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ABSTRACT This paper introduces and investigates large iterative multitier ensemble (LIME) classifiers
specifically tailored for big data. These classifiers are very large, but are quite easy to generate and use. They
can be so large that it makes sense to use them only for big data. They are generated automatically as a
result of several iterations in applying ensemble meta classifiers. They incorporate diverse ensemble meta
classifiers into several tiers simultaneously and combine them into one automatically generated iterative
system so that many ensemble meta classifiers function as integral parts of other ensemble meta classifiers at
higher tiers. In this paper, we carry out a comprehensive investigation of the performance of LIME classifiers
for a problem concerning security of big data. Our experiments compare LIME classifiers with various base
classifiers and standard ordinary ensemble meta classifiers. The results obtained demonstrate that LIME
classifiers can significantly increase the accuracy of classifications. LIME classifiers performed better than
the base classifiers and standard ensemble meta classifiers.

INDEX TERMS LIME classifiers, ensemble meta classifiers, random forest, big data.

I. INTRODUCTION
Big Data has become ubiquitous and crucial for numerous
application domains, thereby leading to signifiable challenges
from the point of view of data management perspective
[1], [2]. It has become particularly important in view of the
rapid growth of Cloud services [3]–[5]. The development
and expansion of the Cloud creates new opportunities for the
users and requires further research to address novel tasks and
requirements [6]–[8]. It is important not only to invent new
methods tackling these tasks, but also to investigate ways
of adapting previous techniques well known in related areas
such as grid computing [9], [10]. Security has been one of
the major issues required for the use of Big Data. Let us refer
to [11] for an overview and analysis of the top ten Big Data
security and privacy challenges. The scientific challenges
faced by the Cloud computing security have been discussed
in the survey articles [12], [13] and have been considered also
in [14]–[17].

This article introduces four-tier Large Iterative Multitier
Ensemble (LIME) classifiers specifically designed for appli-
cations concerning the information security of Big Data and

generated as explained in Section III. The investigation of this
new construction is important, because the role of algorithms
for analysis of Big Data has been growing. As a particular
application direction for experiments we address the problem
of malware detection, which is essential for the security of
Big Data.
Themain aim of this paper is to develop LIME classifiers as

a general technique that may be useful for the analysis of Big
Data in various application domains. If a dataset is not large
enough, then the LIME classifier will revert to using only a
base classifier or just a small part of the whole system and
will not improve the quality of the classification.We carry out
a systematic experimental investigation of the performance
of LIME classifiers for a problem concerning security of
Big Data. This new iterative construction is illustrated in
Figure 1. LIME classifiers can combine diverse ensemble
meta classifiers into one iterative hierarchical system and can
be very large.
The term malware refers to malicious software or to mali-

cious computer programs [18], [19]. Malware has been an
ever growing threat to security for a long time. Malware can

352

2168-6750 
 2014 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. VOLUME 2, NO. 3, SEPTEMBER 2014



Abawajy et al.: Large Iterative Multitier Ensemble Classifiers for Security of Big Data

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

FIGURE 1. Four-tier LIME classifier processing big data. The direction of arrows indicates data flow.

infect computers and information repositories via networks,
attached hardware devices or over the Internet from web-
sites or email. Here let us only briefly refer to [20]–[25] for
background information and preliminaries on malware. More
details are given in Section II.

Malware detection represents a significant challenge for
security of Big Data. Recent explosion in malware prolifer-
ation is explained not only by the continued growth of all
traditional avenues for its propagation, but also by several new
factors.

Firstly, mobile devices have become capable of
running software of complexity comparable to that of desktop
machines. This has dramatically increased the number of
devices vulnerable to malware. At present, the operating
systems of personal digital assistants and smart phones can
execute and spread sophisticated malware similar to that
affecting only personal computers previously. Nowadays
malware can exploit new means of propagation via Blue-
tooth, short message service, and multimedia messaging
service. However, the use of anti-malware for smart phones is
hindered by the available battery energy. The existing anti-
malware systems have not been adapted to smart phones yet.

Secondly, the competition between malware writers on
the one side versus the internet security research combined
with software vendors creating anti-malware systems on the
other side has lead to the development of advanced obfus-
cation techniques and readily available programs that can be
used to modify existing malware making it unrecognisable.
Novel behaviour analysis methods using dynamic features
have been investigated to counteractmalware obfuscation, see
Section II.

