IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 28 May 2013; revised 6 March 2014 and 27 May 2014; accepted 9 June 2014. Date of publication 25 June, 2014;
date of current version 10 June, 2015.

Digital Object Identifier 10.1109/TETC.2014.2331682

Toward Consistency of State in MMOGs
Through Semantically Aware
Contention Management

WILLIAM BLEWITT, MATTHEW BROOK, CRAIG SHARP, GARY USHAW,
AND GRAHAM MORGAN
School of Computing Science, Newcastle University, Newcastle NE1 7RU, U.K.
CORRESPONDING AUTHOR: W. BLEWITT (w.f.blewitt@ newcastle.ac.uk)

ABSTRACT This paper presents a protocol which utilizes semantically aware, transaction-based contention
management to reduce rollback and improve consistency in massively multiuser systems. Of particular
relevance to massively multiplayer online games (MMOGSs), the proposed system is adaptive and scales
with respect to connection latency. This paper presents some background to the area of state management
and consistency in MMOGs, and their impact on user quality of service. Our solution is then outlined in
significant detail, with particular attention paid to the manner in which it maps to the structure of MMOGs.
A simulation is demonstrated and its behaviors discussed in-depth in order to support arguments regarding

the suitability of the protocol.

INDEX TERMS Consistency, distributed systems, MMOGs.

. INTRODUCTION

A Massively Multiplayer Online Game (MMOG) is an
entertainment-oriented, large-scale and distributed applica-
tion. Such simulations have been described more generally as
distributed virtual environments (DVEs) [1], and their imple-
mentation represents a significant engineering challenge.
An aspect of this challenge relates to the issue of consistency
of state across multiple users sharing the same environment
and the manner in which that consistency, especially in the
context of persistence, is maintained at a level that secures
QoS for the player [2], [3]. We define state, in this context,
as the set of values associated with all data items stored on
the server and updated by the client; we define consistency as
agreement between clients regarding state.

Historical approaches to the solution of this problem have
generally directed their focus towards either conservative or
optimistic synchronization algorithms [4], [5]. In the for-
mer case, inconsistencies are avoided through a process of
lockstep advance of the simulation’s logical clock, ensuring
that all clients share a completely uniform game state. This
approach is impractical, however, in scenarios with multiple
clients because the restrictiveness of such a policy hinders
the meeting of real-time requirements of DVEs. In context
of optimistic synchronization schemes the generally observed

principles are that a client is free to continue to advance its
local simulation until an inconsistency is observed whereupon
a rollback, or backup [6], is initiated.

Optimistic approaches have enjoyed significant atten-
tion [7]-[10] due to the fact that their advantage in speed
offsets the loss of immersion caused by occasional, latency-
induced rollbacks. Through intelligently applied, context-
specific design decisions related to the nature of the game
experience, QoS can be sustained to the satisfaction of the
player [11]. By extension, however, this approach necessi-
tates management of user expectations and places significant
constraints upon designers; as such, systems and approaches
which limit the instances and magnitude of rollback are of
direct relevance to industry.

In the context of a commercial product, a player’s in-game
view does not necessarily reflect the data which his or her
system acts upon; rather, the in-game view represents a trend
towards accuracy, providing a layer at which compensation
can be applied in a gradual sense. In this way, rather than the
player experiencing a rollback event, their game experience
tends towards consistency (in the sense of an ‘eventually con-
sistent’ system) with their system’s local database copy, while
their system’s local database copy tends towards consistency
with the server’s arbitrating database (in that same sense).

2168-6750 © 2014 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 3, NO. 2, JUNE 2015

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 275

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Blewitt et al.: Toward Consistency of State in MMOGs

Expanding upon previous work in contention monitor-
ing for distributed systems [12], this work presents a
novel approach to consistency control for distributed and
shared variable updates within the context of MMOGs.
Based upon semantically optimised transaction management,
the proposed system facilitates optimistic synchronisation
while demonstrably minimising any required compensation.
The system is particularly suited to dealing with partially-
predictable data access patterns, lending itself towards tasks
such as MMOG physics and environmental variable updates.

We begin in Section II with an overview of contemporary
practises and research regarding state management and con-
sistency in MMOG architectures. In Section III, our work
goes on to outline our proposed approach in explicit terms,
describing first the overall system architecture and next the
functional protocols that govern its behaviour. We present in
Section IV a testing simulation of our architecture and, in
Section V, we consider in detail the behaviours observed.
Section VI concludes our work with some discussion of
the implications of our results, and presents proposed future
expansion of the system.

Il. BACKGROUND AND RELATED WORK

Online games are by their nature systems built upon opti-
mistic replication of state [13]. In the case of our system
we have adopted a narrower focus than is generally reflected
within the literature. Partly, this reflects the fact that the focus
of our work has wider application than the area of MMOGs.
It also represents an intention on our part to present a solution
that forms a specific layer of the application and which is, in
and of itself, implementation-agnostic.

In this Section we discuss the background context of our
work, with particular relevance to optimistic execution as it is
impacted by the nature of MMOGs. We consider an MMOG
a rich internet application which maintains local replicas of
shared states on the terminals of all inter-related clients; the
determination of client inter-relationship, along with other
issues revolving around the architecture and behaviour of
MMOG:s, is discussed in Section II-B. Prior to this, we con-
sider the more general area of optimistic replication, and the
place of transaction-based causality management within that
field.

A. OPTIMISTIC REPLICATION FOR MMOGs

Optimistic replication schemes provide an eventually con-
sistent guarantee for the replica data served to clients and
are desirable for one reason: they are scalable [14]. Eventual
consistency, in basic terms, describes a system where all data
replicas will become consistent at some point in the future
if updates cease. Theoretically, if there exists a window of
time long enough where updates are no longer made then
clients will be provided with mutually consistent views of
the data. It follows that if updates are relatively rare com-
pared to reads, then inconsistency will be present, but for
many applications this level of inconsistency is tolerable. For
example, search engines and resource management in cloud

276

infrastructures, where scalability is paramount, employ opti-
mistic schemes [15], [16]. Inconsistencies in such application
types can be ignored as the overall correctness of the execu-
tion is unaffected (e.g., getting slightly different results from
a search is typically irrelevant, and clients would never know
anyway).

The earliest work in eventually consistent systems was
primarily concerned with achieving as much consistency as
possible. As all previous protocols strained to achieve full
consistency, but were not scalable, the notion was to accept
slightly lower consistency to gain scalability. Bayou and Ice-
Cube [17], [18] are infrastructures which allow read/write
requests to be reordered with the aid of programmer defined
relationships in order to increase the processing of requests
throughout the entire system. In such approaches inconsis-
tency was not always ignored, but tended to be handled in
some deterministic manner. For example, enacting compen-
sation was a common mechanism. Typically, data found to be
inconsistent at a client would have to be updated retrospec-
tively (to ensure it is consistent), with the action that enacted
the state change either being compensated for or undone and
forgotten. If causality was an issue (i.e., subsequent actions
may have depended on the compensated/undone action fur-
ther actions may need to be compensated or undone).

The earlier work in optimistic protocols assumed that
causality could be maintained at the semantic layer. Specif-
ically, that application specific semantics could be exploited
to identify situations where a compensatory action could
be executed instead of forcing the application to rollback
execution. Consider, for example, a client that realises that
an action could not be achieved 20 steps in its past. A truly
causal system without application semantic knowledge would
have to rewind all 20 steps and start again. Without semantic
knowledge such systems are actually implementing a trans-
actional like approach (where abort, rollback and restart are
typical). Therefore, it is the semantic knowledge that brings
the scalability to eventually consistent replication protocols,
be it either ignoring inconsistencies in heavy read/light write
systems or enacting programmer directed compensation in
earlier systems.

