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ABSTRACT In this paper, a reinforcement learning-based throughput on demand (ToD) provisioning
dynamic power management method (RLTDPM) is proposed for sustaining perpetual operation and
satisfying the ToD requirements for today’s energy harvesting wireless sensor node (EHWSN). The
RLTDPM monitors the environmental state of the EHWS and adjusts their operational duty cycle under
criteria of energy neutrality to meet the demanded throughput. Outcomes of these observation-adjustment
interactions are then evaluated by feedback/reward that represents how well the ToD requests are met;
subsequently, the observation-adjustment-evaluation process, so-called reinforcement learning, continues.
After the learning process, the RLTDPM is able to autonomously adjust the duty cycle for satisfying the ToD
requirement, and in doing so, sustain the perpetual operation of the EHWSN. Simulations of the proposed
RLTDPM on a wireless sensor node powered by a battery and solar cell for image sensing tasks were
performed. Experimental results demonstrate that the achieved demanded throughput is improved 10.7% for
the most stringent ToD requirement, while the residual battery energy of the RLTDPM is improved 7.4%
compared with an existing DPM algorithm for EHWSN with image sensing purpose.

INDEX TERMS Reinforcement learning, wireless sensor node, energy harvesting, energy neutrality,
dynamic power management, throughput on demand.

I. INTRODUCTION
POWER-aware computing for the sustained operation of
handheld devices has become one of the primary con-
cerns of embedded systems design due to the increasing
popularity of battery-powered portable and wearable com-
munication devices. Dynamic power management (DPM),
an energy utilization technique [1]–[3] for adaptively con-
trolling components’ power states by trading off perfor-
mance while reducing energy consumption, is considered
critical in power-aware embedded system design. Today,
DPM for embedded systems powered by a renewable
energy source, such as energy harvesting wireless sensor
node (EHWSN), presents yet another challenge not only for

power-aware design, but also for sustainable operation for
embedded systems. Recent studies of DPM for energy har-
vesting embedded systems [5]–[10] have concentrated on
how to adaptively and effectively utilize harvested energy
for perpetual operation while maximizing system perfor-
mance under such a nondeterministic energy harvesting
environment. In [5] and [6], Kansal et al. proposed a
harvesting theory for energy harvesting embedded sys-
tems, especially for wireless sensor nodes, and suggested
that under conditions of energy neutrality, i.e., the con-
sumed energy is less than or equal to the harvested energy,
perpetual operation of a sensor node could be achieved.
A dynamic duty cycling adaption (DDCA) method [7]
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was then proposed to decrease the duty cycle of the sen-
sor node in times of low harvested energy, and increase
the duty cycle when the harvested energy is high for
energy neutral operation. An approximate multi-parametric
programming algorithm was proposed in [8] for the adap-
tive power management of an energy harvesting embed-
ded system. Similar to computer system design, reliability
[9], [10] and quality of service (QoS) [11]–[14] are the
two major concerns in designing power management for
embedded systems, such as a WSN. Basically, meeting QoS
requirements and reducing energy consumption are opposite
in nature; most DPM methods have emphasized minimiz-
ing energy consumption or maximizing system lifetime in
satisfying certain required QoS criteria, such as throughput.
Because many different applications in WSN exist, their
QoS requirements will vary [15]. In [16], the authors sug-
gested using measurements of throughput, latency, reliability,
security, adaptability, and affordability to define QoS for
wireless industrial sensor networks. In the present study, the
QoS requirement of concern is the query-driven throughput-
on-demand (ToD) from the sink node for a sensor node.
In other words, we investigate the data volume a sen-
sor node collects and transmits to the sink node within
a sensing period, which results from the exercised duty
cycle of the sensor node within a predetermined sensing
period.

Research into applying intelligent and machine learning
methods for power management has only been considered
recently [17], [18], with our earlier studies [19]–[21] being
among those specifically targeting the area of DPM for energy
harvesting embedded systems. In this study, a reinforcement
learning [22] (RL)-based ToD provisioning dynamic power
management method, named RLTDPM, is proposed for the
perpetual operation of an EHWSN. The framework of our
study is analogous to the MDP in [14]; however, the problem
affecting ToD provision power management is solved using
on-line reinforcement learning instead of dynamic program-
ming. In the RL framework, a learner, referred to as an agent,
interacts with the environment and autonomously determines
required actions; and then, is rewarded by the reward function
to respond to different environmental states. In the RLTDPM,
after observing the environmental states of the harvesting
system, the RLTDPM agent determines the operational duty
cycle of a sensor node and receives a reward by the rewarding
function. By receiving rewards, the RLTDPM is encouraged
to select (state, action) pairs with positive rewards; hence,
a series of actions, receiving with positive rewards, is gen-
erated iteratively such that a (state, action) pair selection
strategy is gradually achieved after the learning phase. Via the
RLTDPM, the EHWSN is capable of autonomously adjusting
the appropriate duty cycle to simultaneously maintain energy
neutrality and satisfy the given ToD requirement for perpetual
operation of the EHWSN.