However, it is also quite conceivable that malware writes
will be able to conceal various behavioural features of mal-
ware equally well, as the creators of Trojans have been
able to do. A universal and effective method for concealing
behaviour was introduced and studied in [26]. Besides, the
main drawback of behaviour analysis is that it can be applied
in practical situations to detect malware only once the latter
has been executed, which means that it has already had a
chance to perform its malicious function and spread further
possibly in a new modified form.

Finally, the rapid expansion of cloud service providers
and social networks has created a multitude of new commu-
nication avenues that potentially can be used for malware
propagation.
These circumstances have lead to enormous variety in the

number of instances and different incomparable and unrecog-
nisable versions of malware being created daily and propagat-
ing over the Internet. Now researchers have to investigate and
develop new methods for malware analysis and detection that
are more suitable for Big Data.
In this paper we use LIME classifiers with four tiers for

the detection of malware using Big Data. LIME classifiers
are automatically generated as iterativemultitier ensembles of
ensembles. The initialization and generation stages of a LIME
classifier are explained in Section III, where it is also shown
how to aggregate the classifiers at different levels to obtain
the LIME classifier.
Our experimental results show that four-tier LIME classi-

fiers achieved substantially better performance in comparison
with the base classifiers or standard ensemble meta classi-
fier classifiers. This demonstrates that our new method of
combining diverse ensemble meta classifiers into one uni-
fied four-tier ensemble incorporating diverse ensemble meta
classifiers as parts of other ensemble meta classifiers can be
applied to improve classifications.
The paper is organised as follows. Section II contains

a brief overview of previous related work. Section III
describes four tier LIME classifiers investigated in this paper.
Section VI is devoted to preprocessing of data. Sections IV
and V deal with the base classifiers and standard ensemble
meta classifiers used in our experiments and included in the
LIME classifiers. Section VII presents the outcomes of exper-
iments comparing the effectiveness of base classifiers, stan-
dard ensemble meta classifiers and four-tier LIME classifiers.
These results are discussed in Section VIII. Main conclusions
are presented in Section IX.

II. RELATED WORK
Major security challenges facing the analysis of Big Data and
the Cloud have been considered in [11]–[13].
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Researchers in [1] deal with the problems motivated by the
unprecedented growth in the amount of available data, as well
as with the new opportunities presented by the development of
the Cloud. It big data challenges including big data diversity,
big data reduction, big data integration and cleaning, big data
indexing and query, and finally big data analysis and mining.

The paper [14] is looking at a cloud data storage prevent-
ing harvesting. The problem concerns the cloud customers,
the cloud business centre which provides services, and the
cloud data storage centre. Data stored in the data storage
centre comes from a variety of customers and some of these
customers may compete with each other in the market place
or may own data which comprises confidential information
about their own clients. Cloud staff have access to data in the
data storage centre which could be used to steal identities or to
compromise cloud customers. The paper proposes an efficient
method of data storage which prevents staff from accessing
data which can be abused as described above.We also suggest
a method of securing access to data which requires more than
one staff member to access it at any given time. This ensures
that, in case of a dispute, a staff member always has a witness
to the fact that she accessed data.

For general background information on the methodology,
systems and applications of the Cloud Computing, the asso-
ciated Quality of Service Management, the design of Cloud
Workflow Systems, and tradeoffs between the computation
and data storage we refer to [4]–[6], respectively.

The paper [7] investigates an iterative hierarchical key
exchange scheme for secure scheduling of big data applica-
tions in cloud computing. The privacy preservation over big
data on cloud is considered in [17].

In [27] the authors present a scalable, automated approach
for detecting and classifying malware by using pattern recog-
nition algorithms and statistical methods. The proposed
framework combines the static features of function length and
printable string information extracted from malware samples
into a single test.

In [24] the authors compare two disparate sets of mal-
ware collected in different time periods and train an anti-
virus strategy on the earlier set to determine how well it will
manage to handle the later set. An anti-virus strategy is used
that integrates dynamic and static features extracted from the
executables to to detect malware versus cleanware and to clas-
sify malware by distinguishing between malware families.
This paper provides strong evidence that anti-virus techniques
which work well on malware developed at a certain time may
continue to be effective on malware developed at a much later
time.