MMOGs, in essence, implement eventually consistent data
guarantees that share many traits with earlier incarnations
of optimistic replication protocols. The programmer utilises
semantic knowledge to determine if causal infringement or
inconsistency matter and what should be done. For exam-
ple, if a unique inventory item was later found to be in the
possession of two players simultaneously then some com-
pensation would be enacting to remove (in a realistic, game
flavoured manner) that item from one of the players. Actions
carried out that are now considered causally infringed would
also be compensated for within the game-play layer, so any
consequences unfolded as expected for the player over time.
However, this strong semantic causal relationship (a direct
reflection of progressive game play) means that MMOGs are
more related to transaction like environments for some game
play instances.

VOLUME 3, NO. 2, JUNE 2015

Blewitt et al.: Toward Consistency of State in MMOGs

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

If transactional like issues arise in MMOGs for certain
aspects of game play then an eventually consistent proto-
col is required that eases the programming burden of han-
dling real-time compensation at the game play layer. In
protocol design we strive to generalise as much as pos-
sible the requirements of the application and place them
within the protocol so as to avoid re-implementation at
the application layer. Therefore, the MMOG programmer
requires an eventually consistent protocol that can provide the
highest throughput while minimising those inconsistencies
requiring the greatest compensation. As MMOGs exhibit a
read/write equilibrium this is not a trivial task. However, there
is one aspect missing of all current optimistic replication
schemes that would help in achieving our goal: contention
management.

Contention management is simply a mechanism for indi-
cating which transaction should succeed and which should
abort. In high throughput systems where strong causal rela-
tions are expressed across a system (e.g., linearizability in
transaction memory), the type of contention manager chosen
has a significant effect on application performance [19]. This
is not a consideration in state of the art optimistic schemes
(e.g., one search engine client dynamically interacting with
another is not applicable). Therefore, if MMOGs are to
make use of optimistic replication to ensure their eventual
consistency then their transactional like qualities will, one
assumes, require contention management to be provided.
We have shown with other application domains (eCom-
merce, High Frequency Trading) [12], [20], that adding
contention management to optimistic replication can bring
about dramatic improvements in performance. Furthermore,
by combining client injection rates with contention man-
agement we have shown that overall performance can be
increased [21].

MMOGs, fundamentally operate an optimistic replication
policy across clients and a central server with strong causal
requirements for particular aspects of replica data that are cru-
cial to correctness of gameplay. Therefore, we suggest that the
use of a contention manager for those replica data items that
are crucial to overall game play correctness should improve
performance and lower inconsistencies. As contention man-
agers are application dependent, we need to consider how
existing approaches handle consistency of state. This section
continues with a more detailed discussion of replica manage-
ment in current MMOG architectures.

B. CONSISTENCY IN MMOGs

The ability to control the level of causality is a sig-
nificant factor in perceived QoS in MMOGs. Observed
rollback is more noticeable to the player than adaptive
compensation.

The level to which compensation of optimistic execu-
tion is noticeable is a function of the magnitude of the
inconsistency and the context of the state property which
has become inconsistent. That is to say: a variable which
has diverged significantly from its optimistically predicted

VOLUME 3, NO. 2, JUNE 2015

value is more likely to be noticed in compensation than
one which has diverged only slightly; a variable to which
the player devotes significant attention is more likely to be
noticed than one of which he or she is only peripherally
aware.

The magnitude of the inconsistency of state is, itself,
closely related to the time taken by the client to recognise, or
be informed of, the need to adapt the results of its optimistic
execution. This relationship can be both direct, meaning that
an optimistic protocol which trends away from the actual
value produces a result that is on some level proportional
to the time it is in effect, and indirect, meaning that other
variables within the system have optimistically reacted to the
contentious value.

In the latter case, from a QoS perspective, an important fac-
tor is the player’s reaction to state information which is later
proven erroneous, and how to compensate for subsequent
events without both breaching suspension of disbelief and/or
causing a ripple of further inconsistencies throughout the
massively multiplayer environment. As such, a system which
reduces the level to which inconsistencies are generated in the
initial instance is of direct value to both existing architectures
and future MMOG implementations.

We consider in particular the issue of player-observed
latency of action as it impacts perceived causality, where the
context of an action is related to the contextual importance
of its semantic consistency. Claypool and Claypool [22] con-
sider the gamut of online video games in their assessment of
precision and deadline. They conclude that while third-person
MMOG:s include player actions that require either high pre-
cision or a narrower deadline for completing an action, they
do not require both. Claypool and Claypool also highlight the
concept that the impact of latency upon performance is greater
when the player is performing precise actions; we extend this
assertion to include perceived inconsistencies as relating to
experienced latency [23].

Suznjevic et al. [24] also consider the issue of precision
against deadline, but solely from the perspective of MMOG:s.
They observe that even within the context of an MMORPG
there are several different play scenarios (which they define
as Action Types), each of which has a different requirement
in terms of precision and deadline. They argue, for example,
that large-scale cooperative play against non-player entities
(“Raiding’”) has a higher precision requirement than player
versus player (“PvP”’) combat, while PvP combat has a
tighter deadline requirement than Raiding.

While the shape of the relations between deadline and
precision vary between the works of Claypool and Clay-
pool and Suznjevic et al., that variance in itself suggests
that optimising contention management even within existing
MMOG archetypes requires a fundamental level of semanti-
cally suitable dynamism. Furthermore, it reinforces the point
that reduction in required compensation of action, which
by extension tightens deadline, facilitates not only greater
QoS for players of MMOGs styled after existing design
paradigms, but empowers alternative design paradigms which

277

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Blewitt et al.: Toward Consistency of State in MMOGs

that variance in deadline might previously have rendered
impracticable.

C. SERVER TOPOLOGY IN MMOGs

When considering the structure of the system design outlined
in Section III, it is important to reflect upon the presumed
topology of the application to which such a system would
be applied. Particularly, attention should be given to the con-
cepts of sharding massively multiplayer environments, and
the nature of zoning through the application of distributed
back-end servers.

Shards are considered independent instances of the same
game world, the application of which is commonly employed
in commercial MMOGS as a means of permitting scalability
while maintaining QoS [25]. Some successful commercial
MMOGs have followed a single-shard model [26], and the
system outlined in this paper is functionally independent of
the level of sharding pursued by the developer.

Another commonly discussed practise in MMOG develop-
ment is the process of sub-dividing the computational pro-
cessing of events in a given shard on the basis of a regional
area of interest (Aol), often referred to as zoning [27].
Significant literature has been published on the engineering
and structure of such systems [28], [29], and the system
outlined in this paper does assume the application of this
technique.

D. CONTRIBUTION OF PAPER

Our work presents a novel, dynamically optimised approach
to contention management in a DVE. Specifically, we present
a system whereby existing practises within MMOG devel-
opment could increase QoS through contention management
for semantically appropriate data. Furthermore, the perfor-
mance benefits offered by this approach invite the explo-
ration of novel, consistency-centric mechanics in MMOG
design which are often overlooked due to the consistency
considerations they impose (e.g. greater integration of physics
in MMOGs).

lll. APPROACH

In this section we describe our approach, which is based upon
work first presented by Brook et al. [20]. We pay partic-
ular attention to client-side and server-side responsibilities
with pseudo code provided to describe the activities of each.
Algorithm 1 describes the client protocol while Algorithm 2
describes the server. [12] provides a detailed outline of the
fashion in which our initial exploration of semantically aware
contention management was implemented, though it does so
without reference to dynamically adjustable client injection
rates. Similarly, it does not cater for application scenarios
with changing access trends, which is very much the case in
MMOGs. The system is presented both in general terms, as
its benefits extend beyond solely the application domain of
large-scale DVEs, and in context of the application-specific
aspects of system design as relevant to the domain of MMOG
implementation.