This paper extends our earlier studies [20], [21] with
formally derived rewarding functions designed specifically
for EHWSN, a refined occurrence pattern for the ToD

requirement, and comprehensive simulations. The major
contributions of this paper are:
• A reinforcement learning-based ToD provisioning
dynamic power management method, RLTDPM, for
sustaining perpetual operation of EHWSN, which is
novel in the area of sustainable computing for EHWSN.

• Reward functions depending on the degree of energy
neutrality and current battery storage levels with sigmoid
and Mexican hat shapes, enabling autonomous learning
of RLTDPM to maintain energy neutrality for sustaining
perpetual operation of EHWSN.

• RLTDPM not only achieves energy neutrality, but
also ToD provisioning by incorporating the correlation
between the required and provided throughput in design-
ing the reward strategy to meet the ToD requirements in
data gathering.

• Comprehensive experimental results exhibit the advan-
tage of the RLTDPM in self-learning and self-adapting
to seasonal changes of the harvested energy for sustain-
ing perpetual operation of EHWSN.

II. SYSTEM MODEL
In this paper, dynamic power management for EHWSN is
approached by first defining an appropriate systemmodel and
introducing the energy neutrality theory; then, the ToD pro-
visioning dynamic power management method is formulated
for EHWSN.

FIGURE 1. System model of ToD provisioning power
management method for the energy harvesting sensor node.

A. SYSTEM MODEL OF EHWSN
Figure 1 shows the system model of the EHWSN. On the
right side of the figure is the hardware layer, which consists
of the harvesting energy source, energy storage unit, and
energy consumption entity. In this model, an uncontrolled
but predictable solar energy source is considered. Although
the solar energy is uncontrolled, its behavior is subject to
diurnal and seasonal cycles that can be modeled. The energy
storage unit is charged by the harvesting energy source with
a charging efficiency ξ , where 0 < ξ < 1, with some energy
lost through leakage. The energy consuming entity, the sensor
node, consumes different levels of energy from the energy
storage unit by exercising its demanded mode of sensing
operations and transmitting the sensed data per the ToD
request from the sink node. In a typical sensor node, the sens-
ing and transmission of sensed data each consume far more
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energy than other operation modes such as standby, receiving
demand, and acknowledgement to the sink node. In this
study, energy consumed from both sensing and transmitting
the sensed data is considered as the dominating activity of
the energy consuming entity, and is duty cycle adjustable
with upper and lower bounds. The energy consumed from
standby, receiving demands and acknowledgement to the sink
node is accommodated in the lower limit of the duty cycle.
The energy management unit (EMU), shown in the left part of
Fig. 1, receives observable environment signals of the sensor
node’s energy consumption, energy provided by the energy
harvesting source, residual energy of the energy storage unit,
and the requested ToD signal, which are respectively denoted
as enode, eharvest, eb, and dToD, and shown in dashed lines.
Moreover, the EMU decides the duty cycle of the energy
consuming entity according to its management strategies.

B. THE ENERGY-NEUTRAL OPERATION OF EHWSN
In contrast with a battery-powered sensor node, when the
battery is exhausted in an EHWSN, it will operate again
at the next energy harvesting opportunity. Hence, the con-
cept of energy-neutral operation is addressed for situations
in which the energy consumed by the EHWSN system is
less than the energy harvested from the environment [7].
Consider a harvesting system where the energy harvesting
and energy consuming profiles, respectively, are character-
ized by (ρ1, σ 1, σ 2) and (ρ2, σ 3) functions, while the energy
storage is characterized by charging efficiency, ξ , and leakage
ρleak,. In such a case, the following conditions are sufficient
for the system to achieve energy-neutrality [7]:

ρ2 ≤ ξρ1 − ρleak (1)

B0 ≥ ξσ2 + σ3 (2)

B ≥ B0 (3)

where ρ1 and ρ2, are the average rates of the entity’s
energy source harvesting and energy consumption, respec-
tively, over long durations; the burstiness of harvesting
energy is bounded by σ 1 and σ 2, where σ 3 is the lower
bound of the burstiness of the energy consuming entity; and,
B and B0, respectively denote the capacity of and the initial
energy stored in the energy storage. According to [7], to
ensure energy neutral operation, the first step is to obtain the
parameters characterizing the energy harvesting and energy
consumption of the entity such that the performance levels
for perpetual operation can be determined using (1)–(3). The
energy management scheme then attempts to adjust the per-
formance level, i.e., ρ2, to respond to temporal variations in
harvested energy and minimize energy wastes, such as charge
inefficiency and leakage. In this study, without knowing the
exact parameters characterizing the harvesting energy source
and the energy consuming entity, the proposed RLTDPM
with designed reward function learns autonomously from
the observable environment variables and adjusts the duty
cycle of the energy consuming entity to respond to temporal
variations in realizing sustainable operation of the EHWSN.

