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ABSTRACT Silicon physical unclonable functions (PUFs) utilize the variation during silicon fabrication
process to extract information that will be unique for each chip. There have been many recent approaches to
how PUF can be used to improve security-related applications. However, it is well known that the fabrication
variation has very strong spatial correlation1 and this has been pointed out as a security threat to silicon PUF.
In fact, when we apply NIST’s statistical test suite for randomness against the random sequences generated
from a population of 125 ring oscillator PUFs using classic 1-out-of-8 coding and neighbor coding, none of
them can pass all the tests. In this paper, we propose to decouple the unwanted systematic variation from the
desired random variation through a regression-based distiller, where the basic idea is to build a model for the
systematic variation so we can generate the random sequences only from the true random variation. Applying
neighbor coding to the same benchmark data, our experiment shows that second- and third-order polynomials
distill random sequences that pass all the NIST randomness tests. So does fourth-order polynomial in the case
of 1-out-of-8 coding. Finally, we introduce two generic random sequence generation methods. The sequences
they generate fail all the randomness tests, but with the help of our proposed polynomial distiller, all but one
tests are passed. These results demonstrate that our method can provide statistically random PUF information
and thus bolster the security characteristics of existing PUF schemes.

INDEX TERMS Ring oscillator (RO), physical unclonable functions (PUFs), linear regression, variation
decomposition.

I. INTRODUCTION
A. OVERVIEW
One of the most renowned principles for the design of a
cryptosystem is Kerckhoffs’s law: ‘‘A cryptosystem should
be secure even if everything about the system, except the
key, is public knowledge (1883).’’ In order to provide a
secure storage for cryptographic keys, contemporary tamper-
resistant devices such as smart cards arm themselves with
a number of countermeasures to defeat various kinds of
invasive, semi-invasive and non-invasive physical attacks.
[6]–[11]. Nevertheless, it is still possible for attackers to
read, and possibly write, the secret bits in the non-volatile
memory through the electron beam of a Scanning Electron

1Spatial correlations and systematic fabrication variations referred
hereafter are different for each PUF.

Microscope (SEM) once the surface of the chip is exposed
by, for instance, Focused Ion Beam (FIB) [12], [13]. Physical
unclonable functions (PUFs), in contrast, are ‘inseparable’
because the underlying nano-scale structural disorder will
most likely be damaged during the course of physical tam-
pering of the device, so will the keys [14]. Since the first
introduction of PUFs in [15], many types of circuitry have
been proposed to realize the notion. Most notable are Arbiter
PUFs [16], [17] RO PUFs [3], [16] and SRAM PUFs [18],
[19]. Many methodologies have been proposed to advance
the art in terms of reliability, [4], [5], [20], [21] security, [4],
[5], [17], [20], [22]–[28] and hardware efficiency [5], [20],
[21], [29]–[31].
Researchers further classify PUFs as ‘Strong’,

‘Controlled’, and ‘Weak’ mainly according to the number of
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challenge-response pairs (CRPs) a PUF can generate, where
the words weak and strong are irrelevant to the strength of
PUF security [27]. Considering that a large number of CRPs
can be achieved through a keyed hash function seeded by
a Weak PUF, we chooses Weak PUFs as the context of the
discussion, though the proposed methodology is expected to
work well with Strong PUFs in a similar fashion.

Figure 1 outlines the typical workflow of a Weak RO PUF
that involves the following steps.

FIGURE 1. The typical workflow of a Weak RO PUF.

1) FABRICATION VARIATION EXTRACTION
The very first task of PUFs is to measure the unique charac-
teristics endowed from the uncontrollable fabrication process.
The analog-to-digital transformation is part of the physical
entropy source subject to tests and in our case, this step corre-
sponds to a full frequency characterization of a RO array [2].

2) SECRECY SELECTION
This step selects secure and reliable secrecy out of the
variation profile measured in the previous step. Existing
approaches include the classic 1-out-of-8 Coding [3] and
its successor Index-Based Syndrome (IBS) Coding [4],
Chain-like Neighbor Coding [2], [5], [32], Temperature-
Aware Cooperative (TAC) Coding [29] and Group-Based
Coding [30], [31].