Feature reduction based on Information Gain was used
in [25] to speed up the processes of the classification of mal-
ware and the identification of malware from a set combined
with cleanware. The number of features was reduced from
7,605 to just over 1,000. The lead to a reduction in false
negative rates by a factor of about 1/3. The speed of running
the tests improved by a factor of approximately 3/5. A small
loss in accuracy was observed. However, the improved false

negative rate along with significant improvement in speed
demonstrated that feature reduction can be pursued as a tool
to prevent algorithms from becoming intractable due to too
much data.
The first classification method integrating static and

dynamic features into a single test was presented in [20]. The
approach proposed there improved on previous results using
individual features collected separately. The time required
for the test was reduced by half. Robustness to changes in
malware development was tested. It was shown that to achieve
acceptable accuracy in classifying the latest malware, some
older malware should be included in the set of data.
A lightweight malware detection system for detecting,

analysing and predicting malware propagating via SMS and
MMS messages on mobile devices is proposed in [28].
It deploys agents in the form of hidden contacts on the device
to capture messages sent from malicious applications. The
capturedmessages are fed to a latent spacemodel, for analysis
to estimate the current dynamics and predict the future state
of malware propagation within the mobility network.
A scalable system for network-level behavioural clustering

of HTTP-based malware is presented in [29]. It groups newly
collected malware samples into malware family clusters. This
aim of creating clusters is to facilitate the generation of high
quality network signatures for detecting botnet communica-
tions at the network perimeter. The scalability of the clus-
tering system is achieved by using a simplified multi-step
clustering process incorporating incremental clustering algo-
rithms that run efficiently on very large datasets. The system
reduces processing times and scales well to large datasets
containing tens of thousands of distinct malware samples.
Frequency of the appearance of opcode sequences is used

in [30] to prepare data for data mining algorithms trained to
detect malware.
A concept of genetic footprint is proposed in [31]. It can be

used to detect malicious processes at run time. The genetic
footprint consists of selected parameters maintained inside
the PCB of a kernel for each running process. It defines the
semantics and behaviour of an executing process.
A graph-based method to detect unknown malware is pre-

sented in [32]. It uses the function call graph of an executable,
which includes the functions and the call relations between
them. The features are defined according to both the statistical
information and the topology of the function call graph.
The article [33] studied the proactivity of malware detec-

tion using ten different Perceptron derived algorithms. The
proactivity score was defined by

ProactivityScore = TP
TP+FN+ 1

k FP

where TP is the number of true positives, FN is the number of
false negatives, FP is the number of false positives, and k was
taken equal to 0.5%.

III. LIME CLASSIFIERS
A number of methods for creating ensemble classifiers
are well known in artificial intelligence and data mining.
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Every ensemble meta classifier combines a collection of
base classifiers into a common classification system. Effi-
cient multi-tier classifiers and more general multi-classifier
systems have been explored, for example, in the previous
publications [22], [23], [34]–[37]. Our construction of four-
tier LIME classifiers was inspired by previous research in the
literature, but is different.

Traditional ensemble meta classifiers generate their collec-
tion of base classifiers given an indication, or an example, or
a template of only one base classifier as an input parameter.
After the generation stage, they use the whole ensemble of the
base classifiers to process data, collect their outputs and com-
bine them to prepare the final decision. For example, Random
Forest automatically generates a collection of Random Trees
and uses them as shown in Figure 2. Many other known
ensemble meta classifiers function in a similar fashion, using
other base classifiers and different techniques for generating
and combining them.

FIGURE 2. Random forest is a two-tier ensemble classifier based
on Random trees.

The present article is devoted to a new scheme that creates
very large LIME classifiers tailored for handling Big Data.
LIME classifiers automate the process of generating a
large multitier system. They make it easy to generate very
large classifiers combining diverse ensemble meta classifier
methods at several levels.

LIME classifiers are used with four tiers in this paper. They
incorporate diverse ensemble meta classifiers into second,
third and fourth tiers simultaneously and combine them into
one integrated iterative system so that third tier ensemble
meta classifiers acts as an integral part of the fourth tier
ensemble meta classifier, and each second tier ensemble
meta classifier is an integral part of its third tier ensemble
meta classifier parent, as shown in Figure 1. The fourth tier
ensemble meta classifier of this construction invokes third
tier ensemble meta classifiers, and in turn they invoke their
second tier ensemble meta classifiers in an iterative fashion.
The present article is devoted to experiments comparing the
performance of four-tier LIME classifiers, their base clas-
sifiers and standard ensemble meta classifiers in a special
problem concerning security of Big Data.