III. THE PROPOSED METHOD
Suppose the time axis is discretized into slots of duration
1T, and the energy management strategy is carried out over
a window of T time slots. The observable environment vari-
ables are defined with the index i ranging over {1, . . . ,T} as
follows:
• d(i): the controlled and exercised duty cycle used in slot
i for the sensor node, value of which is to be controlled
and determined by the DPM strategy.

• enode(i): energy consumption of the sensor node in the ith

slot. Without loss of generality, enode(i) can be written as

enode(i) = d(i)Es (4)

where Es is the energy consumed for full duty cycle.
• eharvest(i): the energy supplied by the energy harvesting
source in slot i. Total energy within T sensing time
slots represents the accumulation of energy at each time
slot as

etotalHarvest =
∑
∀i∈T

eharvest(i) (5)

• ∆eneutral(i): the deviation from energy neutrality in slot i.
∆eneutral(i) can be used in evaluating the degree to which
energy neutrality is achieved, and can be obtained by

1eneutral(i) = eharvest(i)− enode(i) (6)

• eb (i): the residual energy of the energy storage unit in
slot i. eb (i) can be calculated by

eb(i) = eb(i− 1)+ eharvest(i)− enode(i)

= eb(i− 1)+1eneutral(i) (7)

where eb (i− 1) is the residual energy of the (i− 1) time
slot.

• dToD(i): the requested ToD signal, which, depending on
the sensor’s application, is defined by different operation
levels as

dToD(i) ∈ Q = {q0, q1, . . . , qn−1} (8)

where Q is the space of the required ToD levels, for all
qi, qj ∈ Q, qi < qj for i < j, and, no ToD is required
when q0 = 0.

As mentioned, the EMU receives the observable environment
variables of enode(i), eharvest(i), eb(i), and dToD(i) at each
sensing period and decides the operational duty cycle, d(i),
to be exercised according to the RLTDPM, as described in
the following.

A. REINFORCEMENT LEARNING
Reinforcement learning (RL) is a heuristic learning method
[22] that has been applied in many different areas, such
as agent society systems, power management for embedded
systems [20], robot control [23]–[25], and image processing
[26], etc. In RL, there is a decision-making agent, termed the
RL agent, which observes the environment states, S, takes
actions, A, and receives rewards, r, for its actions in trying to
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FIGURE 2. Diagram of RL agent’s interaction with the
environment.

solve a problem in an environment, as shown in Fig. 2. After a
certain amount of trial-and-error steps, the RL agent learns the
best policy, which is the sequence of actions that maximizes
the total reward. For unknown environments, the RL agent
continuously counts rewards during the early learning phase,
with the optimized policy being obtained when learned. In the
beginning of the learning process, the RL agent is unable to
decide the most appropriate action; as such, an exploration
strategy is used to select the action that provides the highest
reward for each state. After the agent has learned, an exploita-
tion strategy is then adopted for deciding the action offering
the highest reward and probability on certain states. For action
selection, the soft-max function [22] is often utilized as the
exploration-exploitation strategy in most applications. In the
case of a nondeterministic environment or state transition
model, where the transition probability is unknown or uncer-
tain, a particular action for the next state cannot be decided
precisely by observing the current state. In such a case,
the Q-learning algorithm is frequently utilized to calculate
the accumulative reward and decide the best policy [22].
In Q-learning, the accumulative reward, Q(s, a), is a function
of state, s, and action, a, and the agent iteratively updates the
Q-values of Q(s, a) using the equation below,

Q(st,at ) := (1−η)Q(st,at )+η
[
rt+1+γ max

∀at+1∈A
Q(st+1,at+1)

]
(9)

where Q(st , at ) is the accumulative reward at state s and
an action a taken at time t; rt+1 is the reward obtained by
taking action at and then making the transition from state st
to state st+1; and, the parameters η and γ , respectively, are the
learning factor and discount rate with values between 0 and 1.
The learning factor, η, as normally used in the delta rule,
controls the convergence speed of the learning, the value of
which is gradually decreased in time for the best convergence.
The discount rate, γ , is used to weight near-term rewards
more heavily than distant future rewards. More specifically,
the closer γ is to 1, the greater the weight of future rewards;
however, if γ is 0, only the immediate reward counts. As
normal, the Q-values are stored in a Q-table as a reference
for the agent to determine the next action.

B. THE RLTDPM FOR THE EHWSN
In the RLTDPM, the agent receives the observable environ-
mental signals of enode(i), eharvest(i), eb(i) and dToD(i), formu-
lated as a state vector, and adaptively decides and executes the
desired operational duty cycle d(i), characterized as action.