3) ERROR CORRECTION
In addition to the above error prevention methods, error cor-
recting codes (ECC) are applied to further enhance reliability.
Codes that have been used for RO PUFs include Hamming
Code, BCH Code [3], Repetition Code [4], [21], Reed-Muller
Code [20], [21], and Kendall Syndrome Code [31].

4) TESTS FOR RANDOMNESS AND RELIABILITY
The security aspects of the PUF secrect can be judged by
its statistical characteristics or randomness. Reliability, on
the other hand, can be gauged by placing the device under
extreme conditions for secret regeneration and failure rate
below 1 part per million (ppm) has been reported under severe
fluctuation of ambient temperature and supply voltage [4].

B. MOTIVATION
Many cryptography applications such as key generation
require random numbers. NIST has established several

standards for cryptographically secure pseudo-random num-
ber generator (PRNG) as well as a statistical test suite for
random and pseudo-random number generators [1]. If the
numbers produced by a PRNG fail to pass the NIST test, it is
considered vulnerable against cryptanalysis. Therefore, it is
critical to verify that the secrecy generated by PUF is random
and can pass the NIST test.
We consider the public available RO PUF data obtained

from frequency characterization on 125 FPGA devices [2].
To our surprise, none of their random sequence can pass all
the NIST tests that are applicable to their sequence length.
Table 1 shows the detailed testing results. Column 1 lists the
9 statistical random tests we find applicable to the length of
our test sequences.2,3 Take Frequency Test for example, it
examines whether the number of 1’s and 0’s in a sequence
are approximately the same as would be expected for a truly
random sequence, for which the number of 1’s and 0’s in a
sequence should be about the same. If a sequence has a very
disproportional 1’s to 0’s such that its P-value, the probability
for events that at least as extreme as this instance to occur, is
smaller than a significant level α, 1% in our case, the event is
regarded significant. If it turns out that more than 4% of the
total test sequences are significant, the ‘PROPORTION’ of
a test fails; otherwise, it passes. Furthermore, the P-values of
all the test sequences are expected to be uniformly distributed.
To examine this, each of the 9 tests also calculates the P-value
of the P-values using the χ2 statistic. The ‘P-VALUE (OF
P-VALUES)’ of a test fails if the P-value of χ2 is smaller
than 0.0001; otherwise, it passes.

C. CONTRIBUTION
Table 1 clearly indicates that none of the 125 PUF sequences
can be deemed ‘ideally random’ and therefore cannot be
used for critical cryptography applications. We will analyze
why these PUF secrecy fails to pass the randomness tests in
Section III. We argue that the systematic fabrication variation
of the semiconductory process causes such failures. We study
the architectures of the current RO PUFs and the aforemen-
tioned 4-step secret generation workflow. We propose to add
one more step before the secret selection, which we refer to as
entropy distillation, such that we can decouple the unwanted
systematic variation from the desired stochastic variation.
There are three main contributions in this work. First, as we

have pointed out in [33], this is the first work that evaluates the
randomness of the random sequences generated by different
PUF schemes, before being randomized by means such as
hashing, against the NIST standard test. As researchers have
suspected, none of them can pass all the randomness tests
(results are detailed in Section V). Second, we propose to
decouple the unwanted systematic variation from the desired

2192 bits for the 1-out-of-8 coding. 480 bits for the chain-like neighbor
coding. Choice of length may impact results.

3Tests like Rank Test, DFT Test, Overlapping Template Matching Test,
Linear Complexity Test, Random Excursions Test and Random Excursion
Variant Test require a longer random sequence over 1000 bits and thus not
applicable to a ‘true’ random number generator like ours.
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random variation through a regression-based distiller, and
then generate the random sequences based on the desired
random variation. Third, we describe how to design such
regression-based distillers and show their effectiveness in
enhancing the randomness of the random sequences. Indeed,
with the help of our distillers, previously proposed PUF
schemes are able to generate random sequences that can pass
all the NIST tests.

We demonstrate our approach by the example of RO PUF,
but the proposed method can be applied to other PUFs to
enhance their security as well (of course, for those silicon
PUFs that are more resistant to systematic variation, it will
be less effective). As for the implementation of the proposed
method, one can either implement the distiller with hardware
or rely on a secure ALU for the data processing.