278

A. OVERVIEW OF SYSTEM DESIGN

Within our system, network clients represent players that are
connected to an instance of a game world and share a specific
Aol. The instance of the game world, or shard, manages a
collection of servers, or sub-shards, each of which processes
activities within a bounded region of responsibility. A sub-
shard maintains a correct and consistent database of shared
variables for its associated zone. We stress our chosen nomen-
clature because, in the context of MMOGs, the term ‘server’
is often used in reference to a shard, with consumers only
peripherally aware that a shard is often a complex, distributed
system consisting of multiple ‘servers’. Figure 1 indicates
an idealised system, where load balancing is handled at or
about the shard level, and the database under consideration
contains information that is solely relevant to the appropriate
sub-shard’s region of responsibility.

Area of Interest Database
Tier Tier

Players

Load-Balancing
Tier

Sub-shard

Sub-shard

FIGURE 1. System Design

All clients maintain a local replica of their semantically
relevant sub-shard’s database. A client enacts updates to
variables on its local copy of the database based upon its
interactions with objects within its zone, facilitating a highly
responsive environment for the player. The client utilises a
number of logical clocks to facilitate management of execu-
tion and rollback. We note that in the domain-specific context,
the magnitude of rollback represents the number of actions
which require compensation to bring them back in line with
actual results, rather than events which require repetition
and re-computation; in an MMOG, perceived QoS is better
served through compensation than implementation rollback.
As such, where the term rollback is employed, it should be
taken to mean an instruction to compensate those actions
which, in another domain, would be rolled back.

The three logical clocks employed by the client to manage
causal consistency are:

Client data item clock (CDI)

This exists for each data item and identifies the
current version of that item’s state as stored in the
given client’s replica. It is used to inform the system
when a client’s view of said data item is out of
date. The value of the CDI is updated incrementally
by the client when its associated data element is
updated locally, or when a message is received from
the server instructing the client that a conflict has
occurred (see Algorithm 1, line 6).

VOLUME 3, NO. 2, JUNE 2015

Blewitt et al.: Toward Consistency of State in MMOGs

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Algorithm 1 The Client Algorithm

function ClientAlgorithm (Tuple : update)
Message : resp, req;

ServerlD : sid,

Client : client;

Database : D;

Queue : messages;

1 while messages # () do

2 resp <— Dequeue (messages) ;

3 client.csc < resp.csc;

4 client.cac < resp.cac;

5 Rollback (D, resp);

6 {Update (t, D) | Tuple : t € resp.updates};
7 Checkpoint (D);

8 req.update.data < update.data;

9 req.update.cdi < update.cdi

10 req.csc < client.csc;

11 req.cac < (client.cac < client.cac + 1);
12 req.cid < client.id;

13 Send (req, sid) ;

14 Append (client.log, req)

Client session clock (CSC)

This value is attached to every proposed update
transmitted from the client to the server (line
10). When a client is instructed of a rollback
compensation condition, this value is updated (line
3). In this fashion, the server is able to ignore sub-
sequently received updates from that client which
belong to out of date sessions (i.e., were processed
and transmitted before the client was informed of an
inconsistency).

Client action clock (CAC)

This value is incremented each time a client sends
a message to the server (line 11). In this way, the
server is able to determine when messages from a
client are failing to reach it.

Updates performed locally on the client terminal are prop-
agated to the server in the form of a message. The message
contains the updated data item value, the CDI of the data
item, the CSC of the client, and the CAC of the client (see
lines 8-13). Each client maintains an execution log to facilitate
rollback; each time a client sends a message, that message
is added to the execution log (line 14). In a commercial
implementation, the execution log is periodically pruned as
recorded events reach an age at which they are no longer
relevant to any feasible compensation.

As with a client, the server maintains three types of log-
ical clock. The clocks facilitate communication of instruc-
tions to the client when an update is deemed to be
causally inconsistent. These logical clocks are described
below:

Session identifier (SI)

This value is the server’s view of a client’s CSC. The
server maintains an SI for each client, and uses this
to identify messages from the client which should be

VOLUME 3, NO. 2, JUNE 2015

ignored (i.e., messages received from an out of date
client session). Each time a client is informed of
an inconsistency (a compensation event/rollback),
the appropriate SI is incremented (see Algorithm 2,
line 25).

Action clock (AC)

The AC is the server’s view of a client’s CAC.
As with the SI, the server maintains an AC value for
each client, and uses it to identify situations where
client messages are lost (line 20). Each time the
server honours an action on behalf of a client, the
AC associated with that client is set to that client’s
received CAC (line 31).

Logical clock (LC)

Analogous to the client’s CDI, the LC is a value
stored at the database with its associated data item;
by extension, each data item within the database has
its own LC. When the server receives a message
from the client attempting to update a given data
item, the attached CDI is compared with that data
item’s LC (line 24); should the LC be greater than
that CDI, the update is causally inconsistent (the
client has operated upon an outdated version of the
data item).

Upon receipt of a message from a client, the server assesses
whether or not it should apply the update to the data item
state stored in the database. Initially, it assesses the client
message CSC; if the CSC is lower than the server’s SI value
for that client, the message is ignored (see lines 18-19). In this
instance the client has already received a rollback instruction
and the server is receiving updates the client attempted before
learning of its initial inconsistency.

If the CAC contained in the client’s message is at least
two greater than the server’s AC value for that client, a
message has been lost, and the client must be given a rollback
instruction on this basis; this is particularly important in the
domain of MMOG engineering, as missed messages can be
semantically essential to maintenance of perceived causality.
We call this specific instruction the missed message request,
and it contains only an AC and a SI (lines 20-23).

If the LC for the data item to be updated is greater than
the CDI in the client’s message, then the client has operated
upon an out of date version of the data item state. In this case, a
message is sent from the server to the client containing an AC,
SI and the latest recorded state of the conflicting data item;
the client then re-executes using the latest version of the data.
We call this the irreconcilable message request (lines 24-27).

B. SEMANTIC CONTENTION MANAGEMENT IN MMOGs

As with all contention management systems, we exploit a
degree of predictability to improve performance. That pre-
dictability comes in the form of patterns of sequential data
item access which are a function of both application design
and player behaviour. Importantly, the client system plays
no role in this contention management, only being informed
of failed updates and instructions to take compensatory

279

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Blewitt et al.: Toward Consistency of State in MMOGs

Algorithm 2 The Server Algorithms

function ServerAlgorithm ()
Message : req, resp;
Database : D;

Graph : G;

Map : SI,AC, LC;

Queue : messages, delta;

15 while true do
16 if messages # () then
17 req <— Dequeue (messages) ;
18 if req.csc < req.cid € SI then
19 ‘ // ignore message;
20 else if req.cid € AC < req.cac — 1 then
21 resp.csc < req.cid € SI;
22 resp.cac < req.cid € AC;
23 Send (resp, req.cid) ;
24 else if req.update.cdi # req.update.cdi € LC
then
25 resp.csc <— (req.client € SI) + 1;
26 resp.time <— GetVol (G, req) ;
27 Insert (delta, resp);
28 else
29 Update (req.update.data, D) ;
30 Update (req.update.cdi, LC) ;
31 Update (req.cac, req.cid € AC) ;
32 UpdateGraph (req, G) ;
foreach Message : r € delta do
if r.time > 0 then
33 | r.time < r.time — 1;
else if r.time = O then
34 {Append (r.updates, t) | Tuple : t €
GetUpdates (r.cdi, G) };
35 Send (r, r.cid) ;
36 Remove (delta, r) ;

if time to prune then
37 L {Prune (e) | Edge : e € G};

GetVol (Message : m, Graph : G)
38 Vertex : v < GetVertex (G, m.update.data) ;
39 Integer : dist < 0, vol < 0;
40 while dist < limit do
41 Vv < GetMostVolatile (v);
2 vol < vol + v.vol, dist < dist + 1,

43 return vol,
UpdateGraph (Graph : G, Message : m)
44 Vertex : v < GetVertex (G, m.update.data) ;
45 Vertex : b < GetHBV (G, m.cid) ;
46 Vertex : a < GetHAV (G, m.cid) ;
47 {Update (n.vol) | Vertex : n € GetNeighbours (G, v) };
48 ifb=(then b < a <« velse b < a,a < v
49 if b # a then
50 Edge : ¢ < GetEdge (G, b, a);
51 if e # () then e.epy < e.epv + 1
52 else Insert (G, b, a)

measures; the inability of the client to actively influence
contention management is a key consideration in the context
of MMOG:s, as it aids the prevention of exploitation on the
part of unscrupulous players.