After the selected action is executed, a reward signal, r(i), is
calculated and granted to the agent; and accordingly, the agent
then evaluates the performance of the state-action interaction,
i.e., learning. By receiving rewards, the agent is encouraged
to select the action with the best reward. This leads to a series
of actions with the best rewards being iteratively generated
such that better power management performance is gradu-
ally achieved after the learning phase. The state, action, and
reward of the RLTDPM for the energy harvesting sensor node
are sequentially defined in the following:
States: In RLTDPM, the state vector is denoted as

S = [SD, SH, SB, SToD] ⊆ S (10)

where S is the space of all possible environmental state vec-
tors with elements transformed from the environment vari-
ables, while SD, SH, SB, and SToD respectively represent the
state of distance to energy neutrality, the state of harvested
energy, the state of energy storage level, and the state of the
required ToD of the sensor node at any time slot. SD is defined
as the difference between eharvest(i) and enode(i), as below

SD∈{1eneutral(i)|1eneutral(i)=eharvest(i)−enode(i),1≤ i≤T }

(11)

SH is obtained by normalizing the harvested energy with the
maximum harvested energy, calculated by

SH ∈ {Sh(i)|Sh(i) =
eharvest(i)
emaxharvest

× 100%, 1 ≤ i ≤ T } (12)

where emaxharvest is the maximum harvested energy according
to [10]. SB, the state of current energy storage, is defined by
normalizing the value of the current energy storage with the
maximum capacity of the energy storage, denoted as EB, as

SB ∈
{
Sb(i)|Sb(i)=

eb(i)
EB
× 100%, 1≤ i≤T

}
(13)

The requested ToD of the sensor node is usually demanded
by the sink node [16]. The state of the requested ToD, SToD, is
defined according to different degrees of required throughput,
as the following

SToD ∈ Q(i) =
{
q0, q1, . . . , qj, . . . , qn−1

}
(14)

where Q(i) is the requested ToD in any time slot i, and, with
a larger j, qj means that a higher throughput is required.
Actions: The action of the RLTDPM agent is defined as
the controllable variable of operational duty cycle, d(i), of
the EHWSN, and the state of the agent’s action, Adc, is
denoted by

Adc ∈ A = {d0, d1, . . ., dmax} (15)

where A is a set of all the sensor node’s controllable oper-
ational duty cycles with a maximum value of dmax. Hence,
an action with a higher value means a higher operational
duty cycle is assigned to the sensor node to satisfy the ToD
requirement; in such a case, more energy is consumed during
data sensing.
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Rewards: In RLTDPM, rewards are incorporated to accom-
plish the goals of maintaining energy neutrality and
autonomously satisfying the EHWSN’s ToD requirement. For
a sensor node without an energy storage unit, the deviation
from energy neutrality, ∆eneutral(i), should be greater than or
equal to 0 to maintain energy neutral operation. For a sensor
node with an energy storage unit, the immediate reward,
denoted as r , can be intuitively defined as a function of
∆eneutral(i) and the current energy storage level eb(i)/EB in
any time slot, as in the following

ri+1 =
(
1− 2

eb(i)
EB

)
·
1eneutral(i)
emaxharvest

(16)

where EB indicates the energy storage capacity. ∆eneutral(i)
should be large and positive when the residual energy in the
storage unit is low, i.e., smaller eb(i)/EB, such that ∆eneutral(i)
can be transferred to the storage unit for later use. On the
other hand, when eb(i)/EB is very high, ∆eneutral(i) should be
large and negative to prevent overcharging the energy storage
unit. However, (16) is a nonlinear function of ∆eneutral(i)
and eb(i)/EB with singularity at e b(i) = 0.5 EB. Hence,
to overcome the reward function shortcomings of (16), the
sigmoid andMexican hat type of reward functions are defined
with dependence on ∆eneutral(i) for high, low, and moderate
energy storage levels, respectively, as below

ri+1=


k1
(

2
1+e−k21eneutral(i)

− 1
)
,

eb(i)
EB
∈ low state

k1
(

2
1+ek21eneutral(i)

− 1
)
,

eb(i)
E B
∈ high state

k1
(

8
(1+e−k21eneutral(i))(1+ek21eneutral(i))

−1
)
,otherwise

(17)

where k1 and k2, respectively control the amplitude and slope
of the sigmoid and Mexican hat functions. The designed
reward functions can be seen in Fig. 3, where k1 and k2 are
assigned with 2 and 2.20. In (17), a large reward is granted
to larger positive/negative ∆eneutral(i) when the energy stor-
age level is correspondingly low/high to maintain energy
neutrality; however, in the opposite case, where larger pos-
itive/negative ∆eneutral(i) occurs when the energy storage
level is high/low, a punishment is applied to avoid over-
charging/deep discharge. On the other hand, when the energy

FIGURE 3. Designed reward function for the RLTDPM.