In the remainder of this paper, we will first introduce the
basics on RO PUFs in Section II. We analyze the possible
causes for the above randomness test failures in Section III.
Then in Section IV, we elaborate our regression-based
distiller which eliminates the systematic variation and thus
fixes the randomness test failures. Finally, we report the
detailed experimental results and conclude.

II. PRELIMINARIES
A. BASICS ON RO PUF
A RO PUF extracts fabrication variations through compar-
ing the frequencies of ring oscillators that are identically
designed. As depicted in Figure 2, the basic RO PUF consists
of two ring oscillators, followed by two counters and one
comparator at the end. When the start/stop control signal is
asserted, the two ROs start to oscillate until the control signal
is negated. The result of the race between the two ROs is
determined by fabrication variations. During the course of the
race, the two counters count the number of logic cycles run by
the respective RO. At the end of race, the comparator outputs
a binary result x based on the two counter values, say,

x =

{
1 if Counter 1 > Counter 2
0 otherwise.

(1)

FIGURE 2. The physical structure of a RO PUF [3].

To generate a secret in greater length, a RO PUF typically
implements hundreds of ROs arranged in a 2-dimensional
array. As illustrated in Figure 3, the dataset we use imple-
ments ROs in 16 (columns) by 32 (rows) on each their 125
FPGAs [2].

FIGURE 3. The placement of 512 ROs as a 16 (columns) by
32 (rows) array; for site ROx,y , its running frequency is denoted
as zx,y .

B. 1-OUT-OF-8 CODING
The result of the race between the same two ROs may differ
when the environmental conditions change. For example, a
RO running faster than its peer at low temperature can actually
be slower than the same peer at high temperature [3]. To
prevent this, the 1-out-of-8 coding scheme uses a multiplexer
to select the pair with the largest frequency difference out of
8 RO pairs as depicted in Figure 4. For the two dimensional
RO array illustrated in Figure 3, we may generate one random
bit for each row j from its 16 ROs RO1,j . . .RO16,j. However,
in order to generate more random bits to better serve the
statistical test purpose, we made a variation by forming two
blocks (RO1,j . . .RO8,j) and (RO9,j . . .RO16,j) for each row.
The 8 ROs in the same block are referenced by a 3-bit index:
000,001,010 . . . 111, and the index to the fastest RO is output
as the random bits. This way we generate 6 random bits for
each row.

FIGURE 4. The hardware structure of the 1-out-of-8 RO PUF [3].

C. CHAIN-LIKE NEIGHBOR CODING
Another well-known pairing strategy is the chain-like neigh-
bor coding, which consists of two design principles: 1) place
ROs as close as possible and 2) pair ROs located adjacent to
each other. In the two dimensional setting of Figure 3, wemay
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TABLE 1. NIST test results with respect to the random sequences generated by 1-out-of-8 coding, chain-like neighbor coding and
decoupled neighbor coding.

derive 15 random bits for each row j by pairing (RO1,j,RO2,j),
(RO2,j,RO3,j), (RO3,j,RO4,j) . . . (RO15,j,RO16,j).

III. SECURITY ANALYSIS
A. FAILURE CAUSE 1: CHAIN DEPENDENCY
The high failure rate of the chain-like neighbor coding can
be attributed to the non-independent comparison chain. Take
3 ROs ROA, ROB and ROC for example, two random bits are
generated by comparing ROA with ROB and ROB with ROC .
As we know, to pass NIST test for randomness, the random
sequence is expected to demonstrate no significant deviation
from the probability mass function (p.m.f) of tossing a fair
coin twice, i.e., the 4 possible outcomes ‘00’, ‘01’, ‘10’ and
‘11’ are expected to occur equally with probability 1/4 is
not the case for the two bits we generate from the 3 ROs.
Let ROi also denote the running frequency of ROi. For three
ROs, their running frequencies can have six different orders:
ROA < ROB < ROC , ROA < ROC < ROB, ROB < ROA <
ROC , ROB < ROC < ROA, ROC < ROA < ROB, ROC <

ROB < ROA, where each order happens with probability
1/6 when the running frequencies are random and identical
and independent distributed (i.i.d.). According to Eqn. (1),
both bits xAB and xBC will be equally likely to be ‘0’ or ‘1’.
However, the 2-bit data xABxBC will be ‘00’, ‘01’, ‘10’, and
‘11’ with probabilities 1/6, 1/3, 1/3, and 1/6 respectively. This
means that ‘01’ or ’10’ occur twice as frequent as ‘00’ or ’11’,
clearly not the p.m.f. of the ideal random sequences.