It is easy to set up and generate a LIME classifier. All third
tier ensemble meta classifiers are generated by the fourth tier

ensemble meta classifier given just one instance of a second
tier ensemble as an input parameter for the generation stage.
The forth tier ensemble meta classifier generates all third tier
ensemble meta classifiers and executes them in exactly the
same way as it usually handles base classifiers. Similarly,
each third tier ensemble meta classifier applies its method
to generate and combine its second tier ensemble meta clas-
sifiers. Finally, the second tier ensemble meta classifiers
generate, execute and combine their base classifiers in their
standard fashion.
To start the process a designer has to initialize a four-tier

LIME classifier by specifying which ensemble meta classifier
will operate at the fourth tier. Then the designer provides a
parameter to the fourth tier ensemble meta classifier indicat-
ing, which third tier ensemble meta classifier is to be used
as a part of the standard generation process of the fourth tier
ensemble meta classifier. After that, the designer specifies
the second tier ensemble meta classifier method to be used
by the third tier ensemble meta classifier, and the base clas-
sifier handled by the second tier ensemble meta classifier.
The initialization step is shown in Figure 3.
In this paper we used diverse ensemble meta classifiers

and base classifiers implemented in theWaikato Environment
for Knowledge Analysis (WEKA). All options chosen by a
designer for a LIME classifier can be indicated in the WEKA
SimpleCLI command line as shown in Figure 5. Then the
whole system is generated automatically by the SimpleCLI,
using the embedded iterative and recursive capability of Java
programming.
After initialization each of the ensemble meta classifiers

chosen by the designer uses its own method of generating the
classifiers at the lower tier. First, the fourth level ensemble
meta classifier generates a collection of the classifiers at the
third tier as shown in Figure 4. Second, each of the third tier
ensemble meta classifiers created in Figure 4 applies its own
scheme of generating second tier ensemble meta classifiers as
shown in Figure 6.
Finally, as illustrated in Figure 6, each of the second tier

ensemble meta classifiers, produced at the preceding stage
as in Figure 6, uses its method of generating a collection of
base classifiers according to the type of the base classifier
indicated in Figure 3. This concludes the generation stage of
work of the LIME classifier.
After that the LIME classifier processes data as shown in

Figure 1, where the direction of arrows indicates data flow.
Edges not connected to classifiers indicate the direction of
possible data flow from many more classifiers that are not
depicted in the diagram.
The base classifiers analyse the features of the original

instances and pass on their output to the second tier ensemble
meta classifiers. The second tier ensemble meta classifiers
collect all outputs of the base classifiers, combine them, and
send their own output to their parent third tier ensemble meta
classifiers. Likewise, the third tier ensemble meta classifiers
collect the outputs of the second tier ensemblemeta classifiers
analyse and combine them, and send their own output to the
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FIGURE 3. Initialization of a four-tier LIME classifier.

FIGURE 4. Stage 1 of generating four-tier LIME classifier. The fourth tier ensemble meta classifier generates third tier
ensemble meta classifiers.

FIGURE 5. A part of command line generating a four-tier LIME
classifier in SimpleCLI.

fourth tier ensemble meta classifier. The fourth tier ensemble
meta classifier analyses the results of the third tier ensemble
meta classifiers and produces the final decision of the whole
LIME classifier.

LIME classifiers belong to the general multitier and mul-
tistage approach considered, for example, in [22] and [23].
Many different multi-tier procedures and more general

multi-classifier systems using base classifiers (but not ensem-
ble meta classifiers) on several levels were explored previ-
ously, for example, in [22], [23], and [34]–[37] and have
produced excellent results.
The new contribution of this article is in generating new

large LIME systems as iterative ensembles of ensembles by
linking a fourth tier ensemble meta classifier to another third
tier ensemble meta classifier instead of a base classifier and
linking the third tier ensemble meta classifier to a second tier
ensemble meta classifier, which in turn are linked to their
base classifiers. In this way the fourth tier ensemble meta
classifier can generate the whole system. LIME classifiers are
a new construction in the framework of this approach for the
following two reasons. First, LIME classifiers include differ-
ent ensemble meta classifiers on several tiers. Second, they
use these ensemble meta classifiers iteratively to generate the
whole classification system automatically.
This automatic generation capability includes many large

ensemble meta classifiers in several tiers simultaneously and
automatically combines them into one hierarchical unified
system so that one ensemble meta classifier is an integral part
of another one. This construction makes it easy to set up and
run such large systems.
There are several advantages in using LIME construction.