Our approach assumes a basic model of patterns inher-
ent within a series of data item interactions. The system is

280

FIGURE 2. Directed Graph with Probabilities.

not tuned based upon any advanced prediction algorithm,
in an effort to avoid unnecessary domain-dependency, and to
emphasise the generalist nature of the approach.

A directed graph represents sequential data item access.
The graph contains a vertex for each data item, with inter-
connecting edges representing the probability of the client’s
next data item update being applied to the connected vertex.
Figure 2 presents an idealised graph with eight vertices, each
of which represents a potential physical entity within an
MMOG, and the probabilities of progression from one data
item update to another, based upon optimistic execution.

It should be noted that the lack of an edge between two
vertices does not imply that the two data items cannot be
updated sequentially, it merely means that such behaviour
is not observed as a common pattern within the system in
the context of player action. For example, referring once
again to figure 2, the lack of an edge between data items
DOOR and SWORD does not mean that a client cannot
update SWORD immediately after updating DOOR. It should
also be noted that the self-evolving and self-pruning nature
of the graph means that there need not be any semantic,
design-related connection between two data elements for a
link to be autonomously formed between them; as such, the
specific nature of the data elements is less important than their
existence.

To clarify, we consider single, sequential data item updates
in this case, however the model can be extended to reflect
multiple, simultaneous chains of data item updates. In such
cases, we propose that either the application developer aggre-
gate multiple graphs, or a single graph could be generated
which reflects the update patterns of packets of data items
(with each vertex representing such a packet). Though main-
taining a graph in this matter might appear expensive, we
should recall that the number of such shared data items within
a given Aol of an MMOG is very small when compared
with data repositories utilised in the Cloud, or other modern
computing environments.

When informing a client of a failed data item update, the
server not only provides the client the latest state of the
conflicting data item but, in addition, provides up to date
values for neighbouring data items as defined by the directed
graph (lines 34-35). The goal of this additional data transfer is
that this pre-emptive provision of the most likely candidates

VOLUME 3, NO. 2, JUNE 2015

Blewitt et al.: Toward Consistency of State in MMOGs

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

for subsequent data item access will lead to reduced inconsis-
tency should the client behave in a predictable fashion.

While maintaining the directed graph, the server also tracks
a volatility measure for each vertex. Simply put, this variable
tracks the ‘popularity’ of a vertex: how many times a given
data item is updated per second. In our proposed system,
when the server recognises a failed update it waits a period
of time before informing the client of the fact; this length
of time is determined by the volatility measure of the data
item in question (line 26). The more popular a given data
item is, the longer the applied delay (lines 38-43). This aims
to prevent situations where multiple clients simultaneously
attempt to update the same shared data item; this is a ‘back-
oft” strategy which is commonly employed in shared resource
access systems.

While figure 2 shows a static graph (one in which the edges
between vertices, and their respective probabilities, are fixed),
we employ a dynamic graph which reconfigures based on
changes in data access patterns which take place over the
course of the application runtime (lines 44-52). We introduce
two new values that the server maintains individually for each
client:

Happens Before Value (HBV)

This indicates the vertex representing the data item
that a client last successfully updated.

Happens After Value (HAV)

This indicates the vertex representing the data item
that a client successfully updated immediately after
HBV.

If no edge exists between HBV and HAV then one is
established (line 52); if this were left unchecked, however,
the graph would soon become fully connected and the system
would lose its directional benefit (the number of potential
neighbouring data items would increase up to the size of
the database itself, less one). Instead, the likelihood of travel
down a given edge is informed by an additional value which
records the popularity with which an edge between two
vertices is travelled:

Edge Popularity Value (EPV)

The server maintains an EPV for every edge created
between two vertices over the course of the appli-
cation runtime. The EPV is incrementally increased
(line 51) every time a given edge is traversed by any
client (as defined by said client’s HBV and HAV
values).

Periodically, the graph is pruned on the basis of existing
EPVs; the least popular edges are removed entirely, and the
remaining edges have their EPVs set to 0 (line 37). In this
way, the graph is both adaptable and self-regulating, reacting
to trends in client data item access (which, itself, is a conse-
quence of player activity within the DVE).

We recognise that the process of reconfiguration incurs
a performance cost relative to the number of vertices and
edges within the graph. While the decision on how regu-
larly to prune the graph is an application-dependent one, we
advocate a strategy that dynamically bases reconfiguration

VOLUME 3, NO. 2, JUNE 2015

timings upon experienced load. In this case, two factors in
particular are important in determining the timing of pruning
operations: first, the relative performance cost of the recon-
figuration operation; second, the rate of client update activ-
ities within the period. One fashion in which to employ this
technique in an MMOG is to shadow the database, redirecting
to the shadowed copy while the directed graph of the primary
database is pruned.

We further observe that the act of reconfiguration offers a
window in which the data items themselves can be dynam-
ically altered (changed, introduced, or removed). In the
domain-specific case of an MMOG, this allows for periodic,
open-world events to occur within the considered Aol.

C. VARIATION OF CLIENT INJECTION RATE

The contention management scheme as applied on the server
side of our system ensures equilibrium of update rates for oft-
updated data items within our database. If clients continue to
message the server at the same frequency, however, they shall
experience increased rollback as their updates are backed
off. In the domain of MMOG design, reducing rollback by
extension reduces the level to which the client simulation
has to compensate for a non-executable action; essentially,
a lower rollback leads to a more fluid gaming experience.
We determine that this is a desirable property in a system to
be applied to MMOG applications.

To that end, we propose the adjustment of injection rates of
updates across all clients connected to a given server, the goal
being to reach an equilibrium which lessens the magnitude
of rollback. Put another way, we wish to optimise the rate at
which each individual client updates the server so as to best
match the server’s ability to successfully process data item
updates.

It is suggested that the injection rates of each client be
determined through a scheme which defines a rollback thresh-
old. For our purposes we define a rollback threshold to be a
number of rollback events that, when observed by a client in
response to a failed update, triggers a change in the client’s
injection rate.

As the client is aware of the magnitude of rollback required
upon receipt of a message from the server (by virtue of the
client’s execution log), a comparison between this magnitude
and the pre-defined rollback threshold can be used to inform
variable injection rate. This is not a new concept within
distributed systems and has been extensively explored [30].

D. DOMAIN-SPECIFIC PRACTICAL CONSIDERATIONS
Moving between Aols is an application-dependant process,
as is the connection/log-in process itself, and such semantic
considerations do not reflect upon the underlying theo-
retical considerations of our contention management sys-
tem. We acknowledge that there will likely be additional,
implementation-specific communication overhead in a com-
mercial MMOG; our system is concerned solely with updates
to shared data elements within the DVE that are subject to
real-time influence from multiple connected players.

281

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Blewitt et al.: Toward Consistency of State in MMOGs

IV. TESTING AND RESULTS
In this section we describe the manner in which our pro-
posed system has been evaluated for performance. We first
describe the environmental constraints applied to the testing
environment, before going on to discuss the tests themselves.
We then illustrate our results.