storage level is moderate, rewarding should gradually reach a
maximum when ∆eneutral(i) is close to zero.
Rewards with requested ToD: To satisfy the ToD require-

ments, a positive reward is granted to the RLTDPM agent if
the agent’s action d(i) meets Q(i) in any time slot; otherwise,
no reward is given. A simple reward function could be intu-
itively defined as

ri+1 = δ(d(i),Q(i)) (18)

where δ(•) is the Kronecker delta function. However, it is
very rare for the agent’s action to be exactly the same as
the required throughput in any time slot; as such, to obtain
better learning results, a negative reward might explicitly
represent punishment compared with a zero reward for the
agent’s failure in meeting the ToD requirement. Hence, (18)
can be relaxed as the required ToD is met if d(i) = Q(i) in any
time slot and generalized by utilizing negative rewards when
these ToD requirements are not met, as below

ri+1 =

{
k3δ(di, qi), di ⊆ qi
−k4, otherwise

(19)

where k3 and k4, respectively denote weighting factors in
maximizing the difference between reward and punishment
for better learning.When no ToD requirement is presented for
the sensor node in any time slot, that is SToD = q0 = 0, the
reward function defined in (17) for energy neutral operation is
used instead. Alternatively, the reward function in satisfying a
ToD request depends on the degree of correlation between the
required ToD request and the agent’s action, where a positive
reward is granted when the agent’s action meets the required
ToD level, i.e., positive correlation, while negative rewards in
monotonic decreasing fashion are granted otherwise. In the
RLTDPM experiment, to decrease the computational com-
plexity of on-line learning for an EHWSN, the reward func-
tions of (19) are simplified with efficient lookup tables. The
reward table for the experiment is elaborated in V.

In this study, solar energy is used as the energy harvesting
source, the harvested energy strength of which fluctuates
according to the sun’s position on a diurnal basis. Hence, a run
for the execution of the RLTDPM is defined as the duration of
one day. The algorithm for the RLTDPM is shown in Fig. 4.

FIGURE 4. The RLTDPM algorithm for the EHWSN.
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IV. CONFIGURATIONS OF EXPERIMENT
Validation of RLTDPM effectiveness in maintaining energy
neutrality for sustaining perpetual operation and satisfying
the ToD requirements of EHWSN was conducted via two
computer simulated experiments. A basic experiment was
performed to determine whether RLTDPM could achieve
the energy neutrality criterion; then, an advanced exper-
iment examined whether RLTDPM satisfies the different
ToD requirements. Configurations of the experiments are
described in the following.

A. ENVIRONMENT CONFIGURATION FOR EHWSN
In this study, the available harvested energy source is the
sun, and the intensity of sunlight and the solar energy con-
verted from the sunlight, are respectively calculated using
the incidence and azimuth angles of sunlight [27], [28] and
the ideal solar energy equation [29]. The intensity of sun-
light from sunrise to sunset diminishes according to a nor-
mal distribution of 0.5 mean and 0.1 variance on a diurnal
basis, i.e., with the peak value at noon, while the probability
of sun occultation is assumed to be 0.25 to accommodate
weather conditions such as occasional cloudy and seasonal
rainy days, etc. Fig. 5 shows harvested power generated
from 4 BR-160334C solar cells [30] in parallel. In particular,
Fig. 5(a) shows the recorded solar cell output for 7 days,
starting from the beginning of the spring equinox. Fig. 5(b)
shows the recorded solar cell daily output for 90 days over
4 seasons, which started from the beginning of the spring

FIGURE 5. Graphs of harvested power from the solar cells: (a) for
the first seven days; (b) daily average over 4 seasons.

equinox, the summer solstice, the autumn equinox and the
winter solstice. The average harvested power, ρ1, within the
seven days can be calculated from Fig. 5(a), and found to
be about 150mW. The total harvested energy of a day, σ2,
is obtained using ρ1 as 12,960J. The sensor node adopted in
this study was the MICAz mote [31], which operates at 3.4V
with an image sensor [32] and consumes amaximumpower of
396mW including the accommodated overhead, such as CPU
power on/off, dissipation, etc. The initial battery capacity,
B0, can hence be calculated by (1), (2), and (3), and yields
1100mAH. Taking leakage, and battery aging and degrada-
tion from multiple charge-discharge cycles into considera-
tion, a full battery capacity of 2000mAHwas adopted; hence,
three 2000mAH AA-sized NiMH rechargeable batteries in
series were provided for the EHWSN with image sensing
purpose.