First, it generates thewhole large system automatically, which
makes it easy to set them up and run. This can enable
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FIGURE 6. Stage 2 of generating four-tier LIME classifier. Each third tier ensemble meta classifier generates second tier
ensemble meta classifiers.

FIGURE 7. Stage 3 of generating four-tier LIME classifier. The direction of arrows indicates the generation of base classifiers by each
second tier ensemble meta classifier.

practitioners to test many options before choosing the most
appropriate one. Second, a LIME classifier can include
different ensemble meta classifiers on several levels,
combining the strengths of their methods.

The present article concentrates on the investigation of
performance of LIME classifiers for the detection ofmalware.
We carried out systematic experiments evaluating several
various ensemble meta classifiers and their performance as
parts of four tier LIME classifiers. The results presented
here demonstrate that new four-tier LIME classifiers per-
formed better than the base classifiers and standard ensem-
ble meta classifiers included in the system. This example
of application to the classification of malware shows that
the new method of combining diverse ensemble meta clas-
sifiers into a unified hierarchical four-tier system can be
applied to increase the performance of classifiers for han-
dling Big Data. Every ensemble meta classifier at the third
tier of this construction is an integral part of the ensem-
ble meta classifier at the top tier. Likewise, every ensemble
meta classifier of the second tier is a part of the ensemble
meta classifier at the third tier. Finally, every base classifier
at the bottom tier becomes a part of the ensemble meta
classifier at the second tier. Iterative usage of one ensemble
meta classifier as an integral part of another ensemble meta
classifier makes it easy to set up, generate and run LIME
classifiers.

The iterative method of automatic generation and training
employed by the LIME classifiers has not been considered
in the literature before. LIME classifiers can be implemented
in the Weka SimpleCLI command line even though they
can be very large. In our experiments, each four-tier LIME
classifier contained 111 ensemble meta classifiers and 1000
base classifiers.
Large four-tier LIME classifiers require a lot of computer

memory to be trained for Big Data, where they can be used
to improve performance. If a data set is small, then the LIME
classifier will revert to using just one base classifier and will
produce the same outcomes as the base classifier. Experimen-
tal results in Section VII below demonstrate that such large
four-tier LIME classifiers are effective if diverse ensembles
are combined at different tiers of the four-tier LIME classifier.
They are specifically designed to handle Big Data.
Theoretically, a LIME classifier generated in SimpleCLI

as shown in Figure 5 can have any number of tiers. Each
of its tiers can have as many classifiers (or ensemble meta
classifiers) as required, since this number is defined by indi-
cating just one command line parameter in SimpleCLI. We
did not investigate n-tier LIME classifiers with n > 4, since
such systems become very large and cannot be trained on our
personal computer used for this study. We hope that a few
years later personal computers will have sufficient memory
for training LIME classifiers with larger numbers of tiers, and

VOLUME 2, NO. 3, SEPTEMBER 2014 357



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Abawajy et al.: Large Iterative Multitier Ensemble Classifiers for Security of Big Data

then the problem of investigating such n-tier LIME classifiers
will be an interesting question for future work.

IV. BASE CLASSIFIERS
The following classifiers available in WEKA [38] were used
as base classifiers in our experiments with outcomes pre-
sented in Section VII: BayesNet, DTNB, FURIA, J48, Multi-
layerPerceptron, NNge, RandomForest, SMO, and SPegasos.
These robust classifiers were chosen since they represent
most essential types of classifiers available in WEKA [38].
BayesNet implements a Bayesian network based on condi-

tional probability distributions and a network structure.
DTNB creates a hybrid of decision table and naive Bayes

classifiers using a forward selection search, where at each
step selected attributes are modelled by a naive Bayes, the
remainder by the decision table, and an option of dropping an
attribute entirely from the model is also considered.
FURIA is a fuzzy unordered rule induction algorithm due

to [39]. It extends the RIPPER algorithm by learning fuzzy
rules instead of conventional rules and learning unordered
rule sets instead of rule lists. At the same time it uses the same
simple and comprehensive rule sets, and applies a novel rule
stretching method. Experimental results show that FURIA
outperforms RIPPER and J48, see [39].
J48 creates a C4.5 decision tree by adding attributes to

