications. Further-
more, software mechanisms (usually at the operating system
layer) that escalate privileges during normal operation are
also needed.
Almost all modern microprocessors implement privilege

levels and provide the necessary mechanisms to handle priv-
ileges to the operating system. Specifically:
• x86: Privilege levels first appeared with the 80386
[17] in the x86 architecture, with 4 distinct privilege
levels (‘‘Rings’’): Ring 0 has the highest privileges
(kernel mode), while Ring 3 has the least privileges
(application mode). Faults in a ring affect only rings of
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the same or less privileges. In order to assist virtualiza-
tion, however, contemporary microprocessor extensions
introduced a new privilege level (Ring-1), intended to be
used by the hypervisor.

• Alpha: The latest Alpha microprocessors also imple-
ment 4 privilege levels, similar to the x86 architecture:
[18]: Kernel, executive, supervisor and user.

• OpenRISC: The OpenRISC architecture specification
requires the existence of 2 distinct privilege levels,
namely Supervisor and User. The levels exist in all avail-
able implementations of the OpenRISC processor and
are used to protect sensitive kernel structures as well as
special purpose registers from unauthorized user access.

• ARM: ARM architectures have 1 unprivileged (User
Mode) and 3 privileged modes: Supervisor, Interrupt
and Fast Interrupt mode. The difference between these
modes is the priority the executable code receives when
in interrupt and fast interrupt mode.

• MIPS: Initially, MIPS required only 2 operating modes
(User and Kernel). The addition of many I/O devices in
modern SoCs, however, has created the need for imple-
menting two additional modes: Supervisor (I/O access)
and EJTAG mode (for debugging purposes).

B. TECHNIQUES TO ESCALATE PRIVILEGES
There are different ways to escalate the process privileges.
We should note that such options are heavily instruction-set
and architecture dependent; thus, the attacker should have
some knowledge about the maliciously modified platform.

The most straightforward way to escalate privileges is to
execute an instruction that serves this purpose. In the event
that the temporary malfunction allows the attacker to execute
any command, the malicious process can get kernel privileges
and compromise the system.

Not all instruction set architectures, however, include
instructions that directly elevate privileges. Privilege escala-
tion usually occurs in an as-needed basis. Therefore, another
way to attack the system to gain escalated privileges is to write
directly to the kernel structures. These unauthorized accesses
alter the privileges of the attacking process, masking it as a
kernel process or altering the allocated virtual address space.
This type of payload requires extensive knowledge of the
operating system kernel, as well as dynamic information of
the attacking process.

Finally, another way to escalate privileges is to overwrite
locations where there is a priori known information. Exam-
ples of such information include interrupt handlers, shared
libraries and operating system specific code (return-to-libc
[19] is a common attack using the shared C libraries). This
payload requires information about the kernel, but it is inde-
pendent of where the attacking process is located in memory.

V. DEMONSTRATED ATTACKS
In this section we demonstrate zero overhead modifica-
tion on modern microprocessors. We have chosen two very
different microprocessor models in order to cover the gamut

of commercial microprocessors. Furthermore, the chosen
microprocessors implement most of the features available
in the latest commercial microprocessors (such as out of
order execution, speculative execution etc.), rendering them
accurate, publicly-available representatives of contemporary
microprocessors. Since the demonstrated attacks focus on the
architectural features of a single core and not on the chip
periphery, single processor models are utilized in this study.

FIGURE 3. Block diagram of Alpha 21264 [21].

• Alpha 21264: The Alpha is a concrete example of com-
plex, high-performance microprocessors like the Intel
Core or the AMD K10. Featuring a 12-stage pipeline,
out-of-order and speculative execution, as well as hybrid
3-stage branch prediction [20], the Alpha’s physical
design complexity is enormous, making it very difficult
for attackers to insert transparent, zero overhead mod-
ifications and successfully deploy an attack. The block
diagram of the Alpha 21264 appears in Fig. 3.

• OpenRISC 1200: The OpenRISC microprocessor rep-
resents the embedded processors, like the MIPS or
the ARM families. Simple pipelining and in-order, low
power execution are common features of such micro-
processors. Embedded microprocessors tend to be small
and dense, increasing the effort required for fabrication
phase attacks. The block diagram of the OpenRISC 1200
appears in Fig. 4.