A. ENVIRONMENTAL PARAMETERS

Our testing system is implemented through a discrete event
simulation built using the simjava framework [31]; all
results presented in this work are drawn from this simulation.
The event simulation was executed on a Core 2 Quad PC
running at 2.66GHz with 4GB of RAM and Ubuntu 11.10
was the chosen operating system. The simjava framework
was selected, in part, due to the authors’ familiarity with its
functionalities. Additionally, the work presented here extends
upon work the authors had already undertaken within the
simjava framework. The work included could easily be
extended into other frameworks with similar functionality.
The architectural model as implemented is represented in
Figure 1, described in context below:

o The Client tier represents players of the game, who are
interacting with a number of shared data objects. In con-
text, these might be considered any item or variable
within the game which can be influenced by any player
and which are represented in-game to all players within
a given Aol; we assume that perspective/draw-distance
culling, if employed on a graphical level, is not employed
in terms of requisite database updates, so as to give a
conservative performance estimate.

o Load-Balancing occurs at the Shard level; essentially,
the Shard manages connection of the player with the
Sub-shard associated with her specific Area of Interest.
In a commercial case, this layer would be preceded by
a log-in server which would determine the appropriate
Shard to connect a player to, assuming a multi-Shard
release. This, however, has no impact upon the technique
we employ (such servers establish sticky sessions at the
beginning of a player’s connection, but are generally
not a conduit for game data after that sticky session
is established) and would serve only to complicate the
system design unnecessarily.

o The Area of Interest tier, or Sub-shard, manages data
accesses and updates for players active within its baili-
wick. It serves as arbiter for both server-side deci-
sions and optimistic player updates to the environment,
managing the dissemination of messages informing the
player system in case of the former, and acting in accor-
dance with the system presented in Section III in case of
the latter. In a commercial scenario, the Sub-shard also
communicates with the Shard regarding events which
could impact other Sub-shards, and also regarding the
passing of players between Sub-shards as they move
from one Aol to another.

o The Database tier, in context of our simulation, is the
collection of all shared data objects within a specific Aol

282

(meaning those whose values are arbitrated by a specific
server). The nature of the data in question is semantic
and, as such, a function of the specific game context;
for the purposes of our experimentation, each data item
simply exists, and is subject to influence from all players
active within its associated Aol.

Our testing system employs the techniques discussed
in Sections III-A, III-B, and III-C. These techniques are
employed to manage a database of 500 such shared data
items within the Aol of the simulated Sub-shard. Client data
accesses follow the graph in 90% of cases; in 10% of cases,
a random data element is accessed that does not follow the
graph. The graph itself is pruned at fixed, 30-second intervals.
Additionally, testing results are included for a system that
only employs the technique of variable client injection rates
(Section III-C). This is to facilitate performance comparisons
as to the observed benefits of a system employing back-off,
relative to one which does not.

In addition to this variance, we consider variable latency
requirements, and consequences to our system, within the
context of MMOGs. Claypool and Claypool [32] argue that
connection latency impacts online gaming experience in a
highly semantic fashion; that the type of online game being
played is related to the tolerance of the player for latency of
action. They go on to define threshold values for playabil-
ity dependent upon type of online game being played: less
than 100msec for first-person games; less than 500msec for
third-person games.

Sensible of the growing diversity in MMOG releases,
including ‘First Person Shooter’ games [33], it was deemed
sensible to consider the effect of perceived latency upon
the system proposed in this work. Drawing inspiration from
the work of Claypool and Claypool, and the considera-
tions of Chen et al. [34], we define two latency bands for
our experiments. The first, termed low latency, is a ran-
dom distribution of round-trip latency between 10msec and
60msec; the second, high latency, is a random distribution of
round-trip latency between 50msec and 300msec. This facil-
itated the drawing of domain-specific inferences during the
consideration of results.

Our ‘No-Backoff’, comparison system always operates at
low latency.

Aside from latency, a significant consideration in the con-
text of any shared-data system is the number of agents
interacting with a given database. Nae et al. [27] present
research showing that the population of a given MMOG
Shard, for the game RuneScape, varied between 700 and
1,700 concurrently-connected players depending upon the
time of day. Similarly, Pittman and GauthierDickey [35]
present statistical data showing that, during normal service,
concurrently-connected population of a World of Warcraft
Realm (Shard) varied between 300 and 1,600 dependant upon
the time of day.

Our system concerns itself solely with a specific Sub-
shard of a DVE and, as observed by Nae et al., the player
capacities of Sub-shards directly influence the hosting cost

VOLUME 3, NO. 2, JUNE 2015

Blewitt et al.: Toward Consistency of State in MMOGs

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

of a Shard and, consequently, the ongoing running costs of an
MMOG. In light of this commercial consideration, taken in
view of the estimated population figures above, our concur-
rently connected clients per Sub-shard vary from 50 players to
250 players. This enables us to draw performance compar-
isons based on Sub-shard occupancy, and consider the conse-
quences of higher populations upon our system performance.
The last variable we consider in our testing relates to
Variable Client Injection Rate as discussed in Section III-C.
The pre-defined rollback (or compensation) threshold used
to trigger variance of injection rate is directly controllable by
the application programmer. In the experiments performed as
part of this work, two values for that rollback threshold were
employed: 30 rollback events, and 60 rollback events.

B. RESULTS

We present our results in terms of four semantically impor-

tant values, varied according to the number of concurrently

connected players interacting with the simulated Sub-shard.

We present these values, and their semantic relevance, below:

Number of Unsuccessful Updates

This variable signifies the total number of unsuc-
cessful attempts by player systems to update the
database over the course of the simulation. Seman-
tically, this is a consequence of either a missed
message from the player’s system, or an attempted
update based on old and inaccurate data. The lower
this variable, the lower the requisite message traffic
of the system.

Level of Inconsistency

This variable identifies the number of inconsistent
data items experienced by player systems during the
simulation. The lower this value, the more consis-
tently our DVE is experienced by the players inter-
acting with its data objects and, consequently, the
greater the level of shared multiplayer experience.

Average Compensatable Actions

This variable signifies the average number of com-
pensatable actions (commonly referred to as roll-
back events) experienced by a player system in the
event of an unsuccessful update. The lower this
value, the greater the resemblance between what an
individual player sees on her screen and the data
upon which her system is operating. Put another
way, a lower number of compensatable actions leads
to a more consistent play experience.

Update Throughput

This variable marks the number of successful
updates processed by the system, per second. The
higher this value, the greater the real-terms level of
interactivity between the players and the DVE, and
the more fluid the environmental simulation.

Table 1 presents our recorded number of unsuccessful
updates while running our simulated system with a rollback
threshold of 30. Figure 3 presents this information in a graph-
ical form.

VOLUME 3, NO. 2, JUNE 2015

TABLE 1. Unsuccessful Updates (Threshold = 30)

players Backoff Backoft No Backoff
Low Latency | High Latency
50 14,110 17,208 18,213
100 31,777 38,873 59,336
150 81,649 82,308 124,241
200 134,926 135,059 211,470
250 190,152 197,727 325,659
Number of Unsuccessful Updates
350000 T T T T
—A— Backoff (Low Latency) /E!
300000 F | <o~ Backoff (High Latency) ;o

2

2

1

1

Unsuccessful Updates

- No Backoff

50000 -

00000

50000

00000

50000

0

50 100

150
Players

200

FIGURE 3. Unsuccessful Updates (Threshold = 30).