B. CONFIGURATION FOR THE BASIC AND
ADVANCED EXPERIMENT
For the basic experiment, the environment state of distance to
energy neutrality, SD, is defined as being either in a negative,
neutral, or positive state, which respectively represents that
the consumed energy is larger than, equal to, or smaller
than the harvested energy. The state of harvested power,
SH, comprises three states, with each respectively represent-
ing that the harvested power is in the ranges of 0–70mW,
70–315mW, or 315–700mW. The state of current battery
energy, SB, consists of low, moderate, and high states, which
respectively represent 0–40%, 40–60% and 60–100% of
full storage capacity. Four actions of the agent’s exercised
duty cycle are defined: 0%, 35%, 60%, and 100% sensor
node duty cycle with the corresponding power consumed
by the sensing node being 0mW, 139mW, 238mW, and
396mW, respectively. The basic experiment’s reward rule for
the RLTDPM is defined in Table 1, which is a simplified
form of the reward function in (17) by applying a hard-
limiting operation to the waveform in Fig. 3. Taking the
moderate residual battery energy level as an example, when
the deviation from energy neutrality is around 0, a reward
value of 2 is provided, while a negative reward value of −2
is given for other cases. Table 1 also shows the different
rewards given to the different ranges of deviation from energy
neutrality under different states of current battery energy.
For example, a higher positive distance to energy neutral-
ity has no benefit in maintaining neutrality if the current
battery energy is high, as in the second row, which also

TABLE 1. Reward rule of RLTDPM without ToD.
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may lead to overcharging and damage the battery. Hence, a
positive deviation from energy neutrality that continues to
widen obtains a negative reward when a high state of current
battery energy exists. On the other hand, at a high stor-
age state, a negative distance to energy neutrality should be
encouraged with positive rewards to increase the duty cycle
and consume more power.

The advanced experiment is conducted to test whether the
RLTDPM can maintain energy neural operation and satisfy
the ToD requirement simultaneously. In a query-driven wire-
less sensor network, the ToD requirement for sensor node data
sensing is usually requested by the base station or the sink
node [20]. For an EHWSNwith an image sensing task, such as
industrial streaming surveillance video, different throughputs
might be required from the sink node under different circum-
stances. For instance, in any time slot, the sink node might
request the EHWSN to collect data with a throughput of 50%;
as a consequence, the node will operate the image sensor at a
50% duty-cycle to accomplish the image sensing task under
the requested ToD. In this manner, the RLTDPM shall be able
to realize the goal of energy neutrality for the perpetual oper-
ation of an EHWSN and concurrently satisfies the requested
ToD. In this study, the state of required ToD level, SToD, is
defined as

SToD ∈ Q = {low,medium, high} (20)

where a low, medium, or high state of required ToD level
in a given time slot represents the requested sensing duty
cycle falling within the ranges of 5%–40%, 40%–70%, and
70%–100%, respectively. For experiment purposes, three
occurrence patterns of the requested ToD – sparse, moderate,
and intensive – are designed and generated according to
Table 2 as below

TABLE 2. Occurrence patterns of the required throughput.

The occurrence pattern of the next required ToD is
determined by the normally distributed expected next
ToD-required time slot with a combination of the probabil-
ities of three different required ToD durations, namely, low,
medium, and high. Whenever the requested low, medium,
or high required ToD duration is presented, the sensor node
is required to operate at a duty cycle at or higher than the
required ToD for the upcoming one, two, and three time
slots, respectively. As an example, the sparse occurrence

pattern in the second column of Table 2 means that the next
ToD-required time slot will arrive on average after 8 time slots
with a variance of 1.5 time slots, and that the probability of
requesting low, medium, or high required ToD durations is
0.7, 0.2, and 0.1, respectively. The state of exercised duty
cycle, i.e., the action of the RLTDPM agent, is defined as
zero, low, moderate, or high, which represents that the exer-
cised duty cycle falls within ranges of 0%–5%, 5%–40%,
40%–70%, and 70%–100%, respectively. The reward rule
for the RLTDPM, in conducting the advanced experiment
with required ToD, is defined in Table 3. This reward rule
is an extension of the reward rule of (19) and takes into
consideration the degree of correlation between the exercised
duty cycle and the required ToD level. The reward rule gives
a positive reward when the RLTDPM exercised duty cycle
matches the required ToD level, i.e., with positive correlation.
For instance, in the second row of Table 3, when the required
ToD level is low in a time slot, if the exercised duty cycle is
low, which matches the required ToD, a reward of+5 is given
to the agent, while for the others, smaller positive (+2) and
negative (−2, and−4) values are given to the agent according
to the state of the exercised duty cycle. If the required ToD is
absent in any given time slot, the reward rule for the basic
experiment on energy neutrality defined in Table 1 is used
instead.

TABLE 3. Reward rule of RLTDPM for advanced experiment with
required ToD.