The following two sections describe carefully crafted,
physical layer modifications on the described microproces-
sors, targeting privilege escalation attacks.
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FIGURE 4. Block diagram of the OpenRISC 1200 [22].

A. ALPHA 21264
1) ATTACK DESCRIPTION
The trojan is implanted in the Data Translation Lookaside
Buffer (DTLB). The DTLB structure of the Alpha 21264 is
presented in Fig. 2. The DTLB contains 256 entries and it is
fully associative. The translation begins by sending the virtual
address to all tags. Once a (valid) match is identified, it goes
through a 128:1 multiplexer, augmented with the physical
page frame to form the final physical address. The Alpha
DTLB also contains a protection permission (‘‘Prot’’) and
valid (‘‘V’’) bits.

The address space number (ASN) is an identifier that
groups and identifies addresses belonging to the same pro-
cess, and ensures that the TLB is not flushed on a context
switch. As TLB flushes are expensive, use of address space
identifiers greatly increases the performance of the micropro-
cessor. This is the reason why both Intel and AMD (starting
with the Nehalem VT-X [23] and SVM [24] respectively)
implemented a similar feature, where the address space tag
is built in the TLB and dedicated hardware checks tags for
validity. This significantly increased the performance of the
x86 architecture, as TLBs are designed to operate completely
in hardware, with extremely low latency.

The trojan itself is a modification of the interconnection
(through wire sizing) between the memory elements storing
the next address space identifier, and the location where the
comparison occurs, as shown in Fig. 2. The modification
is inserted at the most significant bit of the address space
number, introducing extra delay and generating delay faults
under certain conditions.

Given the maliciously inserted delay, the most signifi-
cant bit of the address space identifier may not capture the
intended value during process context switch and will end up
corrupted. For example, when the process to be executed has

an identifier of 128 (10000000, given 8-bit address space
identifiers), then a delay fault will convert the identifier to
0 (00000000; process ID 0 is reserved for kernel processes).
Therefore, the next instruction of the modification-aware pro-
cess will use a different address space than the one allocated
by the operating system (Section V-A.3 discusses the proper-
ties and potential limitations of the attack). Thus, if the next
instruction is a carefully crafted memory store that modifies
the kernel structures, then a modification-aware process can
access and/or write to unauthorized memory address space.

2) ATTACK PAYLOAD
Once the address space identifier is corrupted, the attacker can
utilize different options in order to gain escalated privileges.
In this work, wemodify the the operating system-specific spe-
cial kernel functions (called Privileged Architecture Library
code - PALcode in the Alpha instruction set architecture).
Alpha PALcode provides a hardware abstraction layer that

can be used to implement hardware special functions, such
as [25]:

• Handling of complex sequencing instructions
• Translation lookaside buffer management (flush/load)
• Interrupt and exception dispatching etc.

FIGURE 5. Alpha 21264 PALcode entry points into memory.

TheAlpha architecture lets these functions be implemented
in standard machine code, that is resident in the data segment
of memory. Fig. 5 presents the physical memory layout of the
machine with PALcode installed in a location defined by the
PAL_BASE register. This register is written by the operating
system, and is known a priori for each operating system.
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Because PALcode is resident inmainmemory, not all physical
memory is available to the operating system code.

Since the PALcode resides in main memory, as soon as
the attacking process can access the kernel memory address
space, it can overwrite part of the PALcode. As only one
instruction can be executed in the foreign address space
(while the delay fault is still effective), a potential attack
mechanism is to abruptly return to the user process while
still in kernel mode. This is presented on the right hand side
of Fig. 5: The attacking process overwrites an instruction
belonging to the execution area of the PALcode instruction
‘‘bugchk’’; the new instruction is a simple ‘‘return’’. There-
fore, when the ‘‘bugchk’’ instruction is later executed by the
malicious process, the system will return to the user code,
still running in PALcode environment privileges (in non-
malicious code, a special instruction is used to return from
PALcode). The PALcode environment has the most privileges
in the system, as it has complete control of the machine state
and allows all functions of themachine to be controlled. Thus,
after the malicious instruction is installed after the address
space identifier corruption, a simple ‘‘bugchk’’ instruction
call suffices to gain escalated privileges.

The ‘‘bugchk’’ instruction was specifically chosen for two
reasons:

• It is an unprivileged CALL_PAL instruction, therefore
it can be invoked by any process, but runs with elevated
privileges.