A simple solution to fix this problem caused by the
chain dependency is to break the chain such that each
RO will only be paired with its neighbor once as follows:
(RO1,RO2), (RO3,RO4) . . . (RO2i−1,RO2i) . . .. We refer to
this as decoupled neighbor coding. Apparently this is less
efficient than the original chain-like neighbor coding. For
example, when there are n ROs, the chain-like neighbor
coding will generate n − 1 bits, but the decoupled neighbor
coding can only generate n

2 bits. However, evenwith this hard-
ware cost, we are unable to produce true random sequence.
As the last two columns in Table 1 show, the decoupled
neighbor coding scheme helps the original chain-like neigh-
bor coding in passing four out of the nine ‘P-VALUE (OF
P-VALUES)’ tests, and improves the ‘PROPORTION’ tests
too. But it still fails half of the NIST statistical randomness
tests.

B. FAILURE CAUSE 2: SPATIAL CORRELATION
Chain dependency does not exist in the 1-out-of-8 coding
so to investigate the cause of the failures of the 1-out-of-8
coding, we investigate the raw data from the physical mea-
surement of fabrication variation. Figure 5 shows how the fab-
rication variation of the semiconductor process portrays: the
roughness of the surface (random variation) is superimposed
upon a spatial trend (systematic variation). With the existence
of systematic variation, the ‘random’ bits generated by RO
PUF arrays may have very low min-entropy4, which means
that they may not be secure for cryptographic purpose. For
example, as we can see in Figure 5, along the row (Y), the
RO’s frequency tends to increase as the Y index increases.
Therefore, for the two bits xA1A2 and xB1B2 generated by two
pairs of ROs (A1, A2) and (B1, B2), they are more likely to
be ‘0’ at the same time. Similarly, on a different die where the
frequency tends to increase along the row (Y), these two bits
are more likely to be ‘1’ at the same time. This means that
the systematic variation (the spatial correlation for two ROs
on the same row (Y) in this case) will render the probability
of xA1A2 = xB1B2 much higher than 0.5, making them not as
random nor independent.

FIGURE 5. The across-die frequency topology of a RO array. The
roughness of the surface represents the random variation while
the slope represents the systematic variation [34].

While spatial correlation may explain the reason why none
of the coding strategies in Table 1 passes all tests, it is

4the min-entropy of a discrete random event x with possible out-
comes 1 . . . n and corresponding probabilities p1 . . . pn is H∞(X ) =
minni=1(− log pi).
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interesting to note that in fact this threat has been reported
in the chain-like neighbor coding, where they attempt to let
the systematic effect cancel out with each other, extracting
secrecy out of the random effect [5]. Similar principles have
been used in [25] and [32]. However, the results we have
in Table 1 indicate that such treatment is not sufficient to
pass the NIST randomness tests. We postulate that a small
remnant of the systematic variation can still be captured by
the tests, causing the above failures. To illustrate this, we con-
sider a hypothetical frequency characterization of 16 ROs as
shown in Figure 6. Based on the chain-like neighbor coding,
these 16 ROs will generate the following 15-bit sequence:
1101,1110,1001,000. The first bit is a ‘1’ because RO1 <

RO2 and the third bit is a ‘0’ because RO3 > RO4, and
so on. If our proposed decoupled neighbor coding is used,
we will only have 8-bit data: 1011,1000. Although in both
cases we have about the same number of 0’s as the number
of 1’s, there is a clear trend that 1’s are more likely to be
in the first half of the sequence and the 0’s in the second
half. When we fit the frequencies into the curve in Figure 6,
we see clearly the systematic trend of ‘going up slope’ first
and then ‘going down slope’, which causes 0’s and 1’s not
distributed uniformly in the sequences. Finally, we mention
that this systematic trend can stay undiscovered when one
tallies the total number of 0’s and 1’s or calculates the inter-
die uniqueness via Hamming distance, e.g., 46.15-48.51% for
RO PUFs [3], [32] and 49.97% for SRAM PUFs [35].