TABLE 2. Level of Inconsistency (Threshold = 30)

players Backoff Backoff No Backoff
Low Latency | High Latency
50 7.23903 7.05988 8.05988
100 11.30336 11.40118 14.15931
150 12.88053 14.74642 21.83130
200 14.29741 17.55748 27.51134
250 15.24864 17.73830 31.79668

TABLE 3. Average Compensatable Actions (Threshold = 30)

players Backoff Backoff No Backoff
Low Latency | High Latency
50 18.49525 19.88367 20.45264
100 19.45049 20.44432 21.40121
150 20.54666 20.84066 22.24104
200 21.45056 21.63286 22.24104
250 21.95747 22.07691 22.72951

TABLE 4. Message Throughput (Threshold = 30)

players Backoff Backoff No Backoff
Low Latency | High Latency
50 141.0000 81.8961 64.6313
100 188.5698 113.2227 94.72603
150 169.2212 117.8728 103.6616
200 153.8062 118.8644 106.3973
250 137.5643 121.2718 106.5556

Tables 2, 3, and 4 show our recorded results for the remain-
ing three key variables: consistency, average compensation,
and throughput, respectively. These results were similarly
obtained using a rollback threshold of 30.

283

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Blewitt et al.: Toward Consistency of State in MMOGs

Level of Inconsistency

20 F . q

Inconsistency

Players

FIGURE 4. Level of Inconsistency (Threshold = 30).

Average Compensatable Actions
230

. -0
22.5 -

22.0

21.5
21.0
20.5 -
20.0
195
19.0

Compensatable Actions

180 1 1 1 1 1
50 100 150 200 250

Players

FIGURE 5. Average Compensatable Actions (Threshold = 30).

Number of Updates Per Second

200 T T T T
180
9
g 160
Q
o
© 140
5]
oW
L1200 PR o |
= o
= ’ S - |
a0 a-"""ﬂ §
- LS
80 +° L7 .
L .'.
60 g 1 1 1 1
50 100 150 200 250
Players

FIGURE 6. Message Throughput (Threshold = 30).

The information present in these tables is presented in
graphical format as Figures 4, 5, and 6, respectively, to facil-
itate clearer comparisons in Section V.

284

TABLE 5. Unsuccessful Updates (Threshold = 60)

players Backoff Backoff No Backoff
Low Latency | High Latency
50 15,142 15,601 17,378
100 39,104 36,497 38,485
150 81,589 63,369 85,747
200 139,094 105,973 150,452
250 213,876 161,566 232,004
Number of Unsuccessful Updates
250000 — T T T
—A— Backoff (Low Latency) ,F
—©- Backoff (High Latency) ‘;
% 200000 - | -E- NoBackoff ; b
g .
]
<
2
= 150000 i
£
7
£ 100000 1
Q
=]
0
]
= 50000 g
0 L L L L L
50 100 150 200 250

Players

FIGURE 7. Unsuccessful Updates (Threshold = 60).

Tables 5 through 8 demonstrate the results obtained for our
four key variables while employing a rollback threshold of 60.
Figures 7 through 10 provide this information graphically.

V. ANALYSIS

In this Section we consider the implications of the experi-
mental results provided in Section IV in the context of appli-
cability of our approach to the design and development of
MMOGs. We have discussed player QoS extensively through-
out this work and, in context, reduction in required compen-
sation facilitates QoS improvement in two ways. Firstly, that
in complex and reflex-based MMO gameplay, world view is
more consistent from one fraction of a second to the next;
this is particularly relevant in player-versus-player content, or
in MMOGs which place great emphasis on spatial awareness
(such as Carbine’s WildStar Online). Secondly, it encourages
developers to explore mechanics which are traditionally over-
looked in MMOG development as a function of world-view
consistency issues.

We primarily consider relative performance observed
in our testing environment, before providing some con-
sideration of the semantic impacts of rollback threshold
variation.

A. RELATIVE PERFORMANCE

Let us consider the results shown in Table 1 and Figure 3:
Number of Unsuccessful Updates while employing a rollback
threshold of 30. Irrespective of the number of players acting
within our simulated Sub-shard, the application of backoff
reduces the number of unsuccessful updates.

VOLUME 3, NO. 2, JUNE 2015

Blewitt et al.: Toward Consistency of State in MMOGs

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

TABLE 6. Level of Inconsistency (Threshold = 60)

TABLE 7. Average Compensatable Actions (Threshold = 60)

players Backoff Backoff No Backoff
Low Latency | High Latency
50 6.94729 4.94100 5.68173
100 12.22845 9.05956 10.34691
150 13.19351 11.92226 13.66700
200 14.69107 13.23717 18.59400
250 16.56442 14.94711 23.70323

This result in and of itself is unsurprising, though the mag-
nitude of performance improvement warrants some attention.
In a low latency environment, with 100 players connected
to a Sub-shard, the application of backoff provides a 46%
reduction in unsuccessful updates when compared to a system
that solely employs dynamic injection. In an environment of
150 players or more, irrespective of experienced latency, the
application of backoff improves performance in the context
of this variable by over 33%. We note also that a tendency
towards linear scalability with respect to number of connected
players is observed in the application of backoff, irrespective
of latency.

The performance benefit at the higher threshold value of
60, as shown in Table 5 and Figure 7 is significantly less
pronounced. Higher latency (which inherently reduces the
number of attempted updates per second) plays a larger role
than backoff in determining the total number of unsuccessful
updates. In the high threshold environment of our testing sys-
tem, the application of backoff in a low latency environment
provides a maximum performance improvement of 12.9%,
assuming that only 50 players are connected to the simulated
Sub-shard. By contrast, a high latency environment shows
an improvement of 26% over a low latency system without
backoff, if 150 players are connected.

Let us consider the results shown in Table 2, which indicate
the average inconsistency of world-view across all players
connected to our simulated Sub-shard while employing a
rollback threshold of 30. Greater consistency of world-view is
a key element of online game design, and a core engineering
challenge in the development of massively multiplayer online
games.

The application of backoff to this system, in addition to
variable injection rate, shows significant improvements in
consistency. Assuming 150 players interacting on our simu-
lated Sub-shard, in a low latency environment, their world-
view includes 41% fewer inconsistencies; even in a high
latency environment, it contains 32% fewer inconsistencies
than are present in a low latency, no-backoff system.

Again, as threshold is increased to 60, the performance
benefits are negatively impacted; let us consider the results
shown in Table 6. Indeed, in a low latency environment with
100 players interacting with our simulated Sub-shard, there
is a performance reduction of over 18%. The most notable
positive percentage change in performance when adopting
a higher rollback threshold is observed in high latency, low
Sub-shard occupancy scenarios.

VOLUME 3, NO. 2, JUNE 2015

players Backoff Backoff No Backoff
Low Latency | High Latency
50 37.96130 38.10633 41.22563
100 39.60903 40.53590 43.65240
150 40.63091 40.85543 43.67210
200 41.12305 41.03317 43.24560
250 41.69593 41.74967 43.57650

TABLE 8. Message Throughput (Threshold = 60)

players Backoff Backoff No Backoff
Low Latency | High Latency
50 123.5276 79.3590 53.6135
100 176.6631 85.8646 72.6054
150 162.9825 102.3581 82.7112
200 148.2668 106.6025 88.4306
250 133.5843 102.8369 93.2112
Level of Inconsistency
24

== NN
S o O N

Inconsistency
=

12
10
8
6
4 Lo L \ | |
50 100 150 200 250
Players

FIGURE 8. Level of Inconsistency (Threshold = 60).

We now consider the results shown in Table 3 and Figure 5:
the average number of compensatable actions processed in the
event of an unsuccessful update, while employing a rollback
threshold of 30. The lower this value, the less pronounced
any actions undertaken by the player system, in order to bring
player world-view into line with the Sub-shard’s ’true’ world-
view, become. This facilitates a more consistent gaming expe-
rience on the part of a player.

In a low latency environment, with 100 players interacting
with our simulated Sub-shard, the application of backoff
provides a reduction slightly in excess of 9% in the
average number of compensatory actions required in the
event of an unsuccessful attempt to update the Sub-shard’s
database. A performance improvement of 4.5% over the low
latency, no-backoff case is observed even in a high latency
environment.

In contrast with other variables, the application of a higher
threshold provides mild, relative performance improve-
ments in the case of compensatable actions (as shown

285

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Blewitt et al.: Toward Consistency of State in MMOGs

Average Compensatable Actions
44

T T T T
- el - NN o

3+ ' .