• It is only used for program debugging, so it will not be
executed during normal system operation. Any software
attempting to execute it will receive an invalid response.

3) ATTACK PROPERTIES
Feasibility: In order to apply this modification, a delay needs
to be added in a specific wire. Since this can be as easy
as modifying the width of a wire or changing the size of a
transistor, the feasibility of the presentedmodification is high.
Controllability: There are a number of conditions that need
to be satisfied in order to be able to successfully deliver
a privilege escalation attack through the added TLB delay.
Specifically:

1) The attacking process must receive a specific process
ID (in this case 128).

2) When the address space identifier is corrupted, the
‘‘new’’ identifier must belong to a process with esca-
lated privileges (in this case 0).

3) Context switch should occur directly before that one
instruction that will attack the system, in order for the
delay to be effective.

Therefore, due to the high number of conditions needed
to deploy the attack, the controllability of the modification is
classified as low.
Visibility: There are cases where this modification can
have a catastrophic impact on the microprocessor execution.
Modification-unaware processes that access the memory
directly after context switch may end up with corrupted

memory contents. However, this is rare, as context switch
usually happens during I/O access and in modern operat-
ing systems process usually do not use the whole quantum
given by the scheduler [26]. Indeed, experimental results
presented in Section VII show that the workload used was
not corrupted. However, as this could eventually lead to
problems in other configurations and operating systems,
on-going work explores potential masking the effect of dif-
ferent address space identifiers in modification-unaware pro-
cesses. Due to the possibility of this case and the fact that it
has never appeared in our extensive simulations, the modifi-
cation visibility is classified as medium.
Potential: Since the presented payload manages to provide
supervisor privileges to the malicious user process whenever
the PALcode command ‘bugchk’ is executed, the attacker
can execute unauthorized code at will and access system
resources. Therefore, the potential of this modification is very
high.

B. OPENRISC 1200
1) ATTACK DESCRIPTION
In the case of theOpenRISC processor, the trojan is inserted in
the chip select signal, allowing privileged access to the ‘‘spe-
cial purpose registers’’ (SPRs) of the microprocessor. These
special registers control a wide range of functions, including
CPU status and control, MMU configuration, TLB and cache
entries, etc. [27]. Special assembly instructions can be used
to read or write to these registers. Since only the operating
system kernel should be allowed to access the special purpose
registers, however, the OpenRISC implementations include
provisions to check if the processor runs in supervisor mode,
before the corresponding request goes through.
In this work, we have identified a single point of failure that

renders the special purpose register protection vulnerable to
zero overhead modifications. A simplified abstraction of the
supervisormode protectionmechanism that controls access to
the special register file is presented in Fig. 6. This abstraction
shows that the ‘‘chip select’’ signal is activated if the ‘‘read’’ is
excited, or if both the ‘‘write’’ and ‘‘supervisor mode’’ signals
are excited.
The zero overhead trojan applicable in this case is a

bridging fault between the ‘‘write’’ and ‘‘supervisor mode’’
signals, part of the security mechanism described previ-
ously. The bridging fault, essentially, ‘‘shorts’’ together the
two wires under some resistance and allows one signal
to dominate the other with some probability. In practice,
bridging faults with resistance under 500 Ohms are not
uncommon [28]. A schematic and an electronic microscope
image are presented in Fig. 7.
Given the maliciously inserted bridge, the output of the

SPR ‘‘chip select’’ signal is no longer controlled in a deter-
ministic manner by the ‘‘supervisor mode’’ signal, and in
practice only the ‘‘read’’ and ‘‘write’’ signals are effec-
tive (Fig. 6). As a result, in the case the ‘‘write’’ signal is
excited by a process running with simple user privileges,
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FIGURE 6. Abstract representation of ‘‘chip select’’ used to
protect access to special registers of the OpenRISC (such as
TLB entries). The bridge fault is simulated with a Primitive
Bridge Function (PBF).

FIGURE 7. Resistive Bridging Faults: Schematic and microscope
image from [29].

that process will be able to write in the SPRs, effectively
bypassing the security controls in place. It should be noted
that, in order for the malicious bridging fault to be effec-
tive, the ‘‘write’’ signal needs to dominate the ‘‘supervisor
mode’’ signal: This can be achieved by exciting the ‘‘write’’
signal in succession, causing high frequency transitions in
the bridge that eventually excite the ‘‘supervisor mode’’
signal.