C. EVALUATING METRICS FOR THE EXPERIMENT
PERFORMANCE
To compare the performance of the RLTDPM with other
existing algorithms, measurements of residual battery
energy (RBE) and exercised duty cycle (EDC) were recorded
for the basic experiment. The RBE was obtained by measur-
ing the battery’s storage status at the end of each time slot:
the larger the RBE, the better battery utilization the DPM
performed. The length of each time slot was selected as one
hour in the experiment. The EDC of the sensor node is also
considered a meaningful metric and indicates the data sensing
performance at a certain time slot. In conducting the advanced
experiment with required ToD, two other metrics, termed
offset to the required ToD (OTRT) and ToD achievability,
were considered. The OTRT is obtained by subtracting the
power management exercised duty cycle from the required
sensor node duty cycle in any time slot. Once the OTRT
becomes positive in every sensing time slot, the required
ToD is considered met by the power management algorithm;
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however, a larger OTRT also means more power is consumed.
The ToD achievability, AToD, is defined as the following

λOTRT =

{
1, if(OTRT ≥ 0)
0, otherwise

(21)

AToD =

T∑
i=1
λOTRT

T
× 100% (22)

where the ToD achievability is obtained by dividing the num-
ber of time slots with positive OTRT by the total number of
sensing time slots, T , and is represented in percentage form.

V. EXPERIMENTAL RESULTS
For long-term experiment purposes, the experiment time
starts from the spring equinox of one year and continues until
the spring equinox of the following year. For comparison
purposes, the dynamic duty cycle adaptation (DDCA)method
[7] was also employed in the experiments.

A. RESULTS OF BASIC EXPERIMENT
In the simulation, three initial battery energy levels, low,
middle, and high with battery capacities of 20%, 50%, and
80%, respectively, were used as the initial battery conditions.
The state of current battery energy were labeled as low,
moderate, and high, which are defined as the residual battery
falls into the range of 0%-40%, 40%-60%, and 60%-100%
of full capacity. The reward rule for the basic simulation of
the RLTDPM is defined in Table 1. Experimental results for
the first 10 simulated days are illustrated in Fig. 6, where
Figs. 6(a) and (b), respectively show the RBE and EDC. For
the three levels of initial battery energy, the RBEs of Fig 6(a)
first oscillate up and down according to the solar strength
within a day, and finally converge to around 65% of full
capacity at day 10. By examining the EDC results with respect

FIGURE 6. Experimental results of the RLTDPM for the basic
experiment within the first 10 experiment days in terms of
(a) RBE, and (b) EDC.

to RBE for the first 4 days in Fig. 6(b), one can see that for
the low initial battery condition (solid dark line), the EDC
is suppressed by the RLTDPM agent with a lower EDC to
maintain the energy neutral criterion such that the RBE can be
increased. On the contrary, for a high initial battery condition
(dark dashed line), the RLTDPM agent decides to exercise a
larger duty cycle to reduce the RBE and maintain the energy
neutral criterion. By inspecting both Figs. 6(a) and (b), the
RLTDPM demonstrates its ability to adjust the appropriate
duty cycle in data sensing and maintain RBE at a level higher
than 50% after only 4 days of operation for different initial
conditions of battery energy.
Qualitative results of the basic experiment using average

RBE and EDC are shown in Table 4 for the first and second
years. As can be seen from the average RBE and its standard
deviation, given in the second and third rows, respectively,
the average RBEs of the second year are all above 60% with
a standard deviation much lower than those of the first year.
Satisfactory EDCs higher than 50% and 57%, for the first and
second years, respectively, are obtained after continuous oper-
ation of the EHWSN, as shown in the bottom row of Table 4.
This again demonstrates that under long-term operation, the
RLTDPM is able to effectively utilize harvested energy with
satisfactory data sensing capabilities for perpetual operation
of EHWSN.

TABLE 4. Qualitative results of basic experiment using average
RBE and EDC.

B. COMPARISON WITH DDCA ALGORITHM FOR
BASIC EXPERIMENT
To understand how well the RLTDPM performs in compar-
ison with other existing energy neutral-based DPM algo-
rithms on a long-term scale, experimental results of the
RLTDPM are compared with the DDCA method [7] for
the basic experiment, as shown in Fig. 7. Figs. 7(a) and
(b) respectively offer a performance comparison in terms of
RBE and EDC for the RLTDPM and DDCA method both
with an initial battery condition of 50% full capacity and
experiment starting time from the spring equinox for one
year. By examining the results of the DDCA method in
Fig. 7(a), one can see that it slowly increases its RBEs and
reaches a maximum of 76% around day 271, as shown by
the dashed line. By contrast, the RLTDPM, shown in the dark
solid line, quickly reaches its RBE maximum of 86% at day
15 and maintains the RBE within 75–85% of full capacity
afterwards, which falls within the range of the defined high
battery state. In Fig. 7(b), EDC traces of both the RLTDPM
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FIGURE 7. Experimental results of RLTDPM and DDCA methods
in terms of (a) RBE, and (b) EDC for the basic experiment within
one year’s operation.

and DDCA methods exhibit trends of gradual decrease in
response to the seasonal variation of harvested power, as was
illustrated in Fig. 5(b). However, in comparing EDC traces
with respect to the RBEs of Fig. 7(a), it can be seen that the
RLTDPM exercises a more stable duty cycle for data sensing
than the DDCA method, yet obtains higher RBEs than the
DDCA method on most occasions. This indicates that the
RLTDPM achieves better utilization of harvested energy by
adaptively responding to seasonal variations better than does
the DDCA method.