the tree as explained in [40]. At every step the feature with
the highest information gain is added. This means that every
next attribute is chosen so that it is best in discriminating
the instances in the training set. The classifier can generate
pruned or unpruned C4.5 trees.
MultilayerPerceptron classifier trains a feedforward arti-

ficial neural network using backpropagation and sigmoid
functions at each node.
NNge is based on a Nearest Neighbour relying on non-

nested exemplars, which are hyperrectangles that can be
viewed as if-then rules, as explained in [41] and [42].
Random Forest builds a forest of random trees by gener-

ating many decision tree predictors with randomly selected
variable subsets and utilizing a different subset of training and
validation data for each of these trees, as explained in [43].
To control the variation in generating the set of random
trees, Random Forest uses the process of random selection
of features proposed in [44]–[46]. After generating many
trees, the resulting class prediction is based on votes from the
trees. The variables are ranked and variables with lower rank
are eliminated based on the basis of empirical performance
heuristics [47]. The structure of random forest is represented
in Figure 2.
SMO is a fast implementation of Support Vector Machines

using Sequential Minimal Optimization. It generates a collec-
tion of hyperplanes in the n-dimensional space that separate
classes of the data best and have large margins, i.e., dis-
tances to the nearest data points in the space, as explained in
[48]–[50].
SPegasos performs the stochastic variant of the primal

estimated sub-gradient solver for SVM (Pegasos) classifier.

We refer to [38] and [51] for more information on these
base mining classifiers and their WEKA implementations.

V. ENSEMBLE META CLASSIFIERS
We used SimpleCLI command line in WEKA [38] to
investigate the performance of the following ensemble meta
classifier AdaBoost, Bagging, Dagging, Decorate, Grading,
MultiBoost and Stacking.
AdaBoost uses several classifiers in succession. Each clas-

sifier is trained on the instances that have turned out more
difficult for the preceding classifier. To this end all instances
are assigned weights, and if an instance turns out difficult
to classify, then its weight increases. We used the highly
successful AdaBoost classifier described in [52].
Bagging (bootstrap aggregating), generates a collection of

new sets by resampling the given training set at random and
with replacement. These sets are called bootstrap samples.
New classifiers are then trained, one for each of these new
training sets. They are amalgamated via a majority vote, [53].,
see also [54] and [55].
Dagging is useful in situations where the base classifiers

are slow. It divides the training set into a collection of disjoint
(and therefore smaller) stratified samples, trains copies of
the same base classifier and averages their outputs using
vote, [56].
Decorate involves constructing special artificial training

examples to build diverse ensembles of classifiers. A com-
prehensive collection of tests have established that Decorate
consistently creates ensembles more accurate than the base
classifier, Bagging, Random Forests, which are also more
accurate than Boosting on small training sets, and are com-
parable to Boosting on larger training sets, [57].
Grading trains base classifiers and grades their output

as correct or wrong; these graded outcomes are then com-
bined, [58].
MultiBoost extends the approach of AdaBoost with the

wagging technique, [59]. Wagging is a variant of bagging
where the weights of training instances generated during
boosting are utilized in selection of the bootstrap sam-
ples, [60]. It is explained in [59] that experiments on a large
and diverse collection of UCI data sets have demonstrated that
MultiBoost achieves higher accuracy significantly more often
than wagging or AdaBoost.
Stacking can be regarded as a generalization of voting,

where meta-learner aggregates the outputs of several base
classifiers, [61].
Let us refer to [38] and [51] for more information on these

ensemble meta classifiers and their WEKA implementations.

VI. FEATURE EXTRACTION
The aim of this paper is to develop new LIME classifiers
for analysis of Big Data. To facilitate the creation and pre-
processing of the dataset, we do not introduce any new and
sophisticated feature selection techniques and use simple and
standard static features well known in the malware detec-
tion area. Generally speaking the collection of static features
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can be bypassed by obfuscation techniques. However, they
remain widely used for malware detection and classifica-
tion, since they can save processing time and can be applied
when malware has only attempted to enter the system and
has not been executed yet. For the purposes of our research
additional changes to static features created by obfuscation
can be regarded as an advantage, because considering new
obfuscated versions of the same malware in a dataset as
separate different instances of malware enriches the data and
makes data more suitable for testing methods designed for
Big Data.

In our experiments we used the byte sequences, or
n-grams. They are sequences of n bytes read from an exe-
cutable file to be classified. It is well known in the literature,
that n-grams produce efficient static features for malware
detection (cf. [62]–[64]). We applied the same method of
feature extraction proposed in [65]. It uses TF-IDF scores to
rank n-grams and reduce the number of sequences chosen as
features.