As soon as the bridging fault is activated, the ‘‘chip select’’
signal is enabled and the user process that carefully excited
the ‘‘write’’ signal will be able to modify any one of the
special purpose registers in the processor. A potential payload
of this attack would be to overwrite the SPR that stores
the supervisor bit value, so that subsequent attacks from the
malicious process will always be successful.

The fault can be inserted by the attacker on the photomask
used during the lithography stage. With some effort, the
attacker will be able to insert a bridging fault with medium

to high resistance, in order to make the fault detectable only
under very specific conditions (namely the high switching
frequency of the ‘‘write’’ signal, as well as environmental
conditions affecting bridge resistance).

2) ATTACK PAYLOAD
Once the ‘‘chip select’’ signal is corrupted, the attacker can
overwrite any SPR. As an intermediate step, and in order to
decrease the number of subsequent tries, the attacker may
overwrite the SPR that maintains the current supervisor mode
bit for the malicious process context.
In the demonstrated modification, we use the bridging

fault in order to modify one TLB entry that is stored in the
special purpose register file: An artificial, but still ‘‘valid’’,
TLB row, is generated. This row matches a virtual address
of the attacking user process with a carefully selected phys-
ical address. Furthermore, the attacker is also able to mod-
ify the access permissions that discriminate user and kernel
processes, ultimately allowing access to different memory
address spaces (either of the kernel or of another process).
During the deployed attack, the attacking process executes
an infinite loop that continuously writes and reads from a
TLB entry. The high frequency of writes and reads, excite the
‘‘write’’ signal described in Fig. 6 and activate the bridging
fault; the write operation to the TLB is eventually successful
and the process controls the corresponding physical address
in memory.

3) ATTACK PROPERTIES
Feasibility: In order to implement this trojan, a resistive
bridging fault needs to be added between two wires. This can
be achieved by the attacker with small effort, by modifying
the photomask during the lithography step of the process (see
Fig. 7). Therefore, the feasibility of the attack is high.
Controllability: As soon as the bridging fault is inserted in
the microprocessor, the attacker can launch an attack with
high probability, since such an attack is essentially controlled
by generating a high frequency succession of read and write
operations. Most of these operations will be unsuccessful,
but eventually a bridging fault will be excited and cause the
‘‘write’’ signal to dominate the ‘‘supervisor mode’’ signal (as
in Fig. 6). The voting model for bridging faults mandates that
the driving gate whose network is capable of providing (or
draining) more current will ultimately determine the state of
the capacitive load and the logical values of the driven gates
[30]. Thus, in order to satisfy this condition, the ‘‘write’’ sig-
nal needs to be excited at a high frequency. Another condition
that also affects the probability of success is the bridging
resistance itself, which is partially affected by environmental
conditions (the higher the resistance, the more difficult will
be to dominate the adjacent wire).
Based on the above, the probability of success is analogous

to the frequency that one signal is excited with continuous
high and low inputs; this high frequency pattern will even-
tually activate the bridge and the attack will be successful.
Because the inputs can be directly controlled by the attacker
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through carefully crafted code, we score the controllability of
this attack as high.
Visibility: While the attack targets the malicious switching
of the ‘‘supervisor mode’’ signal through ‘‘write’’ switching,
the opposite effect (i.e., ‘‘write’’ switching when ‘‘supervisor
mode’’ toggles) may appear as well. In that case, there is a
chance that a faulty value will be written to the special register
file because of a latched ‘‘address’’ and ‘‘write enable’’ sig-
nal, eventually causing a catastrophic failure. As the bridging
fault, however, is carefully injected and the resistance of the
bridge is not very low, the fault is activated only when a strong
signal is driven to one of the two adjacent wires coupled
together due to the fault. A signal excited with very high
frequency is stronger than a signal not excited often. This
is why this attack is only activated when rapidly exciting
the ‘‘write’’ signal in Fig. 6. Experimental results showed
that the ‘‘supervisor mode’’ signal is not toggling with high
frequency, rendering the modification rarely visible to the
user. In practice, the FPGA running a full linux distribution
did not crash in any of the experiments. Thus, visibility is
conservatively classified as medium.
Potential: Because the payload allows the attacker to bypass
the supervisor mode restriction and access the SPRs, the
security impact to the microprocessor is the highest. The
attacker is able to control physical memory as well as the
operating system kernel. Therefore, the potential of this mali-
cious modification is very high.
The summary of all the properties of the two demonstrated

attacks appear in Table 1.