FIGURE 6. Illustration of the impact from systematic variation
even after decoupling.

IV. SYSTEMATIC VARIATION ELIMINATION
We believe that one of the main causes of the failures in
randomness tests for the RO PUF generated sequences is the
systematic process variation. We propose to model such vari-
ation and thus remove them to build RO PUF sequences based
on the true random part of the process variation. This section
shows how the proposed distillation process can strengthen
the randomness of the PUF output. Due to its simplicity, we
apply polynomial regression to model the systematic trend.
Our simulation results show that this simple model is suf-
ficiently good as it can fix all the failures of the 1-out-of-8
coding and the decoupled neighbor coding in Table 1.

A. THE CAUSES OF PROCESS VARIATION
The semiconductor process variation has been modeled as the
sum of a systematic component and a random component.

The systematic component attempts to capture a deterministic
trend and other identifiable patterns through one or a collec-
tion of estimators. Themain causes of the systematic variation
can be attributed to equipment and process non-uniformity
such as the focus shift of photolithography, the gradient of
thermal annealing, dissimilar interactions between circuit lay-
out and the chemical mechanical polishing process [36], [37].
The random component, on the other hand, accounts for

the difference between the model estimates and the observed
data; its constituents include atomic-level stochastic phenom-
ena such as random dopant profiles, measurement errors and
any unidentified patterns [37], [38]. More discussion and
related work on process variation modeling can be found
in [39].
It is important to clarify that our goal is not to build a

new variation model. Indeed, the proposed distiller does not
require the accuracy of the variation model to be as high as
those for power or performance driven applications. In the
rest of this section, we will illustrate how the distiller can
improve PUF data’s randomness using the simple polynomial
regression model.
Let us first consider an example in Figure 7. It reports the

frequency information of the same 16 RO PUF as in Figure 6
except that the Y-axis now shows the difference between each
RO’s frequency and the systematic trend (the bell-shape curve
in Figure 6). When we use the same chain-like neighbor
coding, the 15-bit sequence becomes 0100,1010,1011,100.
Compared to the original sequence 1101,1110,1001,000 in
Figure 6, we don’t see the ‘predictability’ that there are more
1’s in the first half and more 0’s in the second half of the
sequence.

FIGURE 7. The distilled random fabrication variation after the
systematic trend is removed.

B. POLYNOMIAL REGRESSION
A k th-order polynomial regression is a form of linear regres-
sion in which the relationship between independent variables
and a dependent variable by a polynomial of order k , where
k is a non-negative integer. For a RO PUF with its m ROs
arranged in r rows by c columns, the Cartesian coordinates
(x, y) of ROs are regarded as two independent variables and
the oscillating frequency z is the single variable dependent
on x and y. In such a two dimensional setting, a polynomial
regression model of order k takes the following general form

zx,y =
k∑
i=0

i∑
j=0

βk,i,jνx
i−jhyj + εk,x,y, (2)
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where 1 ≤ x ≤ c, 1 ≤ y ≤ r; z, β, ε ∈ R. On the right
hand side of the equation, the summation term models the
systematic variation at the physical location (vx , hy) on a chip
and the residual term εk,x,y models the random variation. In
the k th-order polynomial model, there will be m = c × r
equations in the form of Eqn. (2) as 1 ≤ x ≤ c and 1 ≤
y ≤ r . The number of unknowns βk,i,j is n =

(k+1)(k+2)
2 as

0 ≤ j ≤ i ≤ k . This results in an overdetermined system (i.e.
m > n), which can be solved by the ordinary least squares
(OLS) method.

Equivalently, we can rewrite this in the matrix form

Z = �kβk + εk (3)

where

�k =


ωk,1,1 ωk,1,2 · · · ωk,1,n
ωk,2,1 ωk,2,2 · · · ωk,2,n
...

...
. . .

...

ωk,m,1 ωk,m,2 · · · ωk,m,n

 ,

Z =



z1,1
...

zc,1
z1,2
...

zc,2
...

z1,r
...

zc,r



, βk =



βk,0,0

βk,1,0

βk,1,1

βk,2,0

βk,2,1

βk,2,2

...

βk,k,0

...

βk,k,k



, εk =



εk,1,1

...

εk,c,1

εk,1,2

...

εk,c,2

...