The present article investigates a novel method for improv-
ing performance of the classifiers, and we did not attempt
to extract more sophisticated collections of features. The
extraction of features is very important for applications, for
example, see [27] and [66], but it is not the main focus of the
present article.

Since this paper concentrates on the contribution of four-
tier LIME classifiers, for the purposes of this work, we
extracted only a simple collection of the features. Our new
experiments used simple features in a data set of malware
from the industry partners of our laboratory, collected from
the honeynet [67] and VH Heavens [68].

Following [65] and [69], we used term frequency–inverse
document frequency sequence weights, or TF-IDF weights,
to select n-grams in order to reduce the number of features.
These weights are defined using the following concepts and
notation (see [70] for more details).

Suppose that we are extracting features from a data set E ,
which consists of |E| instances of malware and cleanware.
For a sequence w and a instance of malware or cleanware m,
let N (w,m) be the number of times w occurs in m. Suppose
that a collection T = {t1, . . . , tk} of terms t1, . . . , tk is being
looked at. The term frequency of a word w ∈ T in a instance
of malware or cleanware m is denoted by TF(w,m) and is
defined as the number of times w occurs in m, normalized
over the number of occurrences of all terms in m:

TF(w,m) =
N (w,m)∑k
i=1 N (ti,m)

(1)

The document frequency of the word w is denoted by DF(w)
and is defined as the number of instances of malware and
cleanware in the given data set where the sequence w occurs
at least once. The inverse document frequency is used to
measure the significance of each term. It is denoted by IDF(w)
and is defined by the following formula

IDF(w) = log
(
|E|

DF(w)

)
. (2)

The term frequency–inverse document frequency of a word w
in instance ofmalware or cleanwarem, or TF-IDFweight ofw
in m is defined by

TF-IDF(w,m) = TF(w,m)× IDF(w,m). (3)

VII. EXPERIMENTS EVALUATING PERFORMANCE
Our experiments are devoted to evaluating the performance of
LIME classifiers for the detection of malware using big data.
It is critically important to conduct experiments and assess

various classification schemes for processing of Big Data in
particular areas. The outcomes of such experiments can be
used to improve the performance of future practical imple-
mentations and can contribute to assessing further steps for
future research. The performance of a classifier cannot be
predicted on a purely theoretical basis. For any classifica-
tion scheme that is able to produce very good outcomes in
a specialised domain, there always exist other areas where
different methods may turn out more effective. There are
even theoretical results, known as ‘‘no-free-lunch’’ theorems,
which imply that there does not exist a single algorithm that
performs best for all problems [71].
We used 10-fold cross validation to evaluate the effective-

ness of classifiers in all experiments. The following measures
of performance of classifiers are often used in this research
direction: precision, recall, F-measure, accuracy, sensitivity,
specificity and Area Under Curve also known as the Receiver
Operating Characteristic or ROC area.
Notice that weighted average values of the performance

metrics are usually used. This means that they are calculated
for each class separately, and a weighted average is found
then. In particular, our results included in this paper deal
with the weighted average values of precision. In contrast, the
accuracy is defined for the whole classifier as the percentage
of all instances classified correctly, which means that this
definition does not involve weighted averages in the calcu-
lation. Precision of a classifier, for a given class, is the ratio
of true positives to combined true and false positives.
Sensitivity is the proportion of positives (malware) that

are identified correctly. Specificity is the proportion of neg-
atives (legitimate software) which are identified correctly.
Sensitivity and specificity are measures evaluating binary
classifications. For multi-class classifications they can be also
used with respect to one class and its complement. Sensitivity
is also called True Positive Rate. False Positive Rate is equal
to 1 - specificity. These measures are related to recall and
precision. Recall is the ratio of true positives to the number of
all positive samples (i.e., to the combined true positives and
false negatives). The recall calculated for the class of malware
is equal to sensitivity of the whole classifier.
All tables of outcomes in this paper include the Area Under

Curve, AUC. For a given class, AUC is an area under the ROC
graph that plots true positive rates for this class against false
positive rates for a series of cut-off values. Equivalently, the
ROC graph can be defined as a curve graphically display-
ing the trade-off between sensitivity and specificity for each
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cut-off value. The values of AUC belong to the range between
0.5 and 1, where 1 corresponds to perfect results, 0.5 is the
worst possible value, and larger values of AUC correspond to
better predictability of the classes.