TABLE 1. Summary of the properties of the presented attacks.

VI. EXPERIMENTAL SETUP
Ideally, the presented attacks should be demonstrated directly
on an ASIC during fabrication process. As access to these
resources is extremely limited, we emulate the behavior of the
proposed modifications in order to demonstrate the feasibility
of the attacks. Specifically, we use a full-system simulator for
the Alpha 21264, and an FPGA platform for the OpenRISC
1200.

A. MICROPROCESSOR MODELS
1) ALPHA 21264
Gem5 [31] is the functional simulator used to evaluate the
presented attack. Gem5 is a modular, discrete event driven
computer system simulator platform written in C++. Gem5
can execute an unmodified Linux kernel, with full device
support, at very high speeds.

The Linux kernel used in this study is the 2.4 version, opti-
mized for the alphaev67 platform (codename for the Alpha
21264A, a smaller version of the Alpha 21264). Without loss
of generality, the Linux kernel source code has been modified
to match the ASN to the process IDs. This modification
allows the attacking process to identify their ASN by reading
the OS-assigned process ID. Ongoing work explores avoiding
this modification by maintaining an ‘‘ASN to process ID’’
translation table.
Similar to the BIOS functionality in the x86 architecture,

a firmware layer is needed to correctly initialize the machine
state. Therefore, we use the Alpha LinuxMiniloader (MILO),
in order to load the Linux kernel.MILObuilds the page tables,
turns on virtual addressing, installs PALcode and initializes
the kernel.

2) OPENRISC 1200
The Digilent Atlys FPGA is used to implement the
ORPSoCv2 system on chip, which incorporates the Open-
RISC 1200 processor core along with all necessary periph-
erals. The OpenRISC processor is an open source Verilog
design that can be synthesized on FPGAs as well as ASIC
designs [22].

FIGURE 8. Primitive Bridge Function used to emulate the
fabrication fault in the FPGA.

The fabrication attack is emulated using a Primitive Bridge
Function; a block diagram of this function is presented in
Fig. 8. Historically, bridging faults in TTL logic (i.e. Tran-
sistor to Transistor Logic) are simply emulated using an OR
logic gate [32], [33]. In CMOS, however, this model is not
effective and special Primitive Bridging Functions imple-
menting a voting model are required. As these models are
specific to the underlying technology [34] and cannot be
used in a more abstract FPGA implementation, a technology
independent approach is used in this study.
As expected, the bridge fault model should generate cor-

rupted inputs to the AND logic gate with non-negligible prob-
ability (Fig. 6). The model implements a fault which is domi-
nated by the signal with the highest frequency of excitements
(i.e. the ‘‘write’’ signal in Fig. 8), and this signal remains
correct even in the presence of the fault. On the other hand,
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FIGURE 9. Clock cycles to gain escalated privileges for synthetic benchmarks (random sample of 20 trials). (a) Alpha 21264.
(b) OpenRISC 1200.

the second signal (i.e. ‘‘Supervisor mode’’) occasionally will
be incorrect (i.e. flipped). The implemented Primitive Bridge
Function (PBF) utilizes a source of entropy (i.e. pseudo-
randomness) in an effort to model (a) the probability of high
frequency signal excitements dominating the adjacent signal,
(b) the probability that the attacker injected the fault properly,
(c) environmental conditions that facilitate the attack, as well
as (d) for all other unknown variables. In addition, the PBF
incorporates a pattern matching FSM that recognizes when
the rapidly excited signal is present, along with the necessary
combinational logic.

The OpenRISC hardware was compiled using the tools
provided with the OpenRISC/ORPSOCv2 release, as well
as the Xilinx ISE 14.4 framework. For the operating system
and necessary software, the latest OpenRISC Linux kernel
3.8 was used, along with the entire GNU toolchain cross-
compiled for the OpenRISC ISA. Both the compiled kernel
and the user programs were merged into bitstream files that
were used to program the FPGA. All attacks and experiments
were launched from inside the Linux sh shell running live on
the FPGA.