εk,1,r

...

εk,c,r



.

And ωk,p,q’s are in the format of vx i−jhyj, where x = ((p− 1)
mod r) + 1, y = b p−1r c + 1, i = b−1+

√
1+8(q−1)
2 c, j = (q −

1) − i2+i
2 , 1 ≤ p ≤ m and 1 ≤ q ≤ n. For example, when

k = 2, c = 2, r = 3, we have

z1,1
z2,1
z1,2
z2,2
z1,3
z2,3


=



1 v1 h1 v12 v1h1 h12

1 v2 h1 v22 v2h1 h12

1 v1 h2 v12 v1h2 h22

1 v2 h2 v22 v2h2 h22

1 v1 h3 v12 v1h3 h32

1 v2 h3 v22 v2h3 h32



×



β2,0,0

β2,1,0

β2,1,1

β2,2,0

β2,2,1

β2,2,2


+



ε2,1,1

ε2,2,1

ε2,1,2

ε2,2,2

ε2,1,3

ε2,2,3


.

The OLS method will find the ‘best’ estimate β̂ in terms
of the minimum sum of squared errors as Eqn. (4) indicates.

By taking partial directives of Eqn. (5) with respect to each
βk,i,j and letting each gradient to zero, the solution of OLS
can be expressed in the matrix form as in Eqn. (6).

β̂k = argmin
βk

{ c,r∑
x=1,y=1

ε2k,x,y

}
(4)

= argmin
βk

{ c,r∑
x=1,y=1

(zx,y −
k∑
i=0

i∑
j=0

βk,i,jx i−jyj)2
}

(5)

= (�T
k�k)

−1�T
k Z (6)

C. REGRESSION-BASED DISTILLER
When we apply polynomial regression models to capture the
systematic variation trend, higher order models have bet-
ter accuracy and generate smaller residual terms (εk,x,y’s in
Eqn. (2)). While they may lead to sequences that are more
random and secure, they incur more computational cost and
more importantly, the small magnitude of the residual terms
can cause difficulties in error correction phase and damage
the efficiency of RO PUF. For example, Figure 8 shows the
histograms of the random variation of a data set (see the
result section for detailed description of the data) after regres-
sion models with polynomials of degrees 0 to 6 are applied.
Clearly we see as the order increases, the number of ROs
whose frequencies are far from the center decreases quickly,
yielding a smaller variance. Nevertheless, they all appear
normal distribution and it is difficult to judge which model
is the best choice without running the standard randomness
tests. Therefore, our goal is to find the polynomial regression
model in minimal order that can successfully distill the ideal
random variation. We propose to conduct this distillation pro-
cedure after the ‘fabrication variation extraction’ phase. The
remaining question is in the next ‘secrecy selection’ phase
that how to build the RO PUF sequence based on the residual
terms, or the true random variations.
Suppose we have a 2-dimensional array of ROs placed

in r rows and c columns (see Figure 3), there are many
ways to define RO PUF bits from the distilled RO frequency
information. For example, in our implementation of the 1-out-
of-8 coding, each row generates c

8 × 3 bits; in the chain-like
neighbor coding, we have c − 1 bits from each row; in the
decoupled neighbor coding, this number reduces to b c2c. Of
course, instead of focusing on each row, we can define RO
PUF bits by comparing the ROs in the same column. In addi-
tion to these three coding schemes, we study the following
two generic sequences, S and T , to gauge if there is still any
trace of spatial correlation in the distilled random component:

S = X1, . . . ,XlX , . . . ,XLX where XlX

=

{
0 if zuX ,νX ≤ zuX+b c2 c,νX
1 otherwise

(7)

T = Y1, . . . ,YlY , . . . ,YLY where YlY

=

{
0 if zuY ,νY ≤ zuY ,νY+b r2 c
1 otherwise

(8)
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FIGURE 8. The histogram of the distilled random variation after applying 0th through 6th-order polynomial regression to the dataset
of Chip No. 1.

where in (7), uX = ((lX − 1) mod b c2c) + 1, νX = b(lX −
1)/b c2cc + 1, 1 ≤ lX ≤ LX = r × b c2c; similarly in (8),
uY = b(lY − 1)/b r2cc + 1, νY = ((lY − 1) mod b r2c) + 1,
1 ≤ lY ≤ LY = c× b r2c.
Intuitively, S and T are formulated by cutting each row (or

column in T ) in the RO array into two equal halves, pairing up
ROs in the two halves, and comparing their residual variation
terms. Recall that the principle in neighbor coding is to pair
up ROs that are next to each other in order to reduce the
systematic variation. In S and T , we have purposely done the
opposite to pair up ROs that are far from each other to amplify
the effect of systematic variation in order to test the effec-
tiveness of the proposed regression-based entropy distiller. In
the next section, we will report our detailed findings on such
randomness tests.