42

Compensatable Actions

50 100 150 200 250
Players

FIGURE 9. Average Compensatable Actions (Threshold = 60).

Number of Updates Per Second

180 ‘ ‘
160 1
E A
g 140 1
Q A
o
o 120 F° 1
o
——————— 0——---__
8 100 - ot _:—
+~ e .
< o g--"
= o R
B 80 o=~ i 1
) -
60 F 7 .
o
40 1 1 1 1 1
50 100 150 200 250
Players

FIGURE 10. Message Throughput (Threshold = 60).

in Table 7). Assuming 100 players connected to the
Sub-shard in a low latency environment, performance ben-
efits improve to 9.25%. In the high latency case, rel-
ative performance improvement increases from 4.5% to
over 7%.

Let us consider our fourth variable, update message
throughput, as shown in Tables 4 and 8. In context, the rate
of successful updates determines the timely interactivity of
the environment; the higher the rate of successful updates, the
more fluid the in-game activity.

When employed in context of our lower rollback threshold,
backoff shows significant performance gains in terms of raw,
successful database updates. The relative throughput increase
is most pronounced in low latency, low occupancy scenarios;
in a low-latency environment, with 50 players connected
to our simulated Sub-shard, successful update throughput
increases by almost 120%. In a more commercially real-
istic scenario of 100 players connected to our Sub-shard
in a low-latency environment, successful update throughput
doubles.

286

In a high latency environment, performance benefits are
still significant, though less pronounced. In a similar case,
with 100 players connected to our simulated Sub-shard, high
latency message throughput increases by 20%. It should be
noted, when considering this result, that message update rate
is directly, and negatively, impacted by higher latency; it
should further be noted that the performance gains observed
in successful update throughput are made over a non-backoff
system operating at low latency.

In the high threshold environment, improvements to suc-
cessful update throughput at low latency are even more pro-
nounced. Assuming 100 players connected to the Sub-shard,
there is a performance improvement of over 140% when
compared to the no-backoff case. In the case of a high latency
environment, the performance benefits at 100 players are
slightly lower than is the case in the low threshold environ-
ment, but at a lower occupancy (50 players), performance
improvement increases to almost 50% over a low-latency,
no-backoff system.

We note in our results data that, at 50 players, absolute
numbers of inconsistent updates do not necessarily correlate
with average levels of inconsistency viewed globally through-
out the simulation. In part, this is a function of a difference
between the two metrics; number of failed updates indicates
cases where a client attempts to update the server and is
instructed to compensate and recompute, while average level
of inconsistency is the number of data items duplicated client-
side which exist in error. Our future work will include further
exploration of this anomaly and its relationship to rollback
threshold and latency.

B. COMPARISON WITH RESPECT TO THRESHOLD
Our experimentation suggests that, in general terms, the lower
rollback threshold of 30 outperforms the higher threshold
value of 60. Despite this, there are semantic scenarios where
a developer might consider the application of a higher thresh-
old advantageous. In a game environment where individual
fluidity of player experience is more important than globally
consistent world view, the application of a higher threshold
level makes some sense; it leads to marked improvements
in both compensatory event reduction and successful update
throughput.

By contrast, the results of our experimentation suggest that
a MMOG environment that relies heavily upon uniformity
of world-view, or which concerns itself more with absolute
compensatory requirement rather than relative compensatory
requirement, would be better served by opting for a lower
rollback threshold.

VI. CONCLUSION

In this work we have described an approach for the manage-
ment of shared data objects within MMOG environments. The
system presented facilitates automated self-tuning, combin-
ing semantic contention management with variable injection
rate to optimise and improve four measures of online game
performance. The system presented can adapt to varying

VOLUME 3, NO. 2, JUNE 2015

Blewitt et al.: Toward Consistency of State in MMOGs

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

data object access trends as caused by alterations within the
game world, and engineering solutions have been proposed
to enable this real-time optimisation to be undertaken at
runtime.

As with many practises currently employed in MMOG
consistency management, our system is rooted in optimistic
replication. As such, our system has the property of even-
tual consistency which, in the context of a DVE with con-
stantly changing and updating state, is near-optimal within the
limitations of existing hardware and network architectures.
The work presented is an extension of earlier work [12], [20],
[21], [36] and provides that work with both runtime versatility
and a deeper context.

Our experimentation demonstrates the performance gains
made feasible by this approach, and we argue that these
performance gains offer greater freedom of design to MMOG
developers. The results of our experimentation, when taken in
view of the work of Nae et al. [27], also have positive financial
implications in the context of decreasing the number of Sub-
shards required to maintain existing QoS, with respect to a
no-backoff system.

The future work surrounding this research will take two
forms. Firstly, we intend to investigate the implications of
fault-tolerance in terms of performance overhead. Secondly,
we intend to extend the system beyond the arena of MMOGs
into other forms of online gaming which share optimistic
replication characteristics.

REFERENCES

[11 G. Morgan and K. Storey, “Scalable collision detection for massively
multiplayer online games,” in Proc. 19th Int. Conf. Adv. Inf. Netw.
Appl. (AINA), vol. 1. 2005, pp. 873-878.

[2] C. Diot and L. Gautier, “A distributed architecture for multiplayer inter-
active applications on the Internet,” IEEE Netw., vol. 13, no. 4, pp. 6-15,
Jul./Aug. 1999.

[3] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei, “An empirical evalu-
ation of TCP performance in online games,” in Proc. ACM SIGCHI Int.
Conf. Adv. Comput. Entertain. Technol., 2006.

[4] R. M. Fujimoto, “Parallel and distributed simulation,” in Proc. 31st Conf.
Winter Simul., Bridge Future, vol. 1. 1999, pp. 122-131.

[5] X.-B.Shi, F. Liu, L. Du, X.-H. Zhou, and Y.-S. Xing, “‘An event correlation
synchronization algorithm for MMOG,” in Proc. 8th ACIS Int. Conf.
Softw. Eng., Artif. Intell., Netw., Parallel/Distrib. Comput. (SNPD), 2007,
pp. 746-751.

[6] H. T. Kung and J. T. Robinson, “On optimistic methods for concur-
rency control,” ACM Trans. Database Syst., vol. 6, no. 2, pp. 213-226,
1981.

[71 S. Zhou and Q. Hu, “The research of improved algorithm of time
warp based on distributed network architecture,” in Proc. 2nd Int.
Conf. Artif. Intell., Manage. Sci. Electron. Commerce (AIMSEC), 2011,
pp. 3534-3537.

[8] S.-J.Kim, F. Kuester, and K. H. Kim, “A global timestamp-based approach
to enhanced data consistency and fairness in collaborative virtual environ-
ments,” Multimedia Syst., vol. 10, no. 3, pp. 220-229, 2005.

[9]1 S. Ferretti and M. Roccetti, “Fast delivery of game events with an opti-
mistic synchronization mechanism in massive multiplayer online games,”
in Proc. ACM SIGCHI Int. Conf. Adv. Comput. Entertain. Technol. (ACE),
2005.

[10] S. Ferretti, M. Roccetti, and C. E. Palazzi, “An optimistic obsolescence-
based approach to event synchronization for massively multiplayer online
games,” Int. J. Comput. Appl., vol. 29, no. 1, pp. 3343, 2007.

[11] R. Prodan and V. Nae, “Prediction-based real-time resource provisioning
for massively multiplayer online games,” Future Generat. Comput. Syst.,
vol. 25, no. 7, pp. 785-793, 2009.

VOLUME 3, NO. 2, JUNE 2015

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[25]

[26]

[27]

[28]

[30

[31]
[32]

[33]

[34]

[35]

[36]

Y. Abushnagh, M. Brook, C. Sharp, G. Ushaw, and G. Morgan, ‘“‘Liana:
A framework that utilizes causality to schedule contention management
across networked systems,” in On the Move to Meaningful Internet
Systems (Lecture Notes in Computer Science), vol. 7567. Berlin,
Germany: Springer-Verlag, 2012, pp. 871-878.