B. WORKLOAD
Two different types of workload are utilized for demon-
strating the feasibility of the presented privilege escalation
attacks:
• Synthetic workload, that consists of infinite loops of
carefully crafted code in order to generate the right
conditions to trigger the trojan and gain control of the
system.

• Real-world benchmarks (such as SPEC2000 and
Polarssl), where the attacking code described previously
is injected in random locations of the algorithm. There-
fore, while the benchmarks executes their useful work-
load, a continuous privilege escalation attack is taking
place in the background. Twelve different benchmarks

are used in this study, namely bzip2, mcf, gap, gzip,
cc, parser (from SPEC2000), as well as AES-256-CBC,
DES-CBC, CAMELLIA-256-CBC, MD5, SHA1 and
SHA256 (from polarssl). The cryptographic benchmarks
help demonstrate attacks where the privilege escalation
assists leaking the cryptographic keys, by gaining super-
visor privileges and bypassing inter-process memory
protections.
The SPEC benchmarks, representing typical high-
performance computing workload, were used for
the Alpha 21264 analysis. The Polarssl bench-
marks, representing typical embedded computing work-
load, were used for the high-throughput OpenRISC
microprocessor.

VII. RESULTS AND DISCUSSION
This section discusses the timing perturbations of the pre-
sented attacks for the synthetic and the real-world bench-
marks (i.e. SPEC2000, polarssl). For each experiment
a random sample of 20 trials was used each time. The number
of trials is sufficient since all trials are successful within a
small number of cycles, (and the attacker needs to succeed
at least once, and not every time).

A. TIME TO GAIN PRIVILEGES
Alpha: Fig. 9 presents the number of clock cycles needed
for synthetic benchmarks to get escalated privileges, for 20
different trials. For clarity, the trials are sorted in decreasing
order of clock cycles. As a reminder, a synthetic bench-
mark only contains the necessary code to alter the PAL-
code code and successfully execute a ‘‘bugchk’’ instruction.
Fig. 9 shows that if the benchmark is the only (user) pro-
cess in the system, then a privilege escalation attack can
take place within a few thousand cycles. As more processes
are added to the system competing for the CPU (10 pro-
cesses for medium workload and 100 for heavy workload),
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FIGURE 10. Clock cycles to gain escalated privileges for SPEC2000 and Polarssl benchmarks respectively (average of random
sample of 20 trials), for given performance overhead (i.e. overhead from execution of malicious instructions). (a) Alpha 21264.
(b) OpenRISC 1200.

the number of clock cycles needed to successfully deliver
the attack greatly increases, as the process runs less often in
the microprocessor. An interesting observation though, is that
adding an order of magnitude more processes (100 instead
of 10) does not significantly increase the number of clock
cycles before privilege escalation. This is attributed to the
fact that with both medium and heavy workloads there is
very intensive switching, so the synthetic workload has many
windows of opportunity to deliver the attack.

OpenRISC: Similarly to the Alpha synthetic experiments
described above, Fig. 9(b) shows 20 trials to elevate priv-
ileges (sorted in descending order for clarity) for varying
system load. The results for the OpenRISC indicate that as
the process CPU quota decreases, more cycles are required
to succeed in the attack, as expected. A difference between
the Alpha 21264 and the OpenRISC attacks, is that for the
latter, the higher the CPU utilization, the higher the proba-
bility the malicious process will be able to trigger the fault
and escalate privileges. The Alpha attack relies more on
context switching. Nevertheless, in all experiments, the mali-
cious process was able to escalate privileges within about
a million cycles, which indicates that the attack is indeed
applicable.

B. SPEC AND POLARSSL BENCHMARKS
PERFORMANCE OVERHEAD
The number of extra instructions maliciously added to
an existing benchmark affect how many clock cycles are
required to receive escalated privileges. Fig. 10 presents the
average number of clock cycles needed to deliver the attack
for different number of performance overhead (i.e., overhead
from the dynamic execution of malicious instructions), for
20 trials. Performance overheads of approximately 10%, 20%
and 30% are examined.