V. RESULTS AND ANALYSIS ON RANDOMNESS TESTS
In this section, we conduct standard NIST randomness
tests to validate that the proposed regression-based entropy
distiller will improve the randomness of the RO PUF
sequences. We use the test bench in the public domain
which consists of the frequency characterization of 125
RO PUFs implemented on 125 Xilinx Spartan-3 FPGAs,
where 512 ROs were placed on each FPGA as shown
Figure 3 [2].

A. THE POLYNOMIAL REGRESSION MODELS
We first report the systematic variation distillation procedure
and then results. For each chip, we apply regression models
of different orders to its 512 averages of frequency readings.
Figure 9 shows the modeled systematic variation for each RO

on the first chip. In the 0th order, the systematic variation is the
average of the 512 averages. In the 1st order linear model, we
see that the ROs have higher frequency as their Y coordinates
decrease. As we use higher order polynomials, it starts to
show trend similar to Figure 5.
Figure 10 shows the random variation after distillation.

We see the radial pattern close to the center for the 0th and
1st models, which is known as the ‘bull’s eye’ and a clear
indication of ‘non-randomness’. However, it vanishes in the
cases of 2nd model and beyond. This suggests us that polyno-
mials of 2nd degree or higher should be used.

B. NIST RANDOMNESS TESTS
There are nine randomness tests in the NIST statistical test
suite applicable to the length of our test sequences: Frequency
Test, Block Frequency Test, Cumulative Sums Test (with
block size m = 2 and m = 3), Runs Test, Longest Run Test,
Serial Test (both forward and backward) and Approximate
Entropy Test. According to [1], empirical results have to
be interpreted in two forms of analysis: First, the propor-
tion of sequences passing a test shall be above a minimum
rate, 0.96 in our case, i.e., to pass 120 sequences out of
a sample size of 125 sequences at significance level α =
0.01. Secondly, the P-values of all the random sequences
shall be uniformly distributed. Based on χ2 Goodness-of-
Fit Test, the underlying distribution is deemed uniform if the
P-value of the P-values is equal or greater than 0.0001 for a
population of 125 sequences. Whenever either of these two
approaches fails, further tests based on a different sample
space will help clarify whether the failure is a statistical
anomaly or a clear non-randomness.

102 VOLUME 2, NO. 2, JUNE 2014



Yin and Qu: Obtaining Statistically Random Information From Silicon PUFs

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

FIGURE 9. The modeled systematic variation after applying 0th through 6th-order polynomial regression to the dataset of Chip No. 1.

FIGURE 10. The distilled random variation after applying 0th through 6th-order polynomial regression to the dataset of Chip
No. 1. Notably, we see the ‘bull’s eye’, i.e., the radial pattern close to the center, vanishing in the cases of 2nd order model and
beyond.

Table 2 reports the detailed test results on the generic
S-sequence, T -sequence, and the sequences generated by
the coding schemes of 1-out-of-8, chain-like neighbor, and
decoupled neighbor.

1) S-SEQUENCE AND T -SEQUENCE
The 512 ROs will generate a 256-bit S-sequence and a
256-bit T -sequence. The S-sequence and T -sequence for

NIST randomness test are 32000 bits long obtained by con-
catenating the 125 such 256-bit sequence from the 125 chips.
As the 0th-order section shows, random sequences gen-

erated without entropy distillation fail miserably for both
forms of analysis ‘PROP. (PROPORTION)’ and ‘P-VAL.
(P-VALUE OF P-VALUES)’, where ‘*’ marks a failure. This
strongly suggests the existence of systematic variation in the
raw data. The failure rate decreases sharply when applied
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TABLE 2. The results of NIST ‘P-VAL. (P-VALUE of P-VALUES)’ and ‘PROP. (PROPORTION)’ analyses with respect to random
sequences generated by S, T , the 1-out-of-8 coding, the chain-like neighbor coding and the decoupled neighbor coding
accompanied by 0th- to 6th-order distillers, where ‘*’ marks a failure.