M. Cajada, P. Ferreira, and L. Veiga, “Adaptive consistency for replicated
state in real-time-strategy multiplayer games,” in Proc. 11th Int. Workshop
Adapt. Reflect. Middleware (ARM), 2012.

W. Vogels, “Eventually consistent,” Commun. ACM, vol. 52, no. 1,
pp. 4044, 2009.

A. Lakshman and P. Malik, “Cassandra: A decentralized structured storage
system,” ACM SIGOPS Operat. Syst. Rev., vol. 44, no. 2, pp. 3540,
2010.

G. DeCandia et al., “Dynamo: Amazon’s highly available key-value
store,” in Proc. 21st ACM SIGOPS Symp. Operat. Syst. Principles (SOSP),
2007.

D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser, “Managing update conflicts in Bayou, a weakly con-
nected replicated storage system,” in Proc. 15th ACM Symp. Operat. Syst.
Principles (SOSP), 1995, pp. 172-182.

A.-M. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel, “The
IceCube approach to the reconciliation of divergent replicas,” in Proc.
20th Annu. ACM Symp. Principles Distrib. Comput. (PODC), 2001,
pp. 210-218.

W. N. Scherer and M. L. Scott, “Contention management in dynamic
software transactional memory,” in Proc. PODC Workshop Concurrency
Synchronizat. Java Programs, 2004.

M. Brook, C. Sharp, and G. Morgan, ‘“Semantically aware contention
management for distributed applications,” in Proc. 13th Int. IFIP Conf.
Distrib. Appl. Interoperable Syst. (DAIS), 2013.

M. Brook, C. Sharp, G. Ushaw, W. Blewitt, and G. Morgan, ‘“Volatility
management of high frequency trading environments,” in Proc. 15th IEEE
Conf. Business Inf. (CBI), Jul. 2013, pp. 101-108.

M. Claypool and K. Claypool, ‘“‘Latency can kill: Precision and deadline in
online games,” in Proc. 1st ACM Multimedia Syst. Conf. (MMSys), 2010,
pp. 215-222.

G. Morgan, “Highly interactive and scalable online worlds,” in Social
Networking and the Web. New York, NY, USA: Academic, 2009, ch. 3,
pp. 75-120.

M. Suznjevic, O. Dobrijevic, and M. Matijasevic, “MMORPG player
actions: Network performance, session patterns and latency requirements
analysis,” Multimedia Tools Appl., vol. 45, nos. 1-3, pp. 191-214,
20009.

M. V. Salles et al., “An evaluation of checkpoint recovery for mas-
sively multiplayer online games,” Proc. VLDB Endowment, vol. 2, no. 1,
pp. 1258-1269, Aug. 2009.

B. Peers, “Making faces: Eve online’s new portrait rendering,” in Proc.
ACM SIGGRAPH Talks, 2011.

V. Nae, R. Prodan, and T. Fahringer, *‘Cost-efficient hosting and load bal-
ancing of massively multiplayer online games,” in Proc. 11th IEEE/ACM
Int. Conf. Grid Comput. (GRID), Oct. 2010, pp. 9-16.

W. Cai, P. Xavier, S. J. Turner, and B.-S. Lee, ““A scalable architecture
for supporting interactive games on the Internet,” in Proc. 16th Workshop
Parallel Distrib. Sumul. (PADS), 2002, pp. 60—67.

E. Cheslack-Postava et al., ““A scalable server for 3D metaverses,” in Proc.
USENIX Annu. Tech. Conf. (USENIX ATC), 2012.

G. Nutt and D. Bayer, ‘“Performance of CSMA/CD networks under com-
bined voice and data loads,” IEEE Trans. Commun., vol. 30, no. 1,
pp. 6-11, Jan. 1982.

F. Howell and R. McNab, “SimJava: A discrete event simulation library
for Java,” in Proc. Int. Conf. Web-Based Model. Simul., 1998, pp. 51-56.

M. Claypool and K. Claypool, “Latency and player actions in online
games,” Commun. ACM, vol. 49, no. 11, pp. 40-45, 2006.

I. Barri, J. Ruis, C. Roig, and F. Giné, “Dealing with heterogeneity for
mapping MMOFPS in distributed systems,” in Proc. Parallel Process.
Workshops, LNCS 6586. 2011, pp. 51-61.

K.-T. Chen, P. Huang, and C.-L. Lei, “How sensitive are online gamers
to network quality?” Commun. ACM, vol. 49, no. 11, pp. 34-38,
2006.

D. Pittman and C. GauthierDickey, “A measurement study of virtual
populations in massively multiplayer online games,” in Proc. 6th ACM
SIGCOMM Workshop Netw. Syst. Support Games (NetGames), 2007.

G. Morgan, F. Lu, and K. Storey, “Interest management middleware for
networked games,” in Proc. Symp. Interact. 3D Graph. Games (13D), 2005.

287

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Blewitt et al.: Toward Consistency of State in MMOGs

WILLIAM BLEWITT received the B.Sc. degree
in physics with Space Science and Technology at
the University of Leicester in 2004, before earn-
ing a M.Sc. degree in computational intelligence
and robotics at De Montfort University in 2006.
During the Ph.D. degree in computer science at
De Montfort University, he researched compu-
tationally inexpensive emotion modelling for Al
agents before studying the M.Sc. degree in com-

. puter game engineering at Newcastle University.
He joined the Game Technology Research Group at Newcastle University
in 2012, where his research interests include modelling believable agents in
real-time systems, heterogeneous computing solutions for Al, and optimisa-
tions of general purpose GPU computing for commercial application.

MATTHEW BROOK received the B.Sc. (Hons.)
degree in computing science, M.Sc. degree in sys-
tem design for internet applications, and the Ph.D.
degree in concurrency control for distributed sys-
tems from Newcastle University, Newcastle upon
Tyne, U.K., in 2008, 2009, and 2014, respectively.

CRAIG SHARP received the B.Sc. degree in
computing science (distributed systems) in 2008
followed by the Ph.D. degree in 2013 from New-
castle University, Newcastle upon Tyne, U.K. His
Ph.D. was focused on the area of Software Trans-
actional Memory and Highly Parallel Comput-
ing. He subsequently joined the Game Technol-
ogy Research Group, Newcastle University, on the
Limbs Alive Project, which monitors the perfor-

. mance of stroke patients in the context of game
play. His research interests include concurrency control and game engine
design.

288

GARY USHAW received the B.Sc. degree in elec-
tronics from the University of Manchester Institute
of Science and Technology (UMIST), Manchester,
UK., in 1987, and the Ph.D. degree in signal
processing from the University of Edinburgh in
1995. From 1987 to 1991, he worked as an Elec-
trical Engineer on large scale public projects for
communications and control, working with CEGB,
British Rail, and the combined electricity gen-
erating boards of India. From 1995 to 2011, he
worked in the games industry as Software Engineer and later as Engineering
Manager, focusing on high-end console gaming with publishers including
Ubisoft, Sony, Rockstar, BBC, and Atari. In 2011, he joined the Teaching
Staff at Newcastle University School of Computing Science, concentrating
on video game engineering, rehabilitative gaming, and multicore systems.

GRAHAM MORGAN received the Ph.D. degree
from Newcastle University, Newcastle upon Tyne,
UK., in 1999, and spent the time since studying
a variety of areas in computing. With a research
background in systems, Graham has published
many articles on the engineering challenges related
to video game development. This has included col-
lision detection, online gaming, physics engines,
graphics, Al and multicore exploitation tech-
niques.

VOLUME 3, NO. 2, JUNE 2015