Alpha: As expected, there is a linear decrease of the time
the attack successfully takes place for increasing performance
overhead, for all given benchmarks. It should be noted that the
average time-to-attack figures vary for different benchmarks;
this is attributed to different numbers of I/O accesses. Since a
few thousand cycles is a negligible fraction of time in real-
world attack deployment, the performance overhead of the
SPEC benchmarks can be sustained in very small percent-
ages.
OpenRISC: The OpenRISC benchmarks also demonstrate

that a real-world attack is effective within a few million
cycles, depending on the performance overhead applied to the
underlying benchmark. The cycles required to successfully
elevate privileges also depends on how demanding the bench-
mark is in terms of resources. This explains why the hash
algorithms require about 0.5 million cycles while the heavy
block ciphers require between 2 and 5 million cycles. This
set of results demonstrates that the presented attack on the
OpenRISC processor is applicable in heavy duty applications
(such as a block cipher).

C. SYSTEM LOAD IMPACT ON TIME-TO-ATTACK
The final set of results discusses the behavior of the attack
in the presence of resource-competing processes. Fig. 11
presents the number of clock cycles required to gain escalated
privileges, for the polarssl and SPEC2000 benchmarks. The
results are the average of 20 trial runs, for 10% performance
overhead.
Alpha: The first observation is that when the SPEC2000

benchmark is the only user process in the system, then a priv-
ilege escalation attack can take place within a million clock
cycles. However, as more processes are added, this number
increases dramatically: More processes mean less CPU time
for the benchmark. Furthermore, the benchmark individual
I/O demand is forcing them to yield to other processes,
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FIGURE 11. Clock cycles to gain escalated privileges for SPEC2000 and Polarssl benchmarks respectively (average of random
sample of 20 trials), for different system activity. (a) Alpha 21264. (b) OpenRISC 1200.

decreasing the probability for all 3 conditions presented in
Section V-A.3 to be satisfied at the same time. Therefore,
the attack may require several million cycles to successfully
deliver the payload. In our experiments, the use of typical
input for the SPEC2000 benchmarks provided enough time
for the attack to take place. However, the attack might not go
through given small workloads.

OpenRISC: For the OpenRISC, the results are similar to
the performance overhead results, indicating that the higher
the system load, the smaller the probability the bridging fault
will be excited, allowing escalation of privileges. A signifi-
cant observation is that even though the system runs with a
potential bridging fault, the operating system did not crash
even after hours of continuous operation. This suggests that
the assumptions about the activation conditions of the fault
(i.e. successive write attempts to SPRs) are extremely unusual
under normal operation and only the attackermay trigger such
conditions.

D. DETECTING FABRICATION ATTACKS
The presented attacks demonstrate that even minor modifi-
cations, when properly exploited, can give extreme power to
the attacker. This emphasizes the need for trojan detection
techniques. In [35], the authors suggest a method for reducing
the problem of comparing 2 designs to a boolean satisfiability
problem, while in [36] the authors suggest an entire frame-
work to formally verify IP hardware properties. In addition,
the authors of [37] propose an equivalence checking method
paired with ATPG to identify the suspicious signals.

At the side channel analysis frontier, the authors of [38]
suggest a method for detecting malicious modifications using
non-destructive measurements for power and delay; in [39]
the authors employ gate level characterization techniques,
while [40] also discusses a detection method using path delay
measurements. From the above methods, those that do not
require access to the RTL and can be applied to the physical

design directly, can be a good starting point in detecting the
rogue TLB signal in the Alpha 21264, described in this work,
as well as the proposed bridging trojan in the OpenRISC
processor.

VIII. CONCLUSION
In this paper, we demonstrate zero overhead microproces-
sor modifications that can be exploited in order to escalate
system privileges. These modifications can be effectively
applied during the fabrication stage of the chip, as their
application requires minimal invasion. Two different micro-
processors are used to demonstrate these malicious alter-
ations: (i) The Alpha 21264, resembling commercial high-
performance microprocessors, and (ii) the OpenRISC 1200,
representing embedded processors. The attacks are presented
and characterized using newly defined properties, namely:
feasibility, controllability, visibility and potential. Experi-
mental results corroborate that the proposed attacks are
indeed applicable, despite heavy system load, and the attacker
can exploit them in order to escalate system privileges. Fur-
thermore, due to the fact that the modifications have no
overhead and they manifest only when the attacker triggers
specific conditions (no system crash occured during exten-
sive microprocessor simulation), discovering these malicious
modification can be a very tedious process.
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