TABLE 5. Qualitative comparison of RLTDPM and DDCA method
for basic experiment.

Qualitative comparisons of the RLTDPM and DDCA
methods for the basic experiment under the aforementioned
variables and conditions are shown in Table 5. Table 5 demon-
strates that both the RLTDPM and DDCA methods achieve
almost the same average EDC, yet the RLTDPM obtains a
7.4% higher increase in average RBE than does the DDCA
method. Statistics again exhibit that the RLTDPM method
ensures more effective and adaptive utilization of harvested
energy compared to the DDCA method. As such, one can

FIGURE 8. Experiment results of RLTDPM method in compared
with DDCA method for the advanced experiment with required
ToD. (a) OTRT, and (b) RBE for moderate ToD requirements for
50 days.

conclude that for EHWSN deployed in remote areas for
wild animal or insect data sensing, the RLTDPM provides a
better energy management mechanism in both utilization of
harvested energy and data sensing in responding to seasonal
changes of solar energy, especially for the spring and summer
time, when the activity of wild animals and insects is high.

C. RESULTS OF ADVANCED EXPERIMENT OF RLTDPM
WITH REQUIRED TOD IN COMPARING WITH DDCA
The advanced experiment was conducted to contrast the
RLTDPM against the DDCA method with a 50% initial bat-
tery condition and spring equinox experiment starting time for
one year to understand how the ToD requirement is satisfied
by the RLTDPM as opposed to the DDCA method in a long-
term scale. Three different occurrence patterns of required
ToD, as described in Table 2, were generated for the advanced
experiment. Fig. 8 shows the results of the advanced experi-
ment with ToD requirement, but for demonstration purposes,
only the experimental results of moderate ToD requirements
are presented. Fig. 8 (a) shows the OTRT of the moderate
required ToD for 51 experiment days starting from the spring
equinox and lasting for a year. By examining Fig. 8 (a), the
resulting OTRTs of the RLTDPM are positive with values
lower than those of the DDCA method for a majority of the
time. This demonstrates that the ToD requirements are better
satisfied by the RLTDPM with smaller EDC than with the
DDCAmethod which consumes less energy. Fig. 8 (b) shows
the RBE for the moderate ToD requirements. By examining
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Fig. 8 (b) with respect to the OTRT of Fig. 8 (a), the RBEs
of RLTDPM are found to be much larger than those of the
DDCA method after one year of continuous operation. This
indicates that the RLTDPM not only exercises more duty
cycles in better satisfying the ToD requirements, but achieves
better energy utilization as well.

TABLE 6. Qualitative comparisons of RLTDPM and DDCA
algorithm for advanced experiment, all numbers shown
are in percentages(%).

Qualitative comparisons of the RLTDPMandDDCAmeth-
ods for the advanced experiment with the required ToD for
one year are shown in Table 6. By examining the average ToD
achievability, as shown in the first data row of Table 6, we
can see that the RLTDPM delivers a much higher achievable
average ToD than does the DDCA method for the sparse,
moderate, and high ToD requirements by 1.9%, 4.3%, and
10.7%, respectively. Further, the DDCA method obtains a
higher average OTRT than does the RLTDPM, which means
that the DDCA method consumes more power by exercis-
ing larger duty cycles than the required ToD. Inspection of
the average ToD achievability and OTRT demonstrates that
although the requested ToD requirements may vary, higher
ToD achievability with less power consumption can still be
realized by the RLTDPMmethod for better satisfying the ToD
requirements than by the DDCA method.

VI. CONCLUSIONS
In this study, a novel ToD provisioning dynamic power man-
agement method for sustaining perpetual operation of energy
harvesting wireless networks utilizing reinforcement learn-
ing, named RLTDPM, was proposed. Experimental results
demonstrated that the proposed RLTDPM method can not
only achieve energy neutrality between the harvested and con-
sumed energy for sustaining perpetual operation of EHWSN,
but can also yield ToD provisioning in satisfying ToD require-
ments in imaging data gathering. Moreover, experimental
results confirmed the advantage of the proposed RLTDPM in
self-learning and self-adapting to seasonal changes in energy
harvesting for sustaining perpetual operation. With appro-
priate modeling of the energy harvesting environment and
embedded system, the proposed RLTDPM could possibly be
widely applied to the DPMof other types of embedded energy
harvesting systems, such as solar-powered vehicles, space
rovers, and electric vehicles with renewable/regenerative
power.
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