In our experiments we used SimpleCLI in WEKA [38] to
generate and execute all classifiers. AUC is a very well known
measure of performance of classifiers and it is included in
the standard output of all classifiers in WEKA produced in
SimpleCLI.

First, we include the results of experiments comparing
the performance of several base classifiers for malware. The
results obtained for base classifiers are presented in Figure 8.
Random Forest outperformed other base classifiers for the
malware data set.

FIGURE 8. AUC of base classifiers for security of big data.

Second, we include the results of experiments comparing
standard ensemble classifiers in their ability to improve the
outcomes. We compared AdaBoost, Bagging, Dagging, Dec-
orate, Grading, MultiBoost and Stacking based on Random
Forest. AUCs of the resulting ensemble classifiers are pre-
sented in Figure 9, which shows improvement as compared to
the base classifiers. In these tests all ensemble meta classifiers
were used with one and the same base classifier, Random
Forest, in all tests.

FIGURE 9. AUC of ensemble classifiers for security of big data.

Next, we include the results of experiments evaluating
three-tier LIME classifiers. This is themain topic of the paper.

These experiments included all combinations of Bagging,
Decorate and MultiBoost, since these ensemble meta classi-
fier produced better AUC in Figure 9. We have not included
repetitions of the same ensemble meta classifier technique
in both tiers, since tests have shown that such combinations
do not produce improvement. The outcomes of the three-
tier LIME classifiers are presented in Figure 10. A part of
command generating one of these multi-level ensembles in
SimpleCLI is shown in Figure 5.

FIGURE 10. AUC of three-tier LIME classifiers for security of big
data.

Finally, we include the results of experiments evaluating
four-tier LIME classifiers. This is the main topic of the paper.
These experiments included the four best combinations of
three-tier LIME classifiers from Figure 10 improved using
AdaBoost, Bagging, Decorate and MultiBoost at the top tier.
The best outcomes of four-tier LIME classifiers are presented
in Figure 11. The figure does not included repetitions of
the same ensemble meta classifier technique in both tiers,
since tests have shown that they do not produce further
improvement.

VIII. DISCUSSION
Our work shows that large four-tier LIME classifiers are quite
easy to use and can be applied to improve classifications, if
diverse ensemble meta classifiers are combined at different
tiers. It is an interesting question for future research to inves-
tigate LIME classifiers for other large datasets.
Random Forest outperformed other base classifiers for the

malware data set, and Decorate improved its outcomes better
than other ensemble meta classifiers did. The best outcome
of AUC 0.998 was obtained by the four-tier LIME classifier
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FIGURE 11. AUC of four-tier LIME classifiers for security of big
data.

where MultiBoost was used at the fourth tier, Decorate was
used at the third tier and Bagging was applied at the second
tier.

The performance of ensemble meta classifiers considered
in this paper depends on several numerical input parameters.
In all experiments we used them with the same default values
of these parameters in order to have a uniform equivalent
comparison of outcomes across all of these ensemble meta
classifiers.

IX. CONCLUSION
We introduced and investigated four-tier LIME classifiers
originating as a contribution to the general approach consid-
ered by many authors. We obtain new results evaluating per-
formance of such large four-tier LIME classifiers. These new
results show, in particular, that RandomForest performed best
in this setting, and that novel four-tier LIME classifiers can
be used to achieve further improvement of the classification
outcomes. The four-tier LIME classifiers based on Random
Forest achieved better performance compared with the base
classifiers or simpler ensemble meta classifiers. The four-tier
LIME classifier with MultiBoost at the fourth tier, Decorate
at the third tier and Bagging at the second tier obtained the
best outcome with AUC 0.998.

We carried out a systematic investigation of new
automatically generated four-tier LIME classifiers, where
diverse ensemble meta classifiers are combined into a uni-
fied system by integrating different ensembles at the third
and second tiers as parts of their parent ensemble meta
classifiers at the higher tier. Our experiments evaluated the
performance of these large four-tier LIME classifiers for a
data set of malware and have demonstrated the feasibility
and performance of the approach. The experimental out-
comes show that four-tier LIME classifiers can be used to
improve classifications. They are effective if diverse ensem-
ble meta classifiers are combined at different tiers of the
LIME classifier. They have made significant improvements
to the performance of base classifiers and standard ensemble
meta classifiers.
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