with 1st -, 2nd - or 3rd -order distiller in the case of S and with
2nd - or 3rd -order distiller in the case of T .
Unfortunately, there is at least one failure with respect to

S, though the failure is only slightly below the cutting value.
In such a boarder case where a weak existence of system-
atic variation is inferred, further investigation with different

dataset is necessary to conclude the entropy source, i.e., RO
PUF plus the distillation model, ‘good’ or ‘bad’. If simply
taking the sum of failure rates with respect to S and T , either
2nd - or 3rd -order distillers can be considered optimal.
Finally, we mention that the pass rate of the ‘P-VALUE

OF P-VALUES’ analysis drops when applied with a model
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of 4th order or higher. A further investigation reveals that
this is caused by model over-fitting. When we use high order
models, there will bemore coefficients βk,i,j (as in Eqn. (2)) to
describe the underlying systematic variation. In general, this
will give us better model. However, considering the limited
number of data samples we have (a 256-bit S-sequence or a
256-bit T -sequence), if we use a 6th order polynomial model
where 28 unknown βk,i,j’s need to determined, the model
will capture the random variation instead of the systematic
variation and causes over-fitting. When that happens, there
is little ‘true’ random variation left and thus randomness
test will fail. We can see this from Table 2. This result also
indicates that the 2nd or 3rd order model should suffice with
the number of data samples we have.

2) 1-OUT-OF-8 CODING
For our implementation of the 1-out-of-8 coding, a 3-bit index
‘000’, ‘001’. . . or ‘111’ is generated by pointing to the fastest
RO out of 8 consecutive ROs on the same row, i.e., 192 bits
per chip or 125× 192 = 24000 bits for the test sequence.
From Table 2, we see that the 1-out-of-8 coding does very

well even without the entropy distillation with only one clear
‘P-VALUE’ failure and two marginal ‘PROPORTION’ fail-
ures. The best linear model can fix all these three failures, but
introduced a different ‘P-VALUE’ failure which is marginal.
Also, distillers of 4th order and higher pass all the tests and
can be deemed ‘good’. However, the 2nd and 3rd order models
fail about half of the tests. We suspect that this is caused by
the fact that we are collecting three bits at a time from the 3-bit
index of the eight ROs. Models of low order may not be able
to captuer certain intrinsic correlation behind such selection.

3) NEIGHBOR CODING
In the case of the chain-like neighbor coding, 15 bits are
generated per row by pairing up with row neighbors, which
yields 480 bits per chip. Thus, the length of the test sequence
is 125× 480 = 60000 bits.

As shown in Table 2, none of the polynomial distiller makes
meaningful improvement. This phenomenon aligns with our
expectation that the failures are caused by the intrinsic chain
dependencies of the pairing strategy rather than spatial cor-
relation. Moreover, consider our treatment to this problem,
the decoupled neighbor coding, the 1st order linear model is
capable of helping it to pass all the randomness tests.

The over-fitting problem for high order polynomial models
does not seem to be a concern in this case. The only exception
is the ‘LongestRun’ test which is also the test that the 2nd and
3rd order models fail in the case of S-sequence. Considering
the severe over-fitting problem in the case of S-sequence
and T-sequence, we believe this is due to the structural
difference between the decoupled neighbor coding and the
S- or T-sequence. As we have discussed when defining the
S-sequence and T-sequence, they are designed to amplify the
systematic variation, so over-fitting is more likely to occur.
In decoupled neighbor coding, we pair two ROs that are
physically close to each other, hence they will have similar

systematic variation that can be easily and accurately captured
by the distillers. More detailed results can be found in [39].

VI. CONCLUSION
The systematic component of fabrication variation has long
posted a security threat to RO PUFs. This work provides
experimental data to demonstrate that none of the current
coding schemes can pass all the NIST randomness tests. To
address the issue, we propose a family of entropy distillers
based on polynomial regression.We affirm their effectiveness
in improving the randomness of the PUF output.
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